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• Artificial intelligence-empowered 
collection and characterization of 
microplastics are reviewed. 

• A framework is created to unify efforts 
for collecting, processing, and charac
terizing microplastics. 

• Robots and machine learning methods 
are integrated in the detection and 
collection of microplastics. 

• The limitations and technology readi
ness levels of artificial intelligence 
technologies are discussed. 

• Future opportunities for autonomous 
collection and characterization of 
microplastics are discussed.  
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A B S T R A C T   

Microplastics have been detected from water and soil systems extensively, with increasing evidence indicating 
their detrimental impacts on human and animal health. Concerns surrounding microplastic pollution have 
spurred the development of advanced collection and characterization methods for studying the size, abundance, 
distribution, chemical composition, and environmental impacts. This paper offers a comprehensive review of 
artificial intelligence (AI)-empowered technologies for the collection and characterization of microplastics. A 
framework is presented to streamline efforts in utilizing emerging robotics and machine learning technologies for 
collecting, processing, and characterizing microplastics. The review encompasses a range of AI technologies, 
delineating their principles, strengths, limitations, representative applications, and technology readiness levels, 
facilitating the selection of suitable AI technologies for mitigating microplastic pollution. New opportunities for 
future research and development on integrating robots and machine learning technologies are discussed to 
facilitate future efforts for mitigating microplastic pollution and advancing AI technologies.   
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1. Introduction 

The global production of plastics exceeds 400 million tons annually, 
while roughly 14 million tons of waste plastics infiltrate water systems 
[1]. Waste plastics then undergo fragmentation into microplastics (MPs) 
through physical, photochemical, and biodegradation processes [2,3]. 
MPs are typically defined as plastic particles with a size smaller than 5 
mm in length [4]. These tiny plastic particles can come from a variety of 
sources, including the breakdown of larger plastic items, microbeads 
used in personal care products, and fibers shed from synthetic clothing, 
among others [5]. The presence of MPs is widespread, extending across 
diverse ecosystems including oceans, rivers, lakes, soils, and even the 
atmosphere. Due to the small particle size of MPs, it causes serious 
environmental problems and social impacts. 

Various environmental, ecological, and health problems are associ
ated with MPs. Marine organisms, including fish and turtles, are 
vulnerable to mistaking MPs for food. [6]. These particles have the 
potential to disrupt ecosystems by affecting nutrient cycles and aquatic 
communities, as well as adsorb and transport pollutants, leading to the 
accumulation of toxins and exacerbation of water pollution [7]. 
Increasing evidences suggest that MPs can infiltrate the food chain 
through seafood consumption and drinking water [8], posing risks such 
as abrasion, inflammation, reproductive issues, developmental prob
lems, and immune responses upon ingestion [9]. In addition, MPs may 
clog filters and pipes within water treatment plants, reducing their ef
ficiency and increasing operation and maintenance (O&M) costs [10]. 
Overall, addressing the increasing distribution and accumulation of MPs 
is an urgent task globally. 

The substantial volume, widespread distribution, and profound im
pacts of MPs emphasize the urgent need for their collection and char
acterization. Traditional methods for collecting and characterizing MPs 
usually involve manual processes that are time-consuming and labor- 
intensive. The challenges originate from the small size, wide distribu
tion, and large variations of MPs in terms of sizes, shapes, and sources 
[4]. Under natural conditions, the mixture of different types of MPs 
further complicates the process of manual identification. 

Recently, applications of artificial intelligence (AI) technologies 
have extended to the domain of waste management. Intelligent robots 
have been developed to autonomously collect and classify MPs [11–13], 
and machine learning models have been developed to analyze and 
interpret data for microplastic characterization efficiently [14–16]. 
These breakthroughs have created new avenues in the study, utilization, 
and management of MPs. The advances in AI technologies for MPs is 
aligned with the Internet of Things (IoT) in the era of Industry 4.0 [17]. 

The use of machine learning technology has been reviewed in ref
erences [18,19]. Reference [18] primarily focused on reviewing ma
chine learning methods for detecting plastic debris, and reference [19] 
primarily focused on remote sensing and machine learning methods for 
detecting plastic debris, as shown in Table 1. Both references highlight 

the advantages of machine learning methods for detecting litter or other 
large debris theoretically, while it is still unclear whether machine 
learning methods are practical for collecting and characterizing MPs. 
Moreover, these references did not consider integrating hardware (ro
bots) and software (machine learning models) for the collection and 
characterization of MPs. It remains unclear how robots and machine 
learning techniques can be integrated to collect, sort, classify, detect, 
and quantify MPs. 

To solve these problems, this paper reviews the state-of-the-art ro
bots and machine learning technologies for the collection and charac
terization of MPs, aiming to facilitate the application of AI technologies 
for mitigating MP problems. The contributions of this research are 
summarized as follows: (1) This paper proposes an AI framework for 
automatic management of MPs, covering the collection, sorting, detec
tion, quantification, and characterization tasks for MPs. (2) This paper 
discusses the benefits and limitations of each technology for the detec
tion and characterization of MPs while identifying future research and 
development opportunities. (3) The paper discusses the technology 
readiness level (TRL) of various devices and methods, along with their 
performance metrics, to aid in the selection of appropriate technologies 
for practical applications (4) The paper presents an overview of the 
types, distribution, and magnitude of MPs to elucidate the motivations 
and challenges. (5) Traditional collection and characterization methods 
are outlined to highlight the advantages offered by AI technologies. By 
conducting a comprehensive comparison, suitable methods can be 
identified for different scenarios. 

2. Methodology 

2.1. Keywords and databases 

The keywords include “microplastics (MPs)”, “collection”, “charac
terization”, “robots”, “sensors”, “machine learning (ML)”, “artificial in
telligence (AI)”, “laboratory”, and “field”. These keywords were 
combined in different ways to search relevant publications from multi
ple databases. The investigated databases include “ScienceDirect”, 
“Scopus”, “Web of Science”, “Google Scholar”, “Nature”, “Science”, 
“Optica Publishing Group”, “IOPscience”, and “IEEE Xplore”. Advanced 
settings for searching include: (1) Years: between 2010 and 2023. (2) 
Article types: review articles, research articles, book chapters, and short 
communications. (3) Language: English. 

2.2. Statistics of relevant publications 

The increase in the number of publications related to MPs from 2010 
to 2023 is shown in Fig. 1. An exponential surge is observed from Fig. 1 
(a), indicating increasing concern. The number of publications from 
different countries (publications over 200) is shown in Fig. 1(b), indi
cating that this environmental challenge has attracted worldwide 
attention. 

2.3. Selection of publications 

The scope of this review includes: (1) The types, sources, sizes, and 
spatial distributions of MPs. (2) Traditional collection and character
ization technologies for MPs. (3) AI-empowered approaches such as 
robots and machine learning technologies. Based on this scope, a sys
tematic approach was used to collect relevant publications, as shown in  
Fig. 2. The general process includes: First, relevant publications were 
collected from databases using keywords (see Section 2.1). The search 
and selection tasks follow the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) method [20]. The initial search 
found a total of 74,648 relevant publications. After removing duplicates, 
the remaining publications were sorted by relevance, and 144 journal 
articles were selected. During the review process, some necessary ref
erences were added. Finally, this method selects a total of 177 

Table 1 
Comparison of this study with existing review papers.  

Investigated contents This 
study 

Reference  
[18] 

Reference  
[19] 

Focused object MPs Litter Litter 
Automatic collection √ × ×

Automatic sorting √ × ×

Automatic 
characterization 

AI-assisted 
spectral analysis 

√ × ×

AI-assisted 
detection 

√ √ √ 

AI-assisted 
quantification 

√ √ ×

Technology readiness level √ × ×

Economic and environmental assessment √ × ×

Regulatory, ethical, and social 
implications 

√ × ×
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publications satisfying the specified criteria. 

