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Traditional methods for designing concrete materials typically rely on labor-intensive laboratory experiments,
resulting in time and cost inefficiencies. Recently, designing concrete using artificial intelligence (AI) methods
has shown high efficiency, but existing AI methods often rely solely on data, which can lead to violation with
scientific principles and result in models lacking reasoning abilities. To overcome these challenges, this paper
presents an interpretable knowledge graph-guided data-driven design approach. By integrating advanced
computing techniques with domain knowledge via knowledge graphs, this approach enables the interpretation of
data-driven models and uncovers the underlying mechanisms behind predictions. This approach is applied to
ultra-high-performance concrete (UHPC) involving complex physicochemical reactions. The domain knowledge
about UHPC is imparted using a knowledge graph, and UHPC properties are predicted using a machine learning
model considering mixing proportions, processing methods, and physiochemical properties of materials via
natural language processing. The results show that the knowledge graph displays crucial design variables and
their effects on UHPC properties, aiding in selecting variables for machine learning models and interpreting their
results. The prediction accuracy of the machine learning model reached 0.95. The research paves the way for
more transparent and scientific AI models for material design and Al-enabled discovery of scientific knowledge.

1. Introduction

Concrete is the most used structural material worldwide. The annual
consumption is about 30 billion tons [1]. Although its unit cost and
carbon footprint are not as high as steel and aluminum [2], the used
volume is substantial, making concrete an important contributor to
carbon emissions. Concrete production and utilization cause two envi-
ronmental problems: (1) The production of concrete depletes natural
resources and releases greenhouse gases. In 2017, the consumption of
cement for producing concrete was more than 4 billion tons worldwide
[3], which contributed to 2.5 gigatons of CO, emission, accounting for
7% of the total CO5 emission [3]. (2) Construction and demolition
(C&D) activities generate more than 3 billion tons of waste concrete
annually [4,5]. The two problems are mapped to climate change and
waste management, which are two grand challenges identified by the
National Academy of Engineering (NAE) of the United States [6]. The
challenges are exacerbated by the poor infrastructure condition.
Restoration of civil infrastructure is another NAE grand challenge. These
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challenges converge to the idea of valorizing solid wastes to produce
high-performance green concrete for resilient and sustainable
infrastructure.

Ultra-high-performance concrete (UHPC) is a family of advanced
concrete featuring superior mechanical properties, workability, and
durability [7-9]. The compressive strength is 120 MPa or higher at 28
days [8]; UHPC has adapted fresh properties that facilitate the place-
ment and quality control [9,10]; and chopped fibers are used to achieve
high crack resistance [11]. These properties make UHPC an unique
candidate for structural applications that require high mechanical
strengths and long durability, such as the construction and rehabilita-
tion of bridges [12,13], tunnels [14], and high-rise buildings [15].
However, the high cost and high carbon footprint of UHPC have hin-
dered its applications. Recent research has shown that the cost and
carbon footprint of UHPC can be reduced by using various solid wastes
to partially replace the raw ingredients (e.g., cement or sand) of UHPC
[16-23]. Valorizing solid wastes in producing UHPC has trifold benefits:
(1) The material cost and carbon footprint are reduced. (2) The volume

Received 11 January 2024; Received in revised form 4 March 2024; Accepted 1 May 2024

Available online 8 May 2024
0950-0618/© 2024 Elsevier Ltd. All rights reserved.


mailto:yi.bao@stevens.edu
www.sciencedirect.com/science/journal/09500618
https://www.elsevier.com/locate/conbuildmat
https://doi.org/10.1016/j.conbuildmat.2024.136502
https://doi.org/10.1016/j.conbuildmat.2024.136502
https://doi.org/10.1016/j.conbuildmat.2024.136502
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conbuildmat.2024.136502&domain=pdf

P. Guo et al.

of solid wastes for landfill is reduced. (3) UHPC has superior properties
for improving the resilience of infrastructure.

However, the development of low-carbon cost-effective UHPC
blended with solid wastes is challenging. The traditional methods are
performance-based and demand a large number of trial-and-error lab-
oratory tests. The laboratory tests of UHPC are typically conducted via
several steps to optimize the mixture design variables step by step [8].
Those tests are costly, labor-intensive, and time-consuming. The evalu-
ation of the mechanical properties of concrete takes 28 days or longer
typically [24], because of the hardening kinetics of cement-based ma-
terials. When the type or dosage of a raw ingredient is changed, the
daunting tests must be replicated, hindering the utilization of solid
wastes because the physicochemical properties of wastes often change.
For example, the particle size gradation and chemical composition of
two batches of fly ash are usually different even if they are produced
from the same plant [25,26]. Although many concrete mixtures con-
taining solid wastes have been developed, it is difficult to extend their
applications because the concrete properties will be changed when the
physicochemical properties of wastes are changed, making it unrealistic
to utilize solid wastes to produce concrete in practices.

Under such a circumstance, artificial intelligence (AI) approaches
emerged as an alternative method to design concrete [27,28]. The Al
approaches are used to design concrete via a prediction-optimization
framework: First, machine learning models are trained using prior test
data to relate the design variables (e.g., water-to-binder ratio,
sand-to-binder ratio, and binder combination) to the material properties
(e.g., compressive strength, tensile strength, and porosity) [29]. Second,
the machine learning predictive models are integrated with optimiza-
tion techniques to maximize the mechanical properties while mini-
mizing the material cost and the carbon footprint [27]. Machine
learning models have exhibited the ability to predict the fresh and
hardened properties of UHPC with high accuracy and high efficiency
[30-33]. Recently, auto-tuned machine learning techniques have been
developed to enable auto-discovery of low-carbon cost-effective UHPC
[28,29].

Although it is promising to utilize Al-assisted approaches to design
concrete, limitations have been identified from current approaches:
First, most Al-based design utilizes data-driven machine learning models
to predict concrete properties, without considering the domain knowl-
edge about concrete. Although data-driven models can achieve high
accuracy in training and testing processes, those models cannot reveal
the underlying scientific principles. Second, machine learning models
are unlikely to be applicable when new ingredients (e.g., solid wastes)
are used, because the models are trained using datasets with specific
ingredients. New ingredients are unseen to the trained models, creating
a major barrier for using Al methods to design UHPC with solid wastes
because wastes involve large variations in particle size gradation and
chemical composition.

