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Abstract—We construct a new family of permutationally in-
variant codes that correct ¢ Pauli errors for any ¢ > 1. We
also show that codes in the new family correct quantum deletion
errors as well as spontaneous decay errors. Our construction
contains some of the previously known permutationally invariant
quantum codes as particular cases. In many cases, the codes in
the new family are shorter than the best previously known explicit
permutationally invariant codes for Pauli errors and deletions.
This is an extended abstract of the preprint [1].

1. INTRODUCTION

Quantum error correction is one of the essential compo-
nents of quantum computing that aims to protect quantum
information from errors caused by quantum noise, such as
decoherence. Mapping a quantum state to be protected into a
higher-dimensional Hilbert space of the physical system is a
significant part of quantum error correction. A subspace of the
Hilbert space of a physical system is called a quantum code for
a given type of errors if it satisfies certain specific conditions
for error correction [10]. In many applications, it is desirable
to construct quantum codes that lie within the ground space
of the system. Motivated by this goal, in this paper, we study
permutation-invariant quantum codes whose codewords form
ground states of the ferromagnetic Heisenberg model.

1.1 Why permutation-invariant codes?

Recall that Heisenberg’s model characterizes interactions
between spins in the system. Two spin-1/2 particles are
coupled by an interaction given by S;S;, where S; and S
are the spin operators for the particles ¢ and j, respectively.
In the absence of the external magnetic field, the Heisenberg
ferromagnetic model is described by the Hamiltonian H that
can be written in the form H = —2 > Jij S S, where

1<
Ji; > 0 is the exchange (coupling) Constantjbetween particles
1 and j in the system; see [2, Ch. 1,4] for a detailed discussion
of this model. The swap operator P;; exchanges spins 4 and
J, essentially swapping the spin—% particles ¢ and j, e.g.,
P15]1117) = [{117)- The Hamiltonian of the Heisenberg model
can be written in terms of the swap operators in the following

way:
. 1
H=->"J; (Pij - 21) .

1<j
A state |¢) is called permutation-invariant if it is preserved
by all swap operators P;;, i.e., [¢)) is a common eigenstate of
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the swap operators with eigenvalue 1. Denoting J = ). _ j
we observe that for any permutation-invariant state |t),

(ﬂ — gI> [y = — Z Jij Pijlv) = —=J[).

i<j

Jij»

Since J;; > 0, the spectral norm of H — 41 is bounded
above by J, so the smallest eigenvalue of the Hamiltonian is
—J/2, and its corresponding eigenstate is |1)). Therefore, any
permutation-invariant state is a ground state in the ferromag-
netic Heisenberg model [16].

1.2 Earlier work

Permutation-invariant codes were introduced in the works of
Ruskai and Pollatsek [21], [23]. The codes they constructed
encode a single logical qubit and are capable of correcting
all one-qubit errors and certain types of two-qubit errors.
Generalizing this construction, Ouyang [16] found a family
of permutation-invariant codes that correct ¢ arbitrary errors
and ¢ spontaneous decay errors. The family is parameterized
by integers g, n, and u (hence the name “gnu codes"), and the
shortest ¢-error-correcting codes in it are of length (2t + 1)2.
Ouyang subsequently showed that permutation-invariant codes
are capable of supporting reliable quantum storage, quantum
sensing, and decoherence-free communication [18]-[20].

The connection between permutation-invariant codes and
quantum deletions, along with the definition of the quantum
deletion channel, was developed in the works of Nakayama
and Hagiwara [8], [14], [15]. They also observed that
permutation-invariant codes are capable of correcting deletion
errors, and constructed single-deletion-correcting codes. Sub-
sequently, works [17], [24] showed that Ouyang’s gnu codes
can correct ¢ deletions. In particular, the shortest known code
to correct ¢ deletions comes from this family, and it has length
(t+1)%

