Journal of Hazardous Materials 471 (2024) 134405

ELSEVIER

journal homepage: www.elsevier.com/locate/jhazmat

Contents lists available at ScienceDirect [R5 ARDOUS
MATERIALS

Journal of Hazardous Materials

Review :.)
Artificial intelligence-empowered collection and characterization of el

microplastics: A review

Pengwei Guo *, Yuhuan Wang “, Parastoo Moghaddamfard ?, Weina Meng ®, Shenghua Wu",

Yi Bao™

@ Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States
Y Department of Civil, Coastal, and Environmental Engineering, University of South Alabama, Mobile, AL 36688, United States

HIGHLIGHTS

o Artificial intelligence-empowered
collection and characterization of
microplastics are reviewed.

e A framework is created to unify efforts
for collecting, processing, and charac-
terizing microplastics.

e Robots and machine learning methods
are integrated in the detection and
collection of microplastics.

e The limitations and technology readi-
ness levels of artificial intelligence
technologies are discussed.

e Future opportunities for autonomous
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ABSTRACT

Microplastics have been detected from water and soil systems extensively, with increasing evidence indicating
their detrimental impacts on human and animal health. Concerns surrounding microplastic pollution have
spurred the development of advanced collection and characterization methods for studying the size, abundance,
distribution, chemical composition, and environmental impacts. This paper offers a comprehensive review of
artificial intelligence (AI)-empowered technologies for the collection and characterization of microplastics. A
framework is presented to streamline efforts in utilizing emerging robotics and machine learning technologies for
collecting, processing, and characterizing microplastics. The review encompasses a range of Al technologies,
delineating their principles, strengths, limitations, representative applications, and technology readiness levels,
facilitating the selection of suitable Al technologies for mitigating microplastic pollution. New opportunities for
future research and development on integrating robots and machine learning technologies are discussed to
facilitate future efforts for mitigating microplastic pollution and advancing Al technologies.
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1. Introduction

The global production of plastics exceeds 400 million tons annually,
while roughly 14 million tons of waste plastics infiltrate water systems
[1]. Waste plastics then undergo fragmentation into microplastics (MPs)
through physical, photochemical, and biodegradation processes [2,3].
MPs are typically defined as plastic particles with a size smaller than 5
mm in length [4]. These tiny plastic particles can come from a variety of
sources, including the breakdown of larger plastic items, microbeads
used in personal care products, and fibers shed from synthetic clothing,
among others [5]. The presence of MPs is widespread, extending across
diverse ecosystems including oceans, rivers, lakes, soils, and even the
atmosphere. Due to the small particle size of MPs, it causes serious
environmental problems and social impacts.

Various environmental, ecological, and health problems are associ-
ated with MPs. Marine organisms, including fish and turtles, are
vulnerable to mistaking MPs for food. [6]. These particles have the
potential to disrupt ecosystems by affecting nutrient cycles and aquatic
communities, as well as adsorb and transport pollutants, leading to the
accumulation of toxins and exacerbation of water pollution [7].
Increasing evidences suggest that MPs can infiltrate the food chain
through seafood consumption and drinking water [8], posing risks such
as abrasion, inflammation, reproductive issues, developmental prob-
lems, and immune responses upon ingestion [9]. In addition, MPs may
clog filters and pipes within water treatment plants, reducing their ef-
ficiency and increasing operation and maintenance (O&M) costs [10].
Overall, addressing the increasing distribution and accumulation of MPs
is an urgent task globally.

The substantial volume, widespread distribution, and profound im-
pacts of MPs emphasize the urgent need for their collection and char-
acterization. Traditional methods for collecting and characterizing MPs
usually involve manual processes that are time-consuming and labor-
intensive. The challenges originate from the small size, wide distribu-
tion, and large variations of MPs in terms of sizes, shapes, and sources
[4]. Under natural conditions, the mixture of different types of MPs
further complicates the process of manual identification.

Recently, applications of artificial intelligence (AI) technologies
have extended to the domain of waste management. Intelligent robots
have been developed to autonomously collect and classify MPs [11-13],
and machine learning models have been developed to analyze and
interpret data for microplastic characterization efficiently [14-16].
These breakthroughs have created new avenues in the study, utilization,
and management of MPs. The advances in Al technologies for MPs is
aligned with the Internet of Things (IoT) in the era of Industry 4.0 [17].

The use of machine learning technology has been reviewed in ref-
erences [18,19]. Reference [18] primarily focused on reviewing ma-
chine learning methods for detecting plastic debris, and reference [19]
primarily focused on remote sensing and machine learning methods for
detecting plastic debris, as shown in Table 1. Both references highlight

Table 1
Comparison of this study with existing review papers.
Investigated contents This Reference Reference
study [18] [19]
Focused object MPs Litter Litter
Automatic collection v X X
Automatic sorting \/ X X
Automatic Al-assisted v X X
characterization spectral analysis
Al-assisted \/ \/ \/
detection
Al-assisted v v x
quantification
Technology readiness level v X
Economic and environmental assessment v X
Regulatory, ethical, and social \/ X X

implications
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the advantages of machine learning methods for detecting litter or other
large debris theoretically, while it is still unclear whether machine
learning methods are practical for collecting and characterizing MPs.
Moreover, these references did not consider integrating hardware (ro-
bots) and software (machine learning models) for the collection and
characterization of MPs. It remains unclear how robots and machine
learning techniques can be integrated to collect, sort, classify, detect,
and quantify MPs.

To solve these problems, this paper reviews the state-of-the-art ro-
bots and machine learning technologies for the collection and charac-
terization of MPs, aiming to facilitate the application of Al technologies
for mitigating MP problems. The contributions of this research are
summarized as follows: (1) This paper proposes an Al framework for
automatic management of MPs, covering the collection, sorting, detec-
tion, quantification, and characterization tasks for MPs. (2) This paper
discusses the benefits and limitations of each technology for the detec-
tion and characterization of MPs while identifying future research and
development opportunities. (3) The paper discusses the technology
readiness level (TRL) of various devices and methods, along with their
performance metrics, to aid in the selection of appropriate technologies
for practical applications (4) The paper presents an overview of the
types, distribution, and magnitude of MPs to elucidate the motivations
and challenges. (5) Traditional collection and characterization methods
are outlined to highlight the advantages offered by Al technologies. By
conducting a comprehensive comparison, suitable methods can be
identified for different scenarios.

2. Methodology
2.1. Keywords and databases

The keywords include “microplastics (MPs)”, “collection”, “charac-
terization”, “robots”, “sensors”, “machine learning (ML)”, “artificial in-
telligence (AI)”, “laboratory”, and “field”. These keywords were
combined in different ways to search relevant publications from multi-
ple databases. The investigated databases include “ScienceDirect”,
“Scopus”, “Web of Science”, “Google Scholar”, “Nature”, “Science”,
“Optica Publishing Group”, “IOPscience”, and “IEEE Xplore”. Advanced
settings for searching include: (1) Years: between 2010 and 2023. (2)
Article types: review articles, research articles, book chapters, and short
communications. (3) Language: English.

2.2. Statistics of relevant publications

The increase in the number of publications related to MPs from 2010
to 2023 is shown in Fig. 1. An exponential surge is observed from Fig. 1
(a), indicating increasing concern. The number of publications from
different countries (publications over 200) is shown in Fig. 1(b), indi-
cating that this environmental challenge has attracted worldwide
attention.