3. Categorization and distribution 

3.1. Categories and sources 

MPs can be classified into primary and secondary categories, as 
shown in Fig. 3(a). Primary MPs are intentionally produced, and sec
ondary MPs are generated via ultraviolet light degradation or biodeg
radation degradation of coarse debris [21]. MPs have different 
morphological properties and chemical compositions. The morphology 
of MPs includes fragments, fibers, pellets, films, and foams, as shown in 
Fig. 3(b) [22]. Fibers and fragments are the dominant types, accounting 
for 28% and 31%, respectively [22]. Fig. 3(c) shows the statistical re
sults of the chemical composition of MPs [23]. MPs can be made from a 
variety of polymers with different chemical compositions, such as 
polypropylene (PP), polyethylene (PE), polystyrene (PS), polyethylene 
terephthalate (PET), polyamides (PA), polyvinyl chloride (PVC), and 

polyurethanes (PU). The main sources of MPs are PE and PP polymers, 
accounting for 29% and 17%, respectively [23]. 

The types and primary applications of MPs are shown in Table 2 
according to the chemical composition. PE is one of the most widely 
used type, commonly found in products such as bags, bottles, and con
tainers [24]. PE is further categorized into high-density polyethylene 
(HDPE) and low-density polyethylene (LDPE), which can persist for over 
500 years [24]. HDPE and LDPE are commonly found as pellets (beads) 
and films, respectively [25,26]. PP appears as fragments and textiles, 
known for its high chemical resistance, toughness, and heat resistance 
[27]. PET, utilized widely in textiles, possesses notable strength, mois
ture resistance, and chemical resistance [27]. PS is typically found in 
foam packaging [28]. 

3.2. Spatial distributions 

Despite the different sources, oceans are often the destinations of 
MPs through water flows. The spatial distributions of MPs in aquatic and 

Fig. 1. Number of publications from 2010 to 2023: (a) in each year, and (b) from different countries.  

Fig. 2. Flowchart for the method used to search and select the references in this review paper.  
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terrestrial systems are discussed in this section. 

3.2.1. Aquatic environment 
Approximately 11 million tons of MPs enter aquatic systems annually 

[47], with high abundance found in lakes, rivers, and oceans [48]. The 
ubiquity of MPs and their abilities to carry heavy metals and microbial 
communities generate major concerns. Statistical data of MPs in aquatic 
systems are shown in Table 3. The overall quantity of MPs in oceans 
across both hemispheres exhibits comparable orders of magnitude [49]. 
High abundance was observed in densely inhabited areas such as the 
South China Sea coast with 243–349 items/m3. Conversely, low abun
dance is reported in remote areas such as the Southern Ocean with 0.008 
items/m3 [50]. MPs in the ocean are dominated by fragments, fibers, 
and films composed of PP, PE, and PET. Transparent, white, blue, and 
black are the most common colors. Statistical findings indicate signifi
cant differences in the abundance, morphology, chemical composition, 
and color of MPs across various aquatic systems. 

3.2.2. Terrestrial environment 
The accumulation of MPs in soils poses a threat to ecosystems [64]. 

MPs can infiltrate the topsoil by various means such as tillage, earth
worms activities, water penetration from digging, or physical degrada
tion [65]. The primary sources of MPs in terrestrial environments 
include cosmetics, clothing fibers, and the breakdown of larger plastic 
debris [66]. MPs have been detected in soils across different countries, 
including farmlands in German [67], agricultural sites in Spain [68], 
and central valley of Chile [69]. Report indicates that 90% of Swiss 
floodplain soils contain MPs [70]. Representative data for distribution of 
MPs is listed in Table 4. Statistical results indicate significant differences 
in the abundance, morphology, chemical composition, color, and size of 

Fig. 3. Categories and sources of MPs: (a) categories, (b) statistics of morphology [22], and (c) statistics of chemical compositions [23].  

Table 2 
Properties of typical polymers in MPs.  

Type Density (g/ 
cm3) 

Lifespan 
(years) 

Applications 

LDPE 0.91-0.94  
[29] 

500-1000  
[24] 

Plastic bags, packaging, agricultural films 
[24] 

HDPE 0.94-0.97  
[29] 

< 100 [24] Bottles, containers, pipes [24] 

PP 0.89-0.92  
[29] 

< 20 [30] Packaging, textiles, automotive parts  
[24] 

PS 1.04-1.07  
[31] 

< 50 [24] Disposable cups, packaging, insulation  
[24] 

PET 1.34-1.39  
[32] 

5-10 [24] Soda bottles, textile fibers, packaging  
[24] 

PVC 1.38 [32] > 100 [33] Pipes, vinyl flooring, cables [33] 
PA 1.13-1.15  

[23] 
30-40 [34] Textiles, automotive parts [35] 

ABS 0.99-1.10  
[31] 

< 50 [36] Automotive parts, pipe, electrical 
enclosures [37] 

POM 1.41 [38] - Gear, bearings, automotive components  
[39] 

PMMA 1.17-1.20  
[40] 

< 20 [41] Acrylic glass, signage, medical devices  
[41] 

PU 0.03-0.19  
[42] 

20-30 [43] Insulation, coating, mattresses, 
sportswear [44] 

PC 1.20 [45] - Compact discs, electronic components, 
automotive components [46] 

Note: PMMA- polymethyl methacrylate; ABS-acrylonitrile butadiene styrene; 
POM- polyoxymethylene; PC- polycarbonate. 
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MPs across different regions, and PP and PE are the most common types 
of MPs in soils, primarily in the form of fragments and fibers. Trans
parent MPs are the most prevalent color, followed by white and black 
colors. 

4. Collection and characterization 

This section reviews innovative technologies leveraging AI and 

robots for collecting and characterizing MPs. In Section 4.1, a frame
work is presented to integrate the efforts for collecting, processing, and 
characterizing MPs using various devices and data analysis methods. 
Section 4.2 discusses traditional and automated methods for collecting 
MPs. Section 4.3 delves into techniques for sorting and separation of 
MPs. Section 4.4 presents characterization methods employing robots 
and machine learning, aiming to enhance the efficiency of efforts for 
characterizing MPs. 

Table 3 
Statistical information about the distribution of MPs in aquatic systems.  

Sampling location Abundance 
(items/m3) 

Morphology Polymer Colors Size 
(mm) 

Methods Ref 

Southern Ocean (Antarctic 
Peninsula) 

0.008 Fragment, pellet, fiber PS, PVC, PE Transparent < 5 FTIR [50] 

Southern Ocean 
(Ross sea) 

0.17 Fragment, fiber PE, PP Red, blue < 5 FTIR [51] 

Arctic Ocean 
(Central Basin) 

0.7 Fragment, fiber PS, PA, PVC Transparent, blue, red 0.25-5 FTIR [52] 

Arctic Ocean 
(Bering and Chukchi Seas) 

0.23 Fiber, film PP, PET White, black 0.1–5 Microscope, 
FTIR 

[53] 

Atlantic Ocean 
(Western) 

25-29 Fragment, fiber, PP, PE, PET, PA, PVC Blue, translucent < 5 FTIR [54, 
55] 

Pacific Ocean 
(South China Sea) 

243–349 Fragment, fiber PE, PP, PET, PS, PVC Transparent, white, black < 5 FTIR [55, 
56] 

Indian Ocean 0.05-4.4 Fragments, fiber PU, PET, PP, PVC Green, red, blue < 5 FTIR [57] 
Mediterranean Sea 0.15 Fragments, fiber, film, 

pellet, foam 
PE, PP, PVC Yellow, green, blue, red < 5 FTIR [58, 

59] 
Great Lakes 0.05-32 Fragments, fiber, film, 

pellet, foam 
- Transparent, white, black, 

blue 
< 5 Digital camera [60] 

Yangtze River 0.9 Fragments, fiber, PP, PS, PE Transparent, blue, white, 
black, red, 

0.3-5 Microscope, 
FTIR 

[61, 
62] 

Amazon river 5-152 Fragments, fiber, Acrylic, PET, PP, PS, 
PE, PVC 

Black, brown, yellow 0.55-5 Microscope, 
FTIR 

[63]  

Table 4 
Statistical analysis of the distribution of MPs in soil.  

Area Soil type Abundance 
(items/kg) 

Shape Polymer types Size (mm) Depth 
(cm) 

Color Methods Ref. 

