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A B S T R A C T

Geopolymer has been identified as a promising family of sustainable construction materials alternative to 
cement-based materials. However, designing geopolymer utilizing solid wastes is a challenging task given the 
large variations of solid wastes in their physical and chemical properties. To overcome this challenge, this paper 
proposes a knowledge graph-guided data-driven approach to design geopolymer utilizing solid wastes, aimed at 
achieving high mechanical properties, low material cost, and low carbon emission, while largely improving 
material discovery efficiency. The proposed approach seamlessly integrates knowledge graph, machine learning, 
and multi-objective optimization, and has been utilized to design ultra-high performance geopolymer (UHPG). 
This approach has two main novelties: (1) The incorporation of knowledge graph imparts geopolymer domain 
knowledge, making the machine learning model interpretable and compliant with domain knowledge. (2) The 
consideration of physical and chemical properties of raw materials enables the utilization of various solid wastes. 
The results show that the proposed approach can reasonably predict geopolymer properties, interpret prediction 
results, and optimize UHPG design.

1. Introduction

Concrete is the most used structural material worldwide. In 2022, the 
annual consumption was more than 30 billion tons [1]. Such a high 
consumption volume makes concrete a main contributor to carbon 
emissions although its unit cost and unit carbon emission are not as high 
as other popular construction materials such as steel and aluminum [2]. 
The mechanical strengths of concrete are primarily dependent on the 
binder, and Portland cement is the most popular binder used in concrete. 
The manufacturing process of cement is energy intensive and involves 
high carbon emissions. In 2017, the consumption of cement to produce 
concrete exceeded 4 billion tons, resulting in 250 million tons of carbon 
emissions, which accounted for 7 % of the total emission [1]. Aiming to 
achieve carbon neutrality by 2050 [3], the development and utilization 
of innovative binders are important missions in the concrete and con
struction industries.

Geopolymer has been identified as a promising alternative solution 
that does not use cement while still achieving desired binding perfor
mance. Geopolymer often uses solid wastes such as fly ash and slag 
which are industrial by-products [4]. The utilization of wastes further 
improves the sustainability of geopolymer by mitigating pollution, 

making geopolymer a competitive solution. By just considering the 
elimination of cement from the mixture while neglecting the other 
benefits such as the reduction of landfill-induced emissions, the carbon 
emission of geopolymer can be reduced by 60 % compared with con
ventional concrete using Portland cement [5].

In addition to the benefits of eliminating cement, geopolymer has 
exhibited high mechanical properties and superior resistance to various 
effects such as chemical attacks [6], corrosion [7], and fire [8], making it 
a competitive solution for structures exposed to harsh environments. 
This makes geopolymer more promising considering climate change on 
human habitats [9]. Moreover, the rapid hardening character of geo
polymer promotes accelerated construction [10].

Extensive research has been conducted on the development of geo
polymer, primarily based on experiments which provide reliable orig
inal data that not only advance fundamental knowledge but also 
promote engineering designs of geopolymer. Experiment-based design 
and evaluation of geopolymer have been elaborated in previous papers 
[11–21]. An important lesson learned from previous research is that the 
mixture design and processing methods must be tailored to achieve 
desired performance in specific projects because the fresh and hardened 
properties of geopolymer are closely related to the physical and 

* Corresponding author.
E-mail address: yi.bao@stevens.edu (Y. Bao). 

Contents lists available at ScienceDirect

Cement and Concrete Composites

journal homepage: www.elsevier.com/locate/cemconcomp

https://doi.org/10.1016/j.cemconcomp.2024.105723
Received 10 January 2024; Received in revised form 9 July 2024; Accepted 19 August 2024  

Cement and Concrete Composites 153 (2024) 105723 

Available online 23 August 2024 
0958-9465/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

mailto:yi.bao@stevens.edu
www.sciencedirect.com/science/journal/09589465
https://www.elsevier.com/locate/cemconcomp
https://doi.org/10.1016/j.cemconcomp.2024.105723
https://doi.org/10.1016/j.cemconcomp.2024.105723
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cemconcomp.2024.105723&domain=pdf


chemical properties of the raw ingredients, mix proportions, and pro
cessing methods. For example, when the particle size gradation and 
chemical composition of fly ash were changed, the mechanical strengths 
of geopolymer were largely changed [21].

In real practices, the change of the physical and chemical properties 
of the raw ingredients is unavoidable for different reasons. First, various 
types of solid wastes such as fly ash and slag have been utilized to 
prepare geopolymer. The physical and chemical properties of those in
gredients are different. Second, for each type of solid waste such as fly 
ash, the physical and chemical properties still vary largely in different 
plants and even different batches in the same plant. With the change of 
the physical and chemical properties of the raw ingredients of geo
polymer, it is often necessary to modify the mix proportion and pro
cessing method via repeated time-consuming experiments, posing a 
significant challenge in the utilization of geopolymer in time-limited 
projects.

Recently, artificial intelligence (AI) techniques have been utilized to 
develop time-efficient methods for designing and characterizing con
crete efficiently [22–30]. For example, ultra-high-performance concrete 
(UHPC) [22] and strain-hardening cementitious composites (SHCC) 
[23] have been designed to achieve low material cost and low carbon 
emission while retaining superior mechanical properties and durability, 
simultaneously, by strategically utilizing locally-available solid wastes. 
The basic idea of AI-assisted design of concrete is to integrate a 
data-driven predictor and an optimizer:

• The predictor is a machine learning model that correlates the con
crete design variables, such as the mixture design, processing 
methods, and testing methods, with the interested concrete proper
ties, such as the flowability, mechanical strengths, and durability 
[22], through a training process based on available experimental 
data.

• The optimizer is an optimization algorithm that maximizes or min
imizes certain concrete properties, such as the maximization of me
chanical strengths and the minimization of cost and carbon emissions 
[23]. Multi-objective optimization and decision-making methods 
have been proposed to achieve multiple objectives simultaneously 
[23].

Although the efficacy and efficiency of AI-assisted design methods 
have been verified using experiments [31–35], concrete experts are still 
concerned about the reliability of those methods because they are based 
on data analysis rather than concrete knowledge. There are multiple 
facts that have limited a wider acceptance of machine learning methods 
in the concrete industry:

• The machine learning prediction models are black-box models that 
cannot explain the prediction results of concrete properties. The 
process of generating the prediction results is based on complex 
mathematical computation, which is different from experiments that 
can be easily checked to assess the rationality and the quality of the 
generated data.

• The property prediction of machine learning models is based on 
models which may violate concrete principles. The physical and 
chemical properties of raw ingredients and their effects on physical 
and chemical reactions in concrete were considered in recent study 
[36], but most studies did not consider the physical and chemical 
properties of ingredients.

• The sources and quality of data include uncertainties and errors. 
While both the quantity and the quality of data are important 
because data is the source of knowledge for machine learning pre
dictive models, many existing papers do not provide detailed infor
mation about how the adopted datasets have been generated and 
how the mixture design variables have been selected. It is difficult to 
assess the quality of data by concrete experts.