2.3. Selection of publications

The scope of this review includes: (1) The types, sources, sizes, and
spatial distributions of MPs. (2) Traditional collection and character-
ization technologies for MPs. (3) Al-empowered approaches such as
robots and machine learning technologies. Based on this scope, a sys-
tematic approach was used to collect relevant publications, as shown in
Fig. 2. The general process includes: First, relevant publications were
collected from databases using keywords (see Section 2.1). The search
and selection tasks follow the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) method [20]. The initial search
found a total of 74,648 relevant publications. After removing duplicates,
the remaining publications were sorted by relevance, and 144 journal
articles were selected. During the review process, some necessary ref-
erences were added. Finally, this method selects a total of 177
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Fig. 1. Number of publications from 2010 to 2023: (a) in each year, and (b) from different countries.
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Fig. 2. Flowchart for the method used to search and select the references in this review paper.

publications satisfying the specified criteria.
3. Categorization and distribution
3.1. Categories and sources

MPs can be classified into primary and secondary categories, as
shown in Fig. 3(a). Primary MPs are intentionally produced, and sec-
ondary MPs are generated via ultraviolet light degradation or biodeg-
radation degradation of coarse debris [21]. MPs have different
morphological properties and chemical compositions. The morphology
of MPs includes fragments, fibers, pellets, films, and foams, as shown in
Fig. 3(b) [22]. Fibers and fragments are the dominant types, accounting
for 28% and 31%, respectively [22]. Fig. 3(c) shows the statistical re-
sults of the chemical composition of MPs [23]. MPs can be made from a
variety of polymers with different chemical compositions, such as
polypropylene (PP), polyethylene (PE), polystyrene (PS), polyethylene
terephthalate (PET), polyamides (PA), polyvinyl chloride (PVC), and

polyurethanes (PU). The main sources of MPs are PE and PP polymers,
accounting for 29% and 17%, respectively [23].

The types and primary applications of MPs are shown in Table 2
according to the chemical composition. PE is one of the most widely
used type, commonly found in products such as bags, bottles, and con-
tainers [24]. PE is further categorized into high-density polyethylene
(HDPE) and low-density polyethylene (LDPE), which can persist for over
500 years [24]. HDPE and LDPE are commonly found as pellets (beads)
and films, respectively [25,26]. PP appears as fragments and textiles,
known for its high chemical resistance, toughness, and heat resistance
[27]. PET, utilized widely in textiles, possesses notable strength, mois-
ture resistance, and chemical resistance [27]. PS is typically found in
foam packaging [28].

3.2. Spatial distributions

Despite the different sources, oceans are often the destinations of
MPs through water flows. The spatial distributions of MPs in aquatic and
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Fig. 3. Categories and sources of MPs: (a) categories, (b) statistics of morphology [22], and (c) statistics of chemical compositions [23].

Table 2
Properties of typical polymers in MPs.

Type Density (g/ Lifespan Applications
cm?®) (years)

LDPE 0.91-0.94 500-1000 Plastic bags, packaging, agricultural films
[29] [24] [24]

HDPE 0.94-0.97 <100 [24] Bottles, containers, pipes [24]
[29]

PP 0.89-0.92 < 20 [30] Packaging, textiles, automotive parts
[29] [24]

PS 1.04-1.07 < 50 [24] Disposable cups, packaging, insulation
[31] [24]

PET 1.34-1.39 5-10 [24] Soda bottles, textile fibers, packaging
[32] [24]

PVC 1.38 [32] > 100 [33] Pipes, vinyl flooring, cables [33]

PA 1.13-1.15 30-40 [34] Textiles, automotive parts [35]
[23]

ABS 0.99-1.10 < 50 [36] Automotive parts, pipe, electrical
[31] enclosures [37]

POM 1.41 [38] - Gear, bearings, automotive components

[39]

PMMA  1.17-1.20 <20 [41] Acrylic glass, signage, medical devices
[40] [41]

PU 0.03-0.19 20-30 [43] Insulation, coating, mattresses,
[42] sportswear [44]

PC 1.20 [45] - Compact discs, electronic components,

automotive components [46]

Note: PMMA- polymethyl methacrylate; ABS-acrylonitrile butadiene styrene;
POM- polyoxymethylene; PC- polycarbonate.
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terrestrial systems are discussed in this section.

3.2.1. Aquatic environment

Approximately 11 million tons of MPs enter aquatic systems annually
[47], with high abundance found in lakes, rivers, and oceans [48]. The
ubiquity of MPs and their abilities to carry heavy metals and microbial
communities generate major concerns. Statistical data of MPs in aquatic
systems are shown in Table 3. The overall quantity of MPs in oceans
across both hemispheres exhibits comparable orders of magnitude [49].
High abundance was observed in densely inhabited areas such as the
South China Sea coast with 243-349 items/m>. Conversely, low abun-
dance is reported in remote areas such as the Southern Ocean with 0.008
items/m® [50]. MPs in the ocean are dominated by fragments, fibers,
and films composed of PP, PE, and PET. Transparent, white, blue, and
black are the most common colors. Statistical findings indicate signifi-
cant differences in the abundance, morphology, chemical composition,
and color of MPs across various aquatic systems.

3.2.2. Terrestrial environment

The accumulation of MPs in soils poses a threat to ecosystems [64].
MPs can infiltrate the topsoil by various means such as tillage, earth-
worms activities, water penetration from digging, or physical degrada-
tion [65]. The primary sources of MPs in terrestrial environments
include cosmetics, clothing fibers, and the breakdown of larger plastic
debris [66]. MPs have been detected in soils across different countries,
including farmlands in German [67], agricultural sites in Spain [68],
and central valley of Chile [69]. Report indicates that 90% of Swiss
floodplain soils contain MPs [70]. Representative data for distribution of
MPs is listed in Table 4. Statistical results indicate significant differences
in the abundance, morphology, chemical composition, color, and size of
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Table 3
Statistical information about the distribution of MPs in aquatic systems.
Sampling location Abundance  Morphology Polymer Colors Size Methods Ref
(items/m3) (mm)
Southern Ocean (Antarctic 0.008 Fragment, pellet, fiber PS, PVC, PE Transparent <5 FTIR [50]
Peninsula)
Southern Ocean 0.17 Fragment, fiber PE, PP Red, blue <5 FTIR [51]
(Ross sea)
Arctic Ocean 0.7 Fragment, fiber PS, PA, PVC Transparent, blue, red 0.25-5 FTIR [52]
(Central Basin)
Arctic Ocean 0.23 Fiber, film PP, PET White, black 0.1-5 Microscope, [53]
(Bering and Chukchi Seas) FTIR
Atlantic Ocean 25-29 Fragment, fiber, PP, PE, PET, PA, PVC Blue, translucent <5 FTIR [54,
(Western) 55]
Pacific Ocean 243-349 Fragment, fiber PE, PP, PET, PS, PVC Transparent, white, black <5 FTIR [55,
(South China Sea) 56]
Indian Ocean 0.05-4.4 Fragments, fiber PU, PET, PP, PVC Green, red, blue <5 FTIR [57]
Mediterranean Sea 0.15 Fragments, fiber, film, PE, PP, PVC Yellow, green, blue, red <5 FTIR [58,
pellet, foam 59]
Great Lakes 0.05-32 Fragments, fiber, film, - Transparent, white, black, <5 Digital camera [60]
pellet, foam blue
Yangtze River 0.9 Fragments, fiber, PP, PS, PE Transparent, blue, white, 0.3-5 Microscope, [61,
black, red, FTIR 62]
Amazon river 5-152 Fragments, fiber, Acrylic, PET, PP, PS, Black, brown, yellow 0.55-5 Microscope, [63]
PE, PVC FTIR
Table 4
Statistical analysis of the distribution of MPs in soil.
Area Soil type Abundance  Shape Polymer types Size (mm)  Depth Color Methods Ref.
(items/kg) (cm)
Shandong, China Agricultural 310-5698 Fiber, fragments, PE, PP, PET, <5 0-5, Transparent, white, FTIR [71]
soil films, pellet PVC, PS 10-25 blue
Yunnan, China Agricultural 900-4080 Fragments, fiber - <5 0-30 Transparent, black, Microscope [72]
soil blue
Tibetan Plateau, Grassland soil 910.9 Fiber, fragment, pellet ~ PE, PP, PS, PVC <5 0-10 Transparent, white, FTIR [73]
China black
Chile Agricultural 540 Fibers, films, PS, PE, PP <2 - - Microscope, [69]
soil fragments FTIR
Germany Agricultural 0-217.8 Fragment, fiber, pellet ~ PE, PP, PA 1-5 0-10, Black, white FTIR [67]
soil 10-20
Southeast, Agricultural 50-3500 Fragments, fiber PS, PE, PVC <5 0-10 - FTIR [68]
Spain soil
Ontario, Canada Agricultural 14,000 Fiber, fragment PE, PP, PS, <5 0-15 - FTIR [74]
soil PMMA
Melbourne, Urban 529.3 Fiber, film, fragment, PS, PE, PP <5 - - FTIR [75]
Australia soil pellet
Zhejiang, China Coastal soil 313.9 Fragments, film, fiber, PP, PE, PET <5 0-20 White, black, yellow  FTIR [76]
foams
Switzerland Floodplain soil 593 Fragments PE, PS, PVC 0.125-0.5 0-5 - FTIR [70]

MPs across different regions, and PP and PE are the most common types
of MPs in soils, primarily in the form of fragments and fibers. Trans-
parent MPs are the most prevalent color, followed by white and black
colors.