Shandong, China Agricultural 
soil 

310–5698 Fiber, fragments, 
films, pellet 

PE, PP, PET, 
PVC, PS 

< 5 0–5, 
10–25 

Transparent, white, 
blue 

FTIR [71] 

Yunnan, China Agricultural 
soil 

900–4080 Fragments, fiber - < 5 0-30 Transparent, black, 
blue 

Microscope [72] 

Tibetan Plateau, 
China 

Grassland soil 910.9 Fiber, fragment, pellet PE, PP, PS, PVC < 5 0-10 Transparent, white, 
black 

FTIR [73] 

Chile Agricultural 
soil 

540 Fibers, films, 
fragments 

PS, PE, PP < 2 - - Microscope, 
FTIR 

[69] 

Germany Agricultural 
soil 

0-217.8 Fragment, fiber, pellet PE, PP, PA 1–5 0–10, 
10–20 

Black, white FTIR [67] 

Southeast, 
Spain 

Agricultural 
soil 

50-3500 Fragments, fiber PS, PE, PVC < 5 0–10 - FTIR [68] 

Ontario, Canada Agricultural 
soil 

14,000 Fiber, fragment PE, PP, PS, 
PMMA 

< 5 0–15 - FTIR [74] 

Melbourne, 
Australia 

Urban 
soil 

529.3 Fiber, film, fragment, 
pellet 

PS, PE, PP < 5 - - FTIR [75] 

Zhejiang, China Coastal soil 313.9 Fragments, film, fiber, 
foams 

PP, PE, PET < 5 0–20 White, black, yellow FTIR [76] 

Switzerland Floodplain soil 593 Fragments PE, PS, PVC 0.125–0.5 0–5 - FTIR [70]  

Fig. 4. Framework for AI-empowered collection, processing, and characterization of MPs.  
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4.1. Framework 

A framework is presented to integrate the efforts for collecting, 
processing, and characterizing MPs (Fig. 4). The framework consists of 
three primary tasks:  

(1) Collection. The collected samples usually contain impurities such 
as soil. Robotic systems have been developed to collect MPs from 
diverse environments [77].  

(2) Processing of samples. The primary purpose of this task is to 
obtain clean MPs. Robotic arms have been developed to auto
matically sort and pick waste plastics [78–80].  

(3) Characterization. Various methods have been developed to 
collect data for characterizing MPs. Some methods can be inte
grated with robots such as drones to automate the data collection 
process. The data collected from robots can be analyzed using 
machine learning models which can be trained to characterize 
MPs automatically [81–83]. 

4.2. Collection 

Representative tools for collecting MPs from aquatic environments 
are shown in Fig. 5. MPs in the near surface of water can be collected 
using net-like tools such as manta trawl [84], Bongo net [85], and 
plankton net [86]. These tools are manually operated or attached to a 
boat to collect MPs. Manta trawl and Bongo net can cover a large area, 
achieving high efficiency in collecting a substantial quantity of MPs 
from surface water [87]. These instruments are capable of collecting 
various sizes of MPs, ranging from 0.3 mm to 5 mm [87]. The specific 
size of collected MPs is dependent on the mesh size. In contrast, plankton 
net is smaller in size and inefficient for large-scale collection. However, 
plankton net is relatively simple to operate and inexpensive compared 
with manta trawl and Bongo net [86]. These sampling methods neces
sitate support from a ship, and increased collection efforts result in more 
ship time, making the process both time-consuming and 
resource-intensive. Despite these challenges, the use of such tools is 
essential for assessing the prevalence and distribution of MPs in marine 
environments. Each tool offers different advantages that can be tailored 
to specific research or monitoring goals. For instance, while manta trawl 
and Bongo net are ideal for quantitative assessment over wide areas, 

plankton net is more suitable for qualitative studies in localized regions. 
Low-density MPs may initially float on water surface and then 

gradually sink into sediment as biofilm and mineral deposits accumulate 
on the surfaces of MPs [88]. The accumulation of MPs in sediments is 
concerned since it can lead to long-term contamination of aquatic eco
systems, affecting both the organisms and water quality. MPs in sedi
ment can be sampled using multi-corer [89], box corer [90], and gravity 
corer [91]. The multi-corer device has a unique design to collect mul
tiple samples simultaneously, significantly improving sampling effi
ciency [92]. However, it can only collect samples from the top layer of 
sediment, making it less suitable for studies requiring deeper sediment 
profiles. In addition, the complexity of the device also makes it more 
expensive. Box corer has higher collection efficiency because it samples 
a large volume of sediment [93]. Gravity corer is designed to penetrate 
deeper into sediment layers. In general, the gravity corer has advantages 
such as simple operation and high cost-effectiveness. However, it can 
only collect a limited number of samples at a time [91]. The traditional 
method for collecting MPs from terrestrial environments involves 
manually picking MPs from the ground or using coring devices to extract 
soil samples [94]. Soil samples are usually extracted from different lo
cations, and at each location, samples are extracted from different 
depths to investigate the spatial distribution of MPs. The above methods 
have been used to sample MPs in sediments, while large-scale cleanup of 
MPs in sediments remains a challenge. 

Various robots, such as robotic fish, drones, and smart cars, have 
been developed to collect MPs from water and beaches [77,95–102]. A 
3D printed bio-inspired robotic fish called Gillbert, shown in Fig. 6(a), 
was invented to collect MPs from water [77]. Gillbert is a salmon-sized 
robot equipped with a filtration system and remoted control module. 
The gills of robotic fish act as a filter, trapping MPs up to 2 mm while 
allowing water to pass. The collected MPs are stored in an internal 
container, which can be retrieved for recycling or proper disposal. At 
this moment, the machine is small and can be only used for MPs sam
pling. In future research, scaling up the robot to enable large-scale 
collection of MPs in water needs to be considered. In reference [96], a 
multi-vehicle system was designed to clean MPs from seafloors. A 
remotely operated vehicle (ROV) was used to scan seafloors using 
multibeam echosounder, providing a bathymetric map of the seabed. 
Large litters were detected and marked on the bathymetric map. When 
the water was transparent, a drone was operated to identify areas with 

Fig. 5. Representative tools used for collecting MPs: (a) manta trawl [84]; (b) Bongo net [85]; (c) plankton net [86]; (4) multi-corer [89]; (5) box corer [90]; and (6) 
gravity corer [91]. 
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abundant MPs. A small ROV was used to targeted scans of the sea bottom 
to find MPs using deep learning-based object detection technology. The 
targets of detection can be MPs and other marine debris, depending on 
the dataset used to train the deep learning models. An unmanned surface 
vehicle served as a central hub for deploying and managing the ROVs 
and drone. Reinforcement learning was applied for path planning and 
controlling the movement of observing and collecting ROVs. 

Portable drones have been designed to collect MPs from the water 
surface, as shown in Fig. 6(b) [97]. Drones equipped with an automatic 
pilot system collected MPs from areas inaccessible to boats. The end of 
the drone was connected to the plankton net for collecting MPs. The 
model of plankton nets varied depending on the application, with mesh 
sizes ranging from 0.053 mm to 3 mm. The average moving speed of 
drones reached 0.58 m/s, which greatly mitigates the difficulty of col
lecting MPs from water surface. Up to 14,000 samples were collected 
within 9 min. This tool can be scaled up in the future to automate 
large-scale water surface cleanup of MPs. A robot vehicle was developed 
to collect plastic waste from beaches with an efficiency of 
3000 m2/hour, as shown in Fig. 6(c) [98]. The robot was powered by a 
combination of solar energy and battery and remotely operated from 
distances of up to 300 m, effectively collecting waste plastics and pre
venting them from seeping into soils. Representative studies on robotic 
systems for collecting MPs are listed in Table 5. The use of robots 
significantly improved the efficiency of collecting MPs from aquatic 
environments and beaches. 

4.3. Processing 

The primary purpose of processing tasks is to obtain clean MPs from 
collected samples which usually contain contaminations such as sand. 
Robotic systems have been developed to sort waste objects (Fig. 7). A 
robot is equipped with a digital camera to identify plastic objects based 
on deep learning. The digital camera captures images, which are then 
analyzed using deep learning models, enabling the models to accurately 
identify, locate, and classify plastic objects for intelligent control of 
robots to efficiently sort plastics. 