In addition to the above problems, there are also concerns about the 
generalizability of the AI methods for different types of concrete mate
rials. These concerns have become important obstacles that hinder the 
application of AI-assisted design methods in the concrete industry, 
although AI-assisted design methods have shown advantages in previous 
research.

To address these challenges, this paper presents an approach to 
incorporate concrete domain knowledge into AI-assisted material 
design, aimed at an integrated knowledge-guided data-driven design 
paradigm. In the proposed approach, the domain knowledge about 
geopolymer concrete is imparted in the form of a knowledge graph, 
which has been used in large AI systems for various domains such as 
medical, financial, education, and cyber security [37–41]. Knowledge 
graph has not been constructed in the context of AI-assisted material 
design.

The overarching goal of this study is to develop a knowledge-guided 
interpretable AI-design approach for auto-discovery of sustainable 
geopolymer concrete, which represents an alternative solution to not 
only the concrete industry but also the waste management community. 
To achieve this goal, this research has been conducted for the following 
three objectives:

(1) To create a knowledge graph which embodies the domain 
knowledge about geopolymer.

(2) To develop the interpretable machine learning approach along 
with a new framework that integrates a knowledge graph, ma
chine learning, and multi-objective optimization.

(3) To implement the interpretable machine learning approach and 
knowledge graph into the design of ultra-high-performance 
geopolymer (UHPG).

The proposed approach is developed in the context of geopolymer 
concrete, and its efficacy is assessed by the mechanical properties, ma
terial cost, and carbon emission of designed UHPG. This approach has 
three important novelties:

• First, a knowledge graph is constructed and integrated into AI- 
assisted design of UHPG, making the machine learning model 
interpretable and compliant with domain knowledge via imparting 
geopolymer domain knowledge. Specifically, the knowledge graph is 
used to achieve three abilities: (a) Guide the selection of design 
variables for machine learning predictors through identifying rele
vant variables, enabling concrete experts to assess the rationality of 
the adopted design variables. (b) Interpret the results from machine 
learning predictors via explicitly revealing the underlying mecha
nisms such as physicochemical reactions. (c) Facilitate the identifi
cation of existing knowledge gaps and the generation of new 
knowledge for enriching the knowledge graph.

• Second, the physical and chemical properties of raw materials are 
considered in the proposed approach using an artificial language, 
thereby enabling the AI-designer to handle various solid wastes that 
involve different physical and chemical properties.

• Third, by integrating the knowledge graph into the design frame
work, a novel explainable prediction and optimization framework is 
developed to achieve the ability to consider relevant domain 
knowledge about geopolymer concrete.

The remainder of the paper is organized as follows: Section 2 pre
sents the methods adopted to achieve these objectives, including the 
new framework and its components, with an emphasis placed on the 
rationality and the construction of the knowledge graph. Section 3
presents the results from the proposed approach. Section 4 summarizes 
the key findings of this research.
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2. Methods

A knowledge-guided data-driven geopolymer concrete designer is 
presented (Fig. 1). The designer includes four main components: (1) 
Construction of a knowedge graph. The knowledge graph is constructed 
to guide variable selection and explain the prediction results of machine 
learning models. (2) Construction of a dataset. The dataset is constructed 
by considering crucial factors, including mixing design variables, 
physiochemical properties of raw materials, and processing methods 
identified by the knowledge graph. Different forms of data are inte
grated into numerical data via feature engineering. (3) Prediction by 
machine learning. Model selection and evaluation are performed to 
select a model for predicting compressive strength of geopolymer with 
high accuracy. (4) Multi-objective optmization. The aim is to maintain 
high strength while reducing cost and carbon emissions when designing 
geopolymer concrete. The optimization algorithm uses the results pre
dicted by machine learning, along with carbon emissions and costs of 
raw materials, to generate a series of solutions. A multi-criteria decision- 
making (MCDM) method is applied to find high-performance, low-car
bon, and cost-effective geopolymer concrete.

2.1. Overview

The core idea for knowledge graph-guided AI design of geopolymer 
concrete is shown in Fig. 2. The framework integrates a knowledge 
graph, a machine learning predictor, and a multi-objective optimizer, 
which play three critical roles in the design team: (1) The knowledge 
graph acts as a domain expert who imparts domain knowledge to the 
team. (2) The machine learning predictor provides the quantitative 
prediction of geopolymer concrete properties based on the input vari
ables, which include the mixture design variables, processing methods, 
testing methods, and so on, depending on the specific application. (3) 
The multi-objective optimizer outputs the optimal geopolymer design 
based on the design objectives that are dependent on the specific use 
case.

The integration of knowledge graph and machine learning predictor 
enable the AI design team to achieve the qualitative reasoning ability via 
the knowledge graph and the quantitative regression ability via the 
machine learning predictor, generating a knowledgeable AI designer 
that is able to predict UHPG properties and interpret the prediction re
sults. Further, a multi-objective optimizer is incorporated to achieve the 
capability of optimizing the mechanical properties, cost, and carbon 
emission of UHPG simultaneously.

The construction of the knowledge graph involves two main tasks, 
which are knowledge collection and graphic representation. Knowledge 
collection refers to the collection of domain knowledge, which is the 
knowledge about geopolymer in this research. Graphic representation 
refers to the construction of graphs that describe the knowledge, based 
on knowledge graph techniques [42]. More details about knowledge 
graphs are available in section 2.2.

The establishment of machine learning predictor can be performed 
based on a procedure well-developed in previous research [43]. The 
procedure has several steps, such as data collection, the selection of 
input variable, data pre-processing, model selection, hyperparameter 
tuning, and model training. In previous research, data collection and 
variable selection were performed in an empirical or arbitrary way that 
could not be generalized for handling different types of concrete. In this 
research, a knowledge graph is utilized to guide the selection of input 
variables and data collection, and the selection of input variables is 
promoted before the step of data collection, aimed at facilitating the 
time-consuming data collection effort. Once the machine learning pre
dictor is established, the geopolymer properties can be predicted by 
specifying the input variables. In this, the knowledge graph is utilized to 
interpret the prediction results, making the AI designer interpretable. 
More details about the machine learning predictor are available in 
section 2.3.

The multi-objective optimizer utilizes the data provided by the ma
chine learning predictor to perform multi-objective optimization based 
on specific design objectives and output the optimal design of geo
polymer. In this paper, a multi-objective optimizer is utilized to discover 
new UHPG mixtures that can achieve high mechanical strengths, low 
material cost, and low carbon emission, simultaneously. More details 
about the multi-objective optimizer are available in section 2.4.

The interconnection of the knowledge graph, machine learning 
predictor, and multi-objective optimizer is demonstrated by using the 
predictor and optimizer to discover new geopolymer mixtures. This 
discovery leads to new knowledge and the expansion of the knowledge 
graph. More details on this process are in section 3.