4. Collection and characterization

This section reviews innovative technologies leveraging Al and

Bio-inspired Lo o
robots MP
Roboi detection
obotic & Y _
vessels . .

Robotic

Rol?otic m arm
vehicles DY,

robots for collecting and characterizing MPs. In Section 4.1, a frame-
work is presented to integrate the efforts for collecting, processing, and
characterizing MPs using various devices and data analysis methods.
Section 4.2 discusses traditional and automated methods for collecting
MPs. Section 4.3 delves into techniques for sorting and separation of
MPs. Section 4.4 presents characterization methods employing robots
and machine learning, aiming to enhance the efficiency of efforts for
characterizing MPs.

MPs identification and characterization

Data management
and analysis

Data utilization

Data collection

For microplastic:
* Detection
* Localization

« Machine leaming * Quantification
¢ 5G, IoT * Visualization
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Fig. 4. Framework for Al-empowered collection, processing, and characterization of MPs.
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4.1. Framework

A framework is presented to integrate the efforts for collecting,
processing, and characterizing MPs (Fig. 4). The framework consists of
three primary tasks:

(1) Collection. The collected samples usually contain impurities such
as soil. Robotic systems have been developed to collect MPs from
diverse environments [77].

(2) Processing of samples. The primary purpose of this task is to
obtain clean MPs. Robotic arms have been developed to auto-
matically sort and pick waste plastics [78-80].

(3) Characterization. Various methods have been developed to
collect data for characterizing MPs. Some methods can be inte-
grated with robots such as drones to automate the data collection
process. The data collected from robots can be analyzed using
machine learning models which can be trained to characterize
MPs automatically [81-83].

4.2. Collection

Representative tools for collecting MPs from aquatic environments
are shown in Fig. 5. MPs in the near surface of water can be collected
using net-like tools such as manta trawl [84], Bongo net [85], and
plankton net [86]. These tools are manually operated or attached to a
boat to collect MPs. Manta trawl and Bongo net can cover a large area,
achieving high efficiency in collecting a substantial quantity of MPs
from surface water [87]. These instruments are capable of collecting
various sizes of MPs, ranging from 0.3 mm to 5 mm [87]. The specific
size of collected MPs is dependent on the mesh size. In contrast, plankton
net is smaller in size and inefficient for large-scale collection. However,
plankton net is relatively simple to operate and inexpensive compared
with manta trawl and Bongo net [86]. These sampling methods neces-
sitate support from a ship, and increased collection efforts result in more
ship time, making the process both time-consuming and
resource-intensive. Despite these challenges, the use of such tools is
essential for assessing the prevalence and distribution of MPs in marine
environments. Each tool offers different advantages that can be tailored
to specific research or monitoring goals. For instance, while manta trawl
and Bongo net are ideal for quantitative assessment over wide areas,
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plankton net is more suitable for qualitative studies in localized regions.

Low-density MPs may initially float on water surface and then
gradually sink into sediment as biofilm and mineral deposits accumulate
on the surfaces of MPs [88]. The accumulation of MPs in sediments is
concerned since it can lead to long-term contamination of aquatic eco-
systems, affecting both the organisms and water quality. MPs in sedi-
ment can be sampled using multi-corer [89], box corer [90], and gravity
corer [91]. The multi-corer device has a unique design to collect mul-
tiple samples simultaneously, significantly improving sampling effi-
ciency [92]. However, it can only collect samples from the top layer of
sediment, making it less suitable for studies requiring deeper sediment
profiles. In addition, the complexity of the device also makes it more
expensive. Box corer has higher collection efficiency because it samples
a large volume of sediment [93]. Gravity corer is designed to penetrate
deeper into sediment layers. In general, the gravity corer has advantages
such as simple operation and high cost-effectiveness. However, it can
only collect a limited number of samples at a time [91]. The traditional
method for collecting MPs from terrestrial environments involves
manually picking MPs from the ground or using coring devices to extract
soil samples [94]. Soil samples are usually extracted from different lo-
cations, and at each location, samples are extracted from different
depths to investigate the spatial distribution of MPs. The above methods
have been used to sample MPs in sediments, while large-scale cleanup of
MPs in sediments remains a challenge.

Various robots, such as robotic fish, drones, and smart cars, have
been developed to collect MPs from water and beaches [77,95-102]. A
3D printed bio-inspired robotic fish called Gillbert, shown in Fig. 6(a),
was invented to collect MPs from water [77]. Gillbert is a salmon-sized
robot equipped with a filtration system and remoted control module.
The gills of robotic fish act as a filter, trapping MPs up to 2 mm while
allowing water to pass. The collected MPs are stored in an internal
container, which can be retrieved for recycling or proper disposal. At
this moment, the machine is small and can be only used for MPs sam-
pling. In future research, scaling up the robot to enable large-scale
collection of MPs in water needs to be considered. In reference [96], a
multi-vehicle system was designed to clean MPs from seafloors. A
remotely operated vehicle (ROV) was used to scan seafloors using
multibeam echosounder, providing a bathymetric map of the seabed.
Large litters were detected and marked on the bathymetric map. When
the water was transparent, a drone was operated to identify areas with

Fig. 5. Representative tools used for collecting MPs: (a) manta trawl [84]; (b) Bongo net [85]; (c) plankton net [86]; (4) multi-corer [89]; (5) box corer [90]; and (6)

gravity corer [91].
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Fig. 6. Representative robots used for collecting MPs: (a) robotic fish [77]; (b) portable Catamaran drones [97]; and (c) robotic vehicle [98].

abundant MPs. A small ROV was used to targeted scans of the sea bottom
to find MPs using deep learning-based object detection technology. The
targets of detection can be MPs and other marine debris, depending on
the dataset used to train the deep learning models. An unmanned surface
vehicle served as a central hub for deploying and managing the ROVs
and drone. Reinforcement learning was applied for path planning and
controlling the movement of observing and collecting ROVs.

Portable drones have been designed to collect MPs from the water
surface, as shown in Fig. 6(b) [97]. Drones equipped with an automatic
pilot system collected MPs from areas inaccessible to boats. The end of
the drone was connected to the plankton net for collecting MPs. The
model of plankton nets varied depending on the application, with mesh
sizes ranging from 0.053 mm to 3 mm. The average moving speed of
drones reached 0.58 m/s, which greatly mitigates the difficulty of col-
lecting MPs from water surface. Up to 14,000 samples were collected
within 9 min. This tool can be scaled up in the future to automate
large-scale water surface cleanup of MPs. A robot vehicle was developed
to collect plastic waste from beaches with an efficiency of
3000 mz/hour, as shown in Fig. 6(c) [98]. The robot was powered by a
combination of solar energy and battery and remotely operated from
distances of up to 300 m, effectively collecting waste plastics and pre-
venting them from seeping into soils. Representative studies on robotic
systems for collecting MPs are listed in Table 5. The use of robots
significantly improved the efficiency of collecting MPs from aquatic
environments and beaches.

