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Geopolymer has been identified as a promising family of sustainable construction materials alternative to
cement-based materials. However, designing geopolymer utilizing solid wastes is a challenging task given the
large variations of solid wastes in their physical and chemical properties. To overcome this challenge, this paper
proposes a knowledge graph-guided data-driven approach to design geopolymer utilizing solid wastes, aimed at
achieving high mechanical properties, low material cost, and low carbon emission, while largely improving
material discovery efficiency. The proposed approach seamlessly integrates knowledge graph, machine learning,
and multi-objective optimization, and has been utilized to design ultra-high performance geopolymer (UHPG).
This approach has two main novelties: (1) The incorporation of knowledge graph imparts geopolymer domain
knowledge, making the machine learning model interpretable and compliant with domain knowledge. (2) The
consideration of physical and chemical properties of raw materials enables the utilization of various solid wastes.
The results show that the proposed approach can reasonably predict geopolymer properties, interpret prediction

results, and optimize UHPG design.

1. Introduction

Concrete is the most used structural material worldwide. In 2022, the
annual consumption was more than 30 billion tons [1]. Such a high
consumption volume makes concrete a main contributor to carbon
emissions although its unit cost and unit carbon emission are not as high
as other popular construction materials such as steel and aluminum [2].
The mechanical strengths of concrete are primarily dependent on the
binder, and Portland cement is the most popular binder used in concrete.
The manufacturing process of cement is energy intensive and involves
high carbon emissions. In 2017, the consumption of cement to produce
concrete exceeded 4 billion tons, resulting in 250 million tons of carbon
emissions, which accounted for 7 % of the total emission [1]. Aiming to
achieve carbon neutrality by 2050 [3], the development and utilization
of innovative binders are important missions in the concrete and con-
struction industries.

Geopolymer has been identified as a promising alternative solution
that does not use cement while still achieving desired binding perfor-
mance. Geopolymer often uses solid wastes such as fly ash and slag
which are industrial by-products [4]. The utilization of wastes further
improves the sustainability of geopolymer by mitigating pollution,
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making geopolymer a competitive solution. By just considering the
elimination of cement from the mixture while neglecting the other
benefits such as the reduction of landfill-induced emissions, the carbon
emission of geopolymer can be reduced by 60 % compared with con-
ventional concrete using Portland cement [5].

In addition to the benefits of eliminating cement, geopolymer has
exhibited high mechanical properties and superior resistance to various
effects such as chemical attacks [6], corrosion [7], and fire [8], making it
a competitive solution for structures exposed to harsh environments.
This makes geopolymer more promising considering climate change on
human habitats [9]. Moreover, the rapid hardening character of geo-
polymer promotes accelerated construction [10].

Extensive research has been conducted on the development of geo-
polymer, primarily based on experiments which provide reliable orig-
inal data that not only advance fundamental knowledge but also
promote engineering designs of geopolymer. Experiment-based design
and evaluation of geopolymer have been elaborated in previous papers
[11-21]. An important lesson learned from previous research is that the
mixture design and processing methods must be tailored to achieve
desired performance in specific projects because the fresh and hardened
properties of geopolymer are closely related to the physical and
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chemical properties of the raw ingredients, mix proportions, and pro-
cessing methods. For example, when the particle size gradation and
chemical composition of fly ash were changed, the mechanical strengths
of geopolymer were largely changed [21].

In real practices, the change of the physical and chemical properties
of the raw ingredients is unavoidable for different reasons. First, various
types of solid wastes such as fly ash and slag have been utilized to
prepare geopolymer. The physical and chemical properties of those in-
gredients are different. Second, for each type of solid waste such as fly
ash, the physical and chemical properties still vary largely in different
plants and even different batches in the same plant. With the change of
the physical and chemical properties of the raw ingredients of geo-
polymer, it is often necessary to modify the mix proportion and pro-
cessing method via repeated time-consuming experiments, posing a
significant challenge in the utilization of geopolymer in time-limited
projects.

Recently, artificial intelligence (AI) techniques have been utilized to
develop time-efficient methods for designing and characterizing con-
crete efficiently [22-30]. For example, ultra-high-performance concrete
(UHPC) [22] and strain-hardening cementitious composites (SHCC)
[23] have been designed to achieve low material cost and low carbon
emission while retaining superior mechanical properties and durability,
simultaneously, by strategically utilizing locally-available solid wastes.
The basic idea of Al-assisted design of concrete is to integrate a
data-driven predictor and an optimizer:

e The predictor is a machine learning model that correlates the con-
crete design variables, such as the mixture design, processing
methods, and testing methods, with the interested concrete proper-
ties, such as the flowability, mechanical strengths, and durability
[22], through a training process based on available experimental
data.

The optimizer is an optimization algorithm that maximizes or min-
imizes certain concrete properties, such as the maximization of me-
chanical strengths and the minimization of cost and carbon emissions
[23]. Multi-objective optimization and decision-making methods
have been proposed to achieve multiple objectives simultaneously
[23].

Although the efficacy and efficiency of Al-assisted design methods
have been verified using experiments [31-35], concrete experts are still
concerned about the reliability of those methods because they are based
on data analysis rather than concrete knowledge. There are multiple
facts that have limited a wider acceptance of machine learning methods
in the concrete industry:

e The machine learning prediction models are black-box models that
cannot explain the prediction results of concrete properties. The
process of generating the prediction results is based on complex
mathematical computation, which is different from experiments that
can be easily checked to assess the rationality and the quality of the
generated data.

The property prediction of machine learning models is based on
models which may violate concrete principles. The physical and
chemical properties of raw ingredients and their effects on physical
and chemical reactions in concrete were considered in recent study
[36], but most studies did not consider the physical and chemical
properties of ingredients.

The sources and quality of data include uncertainties and errors.
While both the quantity and the quality of data are important
because data is the source of knowledge for machine learning pre-
dictive models, many existing papers do not provide detailed infor-
mation about how the adopted datasets have been generated and
how the mixture design variables have been selected. It is difficult to
assess the quality of data by concrete experts.
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In addition to the above problems, there are also concerns about the
generalizability of the AI methods for different types of concrete mate-
rials. These concerns have become important obstacles that hinder the
application of Al-assisted design methods in the concrete industry,
although Al-assisted design methods have shown advantages in previous
research.

To address these challenges, this paper presents an approach to
incorporate concrete domain knowledge into Al-assisted material
design, aimed at an integrated knowledge-guided data-driven design
paradigm. In the proposed approach, the domain knowledge about
geopolymer concrete is imparted in the form of a knowledge graph,
which has been used in large Al systems for various domains such as
medical, financial, education, and cyber security [37-41]. Knowledge
graph has not been constructed in the context of Al-assisted material
design.

The overarching goal of this study is to develop a knowledge-guided
interpretable Al-design approach for auto-discovery of sustainable
geopolymer concrete, which represents an alternative solution to not
only the concrete industry but also the waste management community.
To achieve this goal, this research has been conducted for the following
three objectives:

(1) To create a knowledge graph which embodies the domain
knowledge about geopolymer.