2.2. Knowledge graph

A knowledge graph is a structured graphic representation of 
knowledge, and it can be utilized to organize, store, and represent the 
relationships between different pieces of information in a way that is 
understandable and operatable for computers and human. A knowledge 
graph typically has two types of components, which are nodes and 

Fig. 1. Illustration of the proposed knowledge-guided data-driven geopolymer concrete designer.
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edges, as shown in Fig. 3 by text boxes and arrows, respectively. Nodes 
represent entities, concepts, or data points. Edges represent the re
lationships between entities. Each box represents a node containing 
entities. For example, the entity on the top level is "Geopolymer con
crete". Each arrow is used to indicate the relationship between two en
tities. For example, the relationship between “Geopolymer concrete” 
and “Raw ingredients” is “has”, meaning geopolymer concrete has raw 
ingredients. It is noted that Fig. 3 is a simplified example of the 
knowledge graph for geopolymer. More domain knowledge can be 
added to enrich the knowledge graph, as shown in Fig. A1 in the 
appendix.

To construct a knowledge graph for geopolymer, three important 
aspects must be considered, including the available raw ingredients, 
processing methods, and concerned properties:

(1) The raw ingredients include the precursors, aggregates, activa
tors, water, and fibers. It is essential to understand the mecha
nisms of different ingredients that affect the concerned properties 
of geopolymer. Geopolymer is produced via geopolymerization 
reactions between aluminosilicate sources (or calcium-silicate 
source) and alkaline activators, forming a three-dimensional 

network with mechanical strengths. Initially, activators create 
an alkaline environment that facilitates the dissolution of 
aluminosilicate materials, releasing reactive SiO2 and Al2O3, 
which are essential for geopolymerization. Next, a three- 
dimensional polymeric network is formed via polycondensation 
reactions, with chemical bond aggregation by reactive SiO2 and 
Al2O3. Then, the network is further solidified via curing, yielding 
a hardened product. The compressive strength of geopolymer is 
influenced by the dissolution of Si/Al (or Ca/Si) compositions in 
the raw materials, as depicted in Table 1. Particle size also affects 
the compressive strength of geopolymers by influencing reac
tivity. Smaller particles enhancing reactivity by seeding effect 
during geopolymerization.

(2) The processing methods include the pre-treatment of raw in
gredients, mixing protocol, curing scheme, and testing methods. 
In this research, the considered factors are the curing scheme and 
testing methods [44]. While the variation of the pre-treatment of 
raw ingredients and mixing protocol are not considered in this 
research, but they can be considered using the same method in 
future studies. It is essential to include the knowledge about how 

Fig. 2. Analogical description of the proposed framework as a three-member cooperative team.

Fig. 3. Simple example of a knowledge graph for geopolymer considering compressive strengths.
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the curing schemes (e.g., standard and steam curing) and testing 
methods (e.g., specimen type and loading rate) impact the con
cerned properties of geopolymer.

(3) The concerned properties can include the fresh and hardened 
properties. In this research, the concerned properties are the 
compressive strength, material cost, and carbon emission [32]. In 
practices, it is also important to consider the fresh properties such 
as the flowability and setting time because they play important 
roles in the mechanical properties and durability as well as the 
construction quality [45]. More properties can be considered 
using the same methods.

2.3. Machine learning

The machine learning predictor is an essential role in an AI design 
team (Fig. 2) and provides the prediction of material properties. The 
following subsections introduce variable selection, data collection, data 
pre-processing, model selection, hyperparameter tuning, and perfor
mance metrics.

2.3.1. Variable selection and data collection
Knowledge graphs play a crucial role in guiding variable selection by 

qualitatively identifying relevant factors affecting the mechanical 
properties of geopolymer. Based on the knowledge graph, relevant 
variables of geopolymer are selected and then utilized as the input 
variables of machine learning models. In this research, the key variables 
were identified and classified into numerical variables (e.g., mixture 
design variables, solution concentrations, curing temperatures, and 
curing times), textual variables (e.g., physical and chemical properties of 
raw ingredients), and categorical variables (e.g., curing methods, spec
imen type).

It is noted that the physical and chemical properties of raw in
gredients are considered in this research. This is different from the use of 
engineering names such as Class C or Class F fly ash for representing raw 
ingredients since an engineering name corresponds to ingredients with 
different physical and chemical properties. The use of the physical and 
chemical properties enables machine learning to consider various 
wastes and knowledge graph to interpret the machine learning results. 
In this study, the dataset includes 676 different geopolymer mixtures in 
the literature. The data analysis for numerical data, textual data, and 

categorical data are presented as follows.

2.3.1.1. Numerical data. Numerical data include various mixture design 
variables such as the mass contents of binders (slag, fly ash, silica fume, 
and metakaolin), aggregates (fine and coarse aggregate), liquid mate
rials (NaOH solution, Na2SiO3 solution, and water), as well as NaOH 
concentration, steel fiber content (by volume), curing temperature, and 
curing time. The output variable is the 28-day compressive strength of 
geopolymer concrete. The statistics of the numerical data are shown in 
Table 2.

Multicollinearity analysis is a crucial aspect of regression analysis 
that involves multiple independent variables. Multicollinearity refers to 
a situation when independent variables are highly correlated [46], 
which can lead to misleading interpretations of variable importance. To 
analyze multicollinearity, a correlation matrix was built to determine 
the Pearson correlation coefficients of the numerical input variables 
[25]. When the maximum Pearson correlation coefficient is greater than 
0.7, multicollinearity occurs, and the dataset must be modified to 
eliminate multicollinearity [24]. The results of correlation analysis are 
shown in Fig. 4. The Pearson correlation coefficient of the input vari
ables was up to 0.65, indicating the absence of multicollinearity. 
Therefore, it is appropriate to use this dataset to train a machine learning 
model.

2.3.1.2. Textual data. In geopolymer, the chemical compositions such 
as the CaO, SiO2, and Al2O3 percentages in binders play significant roles 
in strength development. However, different batches of solid waste 
usually exhibit distinct physicochemical characteristics. It is inappro
priate to use the engineering names of solid wastes to represent the 
materials in the development of machine learning models without 
considering the physicochemical properties of ingredients. The impor
tance of utilizing the physicochemical properties as input variables in 
machine learning models has been proven in a recent study on pre
dicting concrete properties when various solid wastes are used [36]. A 
ternary diagram of the chemical compositions of various solid waste is 
shown in Fig. 5. Slag, fly ash, and metakaolin are popular aluminosili
cate and calcium-silicate sources for geopolymer [13,47].

The strength of geopolymer is influenced by the median particle size 
(D50) of raw ingredients. D50 provides a central measure of the particle 

Table 1 
Effect of different Si-to-Al ratios on geopolymerization.

Si-to-Al ratio Chemical formulation Illustration

Si:Al = 1 -Si-O-Al-O-

Si:Al = 2 -Si-O-Al-O-Si-O-

Si:Al = 3 -Si-O-Al-O-Si-O-Si-O-

Si:Al > 3
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size distribution. The selection of physicochemical properties also con
siders the accessibility of the data, the chemical elements CaO, SiO2, 
Al2O3, and D50 are widely available in the existing publications. The 
statistics of the physicochemical properties that affect the compressive 
strength of geopolymer are listed in Table 3, including the types, ranges, 
mean values, kurtosis, and skewness of the physicochemical properties.