4.3. Processing

The primary purpose of processing tasks is to obtain clean MPs from
collected samples which usually contain contaminations such as sand.
Robotic systems have been developed to sort waste objects (Fig. 7). A
robot is equipped with a digital camera to identify plastic objects based
on deep learning. The digital camera captures images, which are then
analyzed using deep learning models, enabling the models to accurately
identify, locate, and classify plastic objects for intelligent control of
robots to efficiently sort plastics.

Table 6 shows representative studies on sorting plastics using robots
[78,80,103-108]. These robots utilize cameras and machine learning

Table 5

Summary of robotic systems for automatic collection tasks.
Reference Robots Location Automation Year
[77] Robotic fish Water body Yes 2022
[97] Catamaran drone Water surface Yes 2022
[98] Robotic vehicle Beach Yes 2022
[99] Aquatic drone Water surface Yes 2023
[12] Robotic vehicle Beach Yes 2022
[102] Aquatic surface robot Water surface Yes 2020
[100] Amphibious robot Water surface Yes 2023
[95] Robotic fish Water body Yes 2022
[101] Robotic vehicle Beach Yes 2021
[96] Robotic vessel Water body Yes 2023

algorithms to automate sorting tasks. For example, an innovative robot
was developed to detect and grasp plastic objects based on a depth
(RGB-D) camera [80]. A YOLACT model was trained using 1500 images
of plastic objects such as bottle caps, drinking bottles, and foam food
containers. The images had complex backgrounds such as tiles, side-
walks, grass, and roads. Therefore, a model trained using such images
achieved a reliable object detection capability in real-world scenarios.
The RGB images from depth cameras were utilized to detect and locate
plastic objects using the trained YOLACT model. Upon testing, the
trained YOLACT model achieved real-time target detection based on
video streams. The depth information from depth cameras helped
generate point clouds to simulate the surface condition of plastic objects
and aided in devising the grasp strategy. The grasp success rate exceeded
90% [80].

In reference [104], a real time waste sorting system was designed to
pick up plastic objects. Various deep learning models including YOLOR,
YOLOV6, and YOLOV7 were trained to detect plastic objects. The dataset
used to train the deep learning models comprised 3217 images. The
YOLOv6 model demonstrated the highest prediction accuracy (95.5%)
in detecting plastic objects. After detecting and locating plastic objects,
SolidWorks was utilized to simulate the architecture of a real robotic
arm. This simulation adopted a simple geometric method to calculate
the angles of the arm’s joints, enabling it to pick up plastic objects
quickly.

In reference [78], a robot and Mask-RCNN model was integrated to
pick bottles, achieving a remarkable accuracy of 96.4%. A robot was
developed employing YOLOX to detect and classify various plastic ob-
jects, such as supply bottles, beverage bottles, and tableware boxes
[103]. The highest detection accuracy (90.8%) was achieved in picking
express packages, whereas beverage bottles had the lowest detection
accuracy (68.5%).

Current robotic arms were not designed to sort MPs, and there is a
lack of research on using robots for sorting MPs. However, with the
escalating pollution caused by MPs, there is a pressing need to develop
robots for sorting MPs. These robots are crucial in addressing the
growing concern surrounding microplastic contamination.

4.4. Characterization

Advanced technologies have been developed to character MPs
regarding morphology and chemical composition. Representative tech-
nologies for data collection (Section 4.4.1) and data analysis (Section
4.4.2) are reviewed.

4.5. Data collection

(1) Microscopy.

Various microscopes, such as optical microscopes [5109], fluores-
cence microscopes [110,111], scanning electron microscopes (SEM)
[112,113], and atomic force microscopes (AFM) [114,115] have been
used to collect data for characterizing the morphology and size of MPs
(Fig. 8). These microscopes differ in resolution and function.
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Fig. 7. Sorting plastics using a smart robot system composed of robotic arms and Al models.

(2) Digital camera.
Digital camera is the most used imaging system, due to the advan-
tages such as ease of use, portability, and cost-effectiveness, making

Table 6
Summary of robotic systems for sorting MPs.

Reference  Robots Data source  Algorithm Accuracy  Year them suitable for various field projects. The drawbacks include limited
[80] Robotic Digital YOLACT 97.4% 2021 magnification and certain sensitivity to lighting conditions. Digital
arm camera cameras can be mounted on robots, such as drones and crawlers, to
(78] Robotic Digital Mask-RCNN.— 89.4% 2022 efficiently detect MPs [116]. Digital photos can be analyzed using deep
arm camera . . . . . .
[103] Robotic Digital YOLOX 68.5- 2023 learnlng-b?seq computer v151or'1 methods for efﬁc1en't detectlon' of MP'S,
arm camera 90.8% as shown in Fig. 9. More details about methodologies are available in
[104] Robotic Digital YOLOv7 96.5% 2023 Section 4.4.2.
arm camera (3) Fourier transform infrared spectroscopy, Raman spectroscopy,
[104] Robotic Digital YOLOV6 95.6% 2023 . .
arm camera and hyperspectral imaging.
[104] Robotic Digital YOLOR 95.7% 2023 Fourier transform infrared spectroscopy (FTIR) based on the elec-
arm camera tromagnetic wave absorption has been used to evaluate chemical bonds
[104] Robotic Digital YOLOv4 98.4% 2023 and compositions of MPs [117]. The measured data are presented in the
05] aan; ; lc)a."i‘frf . 7% 2022 frequency domain to evaluate the chemical composition, as shown in
obotic 1gita ( . . .
arm camera F'1g.. 10.' FTIR software generates Hit Quality Index (HQI) to measure the
[106] Robotic Depth Mask-RCNN 86.5% 2022 similarity between two spectra [117]. HQI values range from 0 to 100,
arm camera with higher values indicating greater similarity between the test mate-
[107] Robotic Digital Mask-RCNN  97% 2023 rial and the library-stored material. Raman spectroscopy based on
arm camera . . P
[108] Robotic Digital MobileNet V2 99% 2023 Raman scattering was also used to analyze the chemical compositions of

'

arm camera MPs [118]. This involves frequency shifts of incident light waves
B

correlated with the chemical bonds of samples. The Raman spectrum
y ‘ ~l SCT | 3
=L}

_~~— y ) B ’D}.
(a) (b) (c) (d)

—  Size, shape, concentration

Fig. 9. Detection and quantification of MPs using digital cameras installed on a drone [116].
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Fig. 10. Machine learning-empowered identification of polymer types via analyzing FTIR data.

represents the intensity of the inelastically scattered light as a function
of its frequency shift. Each molecule has a unique Raman spectrum,
acting as a molecular signature, following a concept that is similar to
using FTIR fingerprints to identify polymer types.

Hyperspectral imaging techniques employ a hyperspectral camera to
capture images of a sample across three dimensions (width, height, and
spectrum). In contrast to FTIR devices, which provide spectral infor-
mation, hyperspectral cameras provide both spectral and spatial infor-
mation, as shown in Fig. 11 [119]. The spectrum of the sample is
measured at each pixel to determine the polymer type, and the different
polymers distributed in the image can be visualized. This is useful for
characterizing samples with mixed MPs. A hyperspectral imaging tech-
nique was successfully applied to analyze MPs larger than 250 ym [119],
exhibiting significantly shorter time than FTIR and Raman spectroscopy.
Moreover, small-size and lightweight hyperspectral cameras (0.7 to
2.0 kg) have been developed, making them suitable for deployment on
robots such as drones, as shown in Fig. 11 [120].

(4) Other techniques.

Other popular techniques for characterizing MPs include pyrolysis-
gas chromatography-mass spectrometry (Py-GC-MS) [5], X-ray diffrac-
tion (XRD) [121], and thermogravimetric analysis (TGA) [122]. These
techniques can effectively characterize the chemical composition of
polymers in MPs. However, these techniques have not been combined
with machine learning or robots.