Table 6 shows representative studies on sorting plastics using robots 
[78,80,103–108]. These robots utilize cameras and machine learning 

algorithms to automate sorting tasks. For example, an innovative robot 
was developed to detect and grasp plastic objects based on a depth 
(RGB-D) camera [80]. A YOLACT model was trained using 1500 images 
of plastic objects such as bottle caps, drinking bottles, and foam food 
containers. The images had complex backgrounds such as tiles, side
walks, grass, and roads. Therefore, a model trained using such images 
achieved a reliable object detection capability in real-world scenarios. 
The RGB images from depth cameras were utilized to detect and locate 
plastic objects using the trained YOLACT model. Upon testing, the 
trained YOLACT model achieved real-time target detection based on 
video streams. The depth information from depth cameras helped 
generate point clouds to simulate the surface condition of plastic objects 
and aided in devising the grasp strategy. The grasp success rate exceeded 
90% [80]. 

In reference [104], a real time waste sorting system was designed to 
pick up plastic objects. Various deep learning models including YOLOR, 
YOLOv6, and YOLOv7 were trained to detect plastic objects. The dataset 
used to train the deep learning models comprised 3217 images. The 
YOLOv6 model demonstrated the highest prediction accuracy (95.5%) 
in detecting plastic objects. After detecting and locating plastic objects, 
SolidWorks was utilized to simulate the architecture of a real robotic 
arm. This simulation adopted a simple geometric method to calculate 
the angles of the arm’s joints, enabling it to pick up plastic objects 
quickly. 

In reference [78], a robot and Mask-RCNN model was integrated to 
pick bottles, achieving a remarkable accuracy of 96.4%. A robot was 
developed employing YOLOX to detect and classify various plastic ob
jects, such as supply bottles, beverage bottles, and tableware boxes 
[103]. The highest detection accuracy (90.8%) was achieved in picking 
express packages, whereas beverage bottles had the lowest detection 
accuracy (68.5%). 

Current robotic arms were not designed to sort MPs, and there is a 
lack of research on using robots for sorting MPs. However, with the 
escalating pollution caused by MPs, there is a pressing need to develop 
robots for sorting MPs. These robots are crucial in addressing the 
growing concern surrounding microplastic contamination. 

4.4. Characterization 

Advanced technologies have been developed to character MPs 
regarding morphology and chemical composition. Representative tech
nologies for data collection (Section 4.4.1) and data analysis (Section 
4.4.2) are reviewed. 

4.5. Data collection 

(1) Microscopy. 
Various microscopes, such as optical microscopes [5109], fluores

cence microscopes [110,111], scanning electron microscopes (SEM) 
[112,113], and atomic force microscopes (AFM) [114,115] have been 
used to collect data for characterizing the morphology and size of MPs 
(Fig. 8). These microscopes differ in resolution and function. 

Fig. 6. Representative robots used for collecting MPs: (a) robotic fish [77]; (b) portable Catamaran drones [97]; and (c) robotic vehicle [98].  

Table 5 
Summary of robotic systems for automatic collection tasks.  

Reference Robots Location Automation Year 

[77] Robotic fish Water body Yes  2022 
[97] Catamaran drone Water surface Yes  2022 
[98] Robotic vehicle Beach Yes  2022 
[99] Aquatic drone Water surface Yes  2023 
[12] Robotic vehicle Beach Yes  2022 
[102] Aquatic surface robot Water surface Yes  2020 
[100] Amphibious robot Water surface Yes  2023 
[95] Robotic fish Water body Yes  2022 
[101] Robotic vehicle Beach Yes  2021 
[96] Robotic vessel Water body Yes  2023  
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(2) Digital camera. 
Digital camera is the most used imaging system, due to the advan

tages such as ease of use, portability, and cost-effectiveness, making 
them suitable for various field projects. The drawbacks include limited 
magnification and certain sensitivity to lighting conditions. Digital 
cameras can be mounted on robots, such as drones and crawlers, to 
efficiently detect MPs [116]. Digital photos can be analyzed using deep 
learning-based computer vision methods for efficient detection of MPs, 
as shown in Fig. 9. More details about methodologies are available in 
Section 4.4.2. 

(3) Fourier transform infrared spectroscopy, Raman spectroscopy, 
and hyperspectral imaging. 

Fourier transform infrared spectroscopy (FTIR) based on the elec
tromagnetic wave absorption has been used to evaluate chemical bonds 
and compositions of MPs [117]. The measured data are presented in the 
frequency domain to evaluate the chemical composition, as shown in  
Fig. 10. FTIR software generates Hit Quality Index (HQI) to measure the 
similarity between two spectra [117]. HQI values range from 0 to 100, 
with higher values indicating greater similarity between the test mate
rial and the library-stored material. Raman spectroscopy based on 
Raman scattering was also used to analyze the chemical compositions of 
MPs [118]. This involves frequency shifts of incident light waves 
correlated with the chemical bonds of samples. The Raman spectrum 

Fig. 7. Sorting plastics using a smart robot system composed of robotic arms and AI models.  

Table 6 
Summary of robotic systems for sorting MPs.  

Reference Robots Data source Algorithm Accuracy Year 

[80] Robotic 
arm 

Digital 
camera 

YOLACT 97.4%  2021 

[78] Robotic 
arm 

Digital 
camera 

Mask-RCNN 89.4%  2022 

[103] Robotic 
arm 

Digital 
camera 

YOLOX 68.5- 
90.8%  

2023 

[104] Robotic 
arm 

Digital 
camera 

YOLOv7 96.5%  2023 

[104] Robotic 
arm 

Digital 
camera 

YOLOv6 95.6%  2023 

[104] Robotic 
arm 

Digital 
camera 

YOLOR 95.7%  2023 

[104] Robotic 
arm 

Digital 
camera 

YOLOv4 98.4%  2023 

[105] Robotic 
arm 

Digital 
camera 

SSD 87%  2022 

[106] Robotic 
arm 

Depth 
camera 

Mask-RCNN 86.5%  2022 

[107] Robotic 
arm 

Digital 
camera 

Mask-RCNN 97%  2023 

[108] Robotic 
arm 

Digital 
camera 

MobileNet_V2 99%  2023  

Fig. 8. Representative types of microscopes: (a) optical microscope, (b) fluorescence microscope, (c) scanning electron microscope, and (d) atomic force microscope.  

Fig. 9. Detection and quantification of MPs using digital cameras installed on a drone [116].  
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represents the intensity of the inelastically scattered light as a function 
of its frequency shift. Each molecule has a unique Raman spectrum, 
acting as a molecular signature, following a concept that is similar to 
using FTIR fingerprints to identify polymer types. 

Hyperspectral imaging techniques employ a hyperspectral camera to 
capture images of a sample across three dimensions (width, height, and 
spectrum). In contrast to FTIR devices, which provide spectral infor
mation, hyperspectral cameras provide both spectral and spatial infor
mation, as shown in Fig. 11 [119]. The spectrum of the sample is 
measured at each pixel to determine the polymer type, and the different 
polymers distributed in the image can be visualized. This is useful for 
characterizing samples with mixed MPs. A hyperspectral imaging tech
nique was successfully applied to analyze MPs larger than 250 µm [119], 
exhibiting significantly shorter time than FTIR and Raman spectroscopy. 
Moreover, small-size and lightweight hyperspectral cameras (0.7 to 
2.0 kg) have been developed, making them suitable for deployment on 
robots such as drones, as shown in Fig. 11 [120]. 

(4) Other techniques. 
Other popular techniques for characterizing MPs include pyrolysis- 

gas chromatography-mass spectrometry (Py-GC-MS) [5], X-ray diffrac
tion (XRD) [121], and thermogravimetric analysis (TGA) [122]. These 
techniques can effectively characterize the chemical composition of 
polymers in MPs. However, these techniques have not been combined 
with machine learning or robots. 

