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Abstract—We construct a new family of permutationally in-
variant codes that correct t Pauli errors for any t ě 1. We
also show that codes in the new family correct quantum deletion
errors as well as spontaneous decay errors. Our construction
contains some of the previously known permutationally invariant
quantum codes as particular cases. In many cases, the codes in
the new family are shorter than the best previously known explicit
permutationally invariant codes for Pauli errors and deletions.
This is an extended abstract of the preprint [1].

1. INTRODUCTION

Quantum error correction is one of the essential compo-
nents of quantum computing that aims to protect quantum
information from errors caused by quantum noise, such as
decoherence. Mapping a quantum state to be protected into a
higher-dimensional Hilbert space of the physical system is a
significant part of quantum error correction. A subspace of the
Hilbert space of a physical system is called a quantum code for
a given type of errors if it satisfies certain specific conditions
for error correction [10]. In many applications, it is desirable
to construct quantum codes that lie within the ground space
of the system. Motivated by this goal, in this paper, we study
permutation-invariant quantum codes whose codewords form
ground states of the ferromagnetic Heisenberg model.

1.1 Why permutation-invariant codes?

Recall that Heisenberg’s model characterizes interactions
between spins in the system. Two spin-1{2 particles are
coupled by an interaction given by SiSj , where Si and Sj

are the spin operators for the particles i and j, respectively.
In the absence of the external magnetic field, the Heisenberg
ferromagnetic model is described by the Hamiltonian Ĥ that
can be written in the form Ĥ “ ´2

ř

iăj

JijSiSj , where

Jij ą 0 is the exchange (coupling) constant between particles
i and j in the system; see [2, Ch. 1,4] for a detailed discussion
of this model. The swap operator P ij exchanges spins i and
j, essentially swapping the spin-12 particles i and j, e.g.,
P 12|Ö⇈y “ |Œ⇈y. The Hamiltonian of the Heisenberg model
can be written in terms of the swap operators in the following
way:

Ĥ “ ´
ÿ

iăj

Jij

ˆ

P ij ´
1

2
I

˙

.

A state |ψy is called permutation-invariant if it is preserved
by all swap operators P ij , i.e., |ψy is a common eigenstate of

the swap operators with eigenvalue 1. Denoting J “
ř

iăj Jij ,
we observe that for any permutation-invariant state |ψy,

ˆ

Ĥ ´
J

2
I

˙

|ψy “ ´
ÿ

iăj

JijP ij |ψy “ ´J |ψy.

Since Jij ą 0, the spectral norm of Ĥ ´ J
2 I is bounded

above by J , so the smallest eigenvalue of the Hamiltonian is
´J{2, and its corresponding eigenstate is |ψy. Therefore, any
permutation-invariant state is a ground state in the ferromag-
netic Heisenberg model [16].

1.2 Earlier work

Permutation-invariant codes were introduced in the works of
Ruskai and Pollatsek [21], [23]. The codes they constructed
encode a single logical qubit and are capable of correcting
all one-qubit errors and certain types of two-qubit errors.
Generalizing this construction, Ouyang [16] found a family
of permutation-invariant codes that correct t arbitrary errors
and t spontaneous decay errors. The family is parameterized
by integers g, n, and u (hence the name “gnu codes"), and the
shortest t-error-correcting codes in it are of length p2t` 1q2.
Ouyang subsequently showed that permutation-invariant codes
are capable of supporting reliable quantum storage, quantum
sensing, and decoherence-free communication [18]–[20].

The connection between permutation-invariant codes and
quantum deletions, along with the definition of the quantum
deletion channel, was developed in the works of Nakayama
and Hagiwara [8], [14], [15]. They also observed that
permutation-invariant codes are capable of correcting deletion
errors, and constructed single-deletion-correcting codes. Sub-
sequently, works [17], [24] showed that Ouyang’s gnu codes
can correct t deletions. In particular, the shortest known code
to correct t deletions comes from this family, and it has length
pt` 1q2.