Recently, important efforts have been made to address the above-
mentioned limitations. First, attempts have been made to utilize
knowledge about concrete to generate or augment the dataset used to
train machine learning models. For example, the particle packing theory
was referenced to guide the generation of datasets [34], and a
micromechanics-based formula was used to generate data that satisfy
the micromechanics theory [35]. Second, the physicochemical infor-
mation of raw materials has been utilized to develop machine learning
models that consider the physicochemical properties (e.g., particle size
gradation and chemical composition) of raw materials rather than the
engineering names (e.g., Class C and Class F fly ash) [29], making it
possible to consider various solid wastes using the same machine
learning model. However, existing machine learning methods generate
black-box models lacking interpretability. Shapley additive explanations
(SHAP) were employed to achieve “explainable machine learning”, but
the term “explainable” refers to the evaluation of the significance of
design variables at a data level [36,37], without explaining any mech-
anism such as the physical and chemical reactions of concrete. To attain
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truly explainable machine learning, it is necessary to incorporate
domain knowledge of physicochemical reactions, such as cement hy-
dration, pozzolanic reaction, and generation of calcium silicate hydrate.

This paper presents an approach to achieve interpretable machine
learning that explains the underlying physicochemical mechanisms of
concrete for the first time. The idea is to incorporate scientific knowl-
edge about concrete by a knowledge graph that explicitly describes the
underlying mechanisms. The graph is created by domain experts using
the knowledge in current literature and is updatable when new knowl-
edge becomes available in future publications. This paper proposes to
utilize the knowledge graph in two ways: (1) Guide the generation of
machine learning models. (2) Interpret the prediction results from the
machine learning models through an interpretable Al framework that
integrates knowledge graph and machine learning techniques. There are
two main research objectives: (1) To develop the interpretable machine
learning approach. (2) To implement the approach into designing low-
carbon cost-effective UHPC. This paper has three main novelties: (1)
An interpretable knowledge-guided data-driven approach is presented.
By integrating advanced machine learning techniques with domain
knowledge via knowledge graphs, this approach enables the interpre-
tation of data-driven models and uncovers the underlying mechanisms
behind machine learning-based predictions. (2) A guide for creating
knowledge graphs is presented and utilized to generate a knowledge
graph for UHPC materials. The utilization method and benefits of the
knowledge graph are elaborated. (3) The innovative approach is applied
to predict UHPC properties, interpret machine learning results, and
discover scientific knowledge.

The remainder of the paper is structured as follows: Section 2 dis-
cusses the basic concepts of machine learning-based design methods in
comparison with the current design methods. Section 3 outlines the
methods developed or applied in this research. Section 4 presents and
discusses the results obtained from machine learning and the interpre-
tation of results based on a knowledge graph. Section 5 concludes the
new findings and future opportunities.

2. Proposed concept

The concept of machine learning-based design methods has been
compared with the concept of current design methods for UHPC and
other types of materials, as depicted in Fig. 1. The current methods
utilize domain knowledge about UHPC and are mainly based on labo-
ratory experiments [8,38]. The domain knowledge is utilized to design
the laboratory experiments and interpret the experimental data, quali-
tatively [39]. Laboratory experiments are conducted to evaluate the
effects of design variables on concerned properties of UHPC, quantita-
tively. The experimental results are utilized to determine the optimal
design and generate new knowledge to enrich domain knowledge.

For example, domain knowledge about UHPC was applied to design
laboratory experiments such as the selection of tested mixtures, mixing
protocols, curing schemes, and property evaluation methods [8]. With
the domain knowledge, the number of candidate mixtures was limited to
save experimental efforts while achieving sufficient information to
obtain the optimal UHPC mixture.

Laboratory experiments typically generated two types of knowledge,
which are (i) the effects of the design variables (e.g., water-to-binder
ratio, sand-to-binder ratio, and binder combination) on the concerned
properties (e.g., compressive strengths, elastic modulus, and durability),
and (ii) the underlying mechanisms of the effects of design variables. For
example, increasing the water-to-binder ratio increases the porosity of
matrix and thus weakens the compressive strength; and increasing the
cement replacement percentage of fly ash reduces the volume of hy-
dration products (e.g., calcium hydroxide) and thus reduces the
compressive strengths [7-9].

In current practices of machine learning-based design, machine
learning models are used to replace laboratory experiments, without
considering the domain knowledge about concrete. In this research, a
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Fig. 1. Concept of knowledge-guided interpretable AI designer versus the conventional methods.

knowledge graph is incorporated into an AI designer, aiming at
imparting the domain knowledge into the AI designer. The knowledge
graph plays the role of domain knowledge (Fig. 1) and interacts with Al
experiments which replace laboratory experiments in two aspects: (1)
The knowledge graph is utilized to guide the design of Al experiments
and interpret the AI experiment results; and (2) the Al experiment re-
sults are utilized to evaluate the knowledge graph. If the results from Al
experiments agree with the qualitative trends embedded in the knowl-
edge graph, the knowledge graph will be used to interpret the experi-
ment results. Otherwise, if the Al results are inconsistent with the
knowledge graph or beyond its scope, either the knowledge graph will
be extended as informed by the machine learning model, or the machine
learning model will be corrected. More details are available in Section 4
of this paper.

The machine learning-based design philosophy is interconnected
with the experiment-based deisgn philosophy in two aspects: (1) Labo-
ratory experiments generate data that are used to train machine learning
models that predict material properties and are used to conduct Al ex-
periments. (2) Domain knowledge is utilized to create knowledge
graphs. The methods of creating knowledge graphs using domain
knowledge are elaborated in Section 3. In brief, a knowledge graph
embodies domain knowledge in a graphic form. The generation of
knowledge graphs can be performed using natural language processing
technologies that extract knowledge from publications such as books
and papers automatically [40,41]. The knowledge graph updated based
on Al experiments informs new domain knowledge, as discussed in
Section 4. In other words, the integration of knowledge graphs and
machine learning creates a new pathway to generating new knowledge.

