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A B S T R A C T   

Traditional methods for designing concrete materials typically rely on labor-intensive laboratory experiments, 
resulting in time and cost inefficiencies. Recently, designing concrete using artificial intelligence (AI) methods 
has shown high efficiency, but existing AI methods often rely solely on data, which can lead to violation with 
scientific principles and result in models lacking reasoning abilities. To overcome these challenges, this paper 
presents an interpretable knowledge graph-guided data-driven design approach. By integrating advanced 
computing techniques with domain knowledge via knowledge graphs, this approach enables the interpretation of 
data-driven models and uncovers the underlying mechanisms behind predictions. This approach is applied to 
ultra-high-performance concrete (UHPC) involving complex physicochemical reactions. The domain knowledge 
about UHPC is imparted using a knowledge graph, and UHPC properties are predicted using a machine learning 
model considering mixing proportions, processing methods, and physiochemical properties of materials via 
natural language processing. The results show that the knowledge graph displays crucial design variables and 
their effects on UHPC properties, aiding in selecting variables for machine learning models and interpreting their 
results. The prediction accuracy of the machine learning model reached 0.95. The research paves the way for 
more transparent and scientific AI models for material design and AI-enabled discovery of scientific knowledge.   

1. Introduction 

Concrete is the most used structural material worldwide. The annual 
consumption is about 30 billion tons [1]. Although its unit cost and 
carbon footprint are not as high as steel and aluminum [2], the used 
volume is substantial, making concrete an important contributor to 
carbon emissions. Concrete production and utilization cause two envi
ronmental problems: (1) The production of concrete depletes natural 
resources and releases greenhouse gases. In 2017, the consumption of 
cement for producing concrete was more than 4 billion tons worldwide 
[3], which contributed to 2.5 gigatons of CO2 emission, accounting for 
7% of the total CO2 emission [3]. (2) Construction and demolition 
(C&D) activities generate more than 3 billion tons of waste concrete 
annually [4,5]. The two problems are mapped to climate change and 
waste management, which are two grand challenges identified by the 
National Academy of Engineering (NAE) of the United States [6]. The 
challenges are exacerbated by the poor infrastructure condition. 
Restoration of civil infrastructure is another NAE grand challenge. These 

challenges converge to the idea of valorizing solid wastes to produce 
high-performance green concrete for resilient and sustainable 
infrastructure. 

Ultra-high-performance concrete (UHPC) is a family of advanced 
concrete featuring superior mechanical properties, workability, and 
durability [7–9]. The compressive strength is 120 MPa or higher at 28 
days [8]; UHPC has adapted fresh properties that facilitate the place
ment and quality control [9,10]; and chopped fibers are used to achieve 
high crack resistance [11]. These properties make UHPC an unique 
candidate for structural applications that require high mechanical 
strengths and long durability, such as the construction and rehabilita
tion of bridges [12,13], tunnels [14], and high-rise buildings [15]. 
However, the high cost and high carbon footprint of UHPC have hin
dered its applications. Recent research has shown that the cost and 
carbon footprint of UHPC can be reduced by using various solid wastes 
to partially replace the raw ingredients (e.g., cement or sand) of UHPC 
[16–23]. Valorizing solid wastes in producing UHPC has trifold benefits: 
(1) The material cost and carbon footprint are reduced. (2) The volume 
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of solid wastes for landfill is reduced. (3) UHPC has superior properties 
for improving the resilience of infrastructure. 

However, the development of low-carbon cost-effective UHPC 
blended with solid wastes is challenging. The traditional methods are 
performance-based and demand a large number of trial-and-error lab
oratory tests. The laboratory tests of UHPC are typically conducted via 
several steps to optimize the mixture design variables step by step [8]. 
Those tests are costly, labor-intensive, and time-consuming. The evalu
ation of the mechanical properties of concrete takes 28 days or longer 
typically [24], because of the hardening kinetics of cement-based ma
terials. When the type or dosage of a raw ingredient is changed, the 
daunting tests must be replicated, hindering the utilization of solid 
wastes because the physicochemical properties of wastes often change. 
For example, the particle size gradation and chemical composition of 
two batches of fly ash are usually different even if they are produced 
from the same plant [25,26]. Although many concrete mixtures con
taining solid wastes have been developed, it is difficult to extend their 
applications because the concrete properties will be changed when the 
physicochemical properties of wastes are changed, making it unrealistic 
to utilize solid wastes to produce concrete in practices. 

Under such a circumstance, artificial intelligence (AI) approaches 
emerged as an alternative method to design concrete [27,28]. The AI 
approaches are used to design concrete via a prediction-optimization 
framework: First, machine learning models are trained using prior test 
data to relate the design variables (e.g., water-to-binder ratio, 
sand-to-binder ratio, and binder combination) to the material properties 
(e.g., compressive strength, tensile strength, and porosity) [29]. Second, 
the machine learning predictive models are integrated with optimiza
tion techniques to maximize the mechanical properties while mini
mizing the material cost and the carbon footprint [27]. Machine 
learning models have exhibited the ability to predict the fresh and 
hardened properties of UHPC with high accuracy and high efficiency 
[30–33]. Recently, auto-tuned machine learning techniques have been 
developed to enable auto-discovery of low-carbon cost-effective UHPC 
[28,29]. 

Although it is promising to utilize AI-assisted approaches to design 
concrete, limitations have been identified from current approaches: 
First, most AI-based design utilizes data-driven machine learning models 
to predict concrete properties, without considering the domain knowl
edge about concrete. Although data-driven models can achieve high 
accuracy in training and testing processes, those models cannot reveal 
the underlying scientific principles. Second, machine learning models 
are unlikely to be applicable when new ingredients (e.g., solid wastes) 
are used, because the models are trained using datasets with specific 
ingredients. New ingredients are unseen to the trained models, creating 
a major barrier for using AI methods to design UHPC with solid wastes 
because wastes involve large variations in particle size gradation and 
chemical composition. 