(2) To develop the interpretable machine learning approach along
with a new framework that integrates a knowledge graph, ma-
chine learning, and multi-objective optimization.

(3) To implement the interpretable machine learning approach and
knowledge graph into the design of ultra-high-performance
geopolymer (UHPG).

The proposed approach is developed in the context of geopolymer
concrete, and its efficacy is assessed by the mechanical properties, ma-
terial cost, and carbon emission of designed UHPG. This approach has
three important novelties:

e First, a knowledge graph is constructed and integrated into Al-
assisted design of UHPG, making the machine learning model
interpretable and compliant with domain knowledge via imparting
geopolymer domain knowledge. Specifically, the knowledge graph is
used to achieve three abilities: (a) Guide the selection of design
variables for machine learning predictors through identifying rele-
vant variables, enabling concrete experts to assess the rationality of
the adopted design variables. (b) Interpret the results from machine
learning predictors via explicitly revealing the underlying mecha-
nisms such as physicochemical reactions. (c) Facilitate the identifi-
cation of existing knowledge gaps and the generation of new
knowledge for enriching the knowledge graph.

Second, the physical and chemical properties of raw materials are

considered in the proposed approach using an artificial language,

thereby enabling the Al-designer to handle various solid wastes that
involve different physical and chemical properties.

e Third, by integrating the knowledge graph into the design frame-
work, a novel explainable prediction and optimization framework is
developed to achieve the ability to consider relevant domain
knowledge about geopolymer concrete.

The remainder of the paper is organized as follows: Section 2 pre-
sents the methods adopted to achieve these objectives, including the
new framework and its components, with an emphasis placed on the
rationality and the construction of the knowledge graph. Section 3
presents the results from the proposed approach. Section 4 summarizes
the key findings of this research.



P. Guo et al.

2. Methods

A knowledge-guided data-driven geopolymer concrete designer is
presented (Fig. 1). The designer includes four main components: (1)
Construction of a knowedge graph. The knowledge graph is constructed
to guide variable selection and explain the prediction results of machine
learning models. (2) Construction of a dataset. The dataset is constructed
by considering crucial factors, including mixing design variables,
physiochemical properties of raw materials, and processing methods
identified by the knowledge graph. Different forms of data are inte-
grated into numerical data via feature engineering. (3) Prediction by
machine learning. Model selection and evaluation are performed to
select a model for predicting compressive strength of geopolymer with
high accuracy. (4) Multi-objective optmization. The aim is to maintain
high strength while reducing cost and carbon emissions when designing
geopolymer concrete. The optimization algorithm uses the results pre-
dicted by machine learning, along with carbon emissions and costs of
raw materials, to generate a series of solutions. A multi-criteria decision-
making (MCDM) method is applied to find high-performance, low-car-
bon, and cost-effective geopolymer concrete.

2.1. Overview

The core idea for knowledge graph-guided Al design of geopolymer
concrete is shown in Fig. 2. The framework integrates a knowledge
graph, a machine learning predictor, and a multi-objective optimizer,
which play three critical roles in the design team: (1) The knowledge
graph acts as a domain expert who imparts domain knowledge to the
team. (2) The machine learning predictor provides the quantitative
prediction of geopolymer concrete properties based on the input vari-
ables, which include the mixture design variables, processing methods,
testing methods, and so on, depending on the specific application. (3)
The multi-objective optimizer outputs the optimal geopolymer design
based on the design objectives that are dependent on the specific use
case.

The integration of knowledge graph and machine learning predictor
enable the Al design team to achieve the qualitative reasoning ability via
the knowledge graph and the quantitative regression ability via the
machine learning predictor, generating a knowledgeable AI designer
that is able to predict UHPG properties and interpret the prediction re-
sults. Further, a multi-objective optimizer is incorporated to achieve the
capability of optimizing the mechanical properties, cost, and carbon
emission of UHPG simultaneously.

- 7,

Dataset development
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The construction of the knowledge graph involves two main tasks,
which are knowledge collection and graphic representation. Knowledge
collection refers to the collection of domain knowledge, which is the
knowledge about geopolymer in this research. Graphic representation
refers to the construction of graphs that describe the knowledge, based
on knowledge graph techniques [42]. More details about knowledge
graphs are available in section 2.2.

The establishment of machine learning predictor can be performed
based on a procedure well-developed in previous research [43]. The
procedure has several steps, such as data collection, the selection of
input variable, data pre-processing, model selection, hyperparameter
tuning, and model training. In previous research, data collection and
variable selection were performed in an empirical or arbitrary way that
could not be generalized for handling different types of concrete. In this
research, a knowledge graph is utilized to guide the selection of input
variables and data collection, and the selection of input variables is
promoted before the step of data collection, aimed at facilitating the
time-consuming data collection effort. Once the machine learning pre-
dictor is established, the geopolymer properties can be predicted by
specifying the input variables. In this, the knowledge graph is utilized to
interpret the prediction results, making the Al designer interpretable.
More details about the machine learning predictor are available in
section 2.3.

The multi-objective optimizer utilizes the data provided by the ma-
chine learning predictor to perform multi-objective optimization based
on specific design objectives and output the optimal design of geo-
polymer. In this paper, a multi-objective optimizer is utilized to discover
new UHPG mixtures that can achieve high mechanical strengths, low
material cost, and low carbon emission, simultaneously. More details
about the multi-objective optimizer are available in section 2.4.

The interconnection of the knowledge graph, machine learning
predictor, and multi-objective optimizer is demonstrated by using the
predictor and optimizer to discover new geopolymer mixtures. This
discovery leads to new knowledge and the expansion of the knowledge
graph. More details on this process are in section 3.

2.2. Knowledge graph

A knowledge graph is a structured graphic representation of
knowledge, and it can be utilized to organize, store, and represent the
relationships between different pieces of information in a way that is
understandable and operatable for computers and human. A knowledge
graph typically has two types of components, which are nodes and

: § i
Knowledge graph |Guide || Variable selection Data collection Feature engineering | | Data normalization |_ |
; — ; ) : : Dataset |1
(Section 2.2) i (Section 2.3.1) (Section 2.3.1) | | (Section 2.3.2) (Section 2.3.3) ataset | |
.’/ Machine learning prediction ‘:
Inpuit Hyperparameter tuning Model selection Machine i Metrics
Raw data : el g (Section 2.3.5) 7 (Section 2.3.4) learning models |1 |(Section 2.3.6)
R L - Evaluate |
Dt :" Multi-objective optimization -\‘I
Explain Prediction results —L Optimization algorithms N . . H MCDM Optimal i
(e.g., strength) (Section 2.4.2) (Section 2.4.3) solution | |

Design problems
(Section 2.4.1)

Calculate carbon emission
and cost of raw materials

High performance,

low carbon, and cost- -

effective geopolymer

(Section 2.4.1)

Fig. 1. Illustration of the proposed knowledge-guided data-driven geopolymer concrete designer.
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data

“Decision maker”

[ Knowledge-guided Al-assisted design team for advanced geopolymer )

Fig. 2. Analogical description of the proposed framework as a three-member cooperative team.

edges, as shown in Fig. 3 by text boxes and arrows, respectively. Nodes
represent entities, concepts, or data points. Edges represent the re-
lationships between entities. Each box represents a node containing
entities. For example, the entity on the top level is "Geopolymer con-
crete". Each arrow is used to indicate the relationship between two en-
tities. For example, the relationship between “Geopolymer concrete”
and “Raw ingredients” is “has”, meaning geopolymer concrete has raw
ingredients. It is noted that Fig. 3 is a simplified example of the
knowledge graph for geopolymer. More domain knowledge can be
added to enrich the knowledge graph, as shown in Fig. Al in the
appendix.