2.3.1.3. Categorical data. The compressive strength of geopolymer 
concrete depends on the curing method and sample type. For example, 

steam curing can promote geopolymerization and enhance the 
compressive of geopolymer [48]. The test results of the compressive 
strength are also associated with the size of specimens. Typically, the 
compressive strength decreases with the increase of the specimen size 
[49], known as the size effect. The curing methods and specimen types 
are shown in Table 4. The curing methods include: (1) Standard curing, 
at room temperature and relative humidity higher than 95 %; (2) heat 
curing; (3) steam curing, at high temperature and high humidity; and (4) 
air curing. Four different types of specimens for compressive testing 

Table 2 
Description of selected mixture design variables of geopolymer concrete.

Number Variables Range Mean S.D. Skewness Kurtosis

1 Slag content 0–1.00 0.42 0.37 0.10 −1.56
2 Fly ash content 0–1.00 0.35 0.39 0.59 −1.27
3 Metakaolin content 0–1.00 0.18 0.37 1.71 1.01
4 Silica fume content 0–0.30 0.06 0.10 1.44 0.66
5 Fine aggregate content 0.16–3.30 1.43 0.63 1.01 0.34
6 Coarse aggregate content 0–5.09 1.49 1.49 0.34 −1.35
7 NaOH content 0–0.63 0.15 0.10 1.23 1.91
8 NaOH concentration (M) 0–16 12.47 2.28 −2.26 11.83
9 Na2SiO3 content 0–0.94 0.32 0.16 0.76 1.20
10 Extra water content 0–0.34 0.05 0.10 1.73 1.61
11 Steel fiber content (vol%) 0–3.0 0.38 0.78 1.97 2.78
12 Curing temperature (◦C) 20–100 26.47 16.12 2.59 5.45
13 Curing age (days) 1–91 19.58 14.53 1.80 6.96
14 Compressive strength (MPa) 5.6–171.2 64.8 43.95 0.83 −0.56

Note: “S.D.” is the standard deviation. “Skewness” and “kurtosis” describe the shape of a probability distribution. A symmetrical distribution has a skewness of 0. A 
normal distribution has a kurtosis of 3.

Fig. 4. Correlation matrix of the input numerical data. Numbers 1–13 in the heatmap correspond to the variable numbers in Table 1.
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were considered: (1) cubic specimens measuring 51 mm in side length 
[50]; (2) cubic specimens measuring 71 mm in side length [51]; (3) 
prism specimens measuring 160 mm × 40 mm × 40 mm [52]; and (4) 
cylinder specimens measuring 51 mm in diameter and 101 mm in height 
[53].

2.3.2. Feature engineering
One-hot encoding is a technique used to represent categorical data as 

vectors or numerical data, which is often utilized in machine learning 
and data pre-processing tasks. It is useful when a machine learning al
gorithm utilizes categorical variables but require numerical input data, 
such as artificial neural networks [54]. In this study, categorical data 
were converted into numerical data using the one-hot encoding method 
and then utilized to train the machine learning model. An example of 
one-hot encoding is shown in Fig. 6.

Word vectorization is a natural language processing method that 
maps words to corresponding vectors with real numbers. In this 
research, the text used to describe the physicochemical properties of raw 
ingredeints in geopolymer was stored in a dictionary, as shown in Eq. 
(1). DictVectorizer was used to extract the categorical and numerical 
features from the dictionary [55]. The categorical features were auto
matically one-hot encoded, meaning that each unique category was 
represented by a binary feature, and the numerical features were 

retained. The categorical and numerical features were turned into sparse 
matrices. 

{‘Type’: Metakaolin, ‘CaO’: 0.9, ‘SiO2’: 51.3, ‘Al2O3’: 37.4, ‘D50’: 2.3}                                                                                                      
(1)

2.3.3. Data normalization
The significant discrepancy of the numeric values of different vari

ables (Table 2) may highly affect the results of the machine learning 
models. It is often beneficial to normalize the input and output data of 
machine learning models to prevent overfitting between different nu
merical scales. In this research, the values of the input varables were 
normalized to the range of −1 to 1, as described in Eq. (2): 

x∗ =
x − μ

σ (2) 

where x is the original data; x* is the normalized data; μ is the mean 
value; and σ is the standard deviation. The distribution of data was kept 
the same before and after the application of the data normalization 
method [56].

2.3.4. Selection of machine learning algorithms
Eight different machine learning algorithms have been investigated 

and compared to achieve the optimal machine learning model in terms 
of the prediction accuracy and generalability. These machine learning 
algorithms include linear regression, ridge regression, support vector 
regressor, K neighbors regressor, and four ensemble methods which are 
random forest, extreme gradient boosting (XGBoost), light gradient 
Boosting machine (LightGBM), and CatBoost regressor, as shown in 
Table 5.

Three high-performnace algorithms evaluated based on prediction 
accuracy are selected for future research. Since there are many 

Fig. 5. Ternary diagram (CaO, SiO2, and Al2O3) of various types of solid wastes 
for geopolymer.

Table 3 
Statistical data of physicochemical information of raw ingredients.

Number Materials Properties Range Mean S.D. Kurtosis Skewness

1 Slag CaO (%) 34.6–46.3 40.1 3.6 −0.63 0.22
SiO2 (%) 25.3–36.7 33.8 2.9 6.08 −2.27
Al2O3 (%) 11.2–17.2 14.4 1.8 −1.00 0.02
D50 (μm) 1.0–167.0 27.9 47.1 9.81 3.08

2 Fly ash CaO (%) 1.2–14.2 3.8 3.3 5.44 2.31
SiO2 (%) 36.2–56.9 50.4 5.8 1.01 −1.21
Al2O3 (%) 19.9–31.9 27.4 3.6 0.20 −0.91
D50 (μm) 1.0–350.0 51.2 91.1 10.11 3.10

3 Metakaolin CaO (%) 0.1–1.8 1.1 0.6 1.92 −1.13
SiO2 (%) 45.3–51.0 49.0 2.5 −0.26 −1.04
Al2O3 (%) 37.1–42.6 40.5 2.6 −2.48 −0.71
D50 (μm) 0.15–4.3 1.4 1.9 2.22 1.61

4 Silica fume CaO (%) 0.7–1.8 1.4 0.5 −1.66 0.06
SiO2 (%) 92.1–96.4 94.4 1.9 −1.42 0.16
Al2O3 (%) 0–0.8 0.2 0.4 0.05 1.03
D50 (μm) 0.2–4.3 1.4 1.9 2.22 1.61

Note: “S.D.” is the standard deviation. “Skewness” and “kurtosis” describe the shape of a probability distribution. A symmetrical distribution has a skewness of 0. A 
normal distribution has a kurtosis of 3.

Table 4 
Description of curing method and specimen type of geopolymer concrete.