Correcting deletions is an established research area in clas-
sical coding theory, see [7] and [3] for recent overviews. In
quantum coding theory, a deletion can be modeled as a partial
trace operation where the traced-out qubits are unknown. It
turns out that the performance of permutation-invariant codes
for correcting errors or deletions is sometimes amenable to
analysis. Focusing on this code family, we study the error cor-
rection (Knill-Laflamme) conditions for general permutation-
invariant codes. Using deletion correction as motivation, we
propose a new family of permutation-invariant codes defined
by the parameters g, m, §, and e. The shortest codes in this
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family have length (2¢+ 1)? — 2t and can correct all ¢ patterns
of qubit errors and 2t deletion errors. The shortest t-error-
correcting permutation-invariant codes known previously are
due to Ouyang and require 2t more physical qubits than the
codes that we propose. Specializing our construction to ¢t = 1,
we observe that the length of our code is the same as the
Pollatsek—Ruskai’s ((7,2, 3)) permutation-invariant code [21],
although the two codes are different.

In Sections 2 and 3 we collect the necessary definitions and
some basic facts about quantum deletions. In particular, in
Sec. 3 we recall the definition of deletion operators [25] and
prove some of their properties. Sec. 4 contains a detailed form
of the error-correcting conditions for permutation-invariant
codes. Our main result (the new code family) is presented in
Sec. 5. Details and proofs omitted from this extended abstract
can be found in [1].

2. PRELIMINARIES

Throughout this paper, we use the following notation. Let
|U) = [¢h11)a, . .., Pn )y < C?®" be a pure state, where C2®" is
a shorthand for (C?)®", and we assume that (¢; | 1;) = 1 for
all i =1,2,...,n. A general quantum state is identified with
its density matrix, i.e., a positive semidefinite Hermitian matrix
of trace 1. The density matrix of a pure state is simply p =
[ )1]. For a collection of pure states [i1), |W2), ..., |[n)
such that Pr(|+;)) = p; for all ¢ and }}, p; = 1, the density
matrix is defined as p = Y, p;|¥;){1;|. Denote by S(C*®")
the set of all density matrices of order 2.

Definition 2.1: Consider an n x n matrix

A = Z aw,y‘w><y|7
z,ye{0,1}"
where a5, € C. For an integer ¢ € {1,2,...,n}, the partial

trace of A is the mapping
Tr; : S(C?®") — §(C*~=Y)

A Z Az.y T\r(|xl><yl|)|wl><y/|7

x,ye{0,1}"
where |z') = |x1,...,%i-1,%iq1,...,2Zny and |y’ =
|y1a e Yi1,Yit 1, - - 7yn>

Permutation-invariant quantum states are conveniently de-
scribed in terms of Dicke states [5], [9], [13].

Definition 2.2: A Dicke state |D?) is a linear combination
of all qubit states of length n and “Hamming weight” w, i.e.

Dy

1
w) = |).
() we{;l}"

|z|=w
Sometimes we also use unnormalized Dicke states given by
|Hy) = \/E|Dg>. Note that (D} | D}}) = ;.

w
For spin-; particles, a Dicke state | D) can be viewed as a
superposition of the tensor product of states of an n-particle
system in which w particles are in the spin-up, and n — w are
in the spin-down configuration; for instance,

001y + 010) + [100) _ [0ty + [414) + 110
NE V3 '

DY) =

A quantum code % maps a 2¥-dimensional Hilbert space into
a subspace of the 2"-dimensional Hilbert space C?®", i.e., it
encodes k logical qubits into n physical qubits. Throughout
this paper, we will be dealing with two-dimensional codes and
denote their basis codewords by |co) and |c; ).

The following definition originates with [21].

Definition 2.3: A permutation-invariant code is a linear

subspace with basis vectors of the form
n

lcoy = Y o;|D}y and ey = Y BIDE, (1)
j=0 j=0
where o, 8; € C,j =0,1,...,n and Zj@jﬂj =0.

2.1 Kraus Operators and the Knill-Laflamme conditions

A quantum channel A is a linear operator acting on density

matrices such that it admits the Kraus decomposition
Alp) = Y, ApA",
A€R A

where > AAT = I and R4 is the Kraus set of the channel.
Elements of this set are called Kraus operators.

The necessary and sufficient conditions for the quantum
error correction were formulated by Knill and Laflamme [10].

