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Abstract
The stick–slip friction observed in an atomic force microscope (AFM) experiment has been widely studied using the Prandtl-
Tomlinson (PT) model or molecular dynamics (MD) simulations. However, the mechanisms of friction energy dissipation 
in AFM are still not well understood. Our detailed MD simulations of a benchmark system, a Pt metal tip sliding on the 
Au (111) surface, provide a method of computing the contact stiffness and damping between the tip apex and the metal 
surface. We revealed that the contact stiffness is largely dependent on the very first contact layer atoms of the tip apex, but 
essentially independent of the temperature and the atomic mass of the AFM tip, and is also less dependent on the normal 
load if the contact geometry remains unchanged in elastic contact. Furthermore, by connecting the atomic relaxation rate to 
the damping coefficient, an important parameter gauging the friction dissipation in the PT model but the choice of which is 
usually empirical, we demonstrate that this damping coefficient is dependent on the atomic structure of the tip apex and the 
intrinsic relaxation rate of the individual atoms in the contact layer. We use such mechanisms to calculate the two parameters 
and carry out Langevin dynamics simulation within the framework of the PT model for two friction systems: a small Pt tip 
consisting of 3956 Pt atoms and a large polycrystalline Pt tip consisting of 18,365 Pt atoms. Our simulation results show that 
both tip apexes are underdamped in a stick–slip friction. We also demonstrate that the results from the Langevin dynamics 
simulation using these two critical parameters compared remarkably well with the straightforward MD simulation results in 
a range of sliding velocity (V = 0.01 – 1 m/s).
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1  Introduction

Atomic force microscope (AFM) has been widely used as a 
foundational tool to study atomic-scale or nanoscale friction 
of a variety of materials [1–6], including recently emerging 
2D layered materials due to their unusual structural lubricity 
[7–10]. Since its invention [11], the high-resolution imag-
ing capability of the AFM in the contact mode has dramati-
cally impacted various areas in nanotechnology, materials 
science, biology, and broad surface and interface science. 
This achievement was largely attributed to the probe tip 
well-defined, stick–slip friction signals with an atomic res-
olution. The intrinsic stick–slip friction dynamics in AFM 

also attracted tremendous interest in theoretical modeling 
and computer simulations to fundamentally understand the 
origin of friction and energy dissipation mechanisms [3–6, 
12–17]. By scanning a sample surface using an AFM probe 
tip, which is often prepared by thermally evaporating a metal 
coating on a silicon cantilever [16], or simply using an amor-
phous material such as a silicon tip with its oxide (SiO2) on 
the tip apex [17, 18], or a silicon nitride (Si3N4) tip [9], one 
can directly measure the friction forces between the probe 
tip and the sample surface. Modeling the tip-substrate fric-
tion to fully understand the energy dissipation mechanism of 
nanoscale friction requires careful thinking of the molecu-
lar model that should reflect the key features of the AFM 
experimental setting.

Traditionally, the stick–slip friction in AFM has been 
described by the Prandtl-Tomlinson (PT) model [19, 20]. 
Here, an AFM model tip with a single point mass is driven 
by an effective linear spring to slide on a periodic sinusoidal 
potential. This potential represents the interaction between 
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the tip and the crystalline substrate. The amplitude of the 
periodic corrugation potential should be properly chosen to 
reflect the actual AFM loading condition [4]. When simulat-
ing the friction dynamics with the thermal effect being con-
sidered within the framework of the PT model, a damping 
term and a thermal random force are usually included to the 
tip motion in the relevant Langevin equation [4]. However, 
the origin of this damping (more precisely, the intrinsic fric-
tion dissipation) cannot be retrieved from the PT model itself 
[14, 15].

Direct molecular dynamics (MD) simulations using 
optimally matched AFM friction parameters were reported 
previously [16, 17]. These optimal parameters include the 
effective lateral spring stiffness, the contact area, and the 
normal load. Nevertheless, the sliding speeds in MD simu-
lations are still many orders of magnitude higher than those 
in AFM experiments due to the well-known timescale issue. 
Further, the actual contribution of the contact stiffness of 
the tip-substrate contact to the total effective lateral spring 
stiffness in AFM is usually unknown or has not been well 
calibrated [21].