Recently, important efforts have been made to address the above
mentioned limitations. First, attempts have been made to utilize 
knowledge about concrete to generate or augment the dataset used to 
train machine learning models. For example, the particle packing theory 
was referenced to guide the generation of datasets [34], and a 
micromechanics-based formula was used to generate data that satisfy 
the micromechanics theory [35]. Second, the physicochemical infor
mation of raw materials has been utilized to develop machine learning 
models that consider the physicochemical properties (e.g., particle size 
gradation and chemical composition) of raw materials rather than the 
engineering names (e.g., Class C and Class F fly ash) [29], making it 
possible to consider various solid wastes using the same machine 
learning model. However, existing machine learning methods generate 
black-box models lacking interpretability. Shapley additive explanations 
(SHAP) were employed to achieve “explainable machine learning”, but 
the term “explainable” refers to the evaluation of the significance of 
design variables at a data level [36,37], without explaining any mech
anism such as the physical and chemical reactions of concrete. To attain 

truly explainable machine learning, it is necessary to incorporate 
domain knowledge of physicochemical reactions, such as cement hy
dration, pozzolanic reaction, and generation of calcium silicate hydrate. 

This paper presents an approach to achieve interpretable machine 
learning that explains the underlying physicochemical mechanisms of 
concrete for the first time. The idea is to incorporate scientific knowl
edge about concrete by a knowledge graph that explicitly describes the 
underlying mechanisms. The graph is created by domain experts using 
the knowledge in current literature and is updatable when new knowl
edge becomes available in future publications. This paper proposes to 
utilize the knowledge graph in two ways: (1) Guide the generation of 
machine learning models. (2) Interpret the prediction results from the 
machine learning models through an interpretable AI framework that 
integrates knowledge graph and machine learning techniques. There are 
two main research objectives: (1) To develop the interpretable machine 
learning approach. (2) To implement the approach into designing low- 
carbon cost-effective UHPC. This paper has three main novelties: (1) 
An interpretable knowledge-guided data-driven approach is presented. 
By integrating advanced machine learning techniques with domain 
knowledge via knowledge graphs, this approach enables the interpre
tation of data-driven models and uncovers the underlying mechanisms 
behind machine learning-based predictions. (2) A guide for creating 
knowledge graphs is presented and utilized to generate a knowledge 
graph for UHPC materials. The utilization method and benefits of the 
knowledge graph are elaborated. (3) The innovative approach is applied 
to predict UHPC properties, interpret machine learning results, and 
discover scientific knowledge. 

The remainder of the paper is structured as follows: Section 2 dis
cusses the basic concepts of machine learning-based design methods in 
comparison with the current design methods. Section 3 outlines the 
methods developed or applied in this research. Section 4 presents and 
discusses the results obtained from machine learning and the interpre
tation of results based on a knowledge graph. Section 5 concludes the 
new findings and future opportunities. 

2. Proposed concept 

The concept of machine learning-based design methods has been 
compared with the concept of current design methods for UHPC and 
other types of materials, as depicted in Fig. 1. The current methods 
utilize domain knowledge about UHPC and are mainly based on labo
ratory experiments [8,38]. The domain knowledge is utilized to design 
the laboratory experiments and interpret the experimental data, quali
tatively [39]. Laboratory experiments are conducted to evaluate the 
effects of design variables on concerned properties of UHPC, quantita
tively. The experimental results are utilized to determine the optimal 
design and generate new knowledge to enrich domain knowledge. 

For example, domain knowledge about UHPC was applied to design 
laboratory experiments such as the selection of tested mixtures, mixing 
protocols, curing schemes, and property evaluation methods [8]. With 
the domain knowledge, the number of candidate mixtures was limited to 
save experimental efforts while achieving sufficient information to 
obtain the optimal UHPC mixture. 

Laboratory experiments typically generated two types of knowledge, 
which are (i) the effects of the design variables (e.g., water-to-binder 
ratio, sand-to-binder ratio, and binder combination) on the concerned 
properties (e.g., compressive strengths, elastic modulus, and durability), 
and (ii) the underlying mechanisms of the effects of design variables. For 
example, increasing the water-to-binder ratio increases the porosity of 
matrix and thus weakens the compressive strength; and increasing the 
cement replacement percentage of fly ash reduces the volume of hy
dration products (e.g., calcium hydroxide) and thus reduces the 
compressive strengths [7–9]. 

In current practices of machine learning-based design, machine 
learning models are used to replace laboratory experiments, without 
considering the domain knowledge about concrete. In this research, a 
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knowledge graph is incorporated into an AI designer, aiming at 
imparting the domain knowledge into the AI designer. The knowledge 
graph plays the role of domain knowledge (Fig. 1) and interacts with AI 
experiments which replace laboratory experiments in two aspects: (1) 
The knowledge graph is utilized to guide the design of AI experiments 
and interpret the AI experiment results; and (2) the AI experiment re
sults are utilized to evaluate the knowledge graph. If the results from AI 
experiments agree with the qualitative trends embedded in the knowl
edge graph, the knowledge graph will be used to interpret the experi
ment results. Otherwise, if the AI results are inconsistent with the 
knowledge graph or beyond its scope, either the knowledge graph will 
be extended as informed by the machine learning model, or the machine 
learning model will be corrected. More details are available in Section 4 
of this paper. 

The machine learning-based design philosophy is interconnected 
with the experiment-based deisgn philosophy in two aspects: (1) Labo
ratory experiments generate data that are used to train machine learning 
models that predict material properties and are used to conduct AI ex
periments. (2) Domain knowledge is utilized to create knowledge 
graphs. The methods of creating knowledge graphs using domain 
knowledge are elaborated in Section 3. In brief, a knowledge graph 
embodies domain knowledge in a graphic form. The generation of 
knowledge graphs can be performed using natural language processing 
technologies that extract knowledge from publications such as books 
and papers automatically [40,41]. The knowledge graph updated based 
on AI experiments informs new domain knowledge, as discussed in 
Section 4. In other words, the integration of knowledge graphs and 
machine learning creates a new pathway to generating new knowledge. 

3. Methods 

The explainable machine learning framework includes seven steps, 
as shown in Fig. 2: (1) Establish a knowledge graph according to existing 
knowledge. (2) Identify relevant variables such as the mixture design 

variables, physiochemical information of raw ingredients, and experi
mental conditions based on the knowledge graph. The variables can be 
categorized into numerical data, categorical data, and textual data. (3) 
Collect data from publications. (4) Establish the dataset. Categorical 
data are converted into numerical data through one-hot encoding, and 
textual data are converted into numerical data through word vectori
zation. (5) Optimize hyperparameters. (6) Train machine learning 
models using the dataset. (7) Interpret results using the knowledge 
graph. 