Correcting deletions is an established research area in clas-
sical coding theory, see [7] and [3] for recent overviews. In
quantum coding theory, a deletion can be modeled as a partial
trace operation where the traced-out qubits are unknown. It
turns out that the performance of permutation-invariant codes
for correcting errors or deletions is sometimes amenable to
analysis. Focusing on this code family, we study the error cor-
rection (Knill–Laflamme) conditions for general permutation-
invariant codes. Using deletion correction as motivation, we
propose a new family of permutation-invariant codes defined
by the parameters g, m, δ, and ϵ. The shortest codes in this
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family have length p2t`1q2´2t and can correct all t patterns
of qubit errors and 2t deletion errors. The shortest t-error-
correcting permutation-invariant codes known previously are
due to Ouyang and require 2t more physical qubits than the
codes that we propose. Specializing our construction to t “ 1,
we observe that the length of our code is the same as the
Pollatsek–Ruskai’s pp7, 2, 3qq permutation-invariant code [21],
although the two codes are different.

In Sections 2 and 3 we collect the necessary definitions and
some basic facts about quantum deletions. In particular, in
Sec. 3 we recall the definition of deletion operators [25] and
prove some of their properties. Sec. 4 contains a detailed form
of the error-correcting conditions for permutation-invariant
codes. Our main result (the new code family) is presented in
Sec. 5. Details and proofs omitted from this extended abstract
can be found in [1].

2. PRELIMINARIES

Throughout this paper, we use the following notation. Let
|Ψy “ |ψ1ψ2, . . . , ψny Ă C2bn be a pure state, where C2bn is
a shorthand for pC2qbn, and we assume that xψi |ψiy “ 1 for
all i “ 1, 2, . . . , n. A general quantum state is identified with
its density matrix, i.e., a positive semidefinite Hermitian matrix
of trace 1. The density matrix of a pure state is simply ρ “

|ψyxψ|. For a collection of pure states |ψ1y, |ψ2y, . . . , |ψny

such that Prp|ψiyq “ pi for all i and
ř

i pi “ 1, the density
matrix is defined as ρ “

ř

i pi|ψiyxψi|. Denote by SpC2bnq

the set of all density matrices of order 2n.
Definition 2.1: Consider an nˆ n matrix

A “
ÿ

x,yPt0,1un

ax,y|xyxy|,

where ax,y P C. For an integer i P t1, 2, . . . , nu, the partial
trace of A is the mapping

Tri : SpC2bnq ÝÑ SpC2bpn´1qq

A ÞÑ
ÿ

x,yPt0,1un

ax,y Trp|xiyxyi|q|x1yxy1|,

where |x1y “ |x1, . . . , xi´1, xi`1, . . . , xny and |y1y “

|y1, . . . , yi´1, yi`1, . . . , yny.
Permutation-invariant quantum states are conveniently de-
scribed in terms of Dicke states [5], [9], [13].

Definition 2.2: A Dicke state |Dn
wy is a linear combination

of all qubit states of length n and “Hamming weight” w, i.e.

|Dn
wy “

1
b

`

n
w

˘

ÿ

xPt0,1un

|x|“w

|xy.

Sometimes we also use unnormalized Dicke states given by
|Hn

wy “

b

`

n
w

˘

|Dn
wy. Note that xDn

i |Dn
j y “ δij .

For spin- 12 particles, a Dicke state |Dw
n y can be viewed as a

superposition of the tensor product of states of an n-particle
system in which w particles are in the spin-up, and n´w are
in the spin-down configuration; for instance,

|D3
1y “

|001y ` |010y ` |100y
?
3

“
|⇊Òy ` |ÓÒÓy ` |Ò⇊y

?
3

.

A quantum code C maps a 2k-dimensional Hilbert space into
a subspace of the 2n-dimensional Hilbert space C2bn, i.e., it
encodes k logical qubits into n physical qubits. Throughout
this paper, we will be dealing with two-dimensional codes and
denote their basis codewords by |c0y and |c1y.

The following definition originates with [21].
Definition 2.3: A permutation-invariant code is a linear

subspace with basis vectors of the form

|c0y “
n
ÿ

j“0

αj |Dn
j y and |c1y “

n
ÿ

j“0

βj |Dn
j y, (1)

where αj , βj P C, j “ 0, 1, . . . , n and
ř

j ᾱjβj “ 0.