In this paper we carried out straightforward MD simula-
tions to directly calculate the contact stiffness and damp-
ing of a benchmark system, a Pt model tip sliding on the 
Au (111) surface. Our findings demonstrate that the contact 
stiffness is largely determined by the very first contact layer 
atoms in the tip apex, while the damping coefficient can be 
calculated based on the linear scaling of dissipation rate of 
the contact layer atoms according to Krylov et al. [15] We 
showed that other factors such as the temperature, tip mass, 
and normal load have less effect on these two terms.

2 � Theoretical Consideration of the PT Model

It is well recognized that in AFM friction measurements, the 
total effective lateral stiffness, keff, of the AFM cantilever-tip 
assembly in contact with a sample substrate, is determined 
not only by the torsional bending stiffness of the cantilever, 
kT, but also by the lateral contact stiffness of the AFM tip 
– substrate contact, kcont [12, 16, 21]. In general, keff can be 
readily calibrated from the slope of the stick–slip friction 
in the sticking stage. Theoretical modeling by Krylov et al. 
[13–15] on the friction energy dissipation in AFM suggested 
that the ultrafast dynamics of the AFM tip apex, which has 
an extremely small mass in the range of 10–23 – 10–20 kg 
(corresponding to a few hundred to a few hundred thousand 
atomic particles in the tip apex), is largely responsible for the 
friction dissipation. They proposed a two-mass-two-spring 
(2m2s) friction model [14] to simulate stick–slip friction in 
AFM, in which the tip apex was represented by an extremely 
small mass m, while the rest of the tip body and cantilever 
took a lumped mass in the order of 10–11 kg. Given that the 

AFM tip apex with such a small mass can be readily mod-
eled in MD simulations, it is anticipated that such MD simu-
lations of friction, even in the MD time regime, could be 
revealing of the friction dissipation mechanism, especially to 
the understanding of the contribution of the contact stiffness 
between the tip apex and the substrate to the resultant total 
lateral stiffness, keff.

In general, keff can be considered as a combination of the 
following mechanical springs in sequential connection:

Here, ktip is the AFM tip bending spring constant con-
sidering its 6–10 µm in length at the end of the AFM canti-
lever, which was usually not included when calibrating the 
cantilever torsional bending stiffness, kT [22], while kcont is 
understood as the lateral contact stiffness of the tip apex-
substrate contact.

For the friction dynamics of an AFM tip apex alone, the 
simple one-mass PT model [19, 20] is still available to be 
used to describe the stick–slip sliding friction [4]. Here, the 
tip apex with its mass m, is driven by an equivalent spring k, 
given by 1/k = 1/ktip + 1/kT, over an effective potential

where E0 is the amplitude of the periodic corrugation 
potential induced by substrate and is dependent on the nor-
mal load. Parameter a is the lattice constant of the substrate, 
and V is the AFM cantilever scanning velocity. Friction 
dynamics of the tip apex motion x = x(t) in the thermal PT 
model can be described in the Langevin equation, viz [4]

Here, when the damping coefficient γ (in the unit of s−1) 
reaches the critical damping value, i.e., � = �c = 2

√
k∕m , 

or the damping ratio ζ = γ/γc = 1, the friction system will be 
critically damped. On the right of Eq. (3), Vint is the tip–sub-
strate interaction potential, and �(t) is the random thermal 
activation force, satisfying the fluctuation–dissipation theo-
rem, with its zero mean ⟨�(t)⟩ = 0 and δ correlated [4], i.e. 
⟨�(t)�(t�)⟩ = 2m�k

B
T�(t − t�) , where kB is the Boltzmann 

constant and T is the temperature. The random force and the 
damping term in Eq. (3) arise from the interactions between 
the model tip and the substrate in the form of phonons and/
or other fast excitations that are not treated explicitly [4]. We 
note that recent studies showed that the origin of this damp-
ing term is directly related to the dephasing of phonons that 
are generated in the slip process [23].

In AFM friction measurements, the effective lateral stiff-
ness, keff, is readily obtained from the slope of stick–slip 
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friction in the sticking stage [12, 16, 24]. If the lateral contact 
stiffness, kcont, between the AFM tip apex and the substrate 
can be properly calculated from MD simulations, then one 
can simply determine the equivalent spring k in the PT model 
based on Eq. (1), without the need to calibrate ktip and kT, i.e.