To construct a knowledge graph for geopolymer, three important
aspects must be considered, including the available raw ingredients,
processing methods, and concerned properties:

(1) The raw ingredients include the precursors, aggregates, activa-
tors, water, and fibers. It is essential to understand the mecha-
nisms of different ingredients that affect the concerned properties
of geopolymer. Geopolymer is produced via geopolymerization
reactions between aluminosilicate sources (or calcium-silicate
source) and alkaline activators, forming a three-dimensional

network with mechanical strengths. Initially, activators create
an alkaline environment that facilitates the dissolution of
aluminosilicate materials, releasing reactive SiOz and AlyOs,
which are essential for geopolymerization. Next, a three-
dimensional polymeric network is formed via polycondensation
reactions, with chemical bond aggregation by reactive SiO, and
Aly0s3. Then, the network is further solidified via curing, yielding
a hardened product. The compressive strength of geopolymer is
influenced by the dissolution of Si/Al (or Ca/Si) compositions in
the raw materials, as depicted in Table 1. Particle size also affects
the compressive strength of geopolymers by influencing reac-
tivity. Smaller particles enhancing reactivity by seeding effect
during geopolymerization.

(2) The processing methods include the pre-treatment of raw in-

gredients, mixing protocol, curing scheme, and testing methods.
In this research, the considered factors are the curing scheme and
testing methods [44]. While the variation of the pre-treatment of
raw ingredients and mixing protocol are not considered in this
research, but they can be considered using the same method in
future studies. It is essential to include the knowledge about how

Geopolymer
concrete
has has
Raw Processing
ingredients methods
has has has has
Activators Precursors Sy Specimen
methods type
affect affect

affect affect

Compressive

strength

Fig. 3. Simple example of a knowledge graph for geopolymer considering compressive strengths.
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Table 1
Effect of different Si-to-Al ratios on geopolymerization.

Cement and Concrete Composites 153 (2024) 105723
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the curing schemes (e.g., standard and steam curing) and testing
methods (e.g., specimen type and loading rate) impact the con-
cerned properties of geopolymer.

(3) The concerned properties can include the fresh and hardened
properties. In this research, the concerned properties are the
compressive strength, material cost, and carbon emission [32]. In
practices, it is also important to consider the fresh properties such
as the flowability and setting time because they play important
roles in the mechanical properties and durability as well as the
construction quality [45]. More properties can be considered
using the same methods.

2.3. Machine learning

The machine learning predictor is an essential role in an Al design
team (Fig. 2) and provides the prediction of material properties. The
following subsections introduce variable selection, data collection, data
pre-processing, model selection, hyperparameter tuning, and perfor-
mance metrics.

2.3.1. Variable selection and data collection

Knowledge graphs play a crucial role in guiding variable selection by
qualitatively identifying relevant factors affecting the mechanical
properties of geopolymer. Based on the knowledge graph, relevant
variables of geopolymer are selected and then utilized as the input
variables of machine learning models. In this research, the key variables
were identified and classified into numerical variables (e.g., mixture
design variables, solution concentrations, curing temperatures, and
curing times), textual variables (e.g., physical and chemical properties of
raw ingredients), and categorical variables (e.g., curing methods, spec-
imen type).

It is noted that the physical and chemical properties of raw in-
gredients are considered in this research. This is different from the use of
engineering names such as Class C or Class F fly ash for representing raw
ingredients since an engineering name corresponds to ingredients with
different physical and chemical properties. The use of the physical and
chemical properties enables machine learning to consider various
wastes and knowledge graph to interpret the machine learning results.
In this study, the dataset includes 676 different geopolymer mixtures in
the literature. The data analysis for numerical data, textual data, and

categorical data are presented as follows.

2.3.1.1. Numerical data. Numerical data include various mixture design
variables such as the mass contents of binders (slag, fly ash, silica fume,
and metakaolin), aggregates (fine and coarse aggregate), liquid mate-
rials (NaOH solution, Na;SiO3 solution, and water), as well as NaOH
concentration, steel fiber content (by volume), curing temperature, and
curing time. The output variable is the 28-day compressive strength of
geopolymer concrete. The statistics of the numerical data are shown in
Table 2.

Multicollinearity analysis is a crucial aspect of regression analysis
that involves multiple independent variables. Multicollinearity refers to
a situation when independent variables are highly correlated [46],
which can lead to misleading interpretations of variable importance. To
analyze multicollinearity, a correlation matrix was built to determine
the Pearson correlation coefficients of the numerical input variables
[25]. When the maximum Pearson correlation coefficient is greater than
0.7, multicollinearity occurs, and the dataset must be modified to
eliminate multicollinearity [24]. The results of correlation analysis are
shown in Fig. 4. The Pearson correlation coefficient of the input vari-
ables was up to 0.65, indicating the absence of multicollinearity.
Therefore, it is appropriate to use this dataset to train a machine learning
model.

2.3.1.2. Textual data. In geopolymer, the chemical compositions such
as the CaO, SiO,, and Al;03 percentages in binders play significant roles
in strength development. However, different batches of solid waste
usually exhibit distinct physicochemical characteristics. It is inappro-
priate to use the engineering names of solid wastes to represent the
materials in the development of machine learning models without
considering the physicochemical properties of ingredients. The impor-
tance of utilizing the physicochemical properties as input variables in
machine learning models has been proven in a recent study on pre-
dicting concrete properties when various solid wastes are used [36]. A
ternary diagram of the chemical compositions of various solid waste is
shown in Fig. 5. Slag, fly ash, and metakaolin are popular aluminosili-
cate and calcium-silicate sources for geopolymer [13,47].