2.1 Kraus Operators and the Knill–Laflamme conditions
A quantum channel A is a linear operator acting on density

matrices such that it admits the Kraus decomposition

Apρq “
ÿ

APKA

AρA:,

where
ř

KA
AA:

“ I and KA is the Kraus set of the channel.
Elements of this set are called Kraus operators.

The necessary and sufficient conditions for the quantum
error correction were formulated by Knill and Laflamme [10].

Theorem 2.1 (KNILL–LAFLAMME CONDITIONS): Let
C be a quantum code with an orthonormal basis
|c0y, |c1y, . . . , |ck´1y, and let A be a quantum channel with
Kraus operators Ai. There exists a quantum recovery operator
R such that RpApρqq “ ρ for every density matrix supported
on C if and only if for every a, b,

xci|A:
aAb|cjy “ 0 for all i ‰ j , (2)

xci|A:
aAb|ciy “ gab for all i “ 0, 1, . . . , k ´ 1, (3)

for some constants gab P C.

3. QUANTUM DELETION CHANNEL

Definition 3.1: [25] (t-Deletion channel) Let t P

t1, 2, . . . , nu and let ρ P SpC2bnq be a quantum state. For a set
E “ te1, e2 . . . , etu Ă t1, 2, . . . , nu with e1 ă e2 ă . . . ă et,
define a map DE : SpC2bnq Ñ SpC2bpn´tqq as

Dn
Epρq :“ Tre1 ˝ ¨ ¨ ¨ ˝ Tretpρq.

The action of DE deletes the qubits in locations contained in
E, and is called a t-deletion error. A t-deletion channel Delnt
is a convex combination of all t-deletion errors, where t is a
fixed integer with |E| “ t, i.e.,

Delnt pρq “
ÿ

E:|E|“t

ppEqDn
Epρq,

where ppEq is a probability distribution.
Let n ě t ě 1 be integers. Define the set E “

te1, e2, . . . , etu Ă t1, 2, . . . nu with e1 ă e2 ă . . . ă et. Let
|cy “ |c1c2 . . . cty be a pure quantum state with c P t0, 1ut.
Define the operator An

E,xc| “ A1bA2b . . .bAn [25], where

Aj “

#

xci| j “ ei P E,

I j R E.

Lemma 3.1 ( [25], Lemma 3.1): Let t ě 1, n ě t be integers.
Define the set E “ te1, e2, . . . , etu Ă t1, 2, . . . nu with e1 ă
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e2 ă . . . ă et. Let |cy “ |c1c2 . . . cty be a pure quantum state
with pc1c2 . . . ctq P t0, 1ut. Then,

An
E,xc| “ An´t`1

e1,xc1|A
n´t`2
e2,xc2| . . .A

n´1
et´1,xct´1|A

n
et,xct|.

Lemma 3.1 can be easily proved by direct calculations. We
are now in a position to describe the Kraus decomposition of
the deletion channel. First, we cite another auxiliary result.

Lemma 3.2 ( [25], Lemma 4.2): Let ρ P S
`

C2bn
˘

be a
quantum state. The output state after deleting the qubits on
the positions labeled by the set E Ă t1, 2, . . . , nu can be
expressed as

Dn
Epρq “

ÿ

cPt0,1ut

An
E,xc|ρA

n:

E,xc|.

Lemma 3.2 together with Definition 3.1 imply that the Kraus
decomposition of the quantum t-deletion channel is given by

DelNt pρq “
ÿ

E,c

ppEqAn
E,xc|ρA

n
E,xc|

:,

where ppEq is a probability distribution.
It will be convenient to distinguish between two types of

deletions.
Definition 3.2: (Deletion operators) A 0-type deletion ap-

plied to the i-th qubit is the operator F i :“ An
i,x0|. Likewise,

a 1-type deletion is the operator Gi :“ An
i,x1|. In other words,

given x P t0, 1un, the action of these operators on the state
|xy is

F i|xy “ x0 |xiy|x1y and Gi|xy “ x1 |xiy|x1y,

where |x1y “ |x1 . . . xi´1xi`1 . . . xny.
In the next lemma, we show how these deletion operators