3.1. Knowledge graph 

A knowledge graph is a semantic network that utilizes a directed 
labeled graph to describe domain knowledge. A knowledge graph has 
three components, which are nodes, edges, and labels, as shown in  
Fig. 3. Any entity can be a node, and nodes are connected using edges (i. 
e., arrowlines) that define the relationships between nodes. Both the 
nodes and edges are well defined by labels. A knowledge graph provides 
an organized way to represent domain knowledge, facilitates data 
analysis and data retrieval, promotes the discovery of new insights by 
enabling users to explore the relationships between entities and extract 
new information based on sophisticated data analysis. Knowledge 
graphs have been utilized in multiple fields such as natural language 
processing [42], recommendation systems [43], and knowledge man
agement [44], but knowledge graphs have not been applied to material 
design. 

To create a knowledge graph for UHPC, the first step is to define the 
design problem. In this research, the design problem is defined as the 
design of low-carbon cost-effective UHPC blended with solid wastes 
such as fly ash and slag as supplementary cementitious materials 
(SCMs). When the laboratory experiment-based methods are used to 
design UHPC, domain knowledge is required to properly design the 
laboratory experiments by considering four aspects, which are the 
available raw ingredients, processing methods, concerned properties, 

Fig. 1. Concept of knowledge-guided interpretable AI designer versus the conventional methods.  

Fig. 2. Explainable machine learning framework for predicting material properties of UHPC.  
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and test mixtures. These four aspects are briefly discussed as follows:  

(1) Raw ingredients include the binders (e.g., cement and SCMs), 
aggregates, fillers, fibers, water, and admixtures. It is essential to 
understand the mechanisms of different ingredients that affect 
the concerned properties of UHPC. For example, partially 
replacing Portland cement with fly ash can affect the compressive 
strength of UHPC through influencing the hydraulic reactions 
and microstructures [45]. Such mechanisms are closely associ
ated with the physicochemical properties of fly ash. Therefore, it 
is essential to include the knowledge about how the physico
chemical properties (e.g., particle size gradation, chemical com
positions) of fly ash impact the concerned properties of UHPC.  

(2) Processing methods for UHPC encompass raw ingredient pre- 
treatment, mixing protocols, curing schemes, and testing 
methods. For this study, no additional pre-treatment of raw in
gredients is necessary, and a common mixing protocol for UHPC 
is employed.Therefore, the considered factors are mainly the 
curing scheme and testing methods [46]. It is essential to list the 
knowledge about how the curing schemes (e.g., steam curing) 
and testing methods (e.g., speciment type) impact the concerned 
properties of UHPC.  

(3) The concerned properties often include the fresh and hardened 
properties. In this research, the focus was placed on the 
compressive strength of UHPC at 28 days since UHPC has to 
achieve a compressive strength of 120 MPa or higher at 28 days 
[8]. In practices, it is also important to consider fresh properties 
such as the mini-slump spread and other important rheological 
properties because they play important roles in the mechanical 
properties and durability of UHPC [47]. More properties can be 
considered using the same methods. 

(4) Determining the test mixtures involves not only domain knowl
edge but also experiences. In current practices, the determination 
of test mixtures often consider three aspects. First, it is beneficial 
to find existing mixtures of low-carbon cost-effective UHPC 
blended with solid wastes as the reference mixtures, whose 
mixture proportionings can be modified to develop new mixtures. 
Second, existing theories such as particle packing density models 
can be utilized to provide a general guide for the mixture design 
[7]. Third, design of experiments tools based on factorial design 
or statistical design methods can be used [8]. Currently, there is 
lack of consensus on a unified design method that can be gener
alized for all cases. Trial-and-error methods are often incorpo
rated into designing UHPC when new design variables are 
involved because there is lack of similar existing mixtures. The 
machine learning-based design methods have advantages in 
selecting test mixtures for two reasons. First, machine learning 
models are trained using large datasets of existing mixtures that 
have similarities with the target mixtures. The range of each 
design variable can be determined based on existing mixtures. 
Second, machine learning models are time-efficient in conducting 
AI experiments because the models can predict material proper
ties based on the material design rapidly [48]. 

The above discussion reveals the scope of knowledge that should be 
included in the knowledge graph. It must be noted that the relevant 
knowledge is dependent on and should be tailored to the specfic design 
problem. With the defined scope in this research, a knowledge graph 
was created by extracting relevant information from publications such 
as books, papers, and social media [7,26,49–52]. The knowledge graph 
is shown in Fig. 4. The labeled nodes (i.e., text boxes) show the entities 
such as “UHPC”, “raw ingredients”, “processing methods”, and “key 
properties”. The edges (i.e., arrowlines) show the relationships between 
the entities. For example, the edge between “UHPC” and “Raw in
gredients” describes that UHPC has raw ingredients. 

The same method can be applied to creat new knowledge graphs or 
extend the knowledge graph by considering other types of ingredients, 
physicochemical properties (e.g., density and water absorption), and 
key properties (e.g., flowability and durability), as well as other factors 
such as the pre-treatment methods for raw ingredients and different 
mixing protocols of concrete. 

3.2. Variable selection and data analysis 

The knowledge graph was utilized to guide variable selection by 
qualatatively identifying the relevant factors that affect UHPC proper
ties. The factors were then utilized as the input variables of the machine 
learning models. This research classified the input variables into nu
merical data (e.g., mixture design variables, curing times), textual data 
(e.g., chemical and physical peroperties of raw materials), and cate
gorical data (e.g., curing methods, specimen type). The output variable 
is the compressive strength of UHPC at 28 days. Based on the selected 
variables, a total of 488 UHPC mixtures were extracted from exsiting 
publications. The dataset was divided into a training set (80%) and a 
testing set (20%). Since there are limited available data, the dataset was 
not divided to have a validation set, consistent with previous research in 
references [28,35]. 

3.2.1. Numerical data 
The statistics of the numerical data of the dataset are shown in  

Table 1 [45,46,49,50,52,55–63]. The numerical data include various 
mixture design variables such as the cement-to-binder ratio, fly 
ash-to-binder ratio, silica fume-to-binder ratio, slag-to-binder ratio, 
superplasticizer-to-binder ratio, water-to-binder ratio, sand-to-binder 
ratio, fiber volume ratio, and curing ages. 