3. Methods
The explainable machine learning framework includes seven steps,

as shown in Fig. 2: (1) Establish a knowledge graph according to existing
knowledge. (2) Identify relevant variables such as the mixture design

variables, physiochemical information of raw ingredients, and experi-
mental conditions based on the knowledge graph. The variables can be
categorized into numerical data, categorical data, and textual data. (3)
Collect data from publications. (4) Establish the dataset. Categorical
data are converted into numerical data through one-hot encoding, and
textual data are converted into numerical data through word vectori-
zation. (5) Optimize hyperparameters. (6) Train machine learning
models using the dataset. (7) Interpret results using the knowledge
graph.

3.1. Knowledge graph

A knowledge graph is a semantic network that utilizes a directed
labeled graph to describe domain knowledge. A knowledge graph has
three components, which are nodes, edges, and labels, as shown in
Fig. 3. Any entity can be a node, and nodes are connected using edges (i.
e., arrowlines) that define the relationships between nodes. Both the
nodes and edges are well defined by labels. A knowledge graph provides
an organized way to represent domain knowledge, facilitates data
analysis and data retrieval, promotes the discovery of new insights by
enabling users to explore the relationships between entities and extract
new information based on sophisticated data analysis. Knowledge
graphs have been utilized in multiple fields such as natural language
processing [42], recommendation systems [43], and knowledge man-
agement [44], but knowledge graphs have not been applied to material
design.

To create a knowledge graph for UHPC, the first step is to define the
design problem. In this research, the design problem is defined as the
design of low-carbon cost-effective UHPC blended with solid wastes
such as fly ash and slag as supplementary cementitious materials
(SCMs). When the laboratory experiment-based methods are used to
design UHPC, domain knowledge is required to properly design the
laboratory experiments by considering four aspects, which are the
available raw ingredients, processing methods, concerned properties,

_ Mixing design _
_ Numerical | variables
variables | L Dataset _, Hyperparameter
Curing timo preprocessing tuning
| Curing | | T l
Knowledge Variable | Categorical _| method Dataset Machine learning
graph selection variables Specimen collection model
type
Chemical Output l
Textual properties
variables cadiol
= Particle size — Prediction
results
Interpret

Fig. 2. Explainable machine learning framework for predicting material properties of UHPC.
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Fig. 3. Example of a knowledge graph. “R” denotes relationship, and “E” denotes entities.

and test mixtures. These four aspects are briefly discussed as follows:

(1) Raw ingredients include the binders (e.g., cement and SCMs),
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—
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aggregates, fillers, fibers, water, and admixtures. It is essential to
understand the mechanisms of different ingredients that affect
the concerned properties of UHPC. For example, partially
replacing Portland cement with fly ash can affect the compressive
strength of UHPC through influencing the hydraulic reactions
and microstructures [45]. Such mechanisms are closely associ-
ated with the physicochemical properties of fly ash. Therefore, it
is essential to include the knowledge about how the physico-
chemical properties (e.g., particle size gradation, chemical com-
positions) of fly ash impact the concerned properties of UHPC.
Processing methods for UHPC encompass raw ingredient pre-
treatment, mixing protocols, curing schemes, and testing
methods. For this study, no additional pre-treatment of raw in-
gredients is necessary, and a common mixing protocol for UHPC
is employed.Therefore, the considered factors are mainly the
curing scheme and testing methods [46]. It is essential to list the
knowledge about how the curing schemes (e.g., steam curing)
and testing methods (e.g., speciment type) impact the concerned
properties of UHPC.

The concerned properties often include the fresh and hardened
properties. In this research, the focus was placed on the
compressive strength of UHPC at 28 days since UHPC has to
achieve a compressive strength of 120 MPa or higher at 28 days
[8]. In practices, it is also important to consider fresh properties
such as the mini-slump spread and other important rheological
properties because they play important roles in the mechanical
properties and durability of UHPC [47]. More properties can be
considered using the same methods.

Determining the test mixtures involves not only domain knowl-
edge but also experiences. In current practices, the determination
of test mixtures often consider three aspects. First, it is beneficial
to find existing mixtures of low-carbon cost-effective UHPC
blended with solid wastes as the reference mixtures, whose
mixture proportionings can be modified to develop new mixtures.
Second, existing theories such as particle packing density models
can be utilized to provide a general guide for the mixture design
[7]. Third, design of experiments tools based on factorial design
or statistical design methods can be used [8]. Currently, there is
lack of consensus on a unified design method that can be gener-
alized for all cases. Trial-and-error methods are often incorpo-
rated into designing UHPC when new design variables are
involved because there is lack of similar existing mixtures. The
machine learning-based design methods have advantages in
selecting test mixtures for two reasons. First, machine learning
models are trained using large datasets of existing mixtures that
have similarities with the target mixtures. The range of each
design variable can be determined based on existing mixtures.
Second, machine learning models are time-efficient in conducting
Al experiments because the models can predict material proper-
ties based on the material design rapidly [48].

The above discussion reveals the scope of knowledge that should be
included in the knowledge graph. It must be noted that the relevant
knowledge is dependent on and should be tailored to the specfic design
problem. With the defined scope in this research, a knowledge graph
was created by extracting relevant information from publications such
as books, papers, and social media [7,26,49-52]. The knowledge graph
is shown in Fig. 4. The labeled nodes (i.e., text boxes) show the entities
such as “UHPC”, “raw ingredients”, “processing methods”, and “key
properties”. The edges (i.e., arrowlines) show the relationships between
the entities. For example, the edge between “UHPC” and “Raw in-
gredients” describes that UHPC has raw ingredients.

The same method can be applied to creat new knowledge graphs or
extend the knowledge graph by considering other types of ingredients,
physicochemical properties (e.g., density and water absorption), and
key properties (e.g., flowability and durability), as well as other factors
such as the pre-treatment methods for raw ingredients and different
mixing protocols of concrete.

3.2. Variable selection and data analysis

The knowledge graph was utilized to guide variable selection by
qualatatively identifying the relevant factors that affect UHPC proper-
ties. The factors were then utilized as the input variables of the machine
learning models. This research classified the input variables into nu-
merical data (e.g., mixture design variables, curing times), textual data
(e.g., chemical and physical peroperties of raw materials), and cate-
gorical data (e.g., curing methods, specimen type). The output variable
is the compressive strength of UHPC at 28 days. Based on the selected
variables, a total of 488 UHPC mixtures were extracted from exsiting
publications. The dataset was divided into a training set (80%) and a
testing set (20%). Since there are limited available data, the dataset was
not divided to have a validation set, consistent with previous research in
references [28,35].