transform Dicke states.
Lemma 3.3: Let |Dn

wy be a Dicke state and let a P

t0, 1, . . . , nu. Then for any i “ 1, . . . , n

pF iq
a|Dn

wy “

d

`

n´a
w

˘

`

n
w

˘ |Dn´a
w y

pGiq
a|Dn

wy “

d

`

n´a
w´a

˘

`

n
w

˘ |Dn´a
w´ay,

where by definition
`

n
k

˘

“ 0 if n ă k or k ă 0.
Proof: Acting by F i on the state |Hn

wy “
ř

x:|x|“w|xy
annihilates the terms |xy with xi “ 1 and deletes one zero
from the states |xy with xi “ 0. Thus, the only retained states
are those with xi “ 0, and F i|Hn

wy “ |Hn´1
w y. Likewise,

Gi|Hn
wy “ |Hn´1

w´1y, i “ 1, . . . , n. The full claim now follows
by induction.
By the nature of permutation-invariant states, the statements
we make below in the paper do not depend on the location
of the deleted qubit, and we write 0-type and 1-type deletions
simply as F ,G, omitting the subscript i from the notation.

Lemmas 3.1, 3.2, and 3.3 imply that the Kraus set of the t-
deletion channel for a permutation-invariant code has the form
tGiF t´i : i P t0, 1, . . . , tuu. Throughout the paper, we will
denote the t-deletion error set for a permutation-invariant code
as εt “ tE0,E1, . . . ,Etu, where Ei “ GiF t´i. The following
lemma describes the action of the error operator Ea P εt on a
permutation-invariant state.

Lemma 3.4: Let Ea P εt. For any permutation-invariant state
|Dn

wy,

Ea|Dn
wy “

d

`

n´t
w´a

˘

`

n
w

˘ |Dn´t
w´ay.

Lemma 3.4 can be easily shown by direct calculations using
Lemma 3.3.

We make an important observation concerning correction of
Pauli errors. Upon applying a deletion error to a permutation-
invariant state, we obtain a permutation-invariant state (on
fewer qubits). Clearly, this does not hold for Pauli errors.
Indeed, generally Xi|Dn

wy ‰ Xj |Dn
wy if i ‰ j, so the Kraus

set for Pauli errors is much larger than for deletions, compli-
cating the analysis. A workaround proposed in [21] suggests
averaging Pauli errors, but general constructions look difficult.
At the same time, invariance with respect to permutations
plays the defining role for deletions, and it is also the main
property supporting the code construction we propose. Further,
given a deletion-correcting permutation-invariant code, we can
argue about its distance and make claims about its properties
with respect to correcting Pauli errors. Indeed, the following
proposition is true.

Proposition 3.5: A permutation-invariant code that corrects
2t deletions also corrects all combinations of t Pauli errors.

Proof: For a permutation-invariant state, deleting any 2t
qubits is equivalent to deleting the first 2t qubits in an n-qubit
state, so deletions are equivalent to erasures. Of course, a code
that corrects 2t erasures has quantum distance of at least 2t`1
(see, e.g., [22]). Thus, correcting deletions is tied to the code
distance, and distance d “ 2t` 1 is a sufficient condition for
correcting t qubit errors.

4. ERROR CORRECTION CONDITIONS FOR
PERMUTATION-INVARIANT CODES

Sufficient conditions for any code to correct deletions
were previously derived in [24]. In this section, we focus
on permutation-invariant codes and derive the necessary and
sufficient conditions for such a code to correct deletions
by showing the equivalence between them and the Knill–
Laflamme conditions for the 2t-deletion channel. By Proposi-
tion 3.5, this also implies that they correct t qubit errors.