One should keep in mind that the driving spring, k, in the 
Langevin Eq. (3), is slightly larger than keff. This is because 
keff is the derivative of the measured stick–slip lateral force in 
the sticking part with respect to the driving support position, 
Vt. This measured lateral force, usually called the stick–slip 
friction force, is defined as F = k (Vt – x) according to Eq. (3). 
Thus, we have

It is worth noting that even in the sticking stage, the instan-
taneous tip velocity ẋ is not necessarily equal to zero. From 
Eqs. (4) and (5), one finds that the tip velocity ẋ is given by

Here, ẋ should be understood as the instantaneous 
tip velocity due to the entire modeling in the MD time 
regime. There is a distinction between this variable and the 

(4)1∕k = 1∕keff− 1∕kcont

(5)keff = dF∕d(Vt) = k(1 − ẋ∕V)

(6)ẋ =
keff

kcont
V

thermodynamic average value in the 2m2s friction model 
[14], where a colossal cantilever dynamics is involved. In 
the following discussion through MD simulations, we will 
show that the contact stiffness, kcont, is much larger than keff.

3 � Molecular Dynamics Simulation 
Benchmark System

In this section we consider direct MD simulation of a Pt 
metal tip apex sliding on the Au (111) surface. This is a 
well-studied benchmark system in AFM atomic-scale fric-
tion experiments [16] and in MD simulations [16, 25]. Two 
friction models are considered here, as shown in Fig. 1. The 
first is a small single crystalline Pt tip sliding on the Au 
(111) surface, and the second is a large polycrystalline Pt tip 
with R ≈ 10 nm in radius that has a single crystalline pro-
trusion in contact with an Au (111) substrate. The detailed 
preparation for the large Pt tip apex in contact with the Au 
(111) surface has been described in our previous publication 
[25], while the preparation for the small Pt tip contact system 
follows the similar procedure. The small Pt tip has 3956 Pt 
atoms (defined as the Pt3956), plus 9 Au atoms attached onto 
the first contact layer and additional 4 Au atoms attached 
onto the second layer of the Pt3956 tip due to adhesion. The 
large polycrystalline Pt tip contains 18,365 Pt atoms (defined 
as the Pt18365), plus 111 Au atoms attached onto the first 

Fig. 1   Pt-Au (111) friction models. The side views a and b show the 
full atomic settings of the Pt3956 and Pt18365 tip apexes in contact with 
the Au (111) surface. The top views c and d show the first contact 
layer of the Pt tip apexes, including the attached gold atoms (shown 

in red color) in contact with the first Au (111) layer. The insets 
between c and d show the Moiré contact pattern between the Pt tip 
apex and the Au (111) surface
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contact layer and additional 7 gold atoms attached onto the 
second and the third layers of the single crystalline Pt protru-
sion [25] (Fig. 1). Table 1 shows the relevant atom numbers 
associated with the two Pt tip apexes and their tip masses. 

In MD simulations, initial stable contacts between the 
tip apexes and the Au (111) surface were achieved upon 
a self-adjusted Moiré contact pattern was formed (see the 
inset in Fig. 1) [25]. The Pt tip apex is then connected to a 
driven block using a driving spring, k, along the x-direction. 
According to Eq. (5), k should be slightly larger than keff = 6 
N/m, as calibrated in AFM friction measurements [16]. Con-
sequently, we choose k = 7.8 N/m and 7.1 N/m for the Pt3956 
and Pt18365 tip apexes, respectively. In addition, considering 
the restriction of the tip movement along the longitudinal 
direction of the cantilever, a more rigid spring with an arbi-
trary value of 300 N/m is applied along the y-direction. A 
normal force of 0.6 nN, consistent with the load in AFM 
friction measurements [16], is applied to the top-rigid-layer 
atoms of the Pt tip apex. Periodic boundary conditions are 
applied in the x- and y-directions during the friction simu-
lation runs. Interatomic interactions are described by the 
embedded atom method (EAM) potential [26]. The time step 
of 2.0 fs has been used throughout MD simulations using 
the LAMMPS package [27, 28], while the temperature of 
the system in MD simulations is controlled at 293 K by the 
Nosé–Hoover thermostat [29].