Number 1 2 3 4

Curing method Standard curing Heat curing Steam curing Air curing
Specimen type Cube 51 Cube 71 Prism Cylinder

Note: “Cube 51”: cubic specimens measuring 51 mm × 51 mm × 51 mm; “Cube 
70.7”: cubic specimens measuring 70.7 mm × 70.7 mm × 70.7 mm; “Prism”: 
prism specimens measuring 160 mm × 40 mm × 40 mm; and “Cylinder”: cy
lindrical specimens with heights of 101 mm and diameters of 51 mm.
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candidate models and the hyperparameter-tuning process is time- 
consuming, the machine learning models are initially tested without 
hyperparameter tuning. This model selection method is consistent with 
the methods in Refs. [24,57].

2.3.5. Hyperparameters tuning
Bayesian hyperparameter tuning is used for automatic hyper

parameter tuning. This technique is particularly useful when the ma
chine learning model is complex and has many hyperparameters. 
Bayesian optimization is applied to automatically and iteratively opti
mize the hyperparameters following the Gaussian process [58]. Each 
iteration is based on the Gaussian function fitted in the previous itera
tion, aimed at identifying better hyperparameters compared with the 
prior iteration.

In this research, cross-validation was performed in the optimization 
process to improve the prediction accuracy and generalizability of ma
chine learning models. Bayesian optimization builds a probabilistic 
model of the objective function that maps the hyperparameters to the 
performance of the model [58], as shown in Eq. (3): 

xp = argmax
x∈X

f(x) (3) 

where f(x) is an objective function that needs to be minimized; xp is the 
set of hyperparameters that result in the lowest objective function; and X 
is the search spacing of the hyperparameters. The value of the objective 
function is evaluated on the testing set.

2.3.6. Performance metrics
To evaluate the performance of machine learning models, four 

typical performance metrics were adopted, which are the mean absolute 
error (MAE), root mean squared error (RMSE), Mean absolute percent
age error (MAPE), and coefficient of determination (R2), respectively. 
The mathematical definitions of the three metrics are shown in Eq. (4) to 
Eq. (7). 

MAE =
1
n

⋅
∑n

i=1
|Pi − Ai| (4) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

⋅
∑n

i=1
(Pi − Ai)

2

√

(5) 

MAPE =
1
n

⋅
∑n

i=1

⃒
⃒
⃒
⃒
Pi − Ai

Ai

⃒
⃒
⃒
⃒ (6) 

R2 = 1 −

∑n
i=1

(
Pi − A)

2

∑n
i=1

(
Ai − A)

2 (7) 

where n is the total number of data; i is the ith data; P is the predicted 
compressive strength; A is the actual compressive strength; and A is the 
average value of actual compressive strength.

2.4. Multi-objective optimization

2.4.1. Design objectives
To design sustainable UHPG, three objective functions are consid

ered: (i) minimization of the cost (F1), (ii) minimization of carbon 
emission, (F2), and (iii) maximization of the compressive strength (F3), 
as shown in Eq. (8) and Eq. (9). In this study, the power consumption of 
high-temperature curing was assumed to be 3 kW; the cost of electivity 
in New Jersey is $0.19 per kWh [59], and the equivalent CO2 emission is 
0.371 kg [60]. 

F1 =
∑n

i=1
mi × ri + P × t × rc (8) 

F2 =
∑n

i=1
mi × Ci + P × t × Cc (9) 

where n is the number of raw materials; mi is the mass of the ith ingre
dient; ri is the unit price of the ith ingredient; and Ci is the carbon 
emission of manufacturing the ith ingredient; P is the powder con
sumption for high-temperature curing; t is the curing time, in days; rc is 
the unit price of electricity for curing; Cc is the CO2 emission produced 
by consuming electricity during curing.

The inventory of the unit cost and carbon emission of the raw in
gredients are listed in Table 6, including different precursors, fine and 
coarse aggregate, activators, water, and steel fiber.

2.4.2. Multi-objective optimization algorithm
In this research, a multi-objective optimization method based on the 

AGE-MOEA algorithm was used to optimize the compressive strength, 
cost, and carbon emission, simultaneously. AGE-MOEA was designed for 
multi-objective optimization using genetic algorithms and often used in 
decision-making problems where multiple conflicting objectives are 
considered simultaneously. The population and generation are set at 100 
and 300, respectively [74]. Constraint functions are set to ensure 
reasonable design of geopolymer, as shown in Eq. (10), which respec
tively enforce the total volume fraction of binder, aggregate, fiber, and 
liquid. 
(
Vb + VFa + VCa + Vf + Vl − 1

)
< 0.0001 (10) 

where Xi is the ith design variable in Table 1; Vb, VFa, VCa, Vf, and Vl 
represent the volume of binder, fine aggregate, coarse aggregate, fibers, 
and liquid, respectively.

Fig. 6. Example of converting curing methods into numerical data using one-hot encoding.

Table 5 
Machine learning algorithms.

Number Model Category

1 Linear regression Single model
2 Ridge regression Single model
3 Support vector regressor Single model
4 K neighbors regressor Single model
5 Random forest Ensemble learning
6 Extreme gradient boosting Ensemble learning
7 Light gradient Boosting machine Ensemble learning
8 CatBoost regressor Ensemble learning
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2.4.3. Multi-criteria decision making
Multi-criteria decision-making is performed to choose the optimal 

solutions while considering the mutual impact of different objective 
functions. This study utilizes the Technique for Order Preference by 
Similarity to Ideal Solution (TOPSIS) for determining the optimal solu
tions. The basic mechanism of TOPSIS involves identifying the optimal 
and worst solutions from the normalized solution matrix, calculating the 
distance of each evaluation object to these solutions, and determining 
the closeness of each object to the optimal solution for decision making 
[75].

TOPSIS is utilized to help decision-makers to strike a balance be
tween quantitative data and their subjective preferences by allowing 
them to assign weights to criteria. However, it is important to note that 
the quality of the results in TOPSIS depends on the accurate assignment 
of criteria weights and the correct normalization of data. In addition, 
TOPSIS assumes that the criteria are independent and that the ideal and 
anti-ideal solutions represent the true best and worst outcomes, which 
may not always be the case in real-world scenarios.

3. Results and discussion

3.1. Property prediction

3.1.1. Selection of machine learning methods
The results of the performance metrics of eight machine learning 

methods for predicting the 28-day compressive strength of geopolymer 
are listed in Table 7. Default hyperparameters are used. The XGBoost 
model shows the highest accuracy, as indicated by the lowest MAE, 
RMSE, and MAPE, and the highest R2. The random forest and CatBoost 
regressor models also achieved reasonable accuracy (R2 > 0.80). 
Therefore, they are selected for further investigations in this research. 

The MAE and R2 results from the different models are compared in 
Fig. 7.

3.1.2. Hyperparameter tuning
The hyperparameters of the random forest, CatBoost, and XGBoost 

algorithms have been tuned to improve the accuracy. The optimal 
hyperparameters were obtained through Bayesian optimization and 5- 
fold cross-validation in terms of the smallest MAE. The iterative 
curves of the MAE values during hyperparameter tuning are shown in 
Fig. 8.