Theorem 4.1: [1] Let C be a permutation-invariant quantum
error correction code as given in Definition 2.3, and suppose
that the coefficients αj and βj , j “ 1, . . . , n in the codewords
(1) are real. Then the code C corrects all t-qubit errors if
and only if its coefficient vectors α “ pα0, α1, . . . , αnq and
β “ pβ0, β1, . . . , βnq satisfy the following conditions:

(C1)
n
ÿ

j“0

αjβj “ 0;

(C2)
n
ÿ

j“0

α2
j “

n
ÿ

j“0

β2
j “ 1;

(C3) For all 0 ď a, b ď 2t,
n´2t
ÿ

j“0

`

n´2t
j

˘

b

`

n
j`a

˘`

n
j`b

˘

αj`aβj`b “ 0;
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(C4) For all 0 ď a, b ď 2t,
n´2t
ÿ

j“0

`

n´2t
j

˘

b

`

n
j`a

˘`

n
j`b

˘

pαj`aαj`b ´ βj`aβj`bq “ 0.

Proof outline: Since the Dicke states are orthonormal by con-
struction, conditions (C1), (C2) are required for the codewords
|c0y, |c1y to form orthonormal states. It can be shown that
conditions (C3) and (C4) are equivalent to the Knill–Laflamme
conditions for the 2t-deletion channel. By Proposition 3.5 this
suffices to prove the theorem. ■

Example 1: Ouyang’s codes [16] with parameters pg,m, uq
can be defined via the logical computational basis

|c0y “
ÿ

l even
0ďlďm

d

`

m
l

˘

2m´1
|Dn

gly, |c1y “
ÿ

l odd
0ďlďm

d

`

m
l

˘

2m´1
|Dn

gly,

where n “ gmu is the code length. Consider a p2t` 1, 2t`
1, 1q code from this family. Its coefficient vectors trivially
satisfy conditions (C1)-(C3) because of the choice of the gap
parameter g “ 2t` 1, and condition (C4) turns into

m
ÿ

l“0

p´1ql
ˆ

m

l

˙

`

n´2t
gl´a

˘

`

n
gl

˘ ,

which is zero for all 0 ď a ď 2t (see Lemmas 1 and 2 in
[16]). Coupled with Theorem 4.1, this shows that this code
corrects t qubit errors, recovering one of the results in [16].

5. A NEW FAMILY OF PERMUTATION-INVARIANT CODES

In this section, we present a new family of permutation-
invariant codes, defined by the parameters g,m, δ, and ϵ. The
code we construct encodes one logical qubit into n “ 2gm`

δ ` 1 physical qubits. The following combinatorial identity,
proved in [1, Appendix], plays a role in the construction.

Lemma 5.1: Let n, g,m, a, r be integers such that g ą 0
and 0 ď a ď r ď 2m ă n{g. Then

m
ÿ

l“0

p´1ql
`

m
l

˘

`

n{g´l
m`1

˘

”

`

n´r
gl´a

˘

`

n
gl

˘ ´

`

n´r
gl´r`a

˘

`

n
gl

˘

ı

“ 0. (4)

Construction 5.1: Let g,m, δ be nonnegative integers,
and let ϵ P t´1,`1u. Define a permutation-invariant
code Qg,m,δ,ϵ via its logical computational basis

|c0y “
ÿ

l even
0ďlďm

γbl|Dn
gly `

ÿ

l odd
0ďlďm

γbl|Dn
n´gly,

|c1y “
ÿ

l odd
0ďlďm

γbl|Dn
gly ` ϵ

ÿ

l even
0ďlďm

γbl|Dn
n´gly,

where n “ 2gm ` δ ` 1, bl “

b

`

m
l

˘

{
`

n{g´l
m`1

˘

, and

γ “

b

`

n{p2gq
m

˘

n´2gm
gpm`1q is the normalizing factor.

The next theorem establishes the error correction properties
of the code Qg,m,δ,ϵ.