3.2.1. Numerical data

The statistics of the numerical data of the dataset are shown in
Table 1 [45,46,49,50,52,55-63]. The numerical data include various
mixture design variables such as the cement-to-binder ratio, fly
ash-to-binder ratio, silica fume-to-binder ratio, slag-to-binder ratio,
superplasticizer-to-binder ratio, water-to-binder ratio, sand-to-binder
ratio, fiber volume ratio, and curing ages.

To avoid multicollinearity, a correlation analysis was performed to
determine the Pearson correlation coefficient for the input variables of
the numerical dataset [53]. The results of the correlation analysis are
shown in Fig. 5. The maximum Pearson correlation coefficient of the
input variables is 0.64, lower than 0.7, indicating that multicollinearity
does not occur. Therefore, it is appropriate to use this dataset to train
machine learning models. When the maximum Pearson correlation co-
efficient is larger than 0.7, multicollinearity will occur, and it will be
necessary to modify the dataset to eliminate multicollinearity, as elab-
orated in reference [28].
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Fig. 4. Knowledge graph created to represent the knowledge of UHPC blended with solid wastes as supplementary cementitious composites. Different colors of text

boxes are utilized to show the hierarchical structure of the graph.

Table 1
Description of selected mixture design variables of UHPC.
Number Variables Range Mean S.D. Skewness Kurtosis

1 Cement-to-binder ratio 0.05-1.00 0.65 0.21 -0.50 -0.58
2 Silica fume-to-binder ratio 0-0.25 0.12 0.08 -0.05 -0.74
3 Fly ash-to-binder ratio 0-0.70 0.12 0.14 1.61 2.37
4 Slag-to-binder ratio 0-0.84 0.12 0.19 1.60 1.74
5 Superplasticizer-to-binder ratio 0-0.03 0.01 0.004 0.94 1.22
6 Water-to-binder ratio 0.13-0.23 0.18 0.02 0.74 0.10
7 Sand-to-binder ratio 0.53-1.45 1.11 0.20 0.07 -0.07
8 Fiber volume ratio (%) 0-3 1.23 1.10 0.03 -1.46
9 Curing ages (days) 1-91 29.59 31.48 1.12 -0.03

Note: “S.D.” is the standard deviation. “Skewness” and “kurtosis” describe the shape of a probability distribution. A symmetrical distribution has a skewness of 0. A

normal distribution has a kurtosis of 3.

3.2.2. Textual data

Different batches of solid waste usually have different physico-
chemical properties although they have the same engineering name (e.
g., Class C or Class F fly ash). For example, the particle size gradations
and chemical compositions of two batches of Class C fly ash can be quite
different [54]. When different materials are used to produce concrete,
they have different effects on concrete properties [20]. Thus, it is
inappropriate to use the engineering names of wastes to represent the
materials in the development of machine learning models without
considering the physicochemical properties of ingredients. Recent
research has shown that it is essential and useful to consider the phys-
icochemical properties as input variables of the machine learning
models for predicting the properties of UHPC blended with various solid
wastes [29].

The statistics of important physicochemical properties that affect the
compressive strength of UHPC are listed in Table 2, including the types,
ranges, mean values, kurtosis, and skewness of the physicochemical
properties. The types include the percentages of CaO, SiO5, and Al;Os3, as
well as the loss of ignition (L.O.1.) and meadian particle size (Dsg) [45,
46,49,50,52,55-63].

The percentages of CaO, SiO,, and Al;O3 in the binder system have
significant influences on the hydraulic reactivity and pozzolanic reac-
tivity of the binder system, and affect the compressive strength of UHPC.
It is important to note that different SCMs have different chemical

compositions. In addition to chemical composition, some materials such
as off-specification fly ash (OSFA) [51] and bottom ash [64] have a high
amount of carbon, which results in a high L.O.1. and low reactivity of the
materials, therefore compromising the compressive strength of UHPC. A
ternary diagram of the chemical compositions of cement, fly ash, slag,
and silica fume is shown in Fig. 6.

The particle size gradation is another important factor that can affect
the compressive strength of UHPC. Fine particles can fill the pores in
cementitious matrix and densify the microstructure, known as the filler
effect [65]. The partial replacement of cement by fine mineral cemen-
titious materials can accelerate the rate of hydration reactions, known as
the seed effect [66]. The particle size gradation of raw materials can
significantly impact UHPC properties.

3.2.3. Categorical data

The compressive strength of UHPC is dependent on the curing
methods and specimen type. For example, steam curing has been used to
enhance the compressive strength of UHPC through accelerating the
hydration reactions of cementitious materials and producing more hy-
dration products [67]. The test results of the compressive strength of
UHPC are associated with the size of the specimens. Typically, the
compressive strength decreases with the increase of the specimen size
[68], known as the size effect. The curing methods and specimen types
are shown in Table 3.
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Table 2
Statistical data of physicochemical information of cementitious materials.
Number Materials Properties Range Mean S.D. Skewness Kurtosis
1 Cement CaO (%) 56.6-68.7 63.50 2.45 1.58 2.00
SiO3 (%) 17.4-22.4 21.0 1.25 -1.47 2.65
Al,03 (%) 2.5-8.7 4.72 1.41 1.53 3.30
L.O.L (%) 0-2.9 1.59 0.78 -0.18 -0.66
Dso (pm) 7.8-46.2 18.8 8.40 2.07 5.72
2 Silica fume CaO (%) 0.3-1.9 0.73 0.61 1.41 0.19
SiO2 (%) 90.4-97.8 94.2 1.76 -0.07 0.40
Al,03 (%) 0.1-1.0 0.51 0.29 0.29 -1.13
L.O.L (%) 0.3-3.9 1.91 1.29 0.40 -1.09
Dso (pm) 0.08-1.8 0.33 0.54 2.69 5.94
3 Fly ash CaO (%) 1.2-28.1 7.85 8.47 1.75 2.06
SiO5 (%) 16.7-58.0 45.22 10.63 -1.71 3.74
Al;03 (%) 10.2-38.0 26.17 6.79 -0.69 1.89
L.O.L (%) 0.2-49.8 5.95 13.91 3.37 11.55
Dso (pm) 2.9-75.0 12.57 18.90 3.51 12.51
4 Slag CaO (%) 32.4-45.9 38.40 5.18 0.29 -1.57
SiO4 (%) 23.2-45.2 32.07 6.87 1.00 0.42
Al,03 (%) 9.2-13.9 12.26 1.78 -0.89 -1.00
L.O.L (%) 0.4-5.1 1.89 1.58 0.82 -0.68
Dso (pm) 0.72-104.0 19.9 26.67 3.00 9.82

Note: “S.D.” is the standard deviation. “Skewness” and “kurtosis” describe the shape of a probability distribution. A symmetrical distribution has a skewness of 0. A

normal distribution has a kurtosis of 3.