The comparison of different methods for data collection is shown in  
Table 7. The collected data can be analyzed using machine learning 
algorithms to improve the efficiency and accuracy of detecting and 

characterizing MPs. 

4.6. Machine learning-assisted data analysis 

Machine learning-based methods have been developed to enable 
automatic identification, classification, and quantification of MPs based 
on the data collected using technologies reviewed in Section 4.4.1. The 
capabilities of machine learning methods are reviewed as follows: 

(1) Identification. 
Deep learning models have been developed to identify MPs from 

images obtained from digital cameras [123] and microscopes [81]. The 
concept is to train deep learning models using images labelled with MPs. 
The labelled pictures are the “source of knowledge” for the models to 
extract key features (e.g., shape, size, color, and texture) related to MPs 
[124]. The primary function of the trained models is to recognize key 
features of MPs and add bounding boxes around the detected MPs in new 
images unseen in the training process [125]. The images can be either 
photos or frames of videos [126]. A Faster-RCNN model for detecting 
MPs is shown in Fig. 12. 

Representative applications of deep learning methods were pre
sented in references [81,127–131]. For example, a YOLOv5 model was 
used to detect MPs with dimensions of 1–7 mm [127]. A digital camera 
was used to take photos of MPs immersed in water, each with a reso
lution of 3264 × 2448 pixels. These images were annotated with 
bounding boxes to mark MPs. The dataset used to train the YOLOv5 
model had 300 images of MPs with annotations. After 200 iterations of 
training, the detection accuracy of MPs achieved 94%. In the results, 

Fig. 10. Machine learning-empowered identification of polymer types via analyzing FTIR data.  

Fig. 11. Drone-based hyperspectral imaging system for identification of polymer type [119,120].  
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even transparent MPs were well detected, overcoming interference from 
factors such as light reflection. A key advantage of the YOLOv5 model is 
the streamlined architecture, which enables the model to process each 
image within 30 ms, ensuring the effectiveness of large-scale detection 
of MPs. In reference [128], MPs collected from beaches were filtered 
through sieves (size: 0.85 mm to 4.76 mm). These MPs were mainly 

composed of fibers, fragments, and particles. The collected samples were 
spread on white paper and a total of 3000 images were taken using a 
digital camera with a resolution of 512 × 512 pixels. The dataset was 
utilized to train a Mask-RCNN model, which achieved an overall accu
racy of 94% for detecting various types of MPs. The trained model 
showed good performance in detecting MPs on simple background. In 
addition, a dataset of images captured on complex backgrounds (sand, 
soil, and water) under different lighting conditions was used to evaluate 
the generalizability of the model. The accuracy of the Mask-RCNN 
model dropped to 80%, meaning training a model trained on simple 
backgrounds has reduced accuracy in complex environments. It is 
necessary to establish high-quality datasets to train the model, or use 
other methods, such as transfer learning or generative AI, to improve 
model accuracy for different scenarios. 

Representative studies are summarized in Table 8. The results of 
accuracy are presented to show the advancement of these studies, rather 
than comparing them. It is noted that the results of accuracy are related 
to many factors, such as the quality and quantity of data, data processing 
method, and machine learning algorithm. The accuracy value of the 
same algorithm will change if the data and data processing method are 
changed. The detection model is limited to categorizing MPs based on 
their morphology, without the ability to identify their chemical 
compositions. 

(2) Classification. 
Machine learning models for classifying MPs have been developed to 

analyze data from FTIR spectrometers [14], Raman spectrometers [83], 
and hyperspectral cameras [133]. Machine learning models are trained 
using a large amount of data labelled with the type of MPs. The labelled 
data relate key features (e.g., shape and fingerprint information) to the 
type of MPs [124]. For FTIR spectrometry, the fingerprint information 
lies in the wavenumbers of troughs, and for Raman spectrometry data, 
the fingerprint information is embedded in the wavenumbers of peaks. 
Hyperspectral imaging data contains fingerprint information within 
hyperspectral cubes, encompassing both spatial (e.g., morphology) and 
spectral (e.g., wavenumbers) characteristics of MPs. Trained machine 
learning models can identify polymer types based on key features of 
MPs. 

An example of using machine learning models for classifying MPs 
(PP, PVC, PET, PA, and PS) with FTIR data is shown in Fig. 13 [14,83, 
134]. The procedure of establishing machine learning models includes 
four steps: First, FTIR data are obtained and labelled for various MPs. 
Then, the data are processed via denoising, feature engineering, and 
format conversion. Next, the processed data are used to train machine 
learning models. Various machine learning models are trained because it 
is unknown which machine learning algorithm performs the best be
forehand. Finally, the trained models are evaluated in terms of accuracy, 
generalizability, and efficiency. 

Various machine learning models have been developed in literature 
[14–16,83,133–139]. For instance, a variety of machine learning algo
rithms including decision trees (DT), Gaussian Naive Bayes (GNB), 
k-nearest neighbors (kNN), random forest (RF), support vector machines 
(SVM), multilayer perceptions (MLP), and linear regression were trained 
to classify MPs using FTIR data, as detailed in reference [136]. The 
wavenumber of captured spectra ranged from 4000 cm−1 to 600 cm−1. 
The dataset comprised 958 spectra that were categorized into 17 
different types of polymers. A grid search was conducted to optimize the 
hyperparameters for each algorithm. Among these algorithms, SVM 
demonstrated the highest prediction accuracy, which varied between 
72% and 100% across different polymer types. The highest prediction 
accuracy was observed for cellulose acetate, while the lowest was for 
“polyethylene like”. 

In addition to the use FTIR data, Raman spectrometry have been used 
in a similar way [83]. In reference [139], a database was constructed 
using 3675 Raman spectra from six types of MPs (i.e., PP, PE, PS, PC, 
PVE, and PET). Each spectrum was standardized to a consistent wave
number range from 500 cm-1 to 1800 cm-1, which included most 

Table 7 
Comparison of data collection methods.  

Methods Strengths Limitations 

Optical 
microscope  

• Visualization  
• Cost-effectiveness  
• User friendly  
• Non-destructive analysis  

• No chemical information  
• Time consuming  
• Limited resolution for 

portable device 
Florence 

microscope  
• Enhanced contrast  
• Specific staining 

techniques  
• Composition analysis  

• Preparation and staining 
time  

• Higher price than normal 
optical microscope  

• Selective staining: not detect 
all polymer types 

Digital camera  • Cost-effective  
• Portability  
• Ease of Use  
• Assembled on different 

platforms  

• Lower magnification  
• Light sensitivity  
• Calibration requirements 

SEM  • Size and shape 
characterization  

• Elemental analysis  
• High-resolution imaging  

• Sample preparation  
• Costly SEM device  
• Destructive evaluation 

AFM  • Three-dimensional 
imaging  

• High-resolution surface 
imaging  

• Non-destructive analysis  

• Sample preparation  
• Complex operation and 

analysis  
• Slow imaging speed 

FTIR  • Non-destructive 
evaluation  

• High efficiency  
• Minimal sample 

preparation  
• Automated data analysis  
• Versatility: solids, 

liquids, and gases  

• Water vapor and CO2 

interference  
• Limited uses of homonuclear 

diatomic molecules  
• Complexity of data 

interpretation  
• Overlapping peaks  
• Costly FTIR instruments 

Raman 
spectroscopy  

• Non-destructive 
evaluation  

• High efficiency  
• Minimal sample 

preparation  
• Automated data analysis  
• Versatility: solids, 

liquids, and gases  
• Available for fine 

particles (~1 µm)  

• Subjected to fluorescence 
influence  

• Weak signal (low signal-to- 
noise ratio)  

• Complexity of data 
interpretation  

• High-power laser, long 
acquisition time  

• Costly Raman instruments 

Hyperspectral 
imaging  

• Non-destructive 
evaluation  

• Minimal sample 
preparation  

• Automated data analysis  
• Assembled on different 

platforms  

• Subjected to lighting 
conditions  

• Large amount of data  
• Complexity of data 

interpretation  
• Sophisticated algorithms for 

software  
• Costly hyperspectral cameras 

Py-GC-MS  • Quantitative and 
qualitative results  

• Minimal sample 
preparation  

• Destructive evaluation  
• Need more samples  
• Complexity of data 

interpretation  
• Need specialists for the 

operation and analysis 
Costly equipment and 
maintenance 

TGA  • Thermal stability 
assessment  

• Decomposition 
assessment  

• Costly device  
• Complexity of data 

interpretation 

XRD  • Crystallinity analysis  
• High sensitivity and 

accuracy  
• Automated control  

• Costly device  
• Destructive evaluation  
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characteristic peaks. The dataset was divided into a training set (80%) 
and testing set (20%). The spectra dataset was trained using a 
sparse-autoencoder. After 2500 iterations of training, the model ach
ieved an overall accuracy of 99.1%. Additionally, traditional machine 
learning methods such as SVM and MLP demonstrated lower accuracy 
on this dataset, achieving prediction accuracies of 94.0% and 74.6%, 
respectively. Representative results of machine learning models for 

classifying MPs are shown in Table 9. The results of accuracy are not 
used to compare the different models because accuracy is related to 
many factors. Currently, the primary challenge is the absence of a 
high-quality open-source dataset for training machine learning models 
used to identify MPs. 