Theorem 5.2: [1] Let t be a nonnegative integer and let
m ě t and δ ě 2t. If

pg ě 2t, ϵ “ ´1q or pg ě 2t` 1, ϵ “ `1q,

then the code Qm,l,δ,ϵ encodes one qubit into n “ 2gm`δ`1
qubits and corrects any t qubit errors.
Proof outline: We need to prove that the coefficients α,β
of the basis states satisfy conditions (C1)-(C4). Writing these
coefficients for the code Qm,l,δ,´ explicitly, we obtain

αj “
ÿ

l even
0ďlďm

fplqδj,gl `
ÿ

l odd
0ďlďm

fplqδj,n´gl,

βj “
ÿ

l odd
0ďlďm

fplqδj,gl ´
ÿ

l even
0ďlďm

fplqδj,n´gl,

where fplq “ γbl, and δ¨,¨ is the Kronecker delta. Condition
(C1) is trivially satisfied owing to the choice of the gap
parameter g. Condition (C2) turns into γ2

řm
l“0 b

2
l , which can

be shown to be 1, so it also is satisfied. Condition (C3) holds
since all the terms with positive signs also appear with the
same magnitude and the negative sign, which makes the sum
in condition (C3) zero. Finally, condition (C4) transforms into
the combinatorial identity

γ2
m
ÿ

l“0

p´1ql
`

m
l

˘

`

n{g´l
m`1

˘

˜`

n´2t
gl´a

˘

`

n
gl

˘ ´

`

n´2t
gl´2t`a

˘

`

n
gl

˘

¸

,

which is zero by Lemma 5.1. Following the same sequence of
steps, it is possible to show the error correction property of
the code Qm,l,δ,`. ■

Example 2: The permutation-invariant code Q2,1,2,´ with
logical codewords

|c0y “
c

3

10
|D7

0y `

c

7

10
|D7

5y

|c1y “
c

7

10
|D7

2y ´

c

3

10
|D7

7y.

,

/

/

/

.

/

/

/

-

(5)

has the same length as the 7-qubit permutation-invariant code
of [21], and it can correct a single error.

Example 3: The permutation-invariant code Q4,2,4,´ with
logical codewords

|c0y “
c

5

68
|D21

0 y `

c

7

12
|D21

8 y `

c

35

102
|D21

17y,

|c1y “
c

35

102
|D21

4 y ´

c

7

12
|D21

13y ´

c

5

68
|D21

21y

has length 21 and is shorter than all currently known explicit
families permutation-invariant codes that correct double errors.
Note that the permutation-invariant code Q2t,t,2t,´ with length
p2t`1q2´2t corrects arbitrary t qubit errors, and it has the best
code parameters among all the previously known permutation-
invariant codes that can correct t qubit errors. The following
proposition describes the relation between our code family and
Ouyang’s gnu codes [16].

Proposition 5.3: For all odd integers m ą 0 and for
all integers g ą 0, the code Qg,m´1

2 ,g´1,` coincides with
Ouyang’s gnu code with parameters pg,m, 1q.
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5.1 Deletion Correction Property

We already know that codes Qg,m,δ,ϵ correct deletion. A
precise formulation of this claim is given in the following
proposition.

Proposition 5.4: If m ě r s2 s, δ ě s and

pg ě s, ϵ “ ´1q or pg ě s` 1, ϵ “ `1q,

then the code Qg,m,δ,ϵ corrects all patters of s deletions.
This claim follows from the fact that conditions (C3) and (C4)
are equivalent to the Knill–Laflamme conditions for correcting
2t deletions, specialized to permutation-invariant codes.

For an odd number of deletions, the shortest code Qg,m,δ,ϵ

has length ps`1q2. This coincides with the length of Ouyang’s
gnu codes, although the code families are different. For any
even number of deletions ą 0, the code Qs,rs{2s,s,´ has length
ps` 1q2 ´ s, which is shorter than the existing constructions.

In [15], Nakayama and Hagiwara showed that the smallest
length of single quantum deletion-correcting codes is 4. They
also constructed a code that meets this bound with equality.
We note that code Q1,1,1,´ gives another construction of an
optimal code correcting one deletion. Its logical codewords
are

|c0y “
c

1

3
|D4

0y `

c

2

3
|D4

3y, |c1y “
c

2

3
|D4

1y ´

c

1

3
|D4

4y.