4 � Results and Discussion

4.1 � Contact Stiffness kcont

We first demonstrate that the contact stiffness between the 
Pt tip apex and the Au (111) surface kcont, depends on 
the detailed atomic structure of the tip apex and varies 
slightly with the normal load, but is largely independent 
of temperature and the tip atomic mass. We begin with 
the first investigation of the small Pt tip apex, the Pt3956 
that contains 3956 Pt atoms and 13 attached Au atoms 
(Table 1). In our previous study [25], we showed that in 
MD time regime, the stick–slip friction of an AFM model 

tip depends on its tip mass. For example, at a sliding speed 
of V = 1 m/s, we found that the stick–slip friction of a Pt 
tip was changed from single slip to multiple slips as the 
tip mass was increased from 100 to 5000 gold atomic mass 
[25]. To properly calibrate the contact stiffness in the sin-
gle-slip regime, we carried out MD simulations at a much-
reduced sliding speed of V = 0.01 m/s, and also decreased 
the total mass of the Pt3956 tip apex to about 20 Au atomic 
mass. This is equivalent to assigning a hydrogen mass to 
each atomic particle in the tip apex (including the attached 
Au atoms). Further, to reduce the thermal fluctuation, the 
temperature is controlled at T = 0.5 K. The lateral contact 
stiffness is defined as 1/kcont = 1/k1 + 1/ktop-1, where k1 is 
the lateral stiffness of the first contact layer of the tip apex 
(the bottom layer in contact with the Au (111)), and ktop-1 
is the lateral shear stiffness of the topmost layer relative 
to the first contact layer of the tip apex. The two stiff-
ness contributions are calculated by averaging over three 
consequential sticking slopes in the stick–slip cycles, as 
shown in Fig. 2.

Figure 2a shows the variation of the stick–slip friction 
force under a normal load of 0.6 nN within an initial 8 Å 
sliding distance. The variation of the actual position of the 
tip apex versus the sliding distance of the driven block is 
also shown in the figure. The driving spring used is k = 7.8 
N/m, resulting in an effective lateral stiffness close to keff = 6 
N/m, as calibrated in AMF friction measurements [16]. In 
Fig. 2b and c, we plot the variations of the same lateral fric-
tion force versus the center-of-mass (COM) sliding distance 
of the bottom contact layer of the tip apex, as well as versus 
the shear deformation of the topmost layer of the tip apex 
relative to its bottom contact layer. This COM sliding dis-
tance of the bottom contact layer represents the combined 
actual shear deformation of the tip apex bottom layer and 
the gold substrate during the sticking stage. k1 and ktop-1 are 
simply the slopes of these two shear deformation curves in 
the sticking stage. The contact stiffness is then calculated 
according to the relation 1/kcont = 1/k1 + 1/ktop-1, as shown 
in Table 2.

To investigate the temperature effect on the contact stiff-
ness, in Fig. 2d –f, we plot the friction force variations at 
T = 293 K (the green stick–slip friction curve). It is seen that 
the relevant force slopes have almost no changes, except the 
large thermal fluctuations and early slips due to the effect of 
thermal activations.

We have also investigated the friction dynamics of the 
Pt3956 tip apex at the low temperature of T = 0.5 K when the 
actual atomic masses of Pt (= 195 amu) and Au (= 197 amu) 
are used at the sliding speed of V = 0.01 m/s (see Fig. 2d –f 
the red stick–slip friction curve). Except for large force oscil-
lations due to the system being underdamped (see below dis-
cussion), all the slopes of friction force versus distance/shear 
deformation in the sticking stages are essentially unchanged.

Table 1   The relevant atom numbers associated with the two Pt tip 
apexes

Ntot the total number of atoms in the tip apex; Ncont the number of 
atoms in the bottom contact layer of the tip apex; 4

�√
N
cont

− 1

�
 = 

estimation of the number of edge atoms in the contact layer; m the tip 
apex mass

Ntot Ncont 4

�√
N
cont

− 1

�
m (10–21 kg)