The considered curing methods include: (1) standard curing, at room
temperature and relative humidity higher than 95% [69]; (2)
lime-saturated water curing [39]; and (3) steam curing (high tempera-
ture, high humidity). Three types of specimens for compressive testing
were considered: (1) cubic specimens measuring 51 mm in side length
[24]; (2) cubic specimens measuring 100 mm in side length [70]; and
(3) prism specimens measuring 160 mm x 40 mm x 40 mm [71].

3.2.4. Output variable

A statistical plot of the compressive strengths of concrete in the
dataset is shown in Fig. 7. The plot shows the distribution of the
compressive strengths of the considered concrete [72]. With different
curing ages, the compressive strengths of different concrete mixtures
range from 4.1 MPa to 178.4 MPa, with an average value of 110.3 MPa
and a standard deviation of 32.9 MPa. The data points of compresive
strength follow the normal distribution approximately.
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Fig. 6. Ternary diagram (CaO, SiO,, and Al,O3) of Portland cement and typical
types of SCMs.

Table 3
Description of selected mixture design variables of UHPC.
Number 1 2 3
Curing method Standard curing Lime-water curing Steam curing
Specimen type 51 x 51 x 51 100 x 100 x 100 160 x 40 x 40
0.0125
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Fig. 7. Statistical analysis of the compressive strengths of concrete mixtures
included in the dataset.

3.3. Data preprocessing

3.3.1. One-hot encoding

Categorical data were transformed into numerical data using the
one-hot encoding method [73]. The numerical data were then utilized to
train the machine learning model. One-hot encoding can improve the
accuracy and the generalizability of machine learning models by
providing more categorical information. An example of one-hot encod-
ing is shown in Fig. 8.

3.3.2. Word vectorization

Word vectorization is a natural language processing method that
maps words to corresponding vectors with real numbers. In this
research, the text used to describe the physicochemical properties of

Curing method

Standard curing

Standard curing
Steam curing
Water curing

Steam curing

Standard curing

1

QO[S || =
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cementitious materials was stored in a dictionary, as shown in Eq. (1).
DictVectorizer was used to extract the categorical and numerical fea-
tures from the dictionary [74]. The categorical features were automat-
ically one-hot encoded, meaning that each unique category was
represented by a binary feature, and the numerical features were
retained. The categorical and numerical features were turned into sparse
matrices.

{‘Type’: ‘Cement’, ‘Ca0’: 64.2, ‘Si02’: 20.1, ‘Al203’: 5.1, ‘LOI": 2.4,
‘D50’: 14.9}(1)

3.4. Machine learning methods

3.4.1. Machine learning algorithms

Machine learning has exhibited outstanding performance in
modeling nonlinear relationships between the input variables and the
compressive strength of UHPC [28]. Among various machine learning
algorithms, ensemble learning algorithms have shown promising per-
formance since they combine the results from different predictive
models to achieve an integrated predictive model with high accuracy
and high generalizability [27].

CatBoost is an ensemble machine learning method developed based
on gradient boosting decision trees, which has a limited number of pa-
rameters, supports categorical variables, and provides high accuracy
[75]. The employment of CatBoost reduces the need for optimizing
many hyperparameters and minimizes the possibility of overfitting,
making the machine learning model more generalizable. In addition to
CatBoost, other ensemble learning models, such as random forest,
LightGBM, and XGBoost, were also considered in this research.

3.4.2. Hyperparameter optimization

Hyperparameter optimization is critically important for the perfor-
mance of a machine learning model. This research adopted Bayesian
optimization to automatically and iteratively optimize the hyper-
parameters following the Gaussian process [76]. Each iteration was
based on a Gaussian function fitted in the previous iteration, aiming to
find better hyperparameters compared with the previous iteration. In
this research, cross-validation was performed in the optimization pro-
cess to improve the accuracy and generalizability of machine learning
models. Bayesian optimization builds a probabilistic model of the
objective function that maps the hyperparameters to the performance of
the model [76], as shown in Eq. (2):

X, = argr)r[lg(xf (x) 2)
where f(x) is an objective function that needs to be minimized; x;, is the
set of hyperparameters that result in the lowest objective function; and X
is the search spacing of the hyperparameters. The value of the objective
function is evaluated on the testing set. The optimized hyperparameters
are listed in Table 4.

3.4.3. Performance metrics

To evaluate the performance of machine learning models, three
typical performance metrics were adopted, which are the mean absolute
error (MAE), root mean squared error (RMSE), and coefficient of

Water curing Steam curing

O =1 FON O NS
S O I O IS

Fig. 8. Example of converting curing methods into numerical data using one-hot encoding.
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Table 4 Table 5

Hyperparameters of the CatBoost model. Comparison of CatBoost model with other advanced ensemble learning models.
Name Searching space Optimal hyperparameters Model Dataset MAE (MPa) RMSE (MPa) R?
Iterations 100-2000 1000 Random forest Training 3.25 4.72 0.98
Learning rate 0.05-1.0 0.087 Testing 7.20 9.88 0.92
Bagging temperature 0.05-7.4 0.636 LightGBM Training 3.80 6.08 0.98
Border count 10-300 193 Testing 7.83 10.58 0.90
Colsample bylevel 0.1-1.0 0.30 XGboost Training 241 3.58 0.99
Depth 4-20 6 Testing 5.97 8.66 0.94
L2 leaf reg 0.001-7.4 2.33 CatBoost Training 291 4.01 0.99
Random strength 0.001-2.7 0.024 Testing 5.37 7.68 0.95

determination (RZ), respectively. The mathematical definitions of the
three metrics are shown in Egs. (3) to (5).

|
MAE= - |Pi—A;
2 lP=ad ®)

_ A p_ay
RMSE = |- ;(P, A;) (4)

n —2
R 1-zmfizd) ©)
Z?:l (Ai _A)

where n is the total number of data; i is the ith data; P is the predicted
compressive strength; A is the actual compressive strength; and A is the
average value of actual compressive strength.