The comparison of different methods for data collection is shown in
Table 7. The collected data can be analyzed using machine learning
algorithms to improve the efficiency and accuracy of detecting and

Hyperspectral camera

DJI M600 drone

characterizing MPs.

4.6. Machine learning-assisted data analysis

Machine learning-based methods have been developed to enable
automatic identification, classification, and quantification of MPs based
on the data collected using technologies reviewed in Section 4.4.1. The
capabilities of machine learning methods are reviewed as follows:

(1) Identification.

Deep learning models have been developed to identify MPs from
images obtained from digital cameras [123] and microscopes [81]. The
concept is to train deep learning models using images labelled with MPs.
The labelled pictures are the “source of knowledge” for the models to
extract key features (e.g., shape, size, color, and texture) related to MPs
[124]. The primary function of the trained models is to recognize key
features of MPs and add bounding boxes around the detected MPs in new
images unseen in the training process [125]. The images can be either
photos or frames of videos [126]. A Faster-RCNN model for detecting
MPs is shown in Fig. 12.

Representative applications of deep learning methods were pre-
sented in references [81,127-131]. For example, a YOLOv5 model was
used to detect MPs with dimensions of 1-7 mm [127]. A digital camera
was used to take photos of MPs immersed in water, each with a reso-
lution of 3264 x 2448 pixels. These images were annotated with
bounding boxes to mark MPs. The dataset used to train the YOLOv5
model had 300 images of MPs with annotations. After 200 iterations of
training, the detection accuracy of MPs achieved 94%. In the results,
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‘:\‘ -.. ‘:* = v'

V.'-"; .‘,'..(v. :"
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Fig. 11. Drone-based hyperspectral imaging system for identification of polymer type [119,120].
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Table 7
Comparison of data collection methods.
Methods Strengths Limitations
Optical e Visualization e No chemical information
microscope e Cost-effectiveness e Time consuming
e User friendly e Limited resolution for
e Non-destructive analysis portable device
Florence e Enhanced contrast e Preparation and staining
microscope e Specific staining time

Digital camera

techniques
Composition analysis

Cost-effective

Higher price than normal
optical microscope

Selective staining: not detect
all polymer types

Lower magnification

e Portability e Light sensitivity
e Ease of Use e Calibration requirements
e Assembled on different
platforms
SEM e Size and shape e Sample preparation
characterization e Costly SEM device
o Elemental analysis e Destructive evaluation
e High-resolution imaging
AFM o Three-dimensional e Sample preparation
imaging e Complex operation and
e High-resolution surface analysis
imaging e Slow imaging speed
e Non-destructive analysis
FTIR e Non-destructive e Water vapor and COy
evaluation interference
o High efficiency o Limited uses of homonuclear
e Minimal sample diatomic molecules
preparation e Complexity of data
e Automated data analysis interpretation
o Versatility: solids, e Overlapping peaks
liquids, and gases e Costly FTIR instruments
Raman e Non-destructive e Subjected to fluorescence
spectroscopy evaluation influence
o High efficiency e Weak signal (low signal-to-
e Minimal sample noise ratio)
preparation o Complexity of data
e Automated data analysis interpretation
e Versatility: solids, e High-power laser, long
liquids, and gases acquisition time
e Available for fine e Costly Raman instruments
particles (~1 pm)
Hyperspectral e Non-destructive e Subjected to lighting
imaging evaluation conditions
e Minimal sample e Large amount of data
preparation e Complexity of data
o Automated data analysis interpretation
e Assembled on different o Sophisticated algorithms for
platforms software
o Costly hyperspectral cameras
Py-GC-MS e Quantitative and e Destructive evaluation
qualitative results e Need more samples
e Minimal sample o Complexity of data
preparation interpretation
e Need specialists for the
operation and analysis
Costly equipment and
maintenance
TGA e Thermal stability e Costly device
assessment o Complexity of data
e Decomposition interpretation
assessment
XRD e Crystallinity analysis e Costly device
o High sensitivity and e Destructive evaluation
accuracy

Automated control

even transparent MPs were well detected, overcoming interference from
factors such as light reflection. A key advantage of the YOLOvV5 model is
the streamlined architecture, which enables the model to process each
image within 30 ms, ensuring the effectiveness of large-scale detection
of MPs. In reference [128], MPs collected from beaches were filtered
through sieves (size: 0.85 mm to 4.76 mm). These MPs were mainly
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composed of fibers, fragments, and particles. The collected samples were
spread on white paper and a total of 3000 images were taken using a
digital camera with a resolution of 512 x 512 pixels. The dataset was
utilized to train a Mask-RCNN model, which achieved an overall accu-
racy of 94% for detecting various types of MPs. The trained model
showed good performance in detecting MPs on simple background. In
addition, a dataset of images captured on complex backgrounds (sand,
soil, and water) under different lighting conditions was used to evaluate
the generalizability of the model. The accuracy of the Mask-RCNN
model dropped to 80%, meaning training a model trained on simple
backgrounds has reduced accuracy in complex environments. It is
necessary to establish high-quality datasets to train the model, or use
other methods, such as transfer learning or generative Al, to improve
model accuracy for different scenarios.

Representative studies are summarized in Table 8. The results of
accuracy are presented to show the advancement of these studies, rather
than comparing them. It is noted that the results of accuracy are related
to many factors, such as the quality and quantity of data, data processing
method, and machine learning algorithm. The accuracy value of the
same algorithm will change if the data and data processing method are
changed. The detection model is limited to categorizing MPs based on
their morphology, without the ability to identify their chemical
compositions.

(2) Classification.

Machine learning models for classifying MPs have been developed to
analyze data from FTIR spectrometers [14], Raman spectrometers [83],
and hyperspectral cameras [133]. Machine learning models are trained
using a large amount of data labelled with the type of MPs. The labelled
data relate key features (e.g., shape and fingerprint information) to the
type of MPs [124]. For FTIR spectrometry, the fingerprint information
lies in the wavenumbers of troughs, and for Raman spectrometry data,
the fingerprint information is embedded in the wavenumbers of peaks.
Hyperspectral imaging data contains fingerprint information within
hyperspectral cubes, encompassing both spatial (e.g., morphology) and
spectral (e.g., wavenumbers) characteristics of MPs. Trained machine
learning models can identify polymer types based on key features of
MPs.

An example of using machine learning models for classifying MPs
(PP, PVC, PET, PA, and PS) with FTIR data is shown in Fig. 13 [14,83,
134]. The procedure of establishing machine learning models includes
four steps: First, FTIR data are obtained and labelled for various MPs.
Then, the data are processed via denoising, feature engineering, and
format conversion. Next, the processed data are used to train machine
learning models. Various machine learning models are trained because it
is unknown which machine learning algorithm performs the best be-
forehand. Finally, the trained models are evaluated in terms of accuracy,
generalizability, and efficiency.

Various machine learning models have been developed in literature
[14-16,83,133-139]. For instance, a variety of machine learning algo-
rithms including decision trees (DT), Gaussian Naive Bayes (GNB),
k-nearest neighbors (kNN), random forest (RF), support vector machines
(SVM), multilayer perceptions (MLP), and linear regression were trained
to classify MPs using FTIR data, as detailed in reference [136]. The
wavenumber of captured spectra ranged from 4000 cm™! to 600 cm ™.
The dataset comprised 958 spectra that were categorized into 17
different types of polymers. A grid search was conducted to optimize the
hyperparameters for each algorithm. Among these algorithms, SVM
demonstrated the highest prediction accuracy, which varied between
72% and 100% across different polymer types. The highest prediction
accuracy was observed for cellulose acetate, while the lowest was for
“polyethylene like”.