In each iteration, the hyperparameters obtained from 5-fold cross- 
validation were averaged and used to evaluate the predictive perfor
mance of the models. All MAE curves converged within 100 iterations, 
revealing the excellent performance of Bayesian optimization in 
hyperparameter tuning. The XGBoost model achieved the lowest MAE 
after hyperparameter tuning. The optimal hyperparameters and corre
sponding search spaces are shown in Table 8.

3.1.3. Prediction accuracy
The prediction performance of the machine learning models was re- 

evaluated, as shown in Table 9. The three machine learning models 
achieved excellent prediction accuracy on the training and testing 
datasets. Among the three models, the XGBoost model showed the 
highest accuracy, with the lowest MAE, MAPE and RMSE and the highest 
R2, followed by the CatBoost model.

The predicted results from the three machine learning models are 
compared with the actual results for both the training and testing 
datasets, as shown in Fig. 9. Overall, the predicted results are consistent 
with the actual results.

In the performance evaluation, the metrics were determined using 
the testing dataset, which are experimental data that are unseen to the 
trained machine learning models. In other words, the prediction per
formance of the three trained machine learning models has been eval
uated using extensive experimental data, as shown by the dense red dots 
in Fig. 9. The high accuracy indicates that it is reasonable to utilize the 
trained machine learning models to predict geopolymer properties 
because that can largely mitigate the experimental testing effort.

The performance of the XGBoost model was further validated using a 
set of experimental data extracted from two references [21,47]. Those 
experimental data were not used in the training or the testing datasets, 
so they were new data for the predictive models. The comparison of the 
predicted results from the machine learning models and the experi
mental results are shown in Fig. 10. When the slag replacement per
centage increases from 0 to 100 % or when the steel fiber content 
increases from 0 to 3 %, the change of the compressive strength of 
geopolymer is evaluated. The maximum absolute error between the 
experimental results and the predicted results was less than 5 MPa, 
indicating the high predictive accuracy of the XGBoost model.

3.2. Interpretation of prediction results

3.2.1. Case study 1

3.2.1.1. Raw materials and mixture design. In case study 1, the effect of 
silica fume on the compressive strength of geopolymer is studied. The 
physiochemical properties of binders are listed in Table 10. Slag was rich 
in CaO, SiO2, and Al2O3, while silica fume was rich in SiO2. The slag and 
silica fume had comparable particle sizes.

The analysis of chemical compositions of binders is shown in Fig. 11. 
When the silica fume content in the binder system increases from 0 % to 
15 %, the SiO2 content increases from 31 % to 51.3 %, the CaO content 
decreases from 36.8 % to 25.8 %, and the Al2O3 content decreases from 
17.4 % to 12.3 %.

The investigated mixing proportions by mass are listed in Table 11. 
Silica fume was used to partially replace slag at 0, 15 %, and 30 % by the 

Table 6 
Inventory of representative raw material.

Number Materials Specific 
gravity

Cost 
($/kg)

Carbon emission 
(kg/kg)

1 Slag 2.90 [22] 0.100 
[61]

0.085 [62]

2 Fly ash 2.70 [22] 0.026 
[63]

0.005 [64]

3 Metakaolin 2.62 [22] 0.500 
[61]

0.332 [65]

4 Silica fume 2.20 [22] 0.800 
[61]

0.014 [66]

5 Fine aggregate 2.64 [22] 0.162 
[67]

0.020 [68]

6 Coarse 
aggregate

2.74 [69] 0.014 
[70]

0.004 [64]

7 NaOH 1.57 [29] 0.380 
[29]

1.915 [29]

8 Na2SiO3 2.10 [29] 0.170 
[29]

1.514 [29]

9 Water 1.00 [22] 0.001 
[71]

0.0003 [72]

10 Steel fiber 7.80 [22] 5.000 
[61]

2.650 [73]

Table 7 
Pre-selection of machine learning algorithms.

Model MAE (MPa) RMSE (MPa) MAPE R2

Support vector regressor 33.21 50.93 0.512 0.629
K neighbors regressor 29.67 40.91 0.489 0.644
Ridge regression 22.84 24.79 0.443 0.714
Linear regression 22.86 24.79 0.442 0.714
LightGBM 15.89 20.13 0.387 0.789
CatBoost regressor 14.63 20.13 0.343 0.802
Random forest 14.81 19.89 0.343 0.817
XGBoost 14.06 19.06 0.315 0.831
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mass of slag [66]. A mixture of sodium hydroxide and sodium silicate 
solutions was used as the activator. The liquid-to-binder ratio was set at 
0.30, and the concentration of NaOH was 12 M. The steel fiber content 
was 2 vol%. The specimens were demolded after 24 h and stored at room 
temperature until testing. The compressive strength test was conducted 
using cube specimens measuring 71 mm in the side length at 28 days.

3.2.1.2. Prediction results. The XGBoost model was used to predict the 
compressive strength of geopolymer mixtures. The prediction results of 
28-day compressive strengths are shown in Fig. 12. The maximum error 
is 2.7 MPa, indicating that the XGBoost predictive model can provide 
reasonable predictions.

3.2.1.3. Interpretation of prediction results. The knowledge graph has 
been utilized to interpret the results from the XGBoost predictive model 
in terms of the underlying mechanisms of the effects of silica fume 
content on compressive strength. The mechanisms are identified from 
the knowledge graph (Fig. A2). The influencing pathways of the effects 
of silica fume and slag contents on compressive strength are revealed by 
the red arrows between the nodes. With the knowledge graph (Fig. A2), 
the influencing pathways can be determined automatically and utilized 
to list the following explanation: 

Silica fume content → Ca/Si ratio
Si/Al ratio →Compressive strength 

According to the machine learning model, when the replacement 
percentage of silica fume increases from 0 to 30 %, the 28-day 
compressive strength increases from 101.3 MPa to 129.7 MPa. The 
above explanation indicates that the increase of silica fume content 

Fig. 7. Comparison of eight different machine learning models: (a) R2, and (b) MAE (unit: MPa).

Fig. 8. Convergence of the prediction error of different machine 
learning models.

Table 8 
Hyperparameters of the different machine learning models.

Model Name Searching space Optimal 
hyperparameters

CatBoost Learning rate 0.05–1.0 0.092
Bagging temperature 0.05–1.0 0.341
Border count 10–100 50
Colsample_bylevel 0.1–1.0 0.2
Depth 4–20 8

Random 
forest

Maximum depth 1–20 8
Maximum features 1–20 19
Maximum sample 
split

1–10 8

Maximum sample 
leaf

1–10 9

XGBoost Booster Gbtree, Gblinear, 
Dart

Gbtree

Number of 
estimators

10–200 120

Learning rate 0.01–0.20 0.012
Maximum depth 1–20 4
Colsample_bynode 0–10 1
Number of leaves 2–10 2

Table 9 
Comparison of the performance of different machine learning models.

Model Dataset MAE (MPa) RMSE (MPa) MAPE R2

Random forest Training 3.17 6.69 0.021 0.98
Testing 7.20 8.76 0.075 0.94

CatBoost Training 3.29 5.31 0.013 0.99
Testing 5.68 8.68 0.064 0.95

XGboost Training 2.49 4.69 0.010 0.99
Testing 5.35 7.33 0.027 0.97
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modifies the Ca/Si and Si/Al ratios in the binder system, thus increasing 
the compressive strength, since the modification of the ratios promotes 
the generation of C-(A)-S-H gel [76].