4. Results and discussion
4.1. Property prediction

With the optimal hyperparameters, machine learning models were
trained using the dataset to predict the compressive strength of UHPC.
The comparison of experimental results and predicted results from the
CatBoost model is shown in Fig. 9, showing that the prediction results
from the CatBoost model are consistent with the experimental results.
The errors of the prediction results are lower than 15 MPa, which is
acceptable to most applications.

The CatBoost model is compared with the other ensemble machine
learning models in Table 5. The XGBoost model showed the highest
accuracy on the training set. The minimum values of MAE, RMSE, and R?
were 2.41 MPa, 3.58 MPa, and 0.99, respectively. The CatBoost model
achieved the highest accuracy on the testing set. The minimum values of
MAE, RMSE, and R? were 5.37 MPa, 7.68 MPa, and 0.95, respectively.
Fig. 10 shows the correlation between the predicted and actual experi-
mental results of each model on both the training and testing sets.

Fig. 11 shows the Taylor diagram of different machine learning
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models, including multi-layer perception (MLP), support vector regres-
sor (SVR), random forest (RF), LightGBM, XGBoost, and CatBoost. The
Taylor diagram uses Pearson correlation (R), root mean square error
(RMSE), and standard deviation (SD) to compare the prediction per-
formance and actual observations. The CatBoost model shows the
highest accuracy since its prediction result is closest to the reference
point, suggesting that the CatBoost model has the best prediction ac-
curacy compared with the other machine learning models on the
adopted dataset.

4.2. Knowledge-informed development of sustainable UHPC

The function of the knowledge graph, which is used to interpret the
prediction results of the machine learning model, is demonstrated via a
case study. The case study presents the feasibility of using the proposed
methods to develop novel sustainable UHPC blended with solid wastes.

4.2.1. Raw materials and mixture design

In this case study, various types of SCMs were considered, and, for
each type of SCM, the physicochemical properties were varied. For
example, different types of fly ash were considered, and they have
different particle size gradations and chemical compositions. The
different chemical compositions of OSFA and specification-grade fly ash
(i.e., Class C and Class F) are shown in Fig. 12. Compared with
specification-grade fly ash, OSFA contains a higher amount of carbon,
medium levels of silica and aluminum, and lower amount of calcium.
The high amount of carbon and low amount of calcium compromise the
reactivity of OSFA.

The knowledge graph (Fig. 4) was used to find solutions to mitigate
the strength reduction effect of OSFA. Seven factors influencing the
compressive strength were identified and plotted in Fig. 13. Slag was
used as a SCM to increase the pozzolanic reactivity of the binder system,
aiming at increasing the 28-day compressive strength of UHPC [8].

Table 6 lists eight UHPC mixtures investigated in this study. Type I
ordinary Portland cement was adopted. OSFA and slag produced from a
local plant in New Jersey were considered. Masonry sand with a median
size of 525 pm was used as fine aggregate. Straight steel fibers were used
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Fig. 9. Prediction performance of the CatBoost model. “Y” represents the experimental results; “Pre” represents the predicted results; and “Error” represents

the errors.
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Fig. 11. Taylor diagram used to evaluate the prediction performance of ma-
chine learning models.

enhance the crack resistance. The steel fibers were 13 mm in length and
200 pm in diameter. A polycarboxylate-based superplasticizer with
34.4% solid content and specific gravity of 1.05 was used to improve the
flowability. To reduce the economic and environmental impacts, cement

Sio,
60

—FlyashF
—Flyash C
—OSFA

Carbon > CaO

ALO,

Fig. 12. Comparison of the chemical compositions of different types of fly ash
in a radar chart.

was partially replaced by OSFA and slag. For all mixtures, the water-to-
binder ratio was 0.23; the sand-to-binder ratio was 1.0; and the steel
fiber content was 2% by the volume of the mixture.

The physical and chemical properties of raw ingredients are shown in
Table 7. The OSFA had a high carbon content that does not conform to
ASTM C618 [77]. To evaluate the pozzolanic reactivity of OSFA, the
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Fig. 13. Potential method proposed to improve the compressive strengths of UHPC mixtures.
Table 6
Mixture proportions of UHPC.
Mixture Cement OSFA Slag Sand Superplasticizer Water Steel fiber
Control 1.00 0 0 1.00 0.0052 0.23 2
OSFA10 0.90 0.10 0 1.00 0.0051 0.23 2
OSFA20 0.80 0.20 0 1.00 0.0054 0.23 2
OSFA30 0.70 0.30 0 1.00 0.0055 0.23 2
OSFA20SL20 0.60 0.20 0.20 1.00 0.0042 0.23 2
OSFA20SL30 0.50 0.20 0.30 1.00 0.0042 0.23 2
OSFA20SL40 0.40 0.20 0.40 1.00 0.0042 0.23 2
OSFA20SL60 0.20 0.20 0.60 1.00 0.0042 0.23 2
Chapelle test was performed following NF P18-513 [78].
z;ble.7 1 and physical ‘e of ol The reactivity results of OSFA and other SCMs are compared in
emica’ and physical properties of raw materials. Fig. 14. The reactivity results of OSFA, Class F fly ash, and slag were
Materials Cement OSFA Slag 353.1, 436.0, and 678.0 mg Ca(OH)»/g, respectively, indicating that the
CaO 68.1 2.4 43.8 reactivity of the OSFA is the lowest among the SCMs.
Si0, 22.4 16.7 36.2
?1283 2; 12‘; 18'5 4.2.2. Machine learning-based prediction
€293 ’ ) ’ With the methods in Section 2, the CatBoost model was employed to
MgO 0.9 0.9 5.1 y
SO; 23 3.9 22 predict the compressive strength of UHPC. A comparison between pre-
Na,O 0.2 0.3 0.2 diction results and the actual experimental results is shown in Fig. 15,
K,0 0.1 1.2 0.4 indicating that the machine learning model provides reasonable
LD‘O'I 1;; 42'2 1(2].?1 predictions.