In addition to the use FTIR data, Raman spectrometry have been used
in a similar way [83]. In reference [139], a database was constructed
using 3675 Raman spectra from six types of MPs (i.e., PP, PE, PS, PC,
PVE, and PET). Each spectrum was standardized to a consistent wave-
number range from 500 cm™ to 1800 cm™, which included most



P. Guo et al. Journal of Hazardous Materials 471 (2024) 134405

/
// Ffturermap /

i Classifier E
i . |
i RO pooling / / E Detection boxes
i Detectifm% | :
» i / ) o / E » Pellet 0.95 \
! o ! Pellet 0.93
- [N g :
: N i A
1 /
" /o Output

7
CNN backbone ’

Faster R-CNN
Fig. 12. Flowchart and architecture of a Faster-RCNN model developed for detecting MPs.
classifying MPs are shown in Table 9. The results of accuracy are not

used to compare the different models because accuracy is related to
many factors. Currently, the primary challenge is the absence of a

Table 8
Summary of deep learning methods for identifying MPs.

Ref. MPs Datasource  Algorithm  Accuracy  Year high-quality open-source dataset for training machine learning models
[130]  Pellet Digital YOLOV5 89% 2021 used to identify MPs.

camera Advanced algorithms are required to process data obtained from
[123] Fragment, fiber, Digital Mask- 93% 2022

hyperspectral cameras. In reference [133,600 hyperspectral data were

film, pellet camera RCNN 1l df i 1 ith a h 1 in th
[123]  Fragment, fiber, Digital SSAP 86% 2022 collected from soil samples with a hyperspectral camera in the wave-
film, pellet camera length range of 369 nm to 988 nm. The spectra underwent denoising
[81] Pellet Microscope Faster- 98.5% 2023 through smoothing techniques, and principal component analysis (PCA)
RCNN was applied to compress the data. The collected data were used to train a
[81] Pellet Microscope SSD 96% 2023 P :
[127]  pellet Digital YOLOVS 04% 2023 CNN model .fOIj classifying PE,' PP, and PVC. The model achieved an
camera overall prediction accuracy higher than 93%. In reference [140], a
[128]  Fragment, fiber, Digital Mask- 94% 2023 framework used to process the hyperspectral data was proposed. The
rod, pellet camera RCNN collected spectra were preprocessed to highlight the difference between
(129]  Pellet Digital YOLOVS 100% 2023 various types of MPs. Hyperspectral curves were clustered using the PCA
camera . . o s .
[132]  Plastic debris Digital YOLOV3 83.4% 2023 method, and partlz'il least squares discriminant analysis was performed
camera to calculate the differences between the unknown polymers and the
[131]  Fragment, fiber, Digital Faster- 85.5% 2024 clustered data, as shown in Fig. 14 [140].
pellet camera RCNN (3) Quantification.

Machine learning models have been developed to quantify MPs from
images via distinguish the pixels representing MPs (Fig. 15) [19]. First,
the original images are converted to binary images where MPs are
shown in black color and the background is shown in white color. Then,
the sizes and abundance of MPs are quantitatively evaluated using a
machine learning model and computer vision techniques. The pixel
numbers representing MPs are quantified along the horizontal and
vertical directions. With the pixel numbers, the sizes of MPs are

characteristic peaks. The dataset was divided into a training set (80%)
and testing set (20%). The spectra dataset was trained using a
sparse-autoencoder. After 2500 iterations of training, the model ach-
ieved an overall accuracy of 99.1%. Additionally, traditional machine
learning methods such as SVM and MLP demonstrated lower accuracy
on this dataset, achieving prediction accuracies of 94.0% and 74.6%,
respectively. Representative results of machine learning models for
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Fig. 13. Procedure of using machine learning models to classify the types of MPs with FTIR data.
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Table 9
Summary of machine learning methods for classifying MPs.
Reference  Data Machine Application Accuracy  Year
learning
method
[14] FTIR 2-D CNN Classification ~ 99% 2021
[15] FTIR Autoencoder Denoise - 2021
[135] FTIR KNN Classification > 90% 2019
[16] FTIR PCA + SVM, Classification 99% 2020
KNN, LDA
[136] FTIR Naive Bayes, Classification ~ 94% 2022
MLP, KNN,
SVM, DT
[134] FTIR Recurrent Classification ~ 94.8% 2023
neural
network
[137] FTIR 1-D CNN Classification 87% 2021
[138] FTIR 2-D CNN Classification 99.2% 2023
[83] Raman KNN, RF, Classification > 95% 2022
MLP
[139] Raman Sparse- Classification ~ 99.1% 2023
autoencoder
[133] Hyperspectral ~ PCA + 2-D Classification ~ 97% 2022
CNN

determined by a relationship, established based on computer vision
techniques [126], between the pixel size and physical length. The pixel
number is converted to a physical length using the ratio of the focal
length to the distance between the camera and MPs. With the sizes of all
MPs in each image, the abundance of MPs is evaluated by considering
many images. The quantity of MPs can also be counted from the images
via border analysis [126]. The above methods have been applied to
quantify cracks [124,141], but there are limited applications for MPs.
Semantic segmentation models have been employed to quantify MPs
as detailed in references [82,116,128,143-145]. In reference [82], a
deep learning model was trained using a dataset of 1498 images of
fragments, pellets, and fibers. These images were labeled and refor-
matted into binary data to train a Mask-RCNN model, which achieved an
average segmentation accuracy of over 75% with a processing time of
0.2 s per image. The low quality of the training dataset explains the
limited accuracy. In reference [143], deep learning architectures such as

Journal of Hazardous Materials 471 (2024) 134405

U-Net and MultiResUNet were employed to analyze fragments, pellets,
and fibers from SEM images. A dataset comprising 237 images was used
to train these models. Upon comparison, MultiResUNet exhibited su-
perior accuracy. The highest classification accuracy was achieved for
pellets at 93.6%, while the lowest accuracy was observed for fibers at
74.3%. In reference [128], both Mask-RCNN and U-Net were trained to
assess MPs using a dataset of 2100 images with a resolution of
512 x 512 pixels. The Mask-RCNN model demonstrated an accuracy of
93.4% on a white background and 80% on complex backgrounds
involving soil, sand, and water.

Representative results of deep learning models are summarized in
Table 10. The accuracy results are presented to show the performance of
these models, rather than comparing different models or recommending
certain models. While instance segmentation techniques have been used
in the analysis of MPs, further research should focus on using these
methods to accurately measure the size and determine the abundance of
MPs.

5. Challenges and opportunities
5.1. Technology readiness level

The technology readiness levels (TRLs) of the methods for the
collection and characterization of MPs reflect the maturity of different
methods and are important metrics in selecting appropriate methods
according to the recommendation of the United States Department of
Energy [146]. The value of TRL is from 1 to 9, with 9 for mature tech-
nologies, as shown in Fig. 16, consistent with reference [147].

The TRLs and other key features of the reviewed methods are sum-
marized in Table 11. The cost column refers to the price of the required
instruments. The data format column refers to the format of data used
for collecting and characterizing MPs. The polymer type and particle
size columns refer to the types and the sizes of polymers that can be
handled by the methods. The field use column refers to the readiness of
the methods for field applications. The TRL values of conventional
methods are 9, indicating mature commercial devices. Prototype robots,
such as robotic fish and drones, have been developed for collection tasks,
but the prototype robots still require significant improvement and
validation in relevant environments, resulting in a TRL level of 7. Robots
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Fig. 14. Deep learning-based classification of MPs based on hyperspectral imaging data [140].
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Fig. 15. Deep learning and computer vision techniques for: (a) segmentation of MPs [142], (b) quantification of pixels for MPs, and (c) calibration of the length ratio.