Small tip Pt3956 + Au13 Pt56 + Au9 28 (25) 1.29
Large tip Pt18365 + Au118 Pt342 + Au111 81 (80) 6.02
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The results presented above suggest that the contact 
stiffness of the Pt3956 only depends on the detailed atomic 
structure of the tip apex, while the temperature and atomic 
mass used in MD simulation have almost no effect on the 
results. Following this important finding, for the large tip 
apex Pt18365 that has a total of 453 atomic particles in the 
contact layer (see Table 1), we only focus on the MD simu-
lations at T = 0.5 K under the same normal load of 0.6 nN, 
with the hydrogen mass assigned to both Pt and Au atoms 
(equivalent to a 100-Au mass for the whole tip apex [25]). 
The driving spring used in MD simulation for this large tip 
apex is adjusted to k = 7.1 N/m to achieve an effective lateral 
stiffness close to keff = 6 N/m. The results are also shown in 
Fig. 2a–c to compare with the Pt3956 results at the same slid-
ing speed of V = 0.01 m/s.

Comparative studies show that the maximum friction 
force for the Pt18365 tip apex is reduced to 1.4 nN under the 
same load of 0.6 nN, as compared to the 1.8 nN maximum 

friction force for the Pt3956 tip apex (see Fig. 2a –c). The 
contact layer stiffness, k1, is increased by about 50% com-
pared to that of the Pt3956 result (see the enlarged inset in 
Fig. 2b). Further, the shear stiffness of the tip apex body, 
ktop-1, is more than three times the shear stiffness of the Pt3956 
tip apex (Fig. 2c). The results for the two tip apex friction 
systems are summarized in Table 2. Here, we also list the 
equivalent driving spring constant, k, calculated according 
to Eq. (4). The two values are very close to k = 7.8 N/m and 
7.1 N/m used in MD simulations for the Pt3956 and Pt18365 tip 
apexes. From the calculated kcont shown in Table 2 and the 
same effective lateral stiffness keff = 6 N/m for both Pt3956 and 
Pt18365, we calculate the instantaneous velocity according 
to Eq. (6) for both tip apexes at the sticking stage, yielding 
ẋ = 0.22V  and 0.14V, respectively. The results are remark-
ably consistent with the slopes of the tip apex positions at 
the sticking stage, as shown in Fig. 2a for the sliding speed 
of V = 0.01 m/s.

Fig. 2   Variations of the stick–slip friction force of the Pt3956 and 
Pt18365 tip apexes at T = 0.5 K and V = 0.01 m/s, versus a the sliding 
distance, b the center-of-mass position of the bottom contact layer, 
and c the shear deformation of the topmost layer relative to the bot-
tom contact layer of the tip apex. The variation of the actual position 
of the tip apex versus the sliding distance is also shown in panel (a), 
where the inset shows at the sticking stage the slopes of the two tip 

apexes positions versus the sliding distance. The inset in b shows the 
difference in slope at the sticking stage for the two different tip apexes 
(Pt3956 and Pt18365). Values of k1 and ktop-1 corresponding to the three 
sticking stages are also depicted in (b) and (c), whose average values 
are given in Table 2. d–f show comparisons of MD simulation results 
of using actual atomic mass of the tip apex, as well as the results at 
T = 293 K

Table 2   Summary of MD calculated contact stiffness versus the PT model predictions, as well as the dimensionless parameter η, for the Pt3956 
and Pt18365 tip apexes in contact with the Au (111) surface

k1 (N/m) ktop-1 (N/m) kcont (N/m) k kcont-PT (N/m) ηMD /ηPT

Pt3956 30.2 257.7 27.03 7.71 39.27 3.51 / 5.09
Pt18365 46.9 859.2 44.47 6.94 30.50 6.41 / 4.39
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Surprisingly, Table 2 clearly shows that the contact stiff-
ness, kcont, is largely determined by the contact layer lateral 
stiffness, k1, because ktop-1 is about one order of magnitude 
higher than k1. This is consistent with theoretical calcula-
tions by Krylov et al. [13], who showed that the effective 
stiffness of the tip is practically independent of the full 
length of the tip, but the very first contact layer of atoms. 
The implication from this result is that friction dissipation at 
a sliding interface is largely determined by the fast dynam-
ics of the contact-layer atoms in the tip apex, an important 
corollary that needs further investigations.