Theorem 2.1 (KNILL-LAFLAMME CONDITIONS): Let
% be a quantum code with an orthonormal basis
lco), |€1), ..., |ek—1), and let A be a quantum channel with
Kraus operators A;. There exists a quantum recovery operator
R such that R(A(p)) = p for every density matrix supported
on ¥ if and only if for every a, b,

{ci|Al Ayle;y =0 foralli+j, 2)
(ci|AT Aple) = gy foralli=0,1,....,k—1, (3)
for some constants g, € C.

3. QUANTUM DELETION CHANNEL

Definition 3.1: [25] (t-Deletion channel) Let ¢t €
{1,2,...,n} and let p € S(C?®") be a quantum state. For a set
E={e,es....,e;} = {1,2,... ,n} withey; <ex <...<ey,
define a map Dy : S(C*®") — §(CX®(n—1)) a5

D%(p) := Tre, 0+ 0 Tre, (p).
The action of Dg deletes the qubits in locations contained in
E, and is called a t-deletion error. A t-deletion channel Del}
is a convex combination of all ¢-deletion errors, where ¢ is a
fixed integer with |E| = ¢, i.e.,

Deli'(p) = >, p(E)Dp(p),

E:|E|=t

where p(F) is a probability distribution.

Let n > ¢t > 1 be integers. Define the set £ =
{e1,€9,...,e;} < {1,2,...n} with e; < €3 < ... < ¢;. Let
|c) = |cica ... ¢y be a pure quantum state with ¢ € {0, 1}%.
Define the operator A%,@\ =A1®A4A:R...®A, [25], where

j=e €k,

A — {eil
’ I j¢E.

Lemma 3.1 ( [25], Lemma 3.1): Lett > 1, n > t be integers.
Define the set E = {e1,e2,...,e:} < {1,2,...n} with e; <
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€2 < ...<ep Let|e)=|cica...c ) be a pure quantum state
with (ciea...¢) € {0, 1}, Then,

n n—t+1 gn—t+2 n—1 n

Ele| — A€17<01| A€27<62\ Aet 1.{ee—1|“ e, et

Lemma 3.1 can be easily proved by direct calculations. We
are now in a position to describe the Kraus decomposition of
the deletion channel. First, we cite another auxiliary result.

Lemma 3.2 ( [25], Lemma 4.2): Let p € S ((C2®”) be a
quantum state. The output state after deleting the qubits on
the positions labeled by the set £ < {1,2,...,n} can be
expressed as

Do) = Y, AbqprAbe
ce{0,1}t
Lemma 3.2 together with Definition 3.1 imply that the Kraus

decomposition of the quantum t-deletion channel is given by
DelN Zp AE(C pAE<C| 5

where p(F) is a probablhty distribution.

It will be convenient to distinguish between two types of
deletions.

Definition 3.2: (Deletion operators) A O-type deletion ap-
plied to the i-th qubit is the operator F'; := A?,<0|- Likewise,
a 1-type deletion is the operator G; := AZ<1\' In other words,
given x € {0,1}", the action of these operators on the state
|z) is

Filr) = 0|xzplx’) and Gilz) = (1|z)la’),
where |€') = |21 ... Z;—1Ti41 ... Tp).

In the next lemma, we show how these deletion operators
transform Dicke states.

Lemma 3.3: Let |D") be a Dicke state and let a €

{0,1,...,n}. Then for any i = 1,...,n
a n (n;a) n—a
F)?|Dry = [~ |Dn
(F:)*|Dy,) ) | )
(Gi)*|Dyy) = o) D=4,

()
w
where by definition () = 0 if n <k or k < 0.

Proof: Acting by F; on the state [H}) = >, . 1_,[®)
annihilates the terms |x) with 2; = 1 and deletes one zero
from the states |x) with x; = 0. Thus, the only retained states
are those with z; = 0, and F;|H") = |H"~'). Likewise,

Gi|H) = |H""1), i=1,...,n. The full claim now follows
by induction. ]
By the nature of permutation-invariant states, the statements
we make below in the paper do not depend on the location
of the deleted qubit, and we write O-type and 1-type deletions
simply as F', G, omitting the subscript ¢ from the notation.

Lemmas 3.1, 3.2, and 3.3 imply that the Kraus set of the ¢-
deletion channel for a permutation-invariant code has the form
{(G'F'"" : i€ {0,1,...,t}}. Throughout the paper, we will
denote the ¢-deletion error set for a permutation-invariant code
as e, = {Eo,Eyq, ..., E}, where E; = G*F'". The following
lemma describes the action of the error operator E, € €, on a
permutation-invariant state.