To avoid multicollinearity, a correlation analysis was performed to 
determine the Pearson correlation coefficient for the input variables of 
the numerical dataset [53]. The results of the correlation analysis are 
shown in Fig. 5. The maximum Pearson correlation coefficient of the 
input variables is 0.64, lower than 0.7, indicating that multicollinearity 
does not occur. Therefore, it is appropriate to use this dataset to train 
machine learning models. When the maximum Pearson correlation co
efficient is larger than 0.7, multicollinearity will occur, and it will be 
necessary to modify the dataset to eliminate multicollinearity, as elab
orated in reference [28]. 

Fig. 3. Example of a knowledge graph. “R” denotes relationship, and “E” denotes entities.  
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3.2.2. Textual data 
Different batches of solid waste usually have different physico

chemical properties although they have the same engineering name (e. 
g., Class C or Class F fly ash). For example, the particle size gradations 
and chemical compositions of two batches of Class C fly ash can be quite 
different [54]. When different materials are used to produce concrete, 
they have different effects on concrete properties [20]. Thus, it is 
inappropriate to use the engineering names of wastes to represent the 
materials in the development of machine learning models without 
considering the physicochemical properties of ingredients. Recent 
research has shown that it is essential and useful to consider the phys
icochemical properties as input variables of the machine learning 
models for predicting the properties of UHPC blended with various solid 
wastes [29]. 

The statistics of important physicochemical properties that affect the 
compressive strength of UHPC are listed in Table 2, including the types, 
ranges, mean values, kurtosis, and skewness of the physicochemical 
properties. The types include the percentages of CaO, SiO2, and Al2O3, as 
well as the loss of ignition (L.O.I.) and meadian particle size (D50) [45, 
46,49,50,52,55–63]. 

The percentages of CaO, SiO2, and Al2O3 in the binder system have 
significant influences on the hydraulic reactivity and pozzolanic reac
tivity of the binder system, and affect the compressive strength of UHPC. 
It is important to note that different SCMs have different chemical 

compositions. In addition to chemical composition, some materials such 
as off-specification fly ash (OSFA) [51] and bottom ash [64] have a high 
amount of carbon, which results in a high L.O.I. and low reactivity of the 
materials, therefore compromising the compressive strength of UHPC. A 
ternary diagram of the chemical compositions of cement, fly ash, slag, 
and silica fume is shown in Fig. 6. 

The particle size gradation is another important factor that can affect 
the compressive strength of UHPC. Fine particles can fill the pores in 
cementitious matrix and densify the microstructure, known as the filler 
effect [65]. The partial replacement of cement by fine mineral cemen
titious materials can accelerate the rate of hydration reactions, known as 
the seed effect [66]. The particle size gradation of raw materials can 
significantly impact UHPC properties. 

3.2.3. Categorical data 
The compressive strength of UHPC is dependent on the curing 

methods and specimen type. For example, steam curing has been used to 
enhance the compressive strength of UHPC through accelerating the 
hydration reactions of cementitious materials and producing more hy
dration products [67]. The test results of the compressive strength of 
UHPC are associated with the size of the specimens. Typically, the 
compressive strength decreases with the increase of the specimen size 
[68], known as the size effect. The curing methods and specimen types 
are shown in Table 3. 

Fig. 4. Knowledge graph created to represent the knowledge of UHPC blended with solid wastes as supplementary cementitious composites. Different colors of text 
boxes are utilized to show the hierarchical structure of the graph. 

Table 1 
Description of selected mixture design variables of UHPC.  

Number Variables Range Mean S.D. Skewness Kurtosis  

1 Cement-to-binder ratio 0.05–1.00  0.65  0.21  -0.50  -0.58  
2 Silica fume-to-binder ratio 0–0.25  0.12  0.08  -0.05  -0.74  
3 Fly ash-to-binder ratio 0–0.70  0.12  0.14  1.61  2.37  
4 Slag-to-binder ratio 0–0.84  0.12  0.19  1.60  1.74  
5 Superplasticizer-to-binder ratio 0–0.03  0.01  0.004  0.94  1.22  
6 Water-to-binder ratio 0.13–0.23  0.18  0.02  0.74  0.10  
7 Sand-to-binder ratio 0.53–1.45  1.11  0.20  0.07  -0.07  
8 Fiber volume ratio (%) 0–3  1.23  1.10  0.03  -1.46  
9 Curing ages (days) 1–91  29.59  31.48  1.12  -0.03 

Note: “S.D.” is the standard deviation. “Skewness” and “kurtosis” describe the shape of a probability distribution. A symmetrical distribution has a skewness of 0. A 
normal distribution has a kurtosis of 3. 
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The considered curing methods include: (1) standard curing, at room 
temperature and relative humidity higher than 95% [69]; (2) 
lime-saturated water curing [39]; and (3) steam curing (high tempera
ture, high humidity). Three types of specimens for compressive testing 
were considered: (1) cubic specimens measuring 51 mm in side length 
[24]; (2) cubic specimens measuring 100 mm in side length [70]; and 
(3) prism specimens measuring 160 mm × 40 mm × 40 mm [71]. 

3.2.4. Output variable 
A statistical plot of the compressive strengths of concrete in the 

dataset is shown in Fig. 7. The plot shows the distribution of the 
compressive strengths of the considered concrete [72]. With different 
curing ages, the compressive strengths of different concrete mixtures 
range from 4.1 MPa to 178.4 MPa, with an average value of 110.3 MPa 
and a standard deviation of 32.9 MPa. The data points of compresive 
strength follow the normal distribution approximately. 

Fig. 5. Correlation matrix of the input numerical data. Numbers 1–9 in the heatmap correspond to the variable numbers in Table 1.  

Table 2 
Statistical data of physicochemical information of cementitious materials.  