The strength of geopolymer is influenced by the median particle size
(Dsp) of raw ingredients. D5 provides a central measure of the particle
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Table 2

Description of selected mixture design variables of geopolymer concrete.
Number Variables Range Mean S.D. Skewness Kurtosis
1 Slag content 0-1.00 0.42 0.37 0.10 —1.56
2 Fly ash content 0-1.00 0.35 0.39 0.59 -1.27
3 Metakaolin content 0-1.00 0.18 0.37 1.71 1.01
4 Silica fume content 0-0.30 0.06 0.10 1.44 0.66
5 Fine aggregate content 0.16-3.30 1.43 0.63 1.01 0.34
6 Coarse aggregate content 0-5.09 1.49 1.49 0.34 -1.35
7 NaOH content 0-0.63 0.15 0.10 1.23 1.91
8 NaOH concentration (M) 0-16 12.47 2.28 —2.26 11.83
9 Na,SiO3 content 0-0.94 0.32 0.16 0.76 1.20
10 Extra water content 0-0.34 0.05 0.10 1.73 1.61
11 Steel fiber content (vol%) 0-3.0 0.38 0.78 1.97 2.78
12 Curing temperature (°C) 20-100 26.47 16.12 2.59 5.45
13 Curing age (days) 1-91 19.58 14.53 1.80 6.96
14 Compressive strength (MPa) 5.6-171.2 64.8 43.95 0.83 —0.56

Note: “S.D.” is the standard deviation. “Skewness” and “kurtosis” describe the shape of a probability distribution. A symmetrical distribution has a skewness of 0. A

normal distribution has a kurtosis of 3.
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Fig. 4. Correlation matrix of the input numerical data. Numbers 1-13 in the heatmap correspond to the variable numbers in Table 1.

size distribution. The selection of physicochemical properties also con-
siders the accessibility of the data, the chemical elements CaO, SiOq,
Aly03, and Dsg are widely available in the existing publications. The
statistics of the physicochemical properties that affect the compressive
strength of geopolymer are listed in Table 3, including the types, ranges,
mean values, kurtosis, and skewness of the physicochemical properties.

2.3.1.3. Categorical data. The compressive strength of geopolymer
concrete depends on the curing method and sample type. For example,

steam curing can promote geopolymerization and enhance the
compressive of geopolymer [48]. The test results of the compressive
strength are also associated with the size of specimens. Typically, the
compressive strength decreases with the increase of the specimen size
[49], known as the size effect. The curing methods and specimen types
are shown in Table 4. The curing methods include: (1) Standard curing,
at room temperature and relative humidity higher than 95 %; (2) heat
curing; (3) steam curing, at high temperature and high humidity; and (4)
air curing. Four different types of specimens for compressive testing
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Fig. 5. Ternary diagram (CaO, SiO,, and Al,03) of various types of solid wastes
for geopolymer.

were considered: (1) cubic specimens measuring 51 mm in side length
[50]; (2) cubic specimens measuring 71 mm in side length [51]; (3)
prism specimens measuring 160 mm x 40 mm x 40 mm [52]; and (4)
cylinder specimens measuring 51 mm in diameter and 101 mm in height
[53].

2.3.2. Feature engineering

One-hot encoding is a technique used to represent categorical data as
vectors or numerical data, which is often utilized in machine learning
and data pre-processing tasks. It is useful when a machine learning al-
gorithm utilizes categorical variables but require numerical input data,
such as artificial neural networks [54]. In this study, categorical data
were converted into numerical data using the one-hot encoding method
and then utilized to train the machine learning model. An example of
one-hot encoding is shown in Fig. 6.

Word vectorization is a natural language processing method that
maps words to corresponding vectors with real numbers. In this
research, the text used to describe the physicochemical properties of raw
ingredeints in geopolymer was stored in a dictionary, as shown in Eq.
(1). DictVectorizer was used to extract the categorical and numerical
features from the dictionary [55]. The categorical features were auto-
matically one-hot encoded, meaning that each unique category was
represented by a binary feature, and the numerical features were

Cement and Concrete Composites 153 (2024) 105723

retained. The categorical and numerical features were turned into sparse
matrices.

{‘Type’: Metakaolin, ‘Ca0O’: 0.9, ‘Si02’: 51.3, ‘Al1203’: 37.4, ‘D50’: 2.3}
(@)

2.3.3. Data normalization

The significant discrepancy of the numeric values of different vari-
ables (Table 2) may highly affect the results of the machine learning
models. It is often beneficial to normalize the input and output data of
machine learning models to prevent overfitting between different nu-
merical scales. In this research, the values of the input varables were
normalized to the range of —1 to 1, as described in Eq. (2):
Nl

c

(2)

where x is the original data; x* is the normalized data; y is the mean
value; and o is the standard deviation. The distribution of data was kept
the same before and after the application of the data normalization
method [56].

2.3.4. Selection of machine learning algorithms

Eight different machine learning algorithms have been investigated
and compared to achieve the optimal machine learning model in terms
of the prediction accuracy and generalability. These machine learning
algorithms include linear regression, ridge regression, support vector
regressor, K neighbors regressor, and four ensemble methods which are
random forest, extreme gradient boosting (XGBoost), light gradient
Boosting machine (LightGBM), and CatBoost regressor, as shown in
Table 5.

Three high-performnace algorithms evaluated based on prediction
accuracy are selected for future research. Since there are many

Table 4

Description of curing method and specimen type of geopolymer concrete.
Number 1 2 3 4
Curing method Standard curing Heat curing Steam curing Air curing
Specimen type Cube 51 Cube 71 Prism Cylinder

Note: “Cube 51”: cubic specimens measuring 51 mm x 51 mm x 51 mm; “Cube
70.7”: cubic specimens measuring 70.7 mm x 70.7 mm x 70.7 mm; “Prism™
prism specimens measuring 160 mm x 40 mm x 40 mm; and “Cylinder™: cy-
lindrical specimens with heights of 101 mm and diameters of 51 mm.

Table 3
Statistical data of physicochemical information of raw ingredients.
Number Materials Properties Range Mean S.D. Kurtosis Skewness
1 Slag CaO (%) 34.6-46.3 40.1 3.6 —0.63 0.22
Si02 (%) 25.3-36.7 33.8 2.9 6.08 —-2.27
Al;03 (%) 11.2-17.2 14.4 1.8 —1.00 0.02
Dsp (pm) 1.0-167.0 27.9 47.1 9.81 3.08
2 Fly ash CaO (%) 1.2-14.2 3.8 3.3 5.44 2.31
SiO; (%) 36.2-56.9 50.4 5.8 1.01 -1.21
Al,03 (%) 19.9-31.9 27.4 3.6 0.20 -0.91
Dsp (pm) 1.0-350.0 51.2 91.1 10.11 3.10
3 Metakaolin CaO (%) 0.1-1.8 1.1 0.6 1.92 -1.13
SiO2 (%) 45.3-51.0 49.0 2.5 —0.26 —-1.04
Al,03 (%) 37.1-42.6 40.5 2.6 —2.48 -0.71
Dso (pm) 0.15-4.3 1.4 1.9 2.22 1.61
4 Silica fume CaO (%) 0.7-1.8 1.4 0.5 —-1.66 0.06
Si0, (%) 92.1-96.4 94.4 1.9 —1.42 0.16
Al,03 (%) 0-0.8 0.2 0.4 0.05 1.03
Dso (pm) 0.2-4.3 1.4 1.9 2.22 1.61

Note: “S.D.” is the standard deviation. “Skewness” and “kurtosis” describe the shape of a probability distribution. A symmetrical distribution has a skewness of 0. A

normal distribution has a kurtosis of 3.
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Curing method Standard curing Heat curing Steam curing Air curing
Standard curing | 0 0 0
Standard curing = | 0 0 0
Seam curing 0 | 0 0
Heat curing 0 0 1 0
Air curing 0 0 0 1

Fig. 6. Example of converting curing methods into numerical data using one-hot encoding.

candidate models and the hyperparameter-tuning process is time-
consuming, the machine learning models are initially tested without
hyperparameter tuning. This model selection method is consistent with
the methods in Refs. [24,57].