Lemma 3.4: Let E, € ;. For any permutation-invariant state

1Dy )»
(u—a)
(i)

Lemma 3.4 can be easily shown by direct calculations using
Lemma 3.3.

We make an important observation concerning correction of
Pauli errors. Upon applying a deletion error to a permutation-
invariant state, we obtain a permutation-invariant state (on
fewer qubits). Clearly, this does not hold for Pauli errors.
Indeed, generally X;|Dj;» # X;|DI') if i # j, so the Kraus
set for Pauli errors is much larger than for deletions, compli-
cating the analysis. A workaround proposed in [21] suggests
averaging Pauli errors, but general constructions look difficult.
At the same time, invariance with respect to permutations
plays the defining role for deletions, and it is also the main
property supporting the code construction we propose. Further,
given a deletion-correcting permutation-invariant code, we can
argue about its distance and make claims about its properties
with respect to correcting Pauli errors. Indeed, the following
proposition is true.

Proposition 3.5: A permutation-invariant code that corrects
2t deletions also corrects all combinations of ¢ Pauli errors.

Proof: For a permutation-invariant state, deleting any 2¢
qubits is equivalent to deleting the first 2¢ qubits in an n-qubit
state, so deletions are equivalent to erasures. Of course, a code
that corrects 2t erasures has quantum distance of at least 2¢+ 1
(see, e.g., [22]). Thus, correcting deletions is tied to the code
distance, and distance d = 2¢ + 1 is a sufficient condition for
correcting ¢ qubit errors. [ ]

E,|D"

|D; -

w—a

4. ERROR CORRECTION CONDITIONS FOR
PERMUTATION-INVARIANT CODES

Sufficient conditions for any code to correct deletions
were previously derived in [24]. In this section, we focus
on permutation-invariant codes and derive the necessary and
sufficient conditions for such a code to correct deletions
by showing the equivalence between them and the Knill-
Laflamme conditions for the 2¢-deletion channel. By Proposi-
tion 3.5, this also implies that they correct ¢ qubit errors.

Theorem 4.1: [1] Let € be a permutation-invariant quantum
error correction code as given in Definition 2.3, and suppose
that the coefficients a; and 8;, j = 1,...,n in the codewords
(1) are real. Then the code ¥ corrects all ¢-qubit errors if
and only if its coefficient vectors o = (ag, o, ..., ay) and
B = (Bo, B1,---,8n) satisfy the following conditions:

n

€D > ;B =0

j=0
@ Sar-$-
=0 =0
(C3) Forall 0 <a,b<2t
n—2t (ant)
Z J

=L —ajiaBn = 0;
J=0 (ﬂa) (jib)
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(C4) For all 0 <
n—2t n—2¢
3 (")
Jj=0 (jZa) (jj—b)
Proof outline: Since the Dicke states are orthonormal by con-
struction, conditions (C1), (C2) are required for the codewords
|co), |e1) to form orthonormal states. It can be shown that
conditions (C3) and (C4) are equivalent to the Knill-Laflamme
conditions for the 2¢-deletion channel. By Proposition 3.5 this
suffices to prove the theorem. M
Example 1: Ouyang’s codes [16] with parameters (g, m, u)
can be defined via the logical computational basis

a,b < 2t,

- 5j+aﬁj+b) =0

(aj+aaj+b

EYSEDY 2m 1|D_Z}l> ey = )] e 1\ Dy,
L even l odd
o<ism o<is<m

where n = gmu is the code length. Consider a (2t + 1,2t +
1,1) code from this family. Its coefficient vectors trivially
satisfy conditions (C1)-(C3) because of the choice of the gap
parameter g = 2¢ + 1, and condition (C4) turns into
- [ m (Zl_jf)
S (),
1=0 ! (gl)
which is zero for all 0 < a < 2t (see Lemmas 1 and 2 in

[16]). Coupled with Theorem 4.1, this shows that this code
corrects ¢ qubit errors, recovering one of the results in [16].