3.2.2. Case study 2

3.2.2.1. Raw materials and mixture design. In case study 2, geopolymer 
mixtures were prepared with fly ash and slag activated by NaOH solu
tion. The physiochemical properties of the adopted fly ash and slag are 
shown in Table 12.

Fig. 9. Comparison of the prediction results versus the actual results for: (a) CatBoost; (b) random forest; and (c) XGBoost.

Fig. 10. Effects of different variables on the compressive strength: (a) slag content by the mass of geopolymer, and (b) steel fiber content by the volume 
of geopolymer.

Table 10 
Physiochemical information of binder materials [66].

Oxides (%) CaO SiO2 Al2O3 MgO Fe2O3 SO3 D50 (μm)

Slag 36.77 30.97 17.41 9.01 1.03 1.82 0.70
Silica fume 0.29 98.70 0.29 0.11 0.03 0.03 0.90

Fig. 11. Composition of the binders for different silica fume contents: (a) no silica fume; (b) 15 % silica fume by the mass of binders; and (c) 30 % silica fume by the 
mass of binders.
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Regarding the mixing proportion, the fly ash and slag occupied 67 wt 
% and 33 wt% of the binder, respectively; the fine aggregate-to-binder 
ratio was 1.65; the coarse aggregate-to-binder ratio was 2.35; and the 
liquid-to-binder ratio was 0.35. The concentration of NaOH solution 
ranged from 10 M to 16 M to investigate the effect of NaOH concen
tration. Cylindrical geopolymer samples were cast, demolded after 24 h, 
and then cured in air at room temperature until testing. More details 
about the experiments are available in Ref. [15].

3.2.2.2. Prediction results. The XGBoost model was used to predict the 
compressive strength of geopolymer concrete. The comparison between 
the prediction and the experimental results is shown in Fig. 13. The 
results show that the prediction results agree with the experimental 
results, overall, indicating that the machine learning model can provide 
reasonable predictions. When the NaOH concentration increases from 
10 M to 14 M, the 28-day compressive strength of geopolymer concrete 
increases from 25.2 MPa to 33.6 MPa. When the NaOH concentration 
increases from 14 M to 16 M, the 28-day compressive strength decreases 
from 33.6 MPa to 30.1 MPa.

3.2.2.3. Interpretation of prediction results. The interpretation of influ
encing pathways of NaOH concentration is shown in Fig. A3. The red 
solid lines indicate the primary factors that affect compressive strength. 
The directed arrows identified from the knowledge graph (Fig. A3) 
explicitly reveal the underlying mechanisms for the change of the 
compressive strength of geopolymer concrete. With the knowledge 
graph, the influencing pathways is determined automatically and uti
lized to list the following explanation:

When the NaOH concentration is increased from 12 M to 14 M, the 
compressive strength is improved because the dissolution of silica and 
aluminum in the binder system is promoted by the increase of pH value 
[13]. The higher dissolution rate of amorphous silica and aluminum in 
turn promotes geopolymerization, therefore producing more C-(A)-S-H 
gels and in turn increasing the compressive strength. When the NaOH is 
increased from 14 M to 16 M, the compressive strength is reduced 
because polycondensation is retarded, therefore producing less 
C-(A)-S-H gels and decreasing the compressive strength [77].

3.2.2.4. Generation of new knowledge. When machine learning results 
are beyond the scope of the knowledge graph, the knowledge graph 
cannot be utilized to interpret the results, but it can provide information 
to support the further development of the knowledge graph and 
generate new knowledge. In this research, the knowledge graph has 
been utilized for two other purposes besides the interpretation of ma
chine learning data:

(1) The knowledge graph has been used to guide the machine 
learning model to consider new mixtures, motivated by the 
compressive strength lower than 40 MPa (Fig. 13). To increase 
the compressive strength, the knowledge graph is used to identify 
the influencing factors (Fig. 14), such as the curing method and 
mixing proportions, which are important input variables of the 
machine learning model. The input variables are justified ac
cording to the knowledge graph, aiming at high compressive 
strengths and the influencing mechanisms.

Table 11 
Mixing proportions in case study 1.

Mixtures Slag Silica fume Fine aggregate NaOH Na2SiO3

1 1.00 0 1.20 0.12 0.18
2 0.85 0.15 1.20 0.12 0.18
3 0.70 0.30 1.20 0.12 0.18

Fig. 12. Comparison of the predicted and experimental results of the 
compressive strength of geopolymer at 28 days. SF-15: silica fume accounts for 
15 % of the binder by weight.

Table 12 
Physiochemical information of fly ash and slag [15].

Oxides (%) CaO SiO2 Al2O3 MgO Fe2O3 SO3 D50 (μm)

Fly ash 3.54 54.76 26.41 0.78 8.48 1.20 17.2
Slag 33.23 32.26 16.35 8.29 3.53 1.32 12.3

Fig. 13. Comparison of the predicted 28-day compressive strength and the 
experimental results of 28-day compressive strength for geopolymer concrete 
with different NaOH concentration.

NaOH concentration → High concentration
Excessive concentration

→
→

More C − (A) − S − H
Less C − (A) − S − H →Compressive strength 
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(2) The knowledge graph can be used to guide the generation of new 
knowledge. According to Fig. 14, both curing temperature and 
NaOH concentration influence the compressive strength. How
ever, it is unknown whether the two variables have any coupling 
effect or not. This informs the need for evaluating the coupling 
effect of them using the machine learning model. The results 
indicate that the two variables have significant interactions, as 
shown in Fig. 15. This finding can be utilized to enrich the 
knowledge graph.

It should be noted that the underlying mechanism of the coupling 
effect between the curing temperature and NaOH concentration still 
needs to be uncovered through experimental research, and the research 
results can be added to the knowledge graph. The knowledge graph 
promotes the generation of new knowledge by facilitating the identifi
cation of uninterpretable observations or results from machine learning 
predictive models.

3.3. Multi-objective optimization

Multi-objective optimization has been performed to optimize the 
design of UHPG in this research. The method and results are provided 

based on a case study with available raw materials, which are fly ash, 
slag, and silica fume. Their physical and chemical properties are shown 
in Table 13. The curing condition is standard curing at room tempera
ture (20 ◦C), and the size of specimen is the cube with a side length of 51 
mm. To achieve UHPG, the 28-day compressive strength is defined as a 
design constraint, meaning the non-dominated solutions with 28-day 
compressive strengths lower than 120 MPa are not included in the so
lution set.

In this design optimization, three design objectives have been 
considered simultaneously, which are the material cost (F1), carbon 

Fig. 14. Identification of key influencing factors for the compressive strengths of geopolymer.

Fig. 15. Interaction of curing temperature and NaOH concentration on the 
compressive strength.

Table 13 
Physiochemical properties of available binder materials [66].