Advanced algorithms are required to process data obtained from 
hyperspectral cameras. In reference [133,600 hyperspectral data were 
collected from soil samples with a hyperspectral camera in the wave
length range of 369 nm to 988 nm. The spectra underwent denoising 
through smoothing techniques, and principal component analysis (PCA) 
was applied to compress the data. The collected data were used to train a 
CNN model for classifying PE, PP, and PVC. The model achieved an 
overall prediction accuracy higher than 93%. In reference [140], a 
framework used to process the hyperspectral data was proposed. The 
collected spectra were preprocessed to highlight the difference between 
various types of MPs. Hyperspectral curves were clustered using the PCA 
method, and partial least squares discriminant analysis was performed 
to calculate the differences between the unknown polymers and the 
clustered data, as shown in Fig. 14 [140]. 

(3) Quantification. 
Machine learning models have been developed to quantify MPs from 

images via distinguish the pixels representing MPs (Fig. 15) [19]. First, 
the original images are converted to binary images where MPs are 
shown in black color and the background is shown in white color. Then, 
the sizes and abundance of MPs are quantitatively evaluated using a 
machine learning model and computer vision techniques. The pixel 
numbers representing MPs are quantified along the horizontal and 
vertical directions. With the pixel numbers, the sizes of MPs are 

Fig. 12. Flowchart and architecture of a Faster-RCNN model developed for detecting MPs.  

Table 8 
Summary of deep learning methods for identifying MPs.  

Ref. MPs Data source Algorithm Accuracy Year 

[130] Pellet Digital 
camera 

YOLOv5  89%  2021 

[123] Fragment, fiber, 
film, pellet 

Digital 
camera 

Mask- 
RCNN  

93%  2022 

[123] Fragment, fiber, 
film, pellet 

Digital 
camera 

SSAP  86%  2022 

[81] Pellet Microscope Faster- 
RCNN  

98.5%  2023 

[81] Pellet Microscope SSD  96%  2023 
[127] Pellet Digital 

camera 
YOLOv5  94%  2023 

[128] Fragment, fiber, 
rod, pellet 

Digital 
camera 

Mask- 
RCNN  

94%  2023 

[129] Pellet Digital 
camera 

YOLOv5  100%  2023 

[132] Plastic debris Digital 
camera 

YOLOv3  83.4%  2023 

[131] Fragment, fiber, 
pellet 

Digital 
camera 

Faster- 
RCNN  

85.5%  2024  

Fig. 13. Procedure of using machine learning models to classify the types of MPs with FTIR data.  
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determined by a relationship, established based on computer vision 
techniques [126], between the pixel size and physical length. The pixel 
number is converted to a physical length using the ratio of the focal 
length to the distance between the camera and MPs. With the sizes of all 
MPs in each image, the abundance of MPs is evaluated by considering 
many images. The quantity of MPs can also be counted from the images 
via border analysis [126]. The above methods have been applied to 
quantify cracks [124,141], but there are limited applications for MPs. 

Semantic segmentation models have been employed to quantify MPs 
as detailed in references [82,116,128,143–145]. In reference [82], a 
deep learning model was trained using a dataset of 1498 images of 
fragments, pellets, and fibers. These images were labeled and refor
matted into binary data to train a Mask-RCNN model, which achieved an 
average segmentation accuracy of over 75% with a processing time of 
0.2 s per image. The low quality of the training dataset explains the 
limited accuracy. In reference [143], deep learning architectures such as 

U-Net and MultiResUNet were employed to analyze fragments, pellets, 
and fibers from SEM images. A dataset comprising 237 images was used 
to train these models. Upon comparison, MultiResUNet exhibited su
perior accuracy. The highest classification accuracy was achieved for 
pellets at 93.6%, while the lowest accuracy was observed for fibers at 
74.3%. In reference [128], both Mask-RCNN and U-Net were trained to 
assess MPs using a dataset of 2100 images with a resolution of 
512 × 512 pixels. The Mask-RCNN model demonstrated an accuracy of 
93.4% on a white background and 80% on complex backgrounds 
involving soil, sand, and water. 

Representative results of deep learning models are summarized in  
Table 10. The accuracy results are presented to show the performance of 
these models, rather than comparing different models or recommending 
certain models. While instance segmentation techniques have been used 
in the analysis of MPs, further research should focus on using these 
methods to accurately measure the size and determine the abundance of 
MPs. 

5. Challenges and opportunities 

5.1. Technology readiness level 

The technology readiness levels (TRLs) of the methods for the 
collection and characterization of MPs reflect the maturity of different 
methods and are important metrics in selecting appropriate methods 
according to the recommendation of the United States Department of 
Energy [146]. The value of TRL is from 1 to 9, with 9 for mature tech
nologies, as shown in Fig. 16, consistent with reference [147]. 

The TRLs and other key features of the reviewed methods are sum
marized in Table 11. The cost column refers to the price of the required 
instruments. The data format column refers to the format of data used 
for collecting and characterizing MPs. The polymer type and particle 
size columns refer to the types and the sizes of polymers that can be 
handled by the methods. The field use column refers to the readiness of 
the methods for field applications. The TRL values of conventional 
methods are 9, indicating mature commercial devices. Prototype robots, 
such as robotic fish and drones, have been developed for collection tasks, 
but the prototype robots still require significant improvement and 
validation in relevant environments, resulting in a TRL level of 7. Robots 

Table 9 
Summary of machine learning methods for classifying MPs.  

Reference Data Machine 
learning 
method 

Application Accuracy Year 

[14] FTIR 2-D CNN Classification 99%  2021 
[15] FTIR Autoencoder Denoise -  2021 
[135] FTIR KNN Classification > 90%  2019 
[16] FTIR PCA + SVM, 

KNN, LDA 
Classification 99%  2020 

[136] FTIR Naïve Bayes, 
MLP, KNN, 
SVM, DT 

Classification 94%  2022 

[134] FTIR Recurrent 
neural 
network 

Classification 94.8%  2023 

[137] FTIR 1-D CNN Classification 87%  2021 
[138] FTIR 2-D CNN Classification 99.2%  2023 
[83] Raman KNN, RF, 

MLP 
Classification > 95%  2022 

[139] Raman Sparse- 
autoencoder 

Classification 99.1%  2023 

[133] Hyperspectral PCA + 2-D 
CNN 

Classification 97%  2022  

Fig. 14. Deep learning-based classification of MPs based on hyperspectral imaging data [140].  
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Fig. 15. Deep learning and computer vision techniques for: (a) segmentation of MPs [142], (b) quantification of pixels for MPs, and (c) calibration of the length ratio.  

Table 10 
Summary of deep learning methods for segmentation of MPs.  