To evaluate how the atomic-scale contact stiffness 
depends on load, we have further conducted MD simula-
tions under different normal loads, ranging from 0.6 nN to 
30 nN, to examine the changes in k1 and ktop-1 for both Pt3956 
and Pt18365 tip apexes. The results are shown in Fig. 3. For 
the small Pt3956 tip apex, there is a slight increase in both k1 
and ktop-1 as the normal load is increased, especially under 
high normal loads where severe deformation at the contact 
interface happens. For the large Pt18365 tip apex, both k1 and 
ktop-1 fluctuate within the range of the normal load investi-
gated and appear less dependent on the normal load. This is 
largely attributed to the fact that the atomic configuration at 
the contact layer remains unchanged throughout the range 
of normal loads applied. In general, these results are consist-
ent with prior AFM friction force measurements [24]. We 
therefore conclude that the contact stiffness between the Pt 
tip apex and the Au (111) substrate depends on the detailed 
atomic structure of the tip apex, especially the first contact 
layer stiffness of the tip apex, and slightly varies with the 
normal load, but is largely independent of temperature and 
the tip atomic mass. We emphasize that the contact stiffness 

of the tip apex studied in this work is about 4 to 7 times the 
effective lateral stiffness keff (= 6 N/m). Such a high contact 
stiffness is mainly attributed to the blunt tip apex that has 
tens to hundreds of atoms in the contact area. According to 
Eq. (6), the high contact stiffness of a blunt tip apex makes 
the actual sliding speed of the tip apex in the sticking stage 
being much slower than the sliding speed of the driving sup-
port. This is clearly shown in Fig. 2a.

We now compare the contact stiffness (kcont) directly 
obtained from the MD simulation with the stiffness of the 
tip-substrate potential according to the effective potential (2) 
in the PT model, given by [4, 24]

Here, the amplitude of the periodic corrugation poten-
tial in Eq. (2), E0, is determined according to the linear 
relation between E0 and the maximum friction force Fmax

L
 , 

at zero temperature, given by [24] E0 =
aFmax

L

�
 . We choose 

a = 0.288 nm, the first neighbor distance of the Au (111) 
surface. Values of Fmax

L
 for both Pt3956 and Pt18365 tip apexes 

are determined from Fig. 2 as about 1.8 nN and 1.4 nN, 
respectively, yielding E0 = 1.03 eV and 0.8 eV for the two 
tip apexes, separately.

As shown in Table 2, the contact stiffness predicted by 
the PT model for the Pt3956 tip apex overestimates the MD 
calculated value by about 45%, while that for the Pt18365 tip 
apex underestimates the stiffness by over 30%. Values of 
the dimensionless parameter η, which represents the ratio 
of the stiffness of the tip-substrate contact over that of the 
driving spring (for the PT model, � =

2�2E0

ka2
 ) [4, 24], are also 

(7)kcont−PT =
2�2E0

a2

Fig. 3   Variations of the contact 
layer stiffness (k1) and the shear 
stiffness (ktop-1) as a function of 
normal load for the small Pt3956 
tip apex (panels a and b), and 
the large Pt18365 tip apex (panels 
c and d)
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shown in Table 2 for the two tip apexes. While these η values 
are all greater than unity (η > 1), a necessary condition for 
the occurrence of stick–slip friction as seen in Fig. 1, MD 
calculated values of ηMD indicate that Pt18365 tip apex has a 
more tendency to overshoot (a possibility of multiple slips 
[30]) during slips because of its much larger value of ηMD 
than that of the Pt3956 tip apex (see also Fig. 1 panels a and 
b). On the other hand, the PT model predicts that both tip 
apexes would have the similar probability of overshooting 
during friction slips.

4.2 � Damping Coefficient γ and Damping Ratio ζ

The damping coefficient (γ) in the Langevin Eq. (3) is a 
critical parameter in the thermal PT model [4] to properly 
describe the stick–slip friction dissipation in AFM. Recent 
studies by Krylov et al. on the origin of damping in atomic-
scale friction suggested that the energy dissipation is rel-
evant to the dephasing of phonons generated in the slip 
process [23]. Nearly critical damping of individual atoms 
has been confirmed based on a lattice dynamics calculation 
and MD simulation for a simple system [23]. In the follow-
ing, we show a straightforward calculation from direct MD 
simulation results presented in 4.1.