Number Materials Properties Range Mean S.D. Skewness Kurtosis  

1 Cement CaO (%) 56.6–68.7  63.50  2.45  1.58  2.00 
SiO2 (%) 17.4–22.4  21.0  1.25  -1.47  2.65 
Al2O3 (%) 2.5–8.7  4.72  1.41  1.53  3.30 
L.O.I. (%) 0–2.9  1.59  0.78  -0.18  -0.66 
D50 (μm) 7.8–46.2  18.8  8.40  2.07  5.72  

2 Silica fume CaO (%) 0.3–1.9  0.73  0.61  1.41  0.19 
SiO2 (%) 90.4–97.8  94.2  1.76  -0.07  0.40 
Al2O3 (%) 0.1–1.0  0.51  0.29  0.29  -1.13 
L.O.I. (%) 0.3–3.9  1.91  1.29  0.40  -1.09 
D50 (μm) 0.08–1.8  0.33  0.54  2.69  5.94  

3 Fly ash CaO (%) 1.2–28.1  7.85  8.47  1.75  2.06 
SiO2 (%) 16.7–58.0  45.22  10.63  -1.71  3.74 
Al2O3 (%) 10.2–38.0  26.17  6.79  -0.69  1.89 
L.O.I. (%) 0.2–49.8  5.95  13.91  3.37  11.55 
D50 (μm) 2.9–75.0  12.57  18.90  3.51  12.51  

4 Slag CaO (%) 32.4–45.9  38.40  5.18  0.29  -1.57 
SiO2 (%) 23.2–45.2  32.07  6.87  1.00  0.42 
Al2O3 (%) 9.2–13.9  12.26  1.78  -0.89  -1.00 
L.O.I. (%) 0.4–5.1  1.89  1.58  0.82  -0.68 
D50 (μm) 0.72–104.0  19.9  26.67  3.00  9.82 

Note: “S.D.” is the standard deviation. “Skewness” and “kurtosis” describe the shape of a probability distribution. A symmetrical distribution has a skewness of 0. A 
normal distribution has a kurtosis of 3. 
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3.3. Data preprocessing 

3.3.1. One-hot encoding 
Categorical data were transformed into numerical data using the 

one-hot encoding method [73]. The numerical data were then utilized to 
train the machine learning model. One-hot encoding can improve the 
accuracy and the generalizability of machine learning models by 
providing more categorical information. An example of one-hot encod
ing is shown in Fig. 8. 

3.3.2. Word vectorization 
Word vectorization is a natural language processing method that 

maps words to corresponding vectors with real numbers. In this 
research, the text used to describe the physicochemical properties of 

cementitious materials was stored in a dictionary, as shown in Eq. (1). 
DictVectorizer was used to extract the categorical and numerical fea
tures from the dictionary [74]. The categorical features were automat
ically one-hot encoded, meaning that each unique category was 
represented by a binary feature, and the numerical features were 
retained. The categorical and numerical features were turned into sparse 
matrices. 

{‘Type’: ‘Cement’, ‘CaO’: 64.2, ‘SiO2’: 20.1, ‘Al2O3’: 5.1, ‘LOI’: 2.4, 
‘D50’: 14.9}(1) 

3.4. Machine learning methods 

3.4.1. Machine learning algorithms 
Machine learning has exhibited outstanding performance in 

modeling nonlinear relationships between the input variables and the 
compressive strength of UHPC [28]. Among various machine learning 
algorithms, ensemble learning algorithms have shown promising per
formance since they combine the results from different predictive 
models to achieve an integrated predictive model with high accuracy 
and high generalizability [27]. 

CatBoost is an ensemble machine learning method developed based 
on gradient boosting decision trees, which has a limited number of pa
rameters, supports categorical variables, and provides high accuracy 
[75]. The employment of CatBoost reduces the need for optimizing 
many hyperparameters and minimizes the possibility of overfitting, 
making the machine learning model more generalizable. In addition to 
CatBoost, other ensemble learning models, such as random forest, 
LightGBM, and XGBoost, were also considered in this research. 

3.4.2. Hyperparameter optimization 
Hyperparameter optimization is critically important for the perfor

mance of a machine learning model. This research adopted Bayesian 
optimization to automatically and iteratively optimize the hyper
parameters following the Gaussian process [76]. Each iteration was 
based on a Gaussian function fitted in the previous iteration, aiming to 
find better hyperparameters compared with the previous iteration. In 
this research, cross-validation was performed in the optimization pro
cess to improve the accuracy and generalizability of machine learning 
models. Bayesian optimization builds a probabilistic model of the 
objective function that maps the hyperparameters to the performance of 
the model [76], as shown in Eq. (2): 

xp = argmax
x∈X

f (x) (2)  

where f(x) is an objective function that needs to be minimized; xp is the 
set of hyperparameters that result in the lowest objective function; and X 
is the search spacing of the hyperparameters. The value of the objective 
function is evaluated on the testing set. The optimized hyperparameters 
are listed in Table 4. 

3.4.3. Performance metrics 
To evaluate the performance of machine learning models, three 

typical performance metrics were adopted, which are the mean absolute 
error (MAE), root mean squared error (RMSE), and coefficient of 

Fig. 6. Ternary diagram (CaO, SiO2, and Al2O3) of Portland cement and typical 
types of SCMs. 

Table 3 
Description of selected mixture design variables of UHPC.  

Number 1 2 3 

Curing method Standard curing Lime-water curing Steam curing 
Specimen type 51 × 51 × 51 100 × 100 × 100 160 × 40 × 40  

Fig. 7. Statistical analysis of the compressive strengths of concrete mixtures 
included in the dataset. 

Fig. 8. Example of converting curing methods into numerical data using one-hot encoding.  
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determination (R2), respectively. The mathematical definitions of the 
three metrics are shown in Eqs. (3) to (5). 

MAE =
1
n

⋅
∑n

i=1
|Pi − Ai| (3)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

⋅
∑n

i=1
(Pi − Ai)

2

√

(4)  

R2 = 1 −

∑n
i=1(Pi − A)

2

∑n
i=1(Ai − A)

2 (5)  

where n is the total number of data; i is the ith data; P is the predicted 
compressive strength; A is the actual compressive strength; and A is the 
average value of actual compressive strength. 

4. Results and discussion 

4.1. Property prediction 

With the optimal hyperparameters, machine learning models were 
trained using the dataset to predict the compressive strength of UHPC. 
The comparison of experimental results and predicted results from the 
CatBoost model is shown in Fig. 9, showing that the prediction results 
from the CatBoost model are consistent with the experimental results. 
The errors of the prediction results are lower than 15 MPa, which is 
acceptable to most applications. 

The CatBoost model is compared with the other ensemble machine 
learning models in Table 5. The XGBoost model showed the highest 
accuracy on the training set. The minimum values of MAE, RMSE, and R2 

were 2.41 MPa, 3.58 MPa, and 0.99, respectively. The CatBoost model 
achieved the highest accuracy on the testing set. The minimum values of 
MAE, RMSE, and R2 were 5.37 MPa, 7.68 MPa, and 0.95, respectively.  
Fig. 10 shows the correlation between the predicted and actual experi
mental results of each model on both the training and testing sets. 