Oxides (%) CaO SiO2 Al2O3 MgO Fe2O3 SO3 D50 (μm)

Fly ash 1.24 41.22 31.18 3.40 2.15 0.05 17.2
Slag 38.81 33.81 14.78 9.50 0.76 0.06 12.3
Silica fume 1.84 95.38 0.05 0.50 0.30 0.00 0.15

Fig. 16. Results of the nondominated solution set for the multi-objective 
optimization of UHPG.
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emission (F2), and 28-day compressive strength (F3). The material cost 
and carbon emission are calculated based on the inventory data 
(Table 6) and the mixing proportion of each mixture, and the 28-day 
compressive strength is predicted using the trained machine learning 
model (section 3.1). With the multi-objective optimizer, the Pareto plot 
of the optimal solutions is shown in Fig. 16.

Multi-objective optimization often delivers a set of solutions, as 
shown in Fig. 17. TOPSIS has been used to recommend the best solution 
for specific applications, such as a solution which has low cost, low 
carbon emission, and high compressive strength. The mixture design is 
compared with representative UHPG mixtures, as shown in Table 14. 
When the 28-day compressive strength is sustained, the UHPG recom
mended by the AI-designer saves the cost by up to 19.8 % and reduces 
the carbon emission by up to 27.3 %, compared with typical UHPG 
mixtures [47].

The material cost and carbon emission of the different UHPG mix
tures have been normalized by their compressive strengths at 28 days, as 
shown in Fig. 18. Compared with representative UHPG mixtures in 
references, the mixture designed by the proposed approach achieved 
lower cost and lower carbon emission normalized by the compressive 
strength, showing the efficacy of the proposed approach in designing 
UHPG.

3.4. Discussion on construction of knowledge graphs

In this study, the knowledge graph was manually constructed based 
on available references. Three challenges have been identified: (1) The 
manual construction process is time-consuming, and the constructed 
knowledge graph has a limited scope for particular applications. In this 
study, we primarily considered the particle size and chemical compo
sition of the raw ingredients employed to produce geopolymer concrete. 
(2) The manually constructed knowledge graphs are influenced by his
torical data and human biases, which can compromise accuracy and 
reliability. As domain knowledge and available data continue growing, 
updating knowledge graphs becomes increasingly complex and chal
lenging. (3) The knowledge graph is used for variable selection and 
interpreting prediction results. However, due to limitations in data 
availability, some minor factors that could affect material properties 
cannot be included in the knowledge graph. For instance, attributes, 
such as particle shape and surface morphology, influence compressive 
strength, but there is insufficient data to train machine learning models 
considering these attributes. The selection of information for 

constructing the knowledge graph is a challenge.

4. Conclusions

This paper presents a knowledge graph-guided AI approach for 
automatic discovery or design of geopolymer concrete, and the imple
mentation into the design of UHPG is demonstrated. This research has 
been motivated by the utilization of domain knowledge and data in 
achieving efficient material discovery. Based on the above in
vestigations, the following conclusions can be drawn:

• The incorporation of knowledge graph into the prediction- 
optimization framework of AI designer enables the AI designer to 
achieve interpretability of the prediction results from the machine 
learning model for geopolymer properties. The influencing pathways 
are automatically determined in the knowledge graph, explaining 
the underlying mechanisms of the effects of key design variables of 
geopolymer. This capability transforms black-box machine learning 
models into explainable machine learning models that can be 
assessed by geopolymer or concrete domain experts.

• The knowledge graph constructed by geopolymer domain experts 
can be utilized to guide the development of machine learning 

Fig. 17. Non-dominated solutions (gray color) and a solution recommended by TOPSIS (red color).

Table 14 
Comparison of UHPG mixture designs.

Raw ingredients AI- 
designer

UHPG-1 
[47]

UHPG-2 
[78]

UHPG-3 
[66]

Slag (kg/m3) 759 688 1000 665
Fly ash (kg/m3) 123 172 160 0
Silica fume (kg/m3) 72 45 100 0285
Fine aggregate (kg/m3) 670 905 938 1140
Coarse aggregate (kg/ 

m3)
430 0 0 0

NaOH (kg/m3) 55 45 74 114
Na2SiO3 (kg/m3) 178 314 480 171
Water (kg/m3) 108 97 74 0
Steel fiber (kg/m3) 117 156 236 156
NaOH concentration 

(M)
14 12 12 12

Material cost ($/m3) 887.4 1106.4 1625.9 1331.6
Carbon emission (kg/ 

m3)
766.1 1053.1 1599.8 973.9

Compressive strength 
(MPa)

156.1 149.7 151.2 132.4
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models. Particularly, the knowledge graph can be used to identify 
key design variables of geopolymer, ensuring that the key design 
variables are fully considered in establishing the machine learning 
models. This capability enhances the rationality and reliability of 
machine learning predictive models.

• The integration of knowledge graph and machine learning models 
enables the growth of the knowledge graph and offers a new pathway 
to generate new knowledge. Important unknown knowledge can be 
identified from the knowledge graph, and machine learning models 
can provide quantitative predictions to facilitate the generation of 
new knowledge via further experimental research.

• The proposed approach has been implemented and utilized to 
discover the promising design of UHPG with high compressive 
strength, low material cost, and low carbon emission. Other geo
polymer mixtures can be designed following the same procedure 
while adjusting the design objectives for different applications.

• The physical and chemical properties of raw materials are important 
information that must be considered in the machine learning pre
dictive model, aimed at handling the significant variations of solid 
wastes. The consideration of the physical and chemical properties of 
raw materials imparts unprecedented reliability, generalizability, 
and transferability to the machine learning model, facilitating the 
utilization of various solid wastes.

Although the proposed approach has demonstrated important ad
vantages in material discovery, this research is still at the feasibility 
study stage with a relatively low technology readiness level. The 
following limitations have been identified to promote future research 
toward the maturation of knowledge-guided AI design of geopolymer 
concrete:

• Developing advanced computing techniques to automate the con
struction of knowledge graphs will largely improve the efficiency 
and application scope of the proposed approach. The achievement of 
automation can mitigate the influence of historical data and human 
biases, enhancing the reliability of knowledge graphs. Additionally, 
methods for selecting relevant information from literature are useful 
to identify and exclude minor factors.

• As domain knowledge and available data continue growing, inno
vative solutions for managing and updating knowledge graphs are 

crucial for scalable applications. These advances will enable the 
construction of comprehensive knowledge graphs for the design of 
geopolymer concrete and other types of materials, and the knowl
edge graphs are useful for developing more capable AI designers for 
geopolymer concrete and other materials.

• The quantity of available data is limited, which imposes challenges 
to the evaluation of the performance of the proposed approach, such 
as the evaluation of the predicted results and the optimization results 
of geopolymer design. It is important to develop innovative tech
niques to automate the collection of data from available references. 
More experiments can be conducted to generate high-quality data to 
validate and improve the approach.
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Appendix

Fig. A1. Knowledge graph of geopolymer concrete.

Fig. A2. Knowledge graph used to interpretate the prediction results in case study 1.
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Fig. A3. Knowledge graph used to interpretate the prediction results in case study 2.
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