2.3.5. Hyperparameters tuning

Bayesian hyperparameter tuning is used for automatic hyper-
parameter tuning. This technique is particularly useful when the ma-
chine learning model is complex and has many hyperparameters.
Bayesian optimization is applied to automatically and iteratively opti-
mize the hyperparameters following the Gaussian process [58]. Each
iteration is based on the Gaussian function fitted in the previous itera-
tion, aimed at identifying better hyperparameters compared with the
prior iteration.

In this research, cross-validation was performed in the optimization
process to improve the prediction accuracy and generalizability of ma-
chine learning models. Bayesian optimization builds a probabilistic
model of the objective function that maps the hyperparameters to the
performance of the model [58], as shown in Eq. (3):

X, = argrgg{xf (x) 3

where f(x) is an objective function that needs to be minimized; x; is the
set of hyperparameters that result in the lowest objective function; and X
is the search spacing of the hyperparameters. The value of the objective
function is evaluated on the testing set.

2.3.6. Performance metrics

To evaluate the performance of machine learning models, four
typical performance metrics were adopted, which are the mean absolute
error (MAE), root mean squared error (RMSE), Mean absolute percent-
age error (MAPE), and coefficient of determination (Rz), respectively.
The mathematical definitions of the three metrics are shown in Eq. (4) to
Eq. (7).

1 n
MAE=—"|P; - Al 4
n <
i=1
RMSE =, |2 Z (P, — A)? (5)
- n - L 1
Table 5
Machine learning algorithms.
Number Model Category
1 Linear regression Single model
2 Ridge regression Single model
3 Support vector regressor Single model
4 K neighbors regressor Single model
5 Random forest Ensemble learning
6 Extreme gradient boosting Ensemble learning
7 Light gradient Boosting machine Ensemble learning
8 CatBoost regressor Ensemble learning

1 < |Pi— A

MAPE:H.; - 6)
S (P-4
Zi:l (Ai - A)

where n is the total number of data; i is the ith data; P is the predicted
compressive strength; A is the actual compressive strength; and A is the
average value of actual compressive strength.

2.4. Multi-objective optimization

2.4.1. Design objectives

To design sustainable UHPG, three objective functions are consid-
ered: (i) minimization of the cost (F1), (ii) minimization of carbon
emission, (F2), and (iii) maximization of the compressive strength (F3),
as shown in Eq. (8) and Eq. (9). In this study, the power consumption of
high-temperature curing was assumed to be 3 kW; the cost of electivity
in New Jersey is $0.19 per kWh [59], and the equivalent CO5 emission is
0.371 kg [60].

n
Fl:Zizlmixri-&-thxrc 8)

F2:Z;mi><C,»—|—P><t><CC 9

where n is the number of raw materials; m; is the mass of the ith ingre-
dient; r; is the unit price of the ith ingredient; and C; is the carbon
emission of manufacturing the ith ingredient; P is the powder con-
sumption for high-temperature curing; t is the curing time, in days; r is
the unit price of electricity for curing; Cc is the CO2 emission produced
by consuming electricity during curing.

The inventory of the unit cost and carbon emission of the raw in-
gredients are listed in Table 6, including different precursors, fine and
coarse aggregate, activators, water, and steel fiber.

2.4.2. Multi-objective optimization algorithm

In this research, a multi-objective optimization method based on the
AGE-MOEA algorithm was used to optimize the compressive strength,
cost, and carbon emission, simultaneously. AGE-MOEA was designed for
multi-objective optimization using genetic algorithms and often used in
decision-making problems where multiple conflicting objectives are
considered simultaneously. The population and generation are set at 100
and 300, respectively [74]. Constraint functions are set to ensure
reasonable design of geopolymer, as shown in Eq. (10), which respec-
tively enforce the total volume fraction of binder, aggregate, fiber, and
liquid.

(Vb + Via + Vea + Vs + Vi — 1) < 0.0001 (10)
where X; is the ith design variable in Table 1; Vj, Vi, Vo, V5, and Vg

represent the volume of binder, fine aggregate, coarse aggregate, fibers,
and liquid, respectively.
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Table 6
Inventory of representative raw material.

Number  Materials Specific Cost Carbon emission
gravity (8/kg) (kg/kg)

1 Slag 2.90 [22] 0.100 0.085 [62]
[61]

2 Fly ash 2.70 [22] 0.026 0.005 [64]
[63]

3 Metakaolin 2.62 [22] 0.500 0.332 [65]
[61]

4 Silica fume 2.20 [22] 0.800 0.014 [66]
[61]

5 Fine aggregate 2.64 [22] 0.162 0.020 [68]
[671

6 Coarse 2.74 [69] 0.014 0.004 [64]

aggregate [70]

7 NaOH 1.57 [29] 0.380 1.915 [29]
[29]

8 Na,SiOs 2.10 [29] 0.170 1.514 [29]
[29]

9 Water 1.00 [22] 0.001 0.0003 [72]
[71]

10 Steel fiber 7.80 [22] 5.000 2.650 [73]

[61]

2.4.3. Multi-criteria decision making

Multi-criteria decision-making is performed to choose the optimal
solutions while considering the mutual impact of different objective
functions. This study utilizes the Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS) for determining the optimal solu-
tions. The basic mechanism of TOPSIS involves identifying the optimal
and worst solutions from the normalized solution matrix, calculating the
distance of each evaluation object to these solutions, and determining
the closeness of each object to the optimal solution for decision making
[75]1.

TOPSIS is utilized to help decision-makers to strike a balance be-
tween quantitative data and their subjective preferences by allowing
them to assign weights to criteria. However, it is important to note that
the quality of the results in TOPSIS depends on the accurate assignment
of criteria weights and the correct normalization of data. In addition,
TOPSIS assumes that the criteria are independent and that the ideal and
anti-ideal solutions represent the true best and worst outcomes, which
may not always be the case in real-world scenarios.

3. Results and discussion
3.1. Property prediction

3.1.1. Selection of machine learning methods

The results of the performance metrics of eight machine learning
methods for predicting the 28-day compressive strength of geopolymer
are listed in Table 7. Default hyperparameters are used. The XGBoost
model shows the highest accuracy, as indicated by the lowest MAE,
RMSE, and MAPE, and the highest RZ. The random forest and CatBoost
regressor models also achieved reasonable accuracy (R? > 0.80).
Therefore, they are selected for further investigations in this research.

Table 7
Pre-selection of machine learning algorithms.

Model MAE (MPa) RMSE (MPa) MAPE R?