Fig. 11 shows the Taylor diagram of different machine learning 

models, including multi-layer perception (MLP), support vector regres
sor (SVR), random forest (RF), LightGBM, XGBoost, and CatBoost. The 
Taylor diagram uses Pearson correlation (R), root mean square error 
(RMSE), and standard deviation (SD) to compare the prediction per
formance and actual observations. The CatBoost model shows the 
highest accuracy since its prediction result is closest to the reference 
point, suggesting that the CatBoost model has the best prediction ac
curacy compared with the other machine learning models on the 
adopted dataset. 

4.2. Knowledge-informed development of sustainable UHPC 

The function of the knowledge graph, which is used to interpret the 
prediction results of the machine learning model, is demonstrated via a 
case study. The case study presents the feasibility of using the proposed 
methods to develop novel sustainable UHPC blended with solid wastes. 

4.2.1. Raw materials and mixture design 
In this case study, various types of SCMs were considered, and, for 

each type of SCM, the physicochemical properties were varied. For 
example, different types of fly ash were considered, and they have 
different particle size gradations and chemical compositions. The 
different chemical compositions of OSFA and specification-grade fly ash 
(i.e., Class C and Class F) are shown in Fig. 12. Compared with 
specification-grade fly ash, OSFA contains a higher amount of carbon, 
medium levels of silica and aluminum, and lower amount of calcium. 
The high amount of carbon and low amount of calcium compromise the 
reactivity of OSFA. 

The knowledge graph (Fig. 4) was used to find solutions to mitigate 
the strength reduction effect of OSFA. Seven factors influencing the 
compressive strength were identified and plotted in Fig. 13. Slag was 
used as a SCM to increase the pozzolanic reactivity of the binder system, 
aiming at increasing the 28-day compressive strength of UHPC [8]. 

Table 6 lists eight UHPC mixtures investigated in this study. Type I 
ordinary Portland cement was adopted. OSFA and slag produced from a 
local plant in New Jersey were considered. Masonry sand with a median 
size of 525 µm was used as fine aggregate. Straight steel fibers were used 

Table 4 
Hyperparameters of the CatBoost model.  

Name Searching space Optimal hyperparameters 

Iterations 100–2000 1000 
Learning rate 0.05–1.0 0.087 
Bagging temperature 0.05–7.4 0.636 
Border count 10–300 193 
Colsample bylevel 0.1–1.0 0.30 
Depth 4–20 6 
L2_leaf_reg 0.001–7.4 2.33 
Random strength 0.001–2.7 0.024  
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Fig. 9. Prediction performance of the CatBoost model. “Y” represents the experimental results; “Pre” represents the predicted results; and “Error” represents 
the errors. 

Table 5 
Comparison of CatBoost model with other advanced ensemble learning models.  

Model Dataset MAE (MPa) RMSE (MPa) R2 

Random forest Training  3.25  4.72  0.98 
Testing  7.20  9.88  0.92 

LightGBM Training  3.80  6.08  0.98 
Testing  7.83  10.58  0.90 

XGboost Training  2.41  3.58  0.99 
Testing  5.97  8.66  0.94 

CatBoost Training  2.91  4.01  0.99 
Testing  5.37  7.68  0.95  
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enhance the crack resistance. The steel fibers were 13 mm in length and 
200 μm in diameter. A polycarboxylate-based superplasticizer with 
34.4% solid content and specific gravity of 1.05 was used to improve the 
flowability. To reduce the economic and environmental impacts, cement 

was partially replaced by OSFA and slag. For all mixtures, the water-to- 
binder ratio was 0.23; the sand-to-binder ratio was 1.0; and the steel 
fiber content was 2% by the volume of the mixture. 

The physical and chemical properties of raw ingredients are shown in  
Table 7. The OSFA had a high carbon content that does not conform to 
ASTM C618 [77]. To evaluate the pozzolanic reactivity of OSFA, the 

Fig. 10. Comparison of prediction and actual experimental results: (a) random forest, (b) LightGBM, (c) XGBoost, and (d) CatBoost.  

Fig. 11. Taylor diagram used to evaluate the prediction performance of ma
chine learning models. 

Fig. 12. Comparison of the chemical compositions of different types of fly ash 
in a radar chart. 
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Chapelle test was performed following NF P18–513 [78]. 
The reactivity results of OSFA and other SCMs are compared in  

Fig. 14. The reactivity results of OSFA, Class F fly ash, and slag were 
353.1, 436.0, and 678.0 mg Ca(OH)2/g, respectively, indicating that the 
reactivity of the OSFA is the lowest among the SCMs. 

4.2.2. Machine learning-based prediction 
With the methods in Section 2, the CatBoost model was employed to 

predict the compressive strength of UHPC. A comparison between pre
diction results and the actual experimental results is shown in Fig. 15, 
indicating that the machine learning model provides reasonable 
predictions. 

The replacement of cement with up to 30% OSFA decreased the 
compressive strength. When the binder system contained 20% OSFA, the 
compressive strength was enhanced with the addition of up to 40% slag 
as a replacement for cement. However, if the percentage of slag 
replacement exceeded 40%, the compressive strength decreased. 

4.2.3. Interpretation of prediction results 
To demonstrate the use of the knowledge graph for the interpretation 

of the machine learning prediction results, this subsection discusses the 
underlying mechanisms of the effects of OSFA and slag on the 
compressive strength. The mechanisms were identified from the 
knowledge graph (Fig. 4) by the arrows between the nodes automati
cally. To facilitate the discussion, two graphs (Fig. A1 and Fig. A2) were 
produced to highlight the red directed arrows that reflect the pathways 
of mechanisms. In this study, the knowledge graph was manually con
structed, and the underlying mechanisms were elucidated by domain 
experts. In practice, the AI designer can leverage natural language 
processing to automate the generation of the knowledge graph and 
identify the pathways graph within it once a raw ingredient and an 

Fig. 13. Potential method proposed to improve the compressive strengths of UHPC mixtures.  

Table 6 
Mixture proportions of UHPC.  