%0 . - - The replacement of cement with up to 30% OSFA decreased the
compressive strength. When the binder system contained 20% OSFA, the
compressive strength was enhanced with the addition of up to 40% slag
as a replacement for cement. However, if the percentage of slag
replacement exceeded 40%, the compressive strength decreased.

800

@ 700 } 4.2.3. Interpretation of prediction results
= 600 | 35.6% To demonstrate the use of the knowledge graph for the interpretation
% s00 | of the machine learning prediction results, this subsection discusses the
g 200 3 19.0% underlying mechanisms of the effects of OSFA and slag on the
g % N compressive strength. The mechanisms were identified from the
et 300 | \ § knowledge graph (Fig. 4) by the arrows between the nodes automati-
T 200 p % \ cally. To facilitate the discussion, two graphs (Fig. A1 and Fig. A2) were
S 100 | \ % produced to highlight the red directed arrows that reflect the pathways
0 . " of mechanisms. In this study, the knowledge graph was manually con-
Fly ash F OSFA structed, and the underlying mechanisms were elucidated by domain

Pozzolanic reactivity

Fig. 14. Comparison of the pozzolanic reactivity results of slag, Class F fly ash,
and OSFA.

10

experts. In practice, the Al designer can leverage natural language
processing to automate the generation of the knowledge graph and
identify the pathways graph within it once a raw ingredient and an
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Fig. 15. Comparison of the prediction and the experimental results of UHPC blended with OSFA.

output property are selected [40,41]. Additionally, the Al designer can
generate corresponding explanations based on the identified pathways.

(1) Effect of OSFA

According to the machine learning model, when the cement
replacement percentage of OSFA increases from 0% to 30%, the 28-day
compressive strength of UHPC will decrease from 113.2 MPa to
81.2 MPa. In Fig. Al, the red solid lines indicate the primary factors that
affect the compressive strength, and the red dashed lines indicate the
factors that potentially influence the compressive strength. The directed
arrows identified from the knowledge graph (Fig. A1) explicitly reveal
the underlying mechanisms for the reduction of the compressive
strength of UHPC when the OSFA content was increased:

e OSFA has a high value of L.O.I., which reduces the reactivity of the
binder system when OSFA is blended. The low reactivity reduces the
produced amount of hydration products, ultimately decreasing the
compressive strength, due to the dilution effect.

OSFA has fine particle sizes and can act as a filler in the binder
system by filling fine pores. In addition, OSFA can serve as the seeds
for the precipitation of C-S-H. Both the filler effect and the seed effect
of OSFA contribute to increasing the compressive strength.

OSFA has pozzolanic reactions, although the pozzolanic reactivity of
OSFA is relatively low compared with specification-grade fly ash.
The pozzolanic reactions tend to enhance the compressive strength
of UHPC.

The function of the proposed approach is reflected in three aspects:
(i) All the above three effects were identified explicitly from the
knowledge graph. (ii) Negative and positive effects exist simultaneously.
(iii) The negative dilution effect dominates the results since the carbon
content of OSFA is high.

(2) Effect of slag

The reduction of the compressive strength of UHPC due to the use of
OSFA was mitigated by using slag in the binder system, as evidenced by
mixtures OSFA20S20 and OSFA20S60. When the cement replacement
percentage of slag increases from 0% to 40%, the compressive strength
will increase from 94.7 MPa to 121.7 MPa. When the replacement per-
centage increases from 40% to 60%, the compressive strength of UHPC
with decrease from 121.7 MPa to 110.1 MPa.

In Fig. A2, the red solid lines show the primary factors that affect the
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compressive strength, and the red dashed lines show the factors that
potentially influence the compressive strength. The directed arrows
identified from the knowledge graph explicitly reveal the underlying
mechanisms for the change of the 28-day compressive strength of UHPC
when the slag content increased:

e The high pozzolanic reactivity of slag tends to refine the micro-
structure and increase the compressive strength of UHPC. Slag has
amorphous silica which reacts with calcium hydroxide, producing
calcium silicate hydrates [79]. Slag has high contents of amorphous
silica and calcium hydroxide, thus achieving high pozzolanic
reactivity.

The fine particle size of the slag contributes to densifying the
microstructure of UHPC via the filler effect and promoting the hy-
draulic reactions of cement via the site effect, generating more C-S-H
to refine the microstructure and increase the compressive strength.
The reactivity of slag is lower than the reactivity of cement. When
slag is used to replace cement at an excessive percentage, the me-
chanical strengths will be reduced due to the dilution effect.

Again, the function of the proposed approach is reflected in three
aspects: (1) The above three effects were identified explicitly from the
knowledge graph. (2) Negative and positive effects exist simultaneously.
(3) Whether the compressive strength will increase or not is dependent
on the cement replacement percentage of slag.

The case study demonstrates the use of the knowledge graph in
interpreting the results from the machine learning models through
qualitatively explaining the physicochemical mechanisms. The predic-
tion and interpretation capabilities gained from this research can be
utilized to evaluate the effects and underlying mechanisms of other
variables, such as the fiber content, water-to-binder ratio, and curing
methods, on the compressive strength of UHPC.

In general, the knowledge graph does not include all the knowledge
required to interpret the results obtained from the machine learning
models. When the results are beyond the scope of the knowledge graph,
the knowledge graph provides a reference to support the further
development of the knowledge graph. This is discussed in Section 3.3.

4.3. Generation of scientific knowledge

The interactions or coupling effects of the OSFA content and slag
content on the compressive strength of UHPC were investigated using
the machine learning model, as shown in Fig. 16. When the OSFA con-
tent is zero, the compressive strength increases with the increase of the
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Fig. 16. Interaction of OSFA and slag content on 28-day compressive strength
of UHPC.

slag content, which is in the range of 0-60%. When the OSFA content is
between 10% and 50%, for each OSFA content, the compressive strength
first increases and then decreases with the increase of the slag content.
When the OSFA content reaches 60%, the compressive strength de-
creases with the increase of the slag content monotonically.