Table 10
Summary of deep learning methods for segmentation of MPs.
Reference Data Machine learning Application Accuracy Year
[143] SEM images U-Net Segmentation 93.1% 2022
[116] SEM images MultiResUNet Segmentation 93.6% 2022
[116] Digital images U-Net Counting 98.8% 2021
[82] Digital images Mask-RCNN Segmentation > 75% 2023
[128] Digital images U-Net Segmentation-white 93.2% 2023
background
[128] Digital images Mask-RCNN Segmentation-white 93.4% 2023
background
[128] Digital images U-Net Segmentation-complex background 37.5% 2023
[128] Digital images Mask-RCNN Segmentation-complex 80% 2023
background
[144] Digital images U-Net Segmentation 98.5% 2023
[144] Digital images UNet3plus Segmentation 92.1% 2023
[145] Fluorescent microscope images U-Net Segmentation 73.6% 2022

9. Actual system proven in an operational environment [

8. System complete and qualified [

7. System prototype demonstration in operational environment [
6. Technology demonstrated in relevant environment [

5. Technology validated in relevant environment [

4. Technology validated in lab |

3. Experimental proof of concept [

2. Technology concept formulated [

1. Basic principles observed [

0 2 + 6 8 10

Technology readiness level

Fig. 16. Technology readiness levels according to the United States Department of Energy [146].
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Table 11
Summary of the reviewed technologies.
Methods TRL Cost Data format Polymer type Particle size Field use Automation
Optical microscope 9 Low 2D image No limitation No limitation Yes No
Fluorescence microscope 9 Low 2D image Compatible with fluorescent dyes No limitation No No
SEM 9 High 2D image No limitation Size limitation No No
AFM 9 High 2D/3D image No limitation Size limitation No No
FTIR 9 High 1D spectra, 2D image No limitation No limitation No No
Raman 9 High 1D spectra, 2D image No limitation No limitation No No
Portable FTIR/Raman 9 Low 1D spectra No limitation No limitation Yes No
Hyperspectral imaging 9 High 1D spectra /2D image No limitation No limitation Yes No
Digital holography 9 High 3D image No limitation No limitation Yes No
Py-GC-MS 9 High 1D spectra No limitation Size limitation No No
XRD 9 High 1D spectra No limitation Size limitation No No
TGA 9 High 1D spectra No limitation Size limitation No No
Robots-collection 7 Low - No limitation No limitation Yes Yes
Robots-sorting 2 Low - No limitation No limitation Yes Yes
Al-classification 4 Low 1D spectra, 2D image No limitation No limitation Yes Yes
Al-detection 4 Low 2D image No limitation No limitation Yes Yes
Al-quantification 4 Low 2D image No limitation No limitation Yes Yes

for sorting tasks are still in an infant stage, and prototypes have not been
developed, thus having a TRL level of 2. Machine learning models for the
detection, classification, and quantification tasks have been developed
in the laboratory and validated using various images, exhibiting
adequate performance for real applications. However, those models
have not been fully validated in relevant environments with the
consideration of various lighting conditions and complex environments,
thereby resulting in a TRL of 4.

5.2. Economic and environmental assessment

An economic analysis has been performed to assess the economic
viability of deploying robots and machine learning models — Al-
empowered robot approach, for collecting and characterizing MPs
[148]. The total cost is the sum of capital and operating costs. The
capital cost encompasses one-time investments like equipment pur-
chase, and the operating cost encompasses ongoing costs such as ma-
terials, labor, and energy. The Al-empowered robot approach is
compared with the traditional manual approach, as listed in Table 12.

The costs are analyzed based on a task for characterizing MPs in an
area of 1 hectare (10,000 m?). In this task, two primary assumptions
have been adopted: (1) There are 10 pieces of plastic debris per square
meter on average. (2) The average times for collecting and sorting
plastic debris are respectively 3 s and 2 s per piece of plastic debris. Due
to the large number of debris (100,000), only a hundredth of them (1000
samples) are characterized for the comparison. This is conservative
because the traditional manual approach has lower efficiency in char-
acterizing plastic debris compared with the Al-empowered robot

Table 12
Comparison of the costs of lab-based and Al-empowered approaches.

Method  Task Capital cost Operation cost
Type Cost Time Rate
(USD) (USD/h)*
Manual  Collection Manual - 83.3h 15
operation
Sorting Manual - 55.5h 15
operation
Characterization ~ FTIR 22,000 8.3h 60
[149]
Robot Collection UAV 7000 - -
Sorting Robot arms 1400 - -
[150]
Characterization UAV-SWIR 23,000 10 min -
camera [151]

* Note: The wage rates listed are based on prevailing wage report of New
Jersey, United States [152].
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approach. Reducing the number of samples reduces the operation cost of
the traditional manual approach.

As shown in Fig. 17, the economic analysis results reveal that the
capital cost of the Al-powered robot approach is 9400 USD higher than
that of the traditional manual approach. However, the operation cost of
the Al-empowered robot approach is significantly lower than that of the
traditional manual approach. The difference of operation cost per
hectare is 2441 USD, meaning that the total cost of Al-empowered robot
approach is lower than that of the traditional manual approach when the
approach is used for 4 ha.

The environmental benefits of using Al-empowered robots for col-
lecting and characterizing plastic wastes include reducing the environ-
mental footprint by optimizing operations, minimizing fuel
consumption and emissions, and preserving marine ecosystems. These
are discussed in the three primary aspects as follows:

(1) Al-empowered smart robots have higher time efficiency and
precision in operations, as shown in Table 12. The higher time efficiency
and precision reduce the time required to search for plastic debris and
minimize unnecessary travels, thereby reducing fuel consumption and
emissions associated with travels. The use of Al technology enables
remote monitoring and control of robots, allowing operators to optimize
operations without having to send humans to the job site, further
reducing energy usage and emissions related to transportation.

(2) Advanced machine learning algorithms such as reinforcement
learning enable robots to autonomously navigate marine environments,
optimizing routes based on real-time data such as ocean currents, wind
patterns, and microplastic distribution. This reduces the travelling dis-
tance and associated fuel consumption, contributing to reducing carbon
emissions. In addition, machine learning models can be trained to
analyze historical data and environmental variables to develop opti-
mized deployment strategies for robots. By strategically positioning
robots in areas with rich plastic debris, the collection tasks will minimize
the travelling distance and maximize efficiency, further reducing
negative environmental impacts.

(3) The use of Al-empowered smart robots facilitates on-site detec-
tion and efficient inspection of plastic debris compared with traditional
manual approaches, eliminating or minimizing the need for transporting
samples, thereby saving energy and reducing environmental impact.
This also helps preserve fragile marine ecosystems by minimizing
human intervention.

5.3. Regulatory, ethical, and social implications
The utilization of robots and machine learning models in environ-

mental monitoring prompts inquiries about regulatory oversight [153]
liability for errors or accidents [154] and compliance with data
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Fig. 17. Economic analysis results for the traditional manual and Al-empowered robot approaches: (a) capital cost; and (b) operation cost.

protection [155] and privacy regulations [153]. Legal frameworks and
standards are imperative to govern the deployment and operation of
these monitoring technologies. Establishing guidelines and standards is
crucial to address concerns regarding the accuracy and reliability of
monitoring results [156], potential biases introduced by Al algorithms
[157], and errors in Al algorithms [158] that could lead to incorrect
assessments or decisions. Moreover, it is essential to regulate the
deployment of robots in sensitive areas to mitigate potential risks to
ecosystems [159]. Questions also arise regarding data ownership and
control [160], necessitating clear policies and regulations to govern data
ownership, sharing, and use.

Ethical considerations surrounding the use of robots and machine
learning in environmental monitoring include the potential displace-
ment of workers [161], the equitable distribution of monitoring re-
sources [162], and the unintended consequences of automated
decision-making on communities and ecosystems [163]. Efforts should
be made to mitigate negative economic impact on affected workers and
communities. Using robots and machine learning in environmental
monitoring should consider the needs and perspectives of marginalized
communities, ensuring equitable access to environmental data. The
deployment of robots and machine learning technologies in environ-
mental monitoring may have unintended consequences, such as unin-
tended environmental impacts, social disruptions, or unforeseen risks.
To minimize harm, ethical considerations should guide the design,
deployment, and evaluation of these technologies.