Mixture Cement OSFA Slag Sand Superplasticizer Water Steel fiber 

Control  1.00  0  0  1.00  0.0052  0.23  2 
OSFA10  0.90  0.10  0  1.00  0.0051  0.23  2 
OSFA20  0.80  0.20  0  1.00  0.0054  0.23  2 
OSFA30  0.70  0.30  0  1.00  0.0055  0.23  2 
OSFA20SL20  0.60  0.20  0.20  1.00  0.0042  0.23  2 
OSFA20SL30  0.50  0.20  0.30  1.00  0.0042  0.23  2 
OSFA20SL40  0.40  0.20  0.40  1.00  0.0042  0.23  2 
OSFA20SL60  0.20  0.20  0.60  1.00  0.0042  0.23  2  

Table 7 
Chemical and physical properties of raw materials.  

Materials Cement OSFA Slag 

CaO  68.1  2.4  43.8 
SiO2  22.4  16.7  36.2 
Al2O3  2.7  11.1  10.2 
Fe2O3  2.2  6.7  0.8 
MgO  0.9  0.9  5.1 
SO3  2.3  3.9  2.2 
Na2O  0.2  0.3  0.2 
K2O  0.1  1.2  0.4 
L.O.I  1.3  49.8  0.7 
D50  13.7  5.8  12.4  
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output property are selected [40,41]. Additionally, the AI designer can 
generate corresponding explanations based on the identified pathways.  

(1) Effect of OSFA 

According to the machine learning model, when the cement 
replacement percentage of OSFA increases from 0% to 30%, the 28-day 
compressive strength of UHPC will decrease from 113.2 MPa to 
81.2 MPa. In Fig. A1, the red solid lines indicate the primary factors that 
affect the compressive strength, and the red dashed lines indicate the 
factors that potentially influence the compressive strength. The directed 
arrows identified from the knowledge graph (Fig. A1) explicitly reveal 
the underlying mechanisms for the reduction of the compressive 
strength of UHPC when the OSFA content was increased:  

• OSFA has a high value of L.O.I., which reduces the reactivity of the 
binder system when OSFA is blended. The low reactivity reduces the 
produced amount of hydration products, ultimately decreasing the 
compressive strength, due to the dilution effect.  

• OSFA has fine particle sizes and can act as a filler in the binder 
system by filling fine pores. In addition, OSFA can serve as the seeds 
for the precipitation of C-S-H. Both the filler effect and the seed effect 
of OSFA contribute to increasing the compressive strength.  

• OSFA has pozzolanic reactions, although the pozzolanic reactivity of 
OSFA is relatively low compared with specification-grade fly ash. 
The pozzolanic reactions tend to enhance the compressive strength 
of UHPC. 

The function of the proposed approach is reflected in three aspects: 
(i) All the above three effects were identified explicitly from the 
knowledge graph. (ii) Negative and positive effects exist simultaneously. 
(iii) The negative dilution effect dominates the results since the carbon 
content of OSFA is high.  

(2) Effect of slag 

The reduction of the compressive strength of UHPC due to the use of 
OSFA was mitigated by using slag in the binder system, as evidenced by 
mixtures OSFA20S20 and OSFA20S60. When the cement replacement 
percentage of slag increases from 0% to 40%, the compressive strength 
will increase from 94.7 MPa to 121.7 MPa. When the replacement per
centage increases from 40% to 60%, the compressive strength of UHPC 
with decrease from 121.7 MPa to 110.1 MPa. 

In Fig. A2, the red solid lines show the primary factors that affect the 

compressive strength, and the red dashed lines show the factors that 
potentially influence the compressive strength. The directed arrows 
identified from the knowledge graph explicitly reveal the underlying 
mechanisms for the change of the 28-day compressive strength of UHPC 
when the slag content increased: 

• The high pozzolanic reactivity of slag tends to refine the micro
structure and increase the compressive strength of UHPC. Slag has 
amorphous silica which reacts with calcium hydroxide, producing 
calcium silicate hydrates [79]. Slag has high contents of amorphous 
silica and calcium hydroxide, thus achieving high pozzolanic 
reactivity.  

• The fine particle size of the slag contributes to densifying the 
microstructure of UHPC via the filler effect and promoting the hy
draulic reactions of cement via the site effect, generating more C-S-H 
to refine the microstructure and increase the compressive strength.  

• The reactivity of slag is lower than the reactivity of cement. When 
slag is used to replace cement at an excessive percentage, the me
chanical strengths will be reduced due to the dilution effect. 

Again, the function of the proposed approach is reflected in three 
aspects: (1) The above three effects were identified explicitly from the 
knowledge graph. (2) Negative and positive effects exist simultaneously. 
(3) Whether the compressive strength will increase or not is dependent 
on the cement replacement percentage of slag. 

The case study demonstrates the use of the knowledge graph in 
interpreting the results from the machine learning models through 
qualitatively explaining the physicochemical mechanisms. The predic
tion and interpretation capabilities gained from this research can be 
utilized to evaluate the effects and underlying mechanisms of other 
variables, such as the fiber content, water-to-binder ratio, and curing 
methods, on the compressive strength of UHPC. 

In general, the knowledge graph does not include all the knowledge 
required to interpret the results obtained from the machine learning 
models. When the results are beyond the scope of the knowledge graph, 
the knowledge graph provides a reference to support the further 
development of the knowledge graph. This is discussed in Section 3.3. 

4.3. Generation of scientific knowledge 

The interactions or coupling effects of the OSFA content and slag 
content on the compressive strength of UHPC were investigated using 
the machine learning model, as shown in Fig. 16. When the OSFA con
tent is zero, the compressive strength increases with the increase of the 
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slag content, which is in the range of 0–60%. When the OSFA content is 
between 10% and 50%, for each OSFA content, the compressive strength 
first increases and then decreases with the increase of the slag content. 
When the OSFA content reaches 60%, the compressive strength de
creases with the increase of the slag content monotonically. 

Interpretation of such interactive effects are not directly available in 
the knowledge graph in Fig. 4, therefore informing the need for 
extending the knowledge graph, aiming to interpret the interactive ef
fects. The process of identifying and addressing knowledge gaps using 
the machine learning results helps generate new knowledge, as shown in  
Fig. 17. In this process, the knowledge graph serves as a reference which 
is used to identify knowledge gaps. The identified knowledge gaps are 
utilized to extend the knowledge graph with knowledge that is either 
available in literature unseen to the knowledge graph or generated 
through new experiments. 