5.2 Transversality

Permutation-invariant codes were linked to transversal gate
sets in a recent paper [11], based on the results of [6]. Among
other results, [6] constructed spin codes as representations of
the groups 2O and 2I (the binary octahedral and icosahedral
groups [4]) that can be mapped onto permutation-invariant
codes. For instance, [6] constructed a code spanned by the
basis states

|c0y “
c

3

10

ˇ

ˇ

ˇ

7

2
,
7

2

E

`

c

7

1
0
ˇ

ˇ

ˇ

7

2
,´

3

2

E

|c1y “
c

7

10

ˇ

ˇ

ˇ

7

2
,
3

2

E

´

c

3

10

ˇ

ˇ

ˇ

7

2
,´

7

2

E

.

,

/

/

/

.

/

/

/

-

(6)

Following up on this work, the authors of [11] defined a Dicke
state mapping D that converts a state of a spin-j system into a
permutation-invariant state on n “ 2j qubits. It can be defined
as follows: D : |j,my Ñ |D2j

j´my. This mapping converts the
logical gates of a spin code into the logical transversal gates
of a permutation-invariant code. To link this line of work to
our paper, observe that applying D to the spin code of (6), we
obtain exactly our code Q2,1,2,´ (5). Hence, the permutation-
invariant Q2,1,2,´ code admits the 2I group gates transversally.

Even more recently, paper [12] introduced a family of
permutation- invariant codes of distance 3 that admits transver-
sal gates from BD2b (the binary dihedral group of degree 2b).
The group BD2b is a non-abelian subgroup of SUp2q of order

8b with generators X,Z,

ˆ

e´iπ{2b 0

0 eiπ{2b

˙

. For instance,

BD2 “ xX,Zy, BD4 “ xX,Z, Sy, and BD8 “ xX,Z, S, T y
It is well known that rr2r`1 ´ 1, 1, 3ss Reed-Muller codes
implement the BD2r group gates transversally.

Proposition 5.5: Let b ą 0 be an integer that is not of
the form 2r or 3p2rq. The codes in the family Q3,1,2b´4,`

implement the group BD2b transversally when 3 ffl b and
implement the group BD2b{3 transversally when 3|b. The
codes Q3,1,2r´4,` implement the group BD2r transversally
for all integers r ě 3.
This follows because the first code family in the proposition
offers an alternative construction of the codes in Family 1
in [12], where the transversality properties are proved. The
second code family is the same as Family 2 in [12].

For example, the code Q3,1,4,` of length n “ 11 with its
basis codewords

|c0y “
?
5

4
|D11

0 y `

?
11

4
|D11

8 y,

|c1y “
?
11

4
|D11

3 y `

?
5

4
|D11

11y

can correct one error and it implements the T gate transver-
sally. For comparison, the rr15, 1, 3ss Reed-Muller code, which
also has this property, is longer than our construction. Further-
more, the code Q3,1,12,` with its codewords

|c0y “
c

13

32
|D19

0 y `

c

19

32
|D19

16y,

|c1y “
c

19

32
|D19

3 y `

c

13

32
|D19

19y.

can correct one error, implements the
?
T gate transversally,

and has better code parameters than the rr31, 1, 3ss RM code
that implements a tranversal

?
T .

5.3 Spontaneous decay errors

Codes of construction 5.1 also correct errors arising from
spontaneous photon emission. The noise process in the am-
plitude damping channel models decay of the photon from its
excited state |1y to the ground state |0y. Assuming that the
probability of decay is p, the behavior of the noise process on
a single qubit system is defined as

Eppρq “ A0ρA
:
0 `A1ρA

:
1, (7)

where

A0 “

„

1 0
0

?
1´ p

ȷ

, A1 “

„

0
?
p

0 0

ȷ

.

We clearly have A0|0y “ |0y,A0|1y “
?
1´ p|1y and

A1|0y “ 0,A1|1y “
?
p|0y. For an n-qubit system, a

typical error in this channel has the form bn
i“1Ki, where

Ki P tA0,A1u. We say the error has multiplicity t if t (or
fewer) of the terms in this product equal A1. In [1] we prove
the following result.

Theorem 5.6: Let t be a nonnegative integer. Let g ě t` 1,
m ě r 3t2 s, δ ě t, and ϵ “ ˘1. Then the code Qm,l,δ,ϵ corrects
t amplitude-damping errors.
The proof relies on general conditions for error correction es-
tablished in [16] and the specific form of the codes constructed
in this paper.
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