The social implications of utilizing robots and machine learning in
environmental monitoring are multifaceted, necessitating careful
consideration of economic, technological, and cultural factors to maxi-
mize benefits and mitigate risks for society. While robots and machine
learning can significantly enhance the efficiency of environmental
monitoring efforts [164-166], leading to more comprehensive and
timely data collection, they also help improve public awareness about
environmental issues and encourage community engagement in con-
servation efforts. Interactive platforms and visualizations generated by
robot and machine learning technologies can help educate and empower
citizens to take action to protect the environment [167]. The improved
efficiency in environmental monitoring empowers communities to
participate in environmental monitoring and governance processes,
enabling local stakeholders to collect and analyze data relevant to their
specific concerns. Participatory monitoring initiatives can foster com-
munity resilience and support bottom-up approaches to environmental
management. Introducing robots and machine learning into environ-
mental monitoring requires navigating cultural and social norms
regarding technology adoption and trust [168]. Building trust and
acceptance among diverse communities is critical to ensure the suc-
cessful implementation of these monitoring technologies.
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5.4. Advantages and challenges

The use of Al-empowered robot approach for identification, classi-
fication, and quantification of MPs has the following advantages
compared with the conventional methods:

(1) High efficiency: The measurement data, such as FTIR and Raman
spectrometry data and hyperspectral images, are analyzed and
interpreted quickly by machine learning models. The computa-
tion time for each data is often shorter than 0.2 s for segmenta-
tion tasks [82] and 0.03 s for detection tasks [127], making it
possible to achieve real-time or near-real-time characterization of
MPs.

High accuracy: Machine learning models trained using the data of
MPs provide consistent characterization results and are free of
human errors, thereby eliminating the uncertainties related to
engineers. The trained detection models can achieve overall ac-
curacies ranging from 83.4% to 100% (Table 8). The classifica-
tion accuracy typically exceeds 90% (Table 9). The segmentation
task is challenging and has lower accuracy in certain applications
(Table 10). More efforts are necessary to improve segmentation
accuracy.

Full automation: Machine learning models can operate auto-
matically, such as a fully automated collection device [97], ro-
botic arms for sorting MPs [80], drones and other remote sensing
technologies used for the detection and characterization of MPs
[19]. These technologies can operate with no or minimal human
intervention, thereby mitigating the dependence on engineers
and reducing labor-related expenses.

Full digitalization: Machine learning models provide digital re-
sults which are computer understandable and operatable. The
digital results can be stored and utilized conveniently. For
example, the results can be used to develop and update digital
models [169].

(2)

3

(4

—

The use of robots and machine learning methods for identification,
classification, and quantification of MPs still has limitations:

(1) Dependance on data: Data is the source of knowledge for machine
learning models. Both the quality and quantity of data play sig-
nificant roles in the performance of the machine learning models
trained using the data. A general challenge in the domain of MPs
is the lack of high-quality databases available for developing
machine learning models.

Limited generalizability: In existing research, machine learning
models have been trained using particular datasets that have
limited number of data and lack diversity in the data. In general, a

(2)



P. Guo et al.

machine learning model trained using a particular dataset has
low performance when a different dataset is used. The low
generalization performance has generated major concerns in real
practices because real applications may involve new data that
cannot be recognized by the machine learning model trained
using a small dataset. For example, deep learning models trained
using photos collected under laboratory conditions are not suit-
able for complex scenes in the real world, as reported in [128].
Lack of interpretability: Machine learning models are generally
black-box models. When a machine learning model is used to
characterize MPs, the model outputs the result without explain-
ing how and why the result is generated. It is difficult for engi-
neers to trace and check the results from machine learning
models. This also cause concerns about the reliability and un-
certainty of machine learning models in real practice.

Robot deployment: MP particles are small, requiring robots with
precise sensing capabilities and maneuverability to effectively
detect and characterize small microplastic particles. The limited
resolution of digital cameras presents a challenge in imaging
MPs, necessitating the strategic selection of appropriate cameras
[170]. Digital cameras are not designed to achieve a high level of
magnification required to detect tiny objects. Standard digital
cameras, such as those with 720 P resolution, often cannot
identify MPs [171]. Using cameras with 10 megapixel or more
also presents additional challenges, such as increased cost. In
addition, robots have difficulty in navigating complex environ-
ments, such as swamps and densely vegetated areas, where
microplastic pollution may accumulate [172]. These terrains are
not only physically challenging due to uneven ground or water-
logged soil that hinders movement but also pose significant ob-
stacles for using sophisticated sensors to effectively detect and
characterize MPs. Maintaining reliable communication and con-
trol over robots in remote or harsh environments is difficult,
especially underwater or in dense vegetation where signal loss
can occur [173].

3

4

—

5.5. Opportunities

The following opportunities have been identified for future research
on further developing Al-empowered methods for collecting and char-
acterizing MPs:

(1) The advancement in smart robots and machine learning has
created new opportunities for advancing robots to streamline
automatic identification, collection, and characterization of MPs.
It is promising to develop smart robots with the capabilities of
automated survey and path optimization for self-operation in
various environmental conditions [174]. It is important to
incorporate advanced sensors into robots for self-sensing and
advanced machine learning algorithms such as reinforcement
learning for self-navigation [175].

(2) To address the challenges of lack of data for machine learning
models used to characterize MPs, with the advances in generative
Al techniques [176], it is promising to develop generative Al
models for producing artificial yet reasonable data that can be
used to enrich the databases for training and testing machine
learning models, improving their performance in terms of accu-
racy and generalizability.

(3) To address the challenges of interpretability of machine learning
models, it is promising to develop knowledge-guided machine
learning methods [177]. Domain knowledge can be incorporated
into machine learning models to achieve interpretability.

(4) The development of high-quality datasets to train benchmark
models for detecting and characterizing microplastics is another
pressing task. For instance, creating FTIR spectral datasets for
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classifying MPs and developing high-definition photographic
datasets for the detection and quantification of MPs.

6. Conclusions

This paper presents a comprehensive review on the categories and
distribution, Al-empowered technologies, and challenges and opportu-
nities for the collection and characterization of MPs. The following
conclusions can be drawn:

e Fragments and fibers are the primary morphological types of MPs,

while PE and PP are the dominant compositions found in MPs. MPs

are widely distributed over the earth in the water and soil systems.

The physical and chemical properties of MPs show significant dif-

ferences in different regions. The differences reveal the importance

of characterizing and monitoring MPs in different regions with
effective and efficient methods.

Various Al-empowered technologies have been developed and

implemented to collect, process, and characterize MPs intelligently

and efficiently. Representative technologies include smart robots for
collecting and sorting MPs and machine learning models for
analyzing and interpreting the characterization data for MPs.

Various types of instruments for characterizing MPs can be inte-

grated into robotic platforms to automate the process of collecting

characterization data, and machine learning models can be trained to
detect, classify, and quantify MPs without human intervention.

Integrating robotic systems and machine learning models can auto-

mate the collection and characterization for MPs.

e While commercial instruments for characterizing MPs have reached
a high level of maturity and application, the TRL of Al-empowered
technologies remains relatively low. In particular, the development
of machine learning models used for data analysis is still at its early
stage, despite rapid progress in recent years. Important challenges
have been identified from the literature of AI technologies, and
relevant opportunities have been discussed, aimed at promoting
further research and development of Al technologies.

Environmental implication

Microplastics are hazardous materials because they cause various
health problems to animals and humans. Marine organisms can mistake
microplastics for food. Microplastics adsorb and carry pollutants in
water, accumulate toxins, and aggravate water pollution. Microplastics
enter the food chain via seafood and drinking water. Microplastic
ingestion causes abrasive effects, inflammation or reproductive issues,
developmental problems, and immune responses. This paper reviews
artificial intelligence-empowered technologies employed in the collec-
tion and characterization of microplastics. A framework is presented to
integrate efforts for collecting, processing, and characterizing micro-
plastics. Emerging robots and machine learning technologies are
reviewed to promote research on mitigating microplastics pollutions.
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