Support vector regressor 33.21 50.93 0.512 0.629
K neighbors regressor 29.67 40.91 0.489 0.644
Ridge regression 22.84 24.79 0.443 0.714
Linear regression 22.86 24.79 0.442 0.714
LightGBM 15.89 20.13 0.387 0.789
CatBoost regressor 14.63 20.13 0.343 0.802
Random forest 14.81 19.89 0.343 0.817
XGBoost 14.06 19.06 0.315 0.831
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The MAE and R? results from the different models are compared in
Fig. 7.

3.1.2. Hyperparameter tuning

The hyperparameters of the random forest, CatBoost, and XGBoost
algorithms have been tuned to improve the accuracy. The optimal
hyperparameters were obtained through Bayesian optimization and 5-
fold cross-validation in terms of the smallest MAE. The iterative
curves of the MAE values during hyperparameter tuning are shown in
Fig. 8.

In each iteration, the hyperparameters obtained from 5-fold cross-
validation were averaged and used to evaluate the predictive perfor-
mance of the models. All MAE curves converged within 100 iterations,
revealing the excellent performance of Bayesian optimization in
hyperparameter tuning. The XGBoost model achieved the lowest MAE
after hyperparameter tuning. The optimal hyperparameters and corre-
sponding search spaces are shown in Table 8.

3.1.3. Prediction accuracy

The prediction performance of the machine learning models was re-
evaluated, as shown in Table 9. The three machine learning models
achieved excellent prediction accuracy on the training and testing
datasets. Among the three models, the XGBoost model showed the
highest accuracy, with the lowest MAE, MAPE and RMSE and the highest
R2, followed by the CatBoost model.

The predicted results from the three machine learning models are
compared with the actual results for both the training and testing
datasets, as shown in Fig. 9. Overall, the predicted results are consistent
with the actual results.

In the performance evaluation, the metrics were determined using
the testing dataset, which are experimental data that are unseen to the
trained machine learning models. In other words, the prediction per-
formance of the three trained machine learning models has been eval-
uated using extensive experimental data, as shown by the dense red dots
in Fig. 9. The high accuracy indicates that it is reasonable to utilize the
trained machine learning models to predict geopolymer properties
because that can largely mitigate the experimental testing effort.

The performance of the XGBoost model was further validated using a
set of experimental data extracted from two references [21,47]. Those
experimental data were not used in the training or the testing datasets,
so they were new data for the predictive models. The comparison of the
predicted results from the machine learning models and the experi-
mental results are shown in Fig. 10. When the slag replacement per-
centage increases from 0 to 100 % or when the steel fiber content
increases from 0 to 3 %, the change of the compressive strength of
geopolymer is evaluated. The maximum absolute error between the
experimental results and the predicted results was less than 5 MPa,
indicating the high predictive accuracy of the XGBoost model.

3.2. Interpretation of prediction results
3.2.1. Case study 1

3.2.1.1. Raw materials and mixture design. In case study 1, the effect of
silica fume on the compressive strength of geopolymer is studied. The
physiochemical properties of binders are listed in Table 10. Slag was rich
in Ca0, SiO», and Al;03, while silica fume was rich in SiO,. The slag and
silica fume had comparable particle sizes.

The analysis of chemical compositions of binders is shown in Fig. 11.
When the silica fume content in the binder system increases from 0 % to
15 %, the SiO5 content increases from 31 % to 51.3 %, the CaO content
decreases from 36.8 % to 25.8 %, and the Al,O3 content decreases from
17.4 % to 12.3 %.

The investigated mixing proportions by mass are listed in Table 11.
Silica fume was used to partially replace slag at 0, 15 %, and 30 % by the
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Fig. 7. Comparison of eight different machine learning models: (a) R% and (b) MAE (unit: MPa).
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Table 8
Hyperparameters of the different machine learning models.
Model Name Searching space Optimal
hyperparameters
CatBoost Learning rate 0.05-1.0 0.092
Bagging temperature 0.05-1.0 0.341
Border count 10-100 50
Colsample_bylevel 0.1-1.0 0.2
Depth 4-20 8
Random Maximum depth 1-20 8
forest Maximum features 1-20 19
Maximum sample 1-10 8
split
Maximum sample 1-10 9
leaf
XGBoost Booster Gbtree, Gblinear, Gbtree
Dart
Number of 10-200 120
estimators
Learning rate 0.01-0.20 0.012
Maximum depth 1-20 4
Colsample_bynode 0-10 1
Number of leaves 2-10 2

10

Table 9
Comparison of the performance of different machine learning models.
Model Dataset MAE (MPa) RMSE (MPa) MAPE R?
Random forest Training 3.17 6.69 0.021 0.98
Testing 7.20 8.76 0.075 0.94
CatBoost Training 3.29 5.31 0.013 0.99
Testing 5.68 8.68 0.064 0.95
XGboost Training 2.49 4.69 0.010 0.99
Testing 5.35 7.33 0.027 0.97

mass of slag [66]. A mixture of sodium hydroxide and sodium silicate
solutions was used as the activator. The liquid-to-binder ratio was set at
0.30, and the concentration of NaOH was 12 M. The steel fiber content
was 2 vol%. The specimens were demolded after 24 h and stored at room
temperature until testing. The compressive strength test was conducted
using cube specimens measuring 71 mm in the side length at 28 days.

3.2.1.2. Prediction results. The XGBoost model was used to predict the
compressive strength of geopolymer mixtures. The prediction results of
28-day compressive strengths are shown in Fig. 12. The maximum error
is 2.7 MPa, indicating that the XGBoost predictive model can provide
reasonable predictions.

3.2.1.3. Interpretation of prediction results. The knowledge graph has
been utilized to interpret the results from the XGBoost predictive model
in terms of the underlying mechanisms of the effects of silica fume
content on compressive strength. The mechanisms are identified from
the knowledge graph (Fig. A2). The influencing pathways of the effects
of silica fume and slag contents on compressive strength are revealed by
the red arrows between the nodes. With the knowledge graph (Fig. A2),
the influencing pathways can be determined automatically and utilized
to list the following explanation:

Ca/Si ratio

Silica fume content . .
T si /Al ratio

—Compressive strength

According to the machine learning model, when the replacement
percentage of silica fume increases from 0 to 30 %, the 28-day
compressive strength increases from 101.3 MPa to 129.7 MPa. The
above explanation indicates that the increase of silica fume content
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Fig. 10. Effects of different variables on the compressive strength: (a) slag content by the mass of geopolymer, and (b) steel fiber content by the volume

of geopolymer.

Table 10
Physiochemical information of binder materials [66].
Oxides (%) CaO Si0, Al,03 MgO Fe,03 SO3 Dso (pm)
Slag 36.77 30.97 17.41 9.01 1.03 1.82 0.70
Silica fume 0.29 98.70 0.29 0.11 0.03 0.03 0.90
Ca0O CaO
[)
ALO, (36.8%) Others ZL0(31-3%)
0 14.8%
(17.4%) (14.8%) ( o)
Si0, Si0;,

(31.0%) ,’

(a)

(b)

(41.1%)

modifies the Ca/Si and Si/Al ratios in the binder system, thus increasing
the compressive strength, since the modification of the ratios promotes
the generation of C-(A)-S-H gel [76].