5. A NEW FAMILY OF PERMUTATION-INVARIANT CODES

In this section, we present a new family of permutation-
invariant codes, defined by the parameters g, m,d, and e. The
code we construct encodes one logical qubit into n = 2gm +
0 + 1 physical qubits. The following combinatorial identity,
proved in [1, Appendix], plays a role in the construction.

Lemma 5.1: Let n,g,m,a,r be integers such that g > 0
and 0 < a <7 < 2m < n/g. Then
o ) ) )

DN s - e~ @)
(7:”9“) (gl) (gl)

Construction 5.1: Let g, m, ) be nonnegative integers,
and let ¢ € {—1, +1}. Define a permutation-invariant
code Qg m 5, Via its logical computational basis

oy = Z vbi|Dg; + Z Yo | Dy _ 1),

L even  odd
o<i<m o<ism
n n
|cl> = Z ’Ybl|Dgl>+ € Z 7b1|Dn—gl>7
! odd 1 even
o<i<m o<i<m

where n = 2gm + 6 + 1, b = (T)/(%g.ﬁl)v and

("/ gg)) n=29m i the normalizing factor.

v = g(m+1)

The next theorem establishes the error correction properties
of the code Qg ...

Theorem 5.2: [1] Let t be a nonnegative integer and let
m >t and 6 = 2¢. If
(g=2t,e=—1)or (g =2t+1,e=+1),
then the code Q,, 1 5, encodes one qubit into n = 2gm+4J+1
qubits and corrects any ¢ qubit errors.

Proof outline: We need to prove that the coefficients o, 3
of the basis states satisfy conditions (C1)-(C4). Writing these
coefficients for the code Q.5 explicitly, we obtain

aj= > fO8a+ Y, fO8n—g,
[ even l odd
o<ism o<ism

Bi= > fWea— D, FD3n—g,
l odd [ even
o<i<m o<i<m

where f(I) = vb;, and §.. is the Kronecker delta. Condition
(C1) is trivially satisfied owing to the choice of the gap
parameter g. Condition (C2) turns into 2 ZZZO blz, which can
be shown to be 1, so it also is satisfied. Condition (C3) holds
since all the terms with positive signs also appear with the
same magnitude and the negative sign, which makes the sum
in condition (C3) zero. Finally, condition (C4) transforms into

the combinatorial identity
n—2t

* 3 s <(<>) - (glétf“)) ’

which is zero by Lemma 5.1. Following the same sequence of
steps, it is possible to show the error correction property of
the code Oy, 1.5,+. W

Example 2: The permutation-invariant code Oz 12 — with
logical codewords

o) =[P /10
e =\ 110D~/ 210D

has the same length as the 7-qubit permutation-invariant code
of [21], and it can correct a single error.

&)

Example 3: The permutation-invariant code Q44 — With
logical codewords

T 791 35 o1
lco) = A/ 68|Do >+ A/ 12|D8 )+ 102|D17
_ 35 o [T hoie 5 o
ler) = 702|D4 ) 12|D13> 68|D21

has length 21 and is shorter than all currently known explicit
families permutation-invariant codes that correct double errors.

Note that the permutation-invariant code Qo; ¢ o; — With length
(2t+1)2—2¢ corrects arbitrary ¢ qubit errors, and it has the best
code parameters among all the previously known permutation-
invariant codes that can correct ¢ qubit errors. The following
proposition describes the relation between our code family and
Ouyang’s gnu codes [16].

Proposition 5.3: For all odd integers m > 0 and for
all integers g > 0, the code Q 9.l g 14 coincides with
Ouyang’s gnu code with parameters (g, m,1).
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5.1 Deletion Correction Property

We already know that codes Qg ,, 5. correct deletion. A
precise formulation of this claim is given in the following
proposition.

Proposition 5.4: If m > [5],6 > s and

(g=s,e=—1)or(g=s+1,e=+1),

then the code Qg,m,&e corrects all patters of s deletions.
This claim follows from the fact that conditions (C3) and (C4)
are equivalent to the Knill-Laflamme conditions for correcting
2t deletions, specialized to permutation-invariant codes.

For an odd number of deletions, the shortest code Qg .5,
has length (s+1)2. This coincides with the length of Ouyang’s
gnu codes, although the code families are different. For any
even number of deletions > 0, the code Q [/2],s,— has length
(s + 1)% — s, which is shorter than the existing constructions.