In this research, the knowledge graph can be extended to embody the 
interactive effects based on available literature [80], which is assumed 
to be unseen during the generation of the knowledge graph in Fig. 4. 
Although the knowledge graph in Fig. 4 does not provide the interpre
tation of the interactive effects of OSFA and slag directly, it indeed 
provides useful hints for extending the knowledge graph: (1) It explicitly 
shows that the OSFA has a dilution effect on the compressive strength, 
and the dilution effect dominates in the concerned system. (2) It 
explicitly shows that the slag has lower reactivity than the cement, also 
having a dilution effect. The two mechanisms imply that when OSFA is 
used, the dilution effects of OSFA and slag will likely be combined and 
thus interact with each other. The implied content is supported by 
reference [80]. When the cement content was low, the calcium hy
droxide produced by the hydration of cement would be insufficient for 
the dissolution of siloxane (Si-O-Si) bonds in SCMs and the production of 
C-S-H [80], thus compromising the compressive strength. 

The above investigations reflect the interconnection between the 
machine learning model and the knowledge graph. First, a knowledge 
graph of UHPC was created based on available literature and the 

concerned problem. The knowledge graph was then utilized to guide the 
establishment of the machine learning model for predicting the 
compressive strength of UHPC. Next, the machine learning model was 
utilized to predict the UHPC property, considering various variables. On 
one hand, the prediction capability can be integrated with an optimi
zation method to discover the optimal UHPC mixtures [81]. On the other 
hand, the prediction results from the machine learning model can be 
interpreted using the knowledge graph and utilized to assess the 
knowledge graph. In this research, the individual effects of OSFA and 
slag were directly interpreted by the knowledge graph, and the inter
active effects of OSFA and slag as indicated by the machine learning 
model informed the need for extending the knowledge graph. The 
incorporation of knowledge graph also enables the identification of 
machine learning prediction results that are inconsistent with existing 
theories and knowledge, which will then guide further research to 
examine the machine learning model and the existing theory. The 
knowledge graph-based interpretable AI designer proposed in this paper 
offers an alternative way to efficiently design materials and generate 
knowledge. 

5. Conclusions 

This paper presents an idea of incorporating domain knowledge into 
machine learning-based design of concrete for knowledge-guided 
interpretable AI designer for sustainable concrete. The knowledge 
graph-based interpretable AI designer offers a new path to generating 
knowledge about concrete. The AI designer has been implemented into 
designing low-carbon cost-effective UHPC utilizing solid wastes through 
a case study. This paper demonstrates the use of a knowledge graph- 
based interpretable AI designer in interpreting the machine learning 
prediction results and generating knowledge about the effects of indi
vidual variables and their interactive effects. Based on the above in
vestigations, the following conclusions can be drawn:  

• A knowledge graph is an effective way to explicitly describe the 
domain knowledge about concrete in a computer-understandable 
manner. Knowledge graphs can be integrated with machine 
learning models to enable quantitative predictions and qualitative 
interpretations, simultaneously and seamlessly. On one hand, 
knowledge graphs guide the establishment of machine learning 
models and interpret machine learning prediction results. On the 
other hand, machine learning models provide results to evaluate and 
develop knowledge graphs. Inconsistency between machine learning 
prediction results and knowledge graphs informs the need for 
generating knowledge and improving the machine learning models. 
The knowledge graph-based interpretable AI designer offers an 
alternative way to developing new materials and generating new 
knowledge efficiently.  

• Knowledge graphs explicitly show the key design variables of UHPC, 
which facilitates the variable selection task in the establishment of 
machine learning models for predicting UHPC properties. The 
identified variables were utilized as input variables to develop a 
high-fidelity machine learning model that is not only driven by the 
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P. Guo et al.                                                                                                                                                                                                                                     



Construction and Building Materials 430 (2024) 136502

13

collected dataset but also complaint with the domain knowledge 
about concrete.  

• Knowledge graphs are easier to understand and can play a crucial 
role in satisfying engineers’ needs to explain machine learning re
sults by providing a structured representation of domain knowledge. 
Unlike traditional method (e.g., SHAP analysis), knowledge graphs 
facilitate interpretability by establishing relationships between 
different entities and concepts. Engineers can trace back the 
reasoning behind a prediction by following the connections within 
the knowledge graph. 

• The proposed machine learning model considers the physicochem
ical information of raw ingredients and different experimental con
ditions. The physicochemical information of raw ingredients enables 
the machine learning model to consider various types of wastes with 
different physicochemical information, different from the machine 
learning models that use engineering names to represent the types of 
ingredients. The consideration of the physicochemical information of 
raw ingredients largely enhances the generalizability of the machine 
learning model for designing UHPC with various types of solid 
wastes. The predictive accuracy (R2) of compressive strength exceeds 
0.95 on the testing dataset.  

• Feature engineering techniques such as one-hot encoding and word 
vectorization serve to transform categorical and textual data, 
respectively, making them suitable for machine learning applica
tions. This is also essential for leveraging the physiochemical prop
erties of raw materials for predicting the properties of UHPC. 

As the first attempt to incorporate a knowledge graph into an AI 
designer, this paper shows the feasibility of integrating domain 
knowledge with data-driven machine learning methods and creates 
new opportunities for future research. Some future research oppor
tunities are listed:  

• The knowledge graph developed in this research is limited to a 
narrow scope for the design of UHPC mixtures with limited types of 
raw ingredients. It is interesting to develop other knowledge graphs 
to consider more types of raw ingredients including various wastes 
and comprehensively evaluate the performance of the proposed 
approach in a large scope of material research.  

• The development of the idea of integrating knowledge graph with 
machine learning was based on concrete in this research. It is 

envisioned that the idea can be extended to other disciplines such as 
the other areas of civil engineering (e.g., structural and geotechnical 
engineering), biomedical science and engineering, and material sci
ence and engineering.  

• Automatic generation and update of knowledge graph plays an 
important role in practices. It is important to develop effective 
methods to automate the extraction of knowledge from available 
literature. It is promising to develop natural language processing 
techniques for this purpose. 
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Fig. A1. Effects of OSFA on the compressive strength of UHPC. The red lines in the graph indicate the primary factors that affect compressive strength. The red 
dashed lines indicate potential factors that may influence the compressive strength. Different colors of text boxes are utilized to show the hierarchical structure of the 
graph.

Fig. A2. Effects of slag on the compressive strength of UHPC. The red lines in the graph indicate the primary factors that affect compressive strength. The red dashed 
lines indicate potential factors that may influence the compressive strength. Different colors of text boxes are utilized to show the hierarchical structure of the graph. 
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