3.2.2. Case study 2

3.2.2.1. Raw materials and mixture design. In case study 2, geopolymer
mixtures were prepared with fly ash and slag activated by NaOH solu-
tion. The physiochemical properties of the adopted fly ash and slag are
shown in Table 12.

CaO
ALO; (25.8%) Others
((l)zth;)f/S) (12.3%) (10.6%)
B o
Si0,
’ (51.3%)

(©)

Fig. 11. Composition of the binders for different silica fume contents: (a) no silica fume; (b) 15 % silica fume by the mass of binders; and (c) 30 % silica fume by the

mass of binders.

11
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Table 11
Mixing proportions in case study 1.
Mixtures Slag Silica fume Fine aggregate NaOH Na,SiO3
1 1.00 0 1.20 0.12 0.18
2 0.85 0.15 1.20 0.12 0.18
3 0.70 0.30 1.20 0.12 0.18
140
- O Experimental —
% 120 I gPredicted
N
=100 F —P
-
&
g 80
17}
£ o0 |
17}
17}
g 40
g
U 20 B
0 - 1 . 1 u_
SF-0 SF-15 SF-30
Mixtures

Fig. 12. Comparison of the predicted and experimental results of the
compressive strength of geopolymer at 28 days. SF-15: silica fume accounts for
15 % of the binder by weight.

NaOH concentration » _ 1181 concentration  — More C — (A): ;:

H
Excessive concentration — Less C — (A) H

Regarding the mixing proportion, the fly ash and slag occupied 67 wt
% and 33 wt% of the binder, respectively; the fine aggregate-to-binder
ratio was 1.65; the coarse aggregate-to-binder ratio was 2.35; and the
liquid-to-binder ratio was 0.35. The concentration of NaOH solution
ranged from 10 M to 16 M to investigate the effect of NaOH concen-
tration. Cylindrical geopolymer samples were cast, demolded after 24 h,
and then cured in air at room temperature until testing. More details
about the experiments are available in Ref. [15].

3.2.2.2. Prediction results. The XGBoost model was used to predict the
compressive strength of geopolymer concrete. The comparison between
the prediction and the experimental results is shown in Fig. 13. The
results show that the prediction results agree with the experimental
results, overall, indicating that the machine learning model can provide
reasonable predictions. When the NaOH concentration increases from
10 M to 14 M, the 28-day compressive strength of geopolymer concrete
increases from 25.2 MPa to 33.6 MPa. When the NaOH concentration
increases from 14 M to 16 M, the 28-day compressive strength decreases
from 33.6 MPa to 30.1 MPa.

Table 12

Physiochemical information of fly ash and slag [15].
Oxides (%) CaO Si0, Al,03 MgO Fe,03 SO3 Dso (pm)
Fly ash 3.54 54.76 26.41 0.78 8.48 1.20 17.2
Slag 33.23 32.26 16.35 8.29 3.53 1.32 12.3

12

Cement and Concrete Composites 153 (2024) 105723

40
OExperimental results
s [ @ Predicted results — -
% 30 B ’—- |
=
on 25
2 —
L
£ 20 F
2
2 15 t
s
5 10 f
g
S 2T
0 1 1 1
10 12 14 16
NaOH contentration (M)

Fig. 13. Comparison of the predicted 28-day compressive strength and the
experimental results of 28-day compressive strength for geopolymer concrete
with different NaOH concentration.

3.2.2.3. Interpretation of prediction results. The interpretation of influ-
encing pathways of NaOH concentration is shown in Fig. A3. The red
solid lines indicate the primary factors that affect compressive strength.
The directed arrows identified from the knowledge graph (Fig. A3)
explicitly reveal the underlying mechanisms for the change of the
compressive strength of geopolymer concrete. With the knowledge
graph, the influencing pathways is determined automatically and uti-
lized to list the following explanation:

—Compressive strength

When the NaOH concentration is increased from 12 M to 14 M, the
compressive strength is improved because the dissolution of silica and
aluminum in the binder system is promoted by the increase of pH value
[13]. The higher dissolution rate of amorphous silica and aluminum in
turn promotes geopolymerization, therefore producing more C-(A)-S-H
gels and in turn increasing the compressive strength. When the NaOH is
increased from 14 M to 16 M, the compressive strength is reduced
because polycondensation is retarded, therefore producing less
C-(A)-S-H gels and decreasing the compressive strength [77].

3.2.2.4. Generation of new knowledge. When machine learning results
are beyond the scope of the knowledge graph, the knowledge graph
cannot be utilized to interpret the results, but it can provide information
to support the further development of the knowledge graph and
generate new knowledge. In this research, the knowledge graph has
been utilized for two other purposes besides the interpretation of ma-
chine learning data:

(1) The knowledge graph has been used to guide the machine
learning model to consider new mixtures, motivated by the
compressive strength lower than 40 MPa (Fig. 13). To increase
the compressive strength, the knowledge graph is used to identify
the influencing factors (Fig. 14), such as the curing method and
mixing proportions, which are important input variables of the
machine learning model. The input variables are justified ac-
cording to the knowledge graph, aiming at high compressive
strengths and the influencing mechanisms.
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Fig. 14. Identification of key influencing factors for the compressive strengths of geopolymer.

Table 13
Physiochemical properties of available binder materials [66].

;_E 50 Oxides (%) CaO Si0y Al,03 MgO Fe,03 SO3 Dsp (pm)
2 45 Fly ash 1.24 4122 3118 340 215 0.05 17.2
%n Slag 3881 3381 1478 950 076 0.06  12.3
g 40 Silica fume ~ 1.84 95.38  0.05 050  0.30 0.00 0.5
Z 35
2 30
2 based on a case study with available raw materials, which are fly ash,
% 25 0 slag, and silica fume. Their physical and chemical properties are shown
g 20 8016& in Table 13. The curing condition is standard curing at room tempera-
O 15 60 Curing ture (20 °C), and the size of specimen is the cube with a side length of 51
10 20 tempoerature mm. To achieve UHPG, the 28-day compressive strength is defined as a
4 6 8 10 12 14 16 O design constraint, meaning the non-dominated solutions with 28-day
NaOH concentration (M) compressive strengths lower than 120 MPa are not included in the so-

Fig. 15. Interaction of curing temperature and NaOH concentration on the
compressive strength.