Reference Data Machine learning Application Accuracy Year 

[143] SEM images U-Net Segmentation  93.1%  2022 
[116] SEM images MultiResUNet Segmentation  93.6%  2022 
[116] Digital images U-Net Counting  98.8%  2021 
[82] Digital images Mask-RCNN Segmentation  > 75%  2023 
[128] Digital images U-Net Segmentation-white 

background  
93.2%  2023 

[128] Digital images Mask-RCNN Segmentation-white 
background  

93.4%  2023 

[128] Digital images U-Net Segmentation-complex background  37.5%  2023 
[128] Digital images Mask-RCNN Segmentation-complex 

background  
80%  2023 

[144] Digital images U-Net Segmentation  98.5%  2023 
[144] Digital images UNet3plus Segmentation  92.1%  2023 
[145] Fluorescent microscope images U-Net Segmentation  73.6%  2022  

Fig. 16. Technology readiness levels according to the United States Department of Energy [146].  
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for sorting tasks are still in an infant stage, and prototypes have not been 
developed, thus having a TRL level of 2. Machine learning models for the 
detection, classification, and quantification tasks have been developed 
in the laboratory and validated using various images, exhibiting 
adequate performance for real applications. However, those models 
have not been fully validated in relevant environments with the 
consideration of various lighting conditions and complex environments, 
thereby resulting in a TRL of 4. 

5.2. Economic and environmental assessment 

An economic analysis has been performed to assess the economic 
viability of deploying robots and machine learning models – AI- 
empowered robot approach, for collecting and characterizing MPs 
[148]. The total cost is the sum of capital and operating costs. The 
capital cost encompasses one-time investments like equipment pur
chase, and the operating cost encompasses ongoing costs such as ma
terials, labor, and energy. The AI-empowered robot approach is 
compared with the traditional manual approach, as listed in Table 12. 

The costs are analyzed based on a task for characterizing MPs in an 
area of 1 hectare (10,000 m2). In this task, two primary assumptions 
have been adopted: (1) There are 10 pieces of plastic debris per square 
meter on average. (2) The average times for collecting and sorting 
plastic debris are respectively 3 s and 2 s per piece of plastic debris. Due 
to the large number of debris (100,000), only a hundredth of them (1000 
samples) are characterized for the comparison. This is conservative 
because the traditional manual approach has lower efficiency in char
acterizing plastic debris compared with the AI-empowered robot 

approach. Reducing the number of samples reduces the operation cost of 
the traditional manual approach. 

As shown in Fig. 17, the economic analysis results reveal that the 
capital cost of the AI-powered robot approach is 9400 USD higher than 
that of the traditional manual approach. However, the operation cost of 
the AI-empowered robot approach is significantly lower than that of the 
traditional manual approach. The difference of operation cost per 
hectare is 2441 USD, meaning that the total cost of AI-empowered robot 
approach is lower than that of the traditional manual approach when the 
approach is used for 4 ha. 

The environmental benefits of using AI-empowered robots for col
lecting and characterizing plastic wastes include reducing the environ
mental footprint by optimizing operations, minimizing fuel 
consumption and emissions, and preserving marine ecosystems. These 
are discussed in the three primary aspects as follows: 

(1) AI-empowered smart robots have higher time efficiency and 
precision in operations, as shown in Table 12. The higher time efficiency 
and precision reduce the time required to search for plastic debris and 
minimize unnecessary travels, thereby reducing fuel consumption and 
emissions associated with travels. The use of AI technology enables 
remote monitoring and control of robots, allowing operators to optimize 
operations without having to send humans to the job site, further 
reducing energy usage and emissions related to transportation. 

(2) Advanced machine learning algorithms such as reinforcement 
learning enable robots to autonomously navigate marine environments, 
optimizing routes based on real-time data such as ocean currents, wind 
patterns, and microplastic distribution. This reduces the travelling dis
tance and associated fuel consumption, contributing to reducing carbon 
emissions. In addition, machine learning models can be trained to 
analyze historical data and environmental variables to develop opti
mized deployment strategies for robots. By strategically positioning 
robots in areas with rich plastic debris, the collection tasks will minimize 
the travelling distance and maximize efficiency, further reducing 
negative environmental impacts. 

(3) The use of AI-empowered smart robots facilitates on-site detec
tion and efficient inspection of plastic debris compared with traditional 
manual approaches, eliminating or minimizing the need for transporting 
samples, thereby saving energy and reducing environmental impact. 
This also helps preserve fragile marine ecosystems by minimizing 
human intervention. 

5.3. Regulatory, ethical, and social implications 

The utilization of robots and machine learning models in environ
mental monitoring prompts inquiries about regulatory oversight [153] 
liability for errors or accidents [154] and compliance with data 

Table 11 
Summary of the reviewed technologies.  

Methods TRL Cost Data format Polymer type Particle size Field use Automation 

Optical microscope 9 Low 2D image No limitation No limitation Yes No 
Fluorescence microscope 9 Low 2D image Compatible with fluorescent dyes No limitation No No 
SEM 9 High 2D image No limitation Size limitation No No 
AFM 9 High 2D/3D image No limitation Size limitation No No 
FTIR 9 High 1D spectra, 2D image No limitation No limitation No No 
Raman 9 High 1D spectra, 2D image No limitation No limitation No No 
Portable FTIR/Raman 9 Low 1D spectra No limitation No limitation Yes No 
Hyperspectral imaging 9 High 1D spectra /2D image No limitation No limitation Yes No 
Digital holography 9 High 3D image No limitation No limitation Yes No 
Py-GC-MS 9 High 1D spectra No limitation Size limitation No No 
XRD 9 High 1D spectra No limitation Size limitation No No 
TGA 9 High 1D spectra No limitation Size limitation No No 
Robots-collection 7 Low - No limitation No limitation Yes Yes 
Robots-sorting 2 Low - No limitation No limitation Yes Yes 
AI-classification 4 Low 1D spectra, 2D image No limitation No limitation Yes Yes 
AI-detection 4 Low 2D image No limitation No limitation Yes Yes 
AI-quantification 4 Low 2D image No limitation No limitation Yes Yes  

Table 12 
Comparison of the costs of lab-based and AI-empowered approaches.  

Method Task Capital cost Operation cost 

Type Cost 
(USD) 

Time Rate 
(USD/h)* 

Manual Collection Manual 
operation 

- 83.3 h 15 

Sorting Manual 
operation 

- 55.5 h 15 

Characterization FTIR 22,000  
[149] 

8.3 h 60 

Robot Collection UAV 7000 - - 
Sorting Robot arms 1400 

[150] 
- - 

Characterization UAV-SWIR 
camera 

23,000  
[151] 

10 min -  

* Note: The wage rates listed are based on prevailing wage report of New 
Jersey, United States [152]. 
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protection [155] and privacy regulations [153]. Legal frameworks and 
standards are imperative to govern the deployment and operation of 
these monitoring technologies. Establishing guidelines and standards is 
crucial to address concerns regarding the accuracy and reliability of 
monitoring results [156], potential biases introduced by AI algorithms 
[157], and errors in AI algorithms [158] that could lead to incorrect 
assessments or decisions. Moreover, it is essential to regulate the 
deployment of robots in sensitive areas to mitigate potential risks to 
ecosystems [159]. Questions also arise regarding data ownership and 
control [160], necessitating clear policies and regulations to govern data 
ownership, sharing, and use. 

Ethical considerations surrounding the use of robots and machine 
learning in environmental monitoring include the potential displace
ment of workers [161], the equitable distribution of monitoring re
sources [162], and the unintended consequences of automated 
decision-making on communities and ecosystems [163]. Efforts should 
be made to mitigate negative economic impact on affected workers and 
communities. Using robots and machine learning in environmental 
monitoring should consider the needs and perspectives of marginalized 
communities, ensuring equitable access to environmental data. The 
deployment of robots and machine learning technologies in environ
mental monitoring may have unintended consequences, such as unin
tended environmental impacts, social disruptions, or unforeseen risks. 
To minimize harm, ethical considerations should guide the design, 
deployment, and evaluation of these technologies. 