Interpretation of such interactive effects are not directly available in
the knowledge graph in Fig. 4, therefore informing the need for
extending the knowledge graph, aiming to interpret the interactive ef-
fects. The process of identifying and addressing knowledge gaps using
the machine learning results helps generate new knowledge, as shown in
Fig. 17. In this process, the knowledge graph serves as a reference which
is used to identify knowledge gaps. The identified knowledge gaps are
utilized to extend the knowledge graph with knowledge that is either
available in literature unseen to the knowledge graph or generated
through new experiments.

In this research, the knowledge graph can be extended to embody the
interactive effects based on available literature [80], which is assumed
to be unseen during the generation of the knowledge graph in Fig. 4.
Although the knowledge graph in Fig. 4 does not provide the interpre-
tation of the interactive effects of OSFA and slag directly, it indeed
provides useful hints for extending the knowledge graph: (1) It explicitly
shows that the OSFA has a dilution effect on the compressive strength,
and the dilution effect dominates in the concerned system. (2) It
explicitly shows that the slag has lower reactivity than the cement, also
having a dilution effect. The two mechanisms imply that when OSFA is
used, the dilution effects of OSFA and slag will likely be combined and
thus interact with each other. The implied content is supported by
reference [80]. When the cement content was low, the calcium hy-
droxide produced by the hydration of cement would be insufficient for
the dissolution of siloxane (Si-O-Si) bonds in SCMs and the production of
C-S-H [80], thus compromising the compressive strength.

The above investigations reflect the interconnection between the
machine learning model and the knowledge graph. First, a knowledge
graph of UHPC was created based on available literature and the

Machine
learning

Prediction
results

Output
_

Construction and Building Materials 430 (2024) 136502

concerned problem. The knowledge graph was then utilized to guide the
establishment of the machine learning model for predicting the
compressive strength of UHPC. Next, the machine learning model was
utilized to predict the UHPC property, considering various variables. On
one hand, the prediction capability can be integrated with an optimi-
zation method to discover the optimal UHPC mixtures [81]. On the other
hand, the prediction results from the machine learning model can be
interpreted using the knowledge graph and utilized to assess the
knowledge graph. In this research, the individual effects of OSFA and
slag were directly interpreted by the knowledge graph, and the inter-
active effects of OSFA and slag as indicated by the machine learning
model informed the need for extending the knowledge graph. The
incorporation of knowledge graph also enables the identification of
machine learning prediction results that are inconsistent with existing
theories and knowledge, which will then guide further research to
examine the machine learning model and the existing theory. The
knowledge graph-based interpretable Al designer proposed in this paper
offers an alternative way to efficiently design materials and generate
knowledge.

5. Conclusions

This paper presents an idea of incorporating domain knowledge into
machine learning-based design of concrete for knowledge-guided
interpretable Al designer for sustainable concrete. The knowledge
graph-based interpretable Al designer offers a new path to generating
knowledge about concrete. The Al designer has been implemented into
designing low-carbon cost-effective UHPC utilizing solid wastes through
a case study. This paper demonstrates the use of a knowledge graph-
based interpretable Al designer in interpreting the machine learning
prediction results and generating knowledge about the effects of indi-
vidual variables and their interactive effects. Based on the above in-
vestigations, the following conclusions can be drawn:

e A knowledge graph is an effective way to explicitly describe the
domain knowledge about concrete in a computer-understandable
manner. Knowledge graphs can be integrated with machine
learning models to enable quantitative predictions and qualitative
interpretations, simultaneously and seamlessly. On one hand,
knowledge graphs guide the establishment of machine learning
models and interpret machine learning prediction results. On the
other hand, machine learning models provide results to evaluate and
develop knowledge graphs. Inconsistency between machine learning
prediction results and knowledge graphs informs the need for
generating knowledge and improving the machine learning models.
The knowledge graph-based interpretable AI designer offers an
alternative way to developing new materials and generating new
knowledge efficiently.

Knowledge graphs explicitly show the key design variables of UHPC,
which facilitates the variable selection task in the establishment of
machine learning models for predicting UHPC properties. The
identified variables were utilized as input variables to develop a
high-fidelity machine learning model that is not only driven by the

Inquiry Knowledge Extend
—
graph
Discover N New
knowledge
Knowledge
gap Search/experiments

Fig. 17. Extending knowledge graph based on knowledge gap identified from prediction results.
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collected dataset but also complaint with the domain knowledge
about concrete.

Knowledge graphs are easier to understand and can play a crucial
role in satisfying engineers’ needs to explain machine learning re-
sults by providing a structured representation of domain knowledge.
Unlike traditional method (e.g., SHAP analysis), knowledge graphs
facilitate interpretability by establishing relationships between
different entities and concepts. Engineers can trace back the
reasoning behind a prediction by following the connections within
the knowledge graph.

The proposed machine learning model considers the physicochem-
ical information of raw ingredients and different experimental con-
ditions. The physicochemical information of raw ingredients enables
the machine learning model to consider various types of wastes with
different physicochemical information, different from the machine
learning models that use engineering names to represent the types of
ingredients. The consideration of the physicochemical information of
raw ingredients largely enhances the generalizability of the machine
learning model for designing UHPC with various types of solid
wastes. The predictive accuracy (R?) of compressive strength exceeds
0.95 on the testing dataset.

Feature engineering techniques such as one-hot encoding and word
vectorization serve to transform categorical and textual data,
respectively, making them suitable for machine learning applica-
tions. This is also essential for leveraging the physiochemical prop-
erties of raw materials for predicting the properties of UHPC.

As the first attempt to incorporate a knowledge graph into an Al
designer, this paper shows the feasibility of integrating domain
knowledge with data-driven machine learning methods and creates
new opportunities for future research. Some future research oppor-
tunities are listed:

The knowledge graph developed in this research is limited to a
narrow scope for the design of UHPC mixtures with limited types of
raw ingredients. It is interesting to develop other knowledge graphs
to consider more types of raw ingredients including various wastes
and comprehensively evaluate the performance of the proposed
approach in a large scope of material research.

The development of the idea of integrating knowledge graph with
machine learning was based on concrete in this research. It is
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envisioned that the idea can be extended to other disciplines such as
the other areas of civil engineering (e.g., structural and geotechnical
engineering), biomedical science and engineering, and material sci-
ence and engineering.

e Automatic generation and update of knowledge graph plays an
important role in practices. It is important to develop effective
methods to automate the extraction of knowledge from available
literature. It is promising to develop natural language processing
techniques for this purpose.
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