In [15], Nakayama and Hagiwara showed that the smallest
length of single quantum deletion-correcting codes is 4. They
also constructed a code that meets this bound with equality.
We note that code Q11— gives another construction of an

sdydy

optimal code correcting one deletion. Its logical codewords

DY O TSN S TN

5.2 Transversality

Permutation-invariant codes were linked to transversal gate
sets in a recent paper [11], based on the results of [6]. Among
other results, [6] constructed spin codes as representations of
the groups 20 and 2 (the binary octahedral and icosahedral
groups [4]) that can be mapped onto permutation-invariant
codes. For instance, [6] constructed a code spanned by the
basis states

IRV EN LRV
e =y L2y L

Following up on this work, the authors of [11] defined a Dicke
state mapping 2 that converts a state of a spin-j system into a
permutation-invariant state on n = 27 qubits. It can be defined
as follows: 2 : |j,m) — |DJ2[ m,- This mapping converts the
logical gates of a spin code into the logical fransversal gates
of a permutation-invariant code. To link this line of work to
our paper, observe that applying Z to the spin code of (6), we
obtain exactly our code (21,2,— (5). Hence, the permutation-
invariant ()21 2, code admits the 21 group gates transversally.

Even more recently, paper [12] introduced a family of
permutation- invariant codes of distance 3 that admits transver-
sal gates from B Dsy, (the binary dihedral group of degree 2b).
The group BDyy, is a non—abelian/;gbgroup of SU(2) of order
e ' 0

0 eifr/2b
BDy; ={(X,Z), BDy =(X,Z,S), and BDs =(X,Z,5,T)
It is well known that [[2"! — 1,1, 3]] Reed-Muller codes
implement the B Dy~ group gates transversally.

(6)

8b with generators X, 7, . For instance,

Proposition 5.5: Let b > 0 be an integer that is not of

the form 2" or 3(2"). The codes in the family Q31 2p—4 +
implement the group BDs, transversally when 3 / b and
implement the group BDy,/3 transversally when 3|b. The
codes Q31 2r_4 4 implement the group BD,- transversally
for all integers r > 3.
This follows because the first code family in the proposition
offers an alternative construction of the codes in Family 1
in [12], where the transversality properties are proved. The
second code family is the same as Family 2 in [12].

For example, the code Q34 4 of length n = 11 with its
basis codewords

V5 V11
lco) = T|Dél> + T|Dé1 )
V11 V5

ler) = 4 |D3') + T|DH

can correct one error and it implements the 7" gate transver-
sally. For comparison, the [[15, 1, 3]] Reed-Muller code, which
also has this property, is longer than our construction. Further-
more, the code Qs 1 12,4+ With its codewords

13 19
lcoy =4/ §|Dég> +4/ 3—2|D%2
19 13
ler) = A/ §|D§9> +4/ 3*2|D%8

can correct one error, implements the v/7" gate transversally,
and has better code parameters than the [[31,1,3]] RM code
that implements a tranversal /7.

5.3 Spontaneous decay errors

Codes of construction 5.1 also correct errors arising from
spontaneous photon emission. The noise process in the am-
plitude damping channel models decay of the photon from its
excited state |1) to the ground state |0). Assuming that the
probability of decay is p, the behavior of the noise process on
a single qubit system is defined as

Ep(p) = AgpAj + A1pAl, @)
where
|1 0 {0 P
AO_[O «/1—p]’ Al_[o 0]'
We clearly have A|0) |0), Ag|1) /I —p|1) and
Aq|0) 0,Aq|1) \/P|0). For an n-qubit system, a

typical error in this channel has the form ®;] ; K, where
K, € {Ap, A1}. We say the error has multiplicity t if t (or
fewer) of the terms in this product equal A;. In [1] we prove
the following result.

Theorem 5.6: Let t be a nonnegative integer. Let g > ¢ + 1,
m = [ '], >t, and € = £1. Then the code Q,, ;5. corrects
t amphtude damping errors.

The proof relies on general conditions for error correction es-
tablished in [16] and the specific form of the codes constructed
in this paper.
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