The social implications of utilizing robots and machine learning in 
environmental monitoring are multifaceted, necessitating careful 
consideration of economic, technological, and cultural factors to maxi
mize benefits and mitigate risks for society. While robots and machine 
learning can significantly enhance the efficiency of environmental 
monitoring efforts [164–166], leading to more comprehensive and 
timely data collection, they also help improve public awareness about 
environmental issues and encourage community engagement in con
servation efforts. Interactive platforms and visualizations generated by 
robot and machine learning technologies can help educate and empower 
citizens to take action to protect the environment [167]. The improved 
efficiency in environmental monitoring empowers communities to 
participate in environmental monitoring and governance processes, 
enabling local stakeholders to collect and analyze data relevant to their 
specific concerns. Participatory monitoring initiatives can foster com
munity resilience and support bottom-up approaches to environmental 
management. Introducing robots and machine learning into environ
mental monitoring requires navigating cultural and social norms 
regarding technology adoption and trust [168]. Building trust and 
acceptance among diverse communities is critical to ensure the suc
cessful implementation of these monitoring technologies. 

5.4. Advantages and challenges 

The use of AI-empowered robot approach for identification, classi
fication, and quantification of MPs has the following advantages 
compared with the conventional methods:  

(1) High efficiency: The measurement data, such as FTIR and Raman 
spectrometry data and hyperspectral images, are analyzed and 
interpreted quickly by machine learning models. The computa
tion time for each data is often shorter than 0.2 s for segmenta
tion tasks [82] and 0.03 s for detection tasks [127], making it 
possible to achieve real-time or near-real-time characterization of 
MPs.  

(2) High accuracy: Machine learning models trained using the data of 
MPs provide consistent characterization results and are free of 
human errors, thereby eliminating the uncertainties related to 
engineers. The trained detection models can achieve overall ac
curacies ranging from 83.4% to 100% (Table 8). The classifica
tion accuracy typically exceeds 90% (Table 9). The segmentation 
task is challenging and has lower accuracy in certain applications 
(Table 10). More efforts are necessary to improve segmentation 
accuracy. 

(3) Full automation: Machine learning models can operate auto
matically, such as a fully automated collection device [97], ro
botic arms for sorting MPs [80], drones and other remote sensing 
technologies used for the detection and characterization of MPs 
[19]. These technologies can operate with no or minimal human 
intervention, thereby mitigating the dependence on engineers 
and reducing labor-related expenses. 

(4) Full digitalization: Machine learning models provide digital re
sults which are computer understandable and operatable. The 
digital results can be stored and utilized conveniently. For 
example, the results can be used to develop and update digital 
models [169]. 

The use of robots and machine learning methods for identification, 
classification, and quantification of MPs still has limitations:  

(1) Dependance on data: Data is the source of knowledge for machine 
learning models. Both the quality and quantity of data play sig
nificant roles in the performance of the machine learning models 
trained using the data. A general challenge in the domain of MPs 
is the lack of high-quality databases available for developing 
machine learning models.  

(2) Limited generalizability: In existing research, machine learning 
models have been trained using particular datasets that have 
limited number of data and lack diversity in the data. In general, a 

Fig. 17. Economic analysis results for the traditional manual and AI-empowered robot approaches: (a) capital cost; and (b) operation cost.  
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machine learning model trained using a particular dataset has 
low performance when a different dataset is used. The low 
generalization performance has generated major concerns in real 
practices because real applications may involve new data that 
cannot be recognized by the machine learning model trained 
using a small dataset. For example, deep learning models trained 
using photos collected under laboratory conditions are not suit
able for complex scenes in the real world, as reported in [128].  

(3) Lack of interpretability: Machine learning models are generally 
black-box models. When a machine learning model is used to 
characterize MPs, the model outputs the result without explain
ing how and why the result is generated. It is difficult for engi
neers to trace and check the results from machine learning 
models. This also cause concerns about the reliability and un
certainty of machine learning models in real practice.  

(4) Robot deployment: MP particles are small, requiring robots with 
precise sensing capabilities and maneuverability to effectively 
detect and characterize small microplastic particles. The limited 
resolution of digital cameras presents a challenge in imaging 
MPs, necessitating the strategic selection of appropriate cameras 
[170]. Digital cameras are not designed to achieve a high level of 
magnification required to detect tiny objects. Standard digital 
cameras, such as those with 720 P resolution, often cannot 
identify MPs [171]. Using cameras with 10 megapixel or more 
also presents additional challenges, such as increased cost. In 
addition, robots have difficulty in navigating complex environ
ments, such as swamps and densely vegetated areas, where 
microplastic pollution may accumulate [172]. These terrains are 
not only physically challenging due to uneven ground or water
logged soil that hinders movement but also pose significant ob
stacles for using sophisticated sensors to effectively detect and 
characterize MPs. Maintaining reliable communication and con
trol over robots in remote or harsh environments is difficult, 
especially underwater or in dense vegetation where signal loss 
can occur [173]. 

5.5. Opportunities 

The following opportunities have been identified for future research 
on further developing AI-empowered methods for collecting and char
acterizing MPs:  

(1) The advancement in smart robots and machine learning has 
created new opportunities for advancing robots to streamline 
automatic identification, collection, and characterization of MPs. 
It is promising to develop smart robots with the capabilities of 
automated survey and path optimization for self-operation in 
various environmental conditions [174]. It is important to 
incorporate advanced sensors into robots for self-sensing and 
advanced machine learning algorithms such as reinforcement 
learning for self-navigation [175].  

(2) To address the challenges of lack of data for machine learning 
models used to characterize MPs, with the advances in generative 
AI techniques [176], it is promising to develop generative AI 
models for producing artificial yet reasonable data that can be 
used to enrich the databases for training and testing machine 
learning models, improving their performance in terms of accu
racy and generalizability.  

(3) To address the challenges of interpretability of machine learning 
models, it is promising to develop knowledge-guided machine 
learning methods [177]. Domain knowledge can be incorporated 
into machine learning models to achieve interpretability.  

(4) The development of high-quality datasets to train benchmark 
models for detecting and characterizing microplastics is another 
pressing task. For instance, creating FTIR spectral datasets for 

classifying MPs and developing high-definition photographic 
datasets for the detection and quantification of MPs. 

6. Conclusions 

This paper presents a comprehensive review on the categories and 
distribution, AI-empowered technologies, and challenges and opportu
nities for the collection and characterization of MPs. The following 
conclusions can be drawn:  

• Fragments and fibers are the primary morphological types of MPs, 
while PE and PP are the dominant compositions found in MPs. MPs 
are widely distributed over the earth in the water and soil systems. 
The physical and chemical properties of MPs show significant dif
ferences in different regions. The differences reveal the importance 
of characterizing and monitoring MPs in different regions with 
effective and efficient methods.  

• Various AI-empowered technologies have been developed and 
implemented to collect, process, and characterize MPs intelligently 
and efficiently. Representative technologies include smart robots for 
collecting and sorting MPs and machine learning models for 
analyzing and interpreting the characterization data for MPs. 
Various types of instruments for characterizing MPs can be inte
grated into robotic platforms to automate the process of collecting 
characterization data, and machine learning models can be trained to 
detect, classify, and quantify MPs without human intervention. 
Integrating robotic systems and machine learning models can auto
mate the collection and characterization for MPs.  

• While commercial instruments for characterizing MPs have reached 
a high level of maturity and application, the TRL of AI-empowered 
technologies remains relatively low. In particular, the development 
of machine learning models used for data analysis is still at its early 
stage, despite rapid progress in recent years. Important challenges 
have been identified from the literature of AI technologies, and 
relevant opportunities have been discussed, aimed at promoting 
further research and development of AI technologies. 

Environmental implication 

Microplastics are hazardous materials because they cause various 
health problems to animals and humans. Marine organisms can mistake 
microplastics for food. Microplastics adsorb and carry pollutants in 
water, accumulate toxins, and aggravate water pollution. Microplastics 
enter the food chain via seafood and drinking water. Microplastic 
ingestion causes abrasive effects, inflammation or reproductive issues, 
developmental problems, and immune responses. This paper reviews 
artificial intelligence-empowered technologies employed in the collec
tion and characterization of microplastics. A framework is presented to 
integrate efforts for collecting, processing, and characterizing micro
plastics. Emerging robots and machine learning technologies are 
reviewed to promote research on mitigating microplastics pollutions. 
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