For the tip apex – Au (111) contact shown in Fig. 1, fol-
lowing the nearly critical damping approximation of indi-
vidual atoms in the contact layer [23], we know that the 
atomic dissipation rate takes a simple form [15]

where mat is the atomic mass and kat is the lateral spring 
cnstant of individual atoms in the contact layer. Since the 
contact layer atoms in the tip apex experience approxi-
mately the same average friction dissipation rate γat due to 
the nearly critical damping approximation, one can calculate 
the total friction force, Fdiss, which should be proportional to 
the contact area or the total number of atoms in the contact 
layer, i.e.

This simple linear scaling of dissipation rate was proved 
to be appropriate regardless of whether the atoms in the con-
tact layer are considered as independent Einstein oscillators 

(8)�at ≅ 2
√
katmat

(9)Fdiss = Ncont𝛾atẋ

or coupled oscillators [23]. More sophisticated considera-
tions involving the energy dissipation from the nearby tip 
atoms away from the contact interface and the phonon dis-
crimination mechanism also reached the similar conclusion 
[15]. Therefore, it is the contact area, i.e., the number of 
atoms in the contact layer, Ncont, that determines how much 
mechanical energy is temporarily stored in the contact and 
subsequently dissipated into surrounding materials.

Since the dissipative friction force, Fdiss, is also relevant 
to the friction term in the Langevin Eq. (3), i.e.,Fdiss = m𝛾 ẋ , 
we can readily see that the dissipation rate in (3), mγ (in the 
unit of kg s−1), is only relevant to the total dissipation rate 
of the contact layer atoms, i.e., m� = 2Ncont

√
katmat . Such 

a simple relation also suggests that, if we consider that the 
attached Au atoms have approximately the same atomic mass 
as the Pt particles, then the damping coefficient γ, depends 
not only on the atomic number ratio Ncont/Ntot, a structure 
property of the tip apex, but also on the lateral vibration 
frequency of individual atoms in the contact layer 

√
kat∕mat , 

an intrinsic physical property of the friction system.
The average lateral stiffness of the individual atoms in the 

contact layer, kat, can be calculated from the contact layer 
stiffness, k1, divided by the effective number of atoms in the 
contact layer. Assuming that the boundary atoms in the con-
tact layer only contribute 50% of kat, while the interior atoms 
contribute a full kat, to a very good approximation, the num-
ber of boundary atoms is given by 4

�√
Ncont − 1

�
 , as shown 

in parentheses in Table  1. Consequently, we have 
kat =

k1

Ncont−2
�√

Ncont−1
� . In Table 3, we show the calculated 

results of kat and γ, as well as the dissipation rate mγ, for 
both Pt3956 and Pt18365 tip apexes.

Given that the critical damping coefficient (γc) of the 
system, according to Eq. (3), is both k and m relevant, i.e., 
�c = 2

√
k∕m , one can readily show that the damping ratio 

ζ = γ/γc, a critical measure of the friction state of the system, 
is independent of the atomic mass of the tip apex, but is now 
tied to the driving spring stiffness k, given by

As shown in Table 3, both Pt3956 and Pt18365 tip apexes are 
underdamped when sliding on the Au (111) surface, even 

(10)� =
N
cont√
N
tot

�
k
at

k
.

Table 3   Summary of MD calculated lateral stiffness (kat) of individ-
ual atoms in the contact layer, the damping coefficients γ, the dissipa-
tion rate (mγ) in Langevin Eq. (3), and the damping ratio ζ, together 

with other relevant parameters for the Pt3956 and Pt18365 tip apexes in 
contact with the Au (111) surface

kat (N/m) γ (× 1010 s−1) mγ (× 10−11 kg s−1) Ncont√
Ntot

√
kat

k

ζ

Pt3956 0.575 4.33 5.65 1.032 0.2715 0.2802
Pt18365 0.114 2.89 17.6 3.332 0.1282 0.4270
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though the contact layer atoms are close to critically damped 
[15]. As such, it is the damping ratio ζ, that depends not only 
on the structure property of the tip apex (represented by 
Ncont√
Ntot

 ), but also on the square root ratio of the lateral stiffness 

of the individual atoms in the contact layer over the equiva-
lent driving spring stiffness, (kat/k)1/2, a physical–mechanical 
property of the friction system.