(2) The knowledge graph can be used to guide the generation of new
knowledge. According to Fig. 14, both curing temperature and

lution set.
In this design optimization, three design objectives have been
considered simultaneously, which are the material cost (F1), carbon

NaOH concentration influence the compressive strength. How- F3 (MPa)
ever, it is unknown whether the two variables have any coupling 1600 166
effect or not. This informs the need for evaluating the coupling T =20 °C ]
effect of them using the machine learning model. The results 1400
indicate that the two variables have significant interactions, as 157
shown in Fig. 15. This finding can be utilized to enrich the 200 o
knowledge graph. 6&? 1 148
It should be noted that the underlyi hani f th li =~ 1000
ying mechanism of the coupling S
effect between the curing temperature and NaOH concentration still S g o 139
needs to be uncovered through experimental research, and the research 800 g
results can be added to the knowledge graph. The knowledge graph . I H 129
promotes the generation of new knowledge by facilitating the identifi- 600 g S s
cation of uninterpretable observations or results from machine learning °
predictive models. 402 120
00 600 800 1000 1200
3.3. Multi-objective optimization F2 (kg)

Multi-objective optimization has been performed to optimize the
design of UHPG in this research. The method and results are provided

13

Fig. 16. Results of the nondominated solution set for the multi-objective
optimization of UHPG.
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emission (F2), and 28-day compressive strength (F3). The material cost
and carbon emission are calculated based on the inventory data
(Table 6) and the mixing proportion of each mixture, and the 28-day
compressive strength is predicted using the trained machine learning
model (section 3.1). With the multi-objective optimizer, the Pareto plot
of the optimal solutions is shown in Fig. 16.

Multi-objective optimization often delivers a set of solutions, as
shown in Fig. 17. TOPSIS has been used to recommend the best solution
for specific applications, such as a solution which has low cost, low
carbon emission, and high compressive strength. The mixture design is
compared with representative UHPG mixtures, as shown in Table 14.
When the 28-day compressive strength is sustained, the UHPG recom-
mended by the Al-designer saves the cost by up to 19.8 % and reduces
the carbon emission by up to 27.3 %, compared with typical UHPG
mixtures [47].

The material cost and carbon emission of the different UHPG mix-
tures have been normalized by their compressive strengths at 28 days, as
shown in Fig. 18. Compared with representative UHPG mixtures in
references, the mixture designed by the proposed approach achieved
lower cost and lower carbon emission normalized by the compressive
strength, showing the efficacy of the proposed approach in designing
UHPG.

3.4. Discussion on construction of knowledge graphs

In this study, the knowledge graph was manually constructed based
on available references. Three challenges have been identified: (1) The
manual construction process is time-consuming, and the constructed
knowledge graph has a limited scope for particular applications. In this
study, we primarily considered the particle size and chemical compo-
sition of the raw ingredients employed to produce geopolymer concrete.
(2) The manually constructed knowledge graphs are influenced by his-
torical data and human biases, which can compromise accuracy and
reliability. As domain knowledge and available data continue growing,
updating knowledge graphs becomes increasingly complex and chal-
lenging. (3) The knowledge graph is used for variable selection and
interpreting prediction results. However, due to limitations in data
availability, some minor factors that could affect material properties
cannot be included in the knowledge graph. For instance, attributes,
such as particle shape and surface morphology, influence compressive
strength, but there is insufficient data to train machine learning models
considering these attributes. The selection of information for
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Table 14
Comparison of UHPG mixture designs.
Raw ingredients Al- UHPG-1 UHPG-2 UHPG-3
designer [471 [78] [66]

Slag (kg/m®) 759 688 1000 665

Fly ash (kg/m%) 123 172 160 0

Silica fume (kg/m®) 72 45 100 0285

Fine aggregate (kg/m>) 670 905 938 1140

Coarse aggregate (kg/ 430 0 0 0
m®)

NaOH (kg/m®) 55 45 74 114

NaySiO3 (kg/ms) 178 314 480 171

Water (kg/m®) 108 97 74 0

Steel fiber (kg/m®) 117 156 236 156

NaOH concentration 14 12 12 12
(€]

Material cost ($/m?) 887.4 1106.4 1625.9 1331.6

Carbon emission (kg/ 766.1 1053.1 1599.8 973.9
m3)

Compressive strength 156.1 149.7 151.2 132.4
(MPa)

constructing the knowledge graph is a challenge.
4. Conclusions

This paper presents a knowledge graph-guided AI approach for
automatic discovery or design of geopolymer concrete, and the imple-
mentation into the design of UHPG is demonstrated. This research has
been motivated by the utilization of domain knowledge and data in
achieving efficient material discovery. Based on the above in-
vestigations, the following conclusions can be drawn:

e The incorporation of knowledge graph into the prediction-
optimization framework of Al designer enables the Al designer to
achieve interpretability of the prediction results from the machine
learning model for geopolymer properties. The influencing pathways
are automatically determined in the knowledge graph, explaining
the underlying mechanisms of the effects of key design variables of
geopolymer. This capability transforms black-box machine learning
models into explainable machine learning models that can be
assessed by geopolymer or concrete domain experts.

The knowledge graph constructed by geopolymer domain experts
can be utilized to guide the development of machine learning

i R (L0 a— evemmeenmamssm———— L L
156.1
1259
1000
887 ¢ s
741 e (EEk 11321
482 - ST L 120.5
F1 F2 F3
($/m?) (kg/m?) (MPa)

Fig. 17. Non-dominated solutions (gray color) and a solution recommended by TOPSIS (red color).
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models. Particularly, the knowledge graph can be used to identify
key design variables of geopolymer, ensuring that the key design
variables are fully considered in establishing the machine learning
models. This capability enhances the rationality and reliability of
machine learning predictive models.

The integration of knowledge graph and machine learning models
enables the growth of the knowledge graph and offers a new pathway
to generate new knowledge. Important unknown knowledge can be
identified from the knowledge graph, and machine learning models
can provide quantitative predictions to facilitate the generation of
new knowledge via further experimental research.

The proposed approach has been implemented and utilized to
discover the promising design of UHPG with high compressive
strength, low material cost, and low carbon emission. Other geo-
polymer mixtures can be designed following the same procedure
while adjusting the design objectives for different applications.

The physical and chemical properties of raw materials are important
information that must be considered in the machine learning pre-
dictive model, aimed at handling the significant variations of solid
wastes. The consideration of the physical and chemical properties of
raw materials imparts unprecedented reliability, generalizability,
and transferability to the machine learning model, facilitating the
utilization of various solid wastes.

Although the proposed approach has demonstrated important ad-

vantages in material discovery, this research is still at the feasibility
study stage with a relatively low technology readiness level. The
following limitations have been identified to promote future research
toward the maturation of knowledge-guided AI design of geopolymer
concrete:

Developing advanced computing techniques to automate the con-
struction of knowledge graphs will largely improve the efficiency
and application scope of the proposed approach. The achievement of
automation can mitigate the influence of historical data and human
biases, enhancing the reliability of knowledge graphs. Additionally,
methods for selecting relevant information from literature are useful
to identify and exclude minor factors.

As domain knowledge and available data continue growing, inno-
vative solutions for managing and updating knowledge graphs are

crucial for scalable applications. These advances will enable the
construction of comprehensive knowledge graphs for the design of
geopolymer concrete and other types of materials, and the knowl-
edge graphs are useful for developing more capable Al designers for
geopolymer concrete and other materials.

The quantity of available data is limited, which imposes challenges
to the evaluation of the performance of the proposed approach, such
as the evaluation of the predicted results and the optimization results
of geopolymer design. It is important to develop innovative tech-
niques to automate the collection of data from available references.
More experiments can be conducted to generate high-quality data to
validate and improve the approach.
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