The dependence of the damping ratio on the mechanical 
pulling system and the atomic number ratio of the tip apex 
need further discussions. Here, we focus on the effect of 
k and m of the tip apex on the system damping behavior. 
First, the apparent correlation between ζ and 1/k1/2 suggests 
that if one uses a hard spring to drive the tip apex, friction 
will likely enter the smooth sliding regime if the combined 
parameter η = 2E0π2/ka2 < 1 [4, 24, 30]. The reduced damp-
ing ratio will likely make the system underdamped in the 
smooth sliding state. Conversely, if one uses a soft spring to 
drive the tip apex, the system will tend to enter the stick–slip 
regime if the combined parameter η = 2E0π2/ka2 > 1, the 
present case shown in Table 2. Decreasing k (or equiva-
lently increasing the damping ratio ζ, according to Eq. (10)) 
will also more likely make the system enter into critically 
damped or even overdamped stick–slip friction regime. At 
this point, we emphasize that it is the damping ratio ζ, that 
connects the intrinsic atomic dissipation rate (γ) with the 
external mechanical driving system (k) through the critical 
damping coefficient γc, which is k and m relevant. Second, 
increasing the tip apex mass (m) is equivalent to increas-
ing the total number of atoms Ntot, therefore, decreasing ζ. 
According to Eq. (10), the larger Ntot will give lower ζ if 
Ncont is kept unchanged, making the system likely under-
damped. This situation is consistent with theoretical predic-
tions by Krylov et al. [15] It is therefore intriguing to prop-
erly define the tip apex structure to reflect the actual AFM tip 
apex geometry. The optimized value of Ncont/(Ntot)1/2, for a 
given mechanical driving spring k, will be able to predict the 
actual stick–slip friction state of the AFM cantilever upon 
the tip-substrate contact is established.

4.3 � Validation of kcont and γ − Velocity‑Dependent 
Friction Simulations

We show that the contact stiffness and damping derived from 
the above MD simulations can be readily used in the Lan-
gevin Eq. (3) for the PT model. To make the MD simulation 
and the phenomenological PT modeling for both Pt3956 and 
Pt18365 tip apexes in the same footing, the total masses of the 
two tip apexes are assumed to have the same 100 Au mass, 
i.e., m = 3.29 × 10–23 kg. This allows the stick–slip friction 
to be in the single-slip regime [25]. Velocity-dependent 
friction simulations are carried out by both MD simulation 
and Langevin dynamics in the range of V = 0.01 – 1 m/s at 

T = 293 K. The normal load is set to the same value of 0.6 
nN. The k and γ values shown in Table 2 and Table 3 are 
used in Langevin dynamics simulations. The amplitude of 
the periodic corrugation potential in Eq. (2), E0, is deter-
mined according to the linear relation between E0 and the 
maximum friction force Fmax

L
 , as has already been discussed 

in 4.1.
Figure 4 shows the detailed comparisons of the typi-

cal stick–slip friction force variations at V = 1 m/s and the 
velocity-dependent mean friction for the two tip apexes. All 
simulations are carried out by running at least 5 independent 
simulations to calculate the mean friction forces. We find 
that MD simulations for the Pt18365 tip apex usually take 
more simulation runs (up to 10 runs) in which any simula-
tion results involving new surface defects generated on the 
Au (111) surface will be discarded. This scenario may hap-
pen when some high energy attached gold atoms experience 
further diffusion onto the Pt tip apex. The overall remarkable 
consistency between the MD simulation and the Langevin 
dynamics modeling, while the latter depends on the properly 
calculated phenomenological damping coefficient and the 
contact stiffness from direct MD simulations, validates the 
general utility of these two parameters in a simple phenom-
enological modeling.

5 � Conclusions

We have presented a method of calculating the contact stiff-
ness and damping coefficient necessary for implementing the 
Prandtl-Tomlinson (PT) model for the study of atomic-scale 
friction. The two important parameters can be unambigu-
ously determined from straightforward MD simulations if 
the actual atomic structure of the AFM tip apex is known. 
We demonstrate that the contact stiffness of the tip-substrate 
contact kcont, is largely dependent on the very first contact 
layer atoms in the tip apex, while the damping coefficient 
γ, is uniquely determined by a combination of the atomic 
structure of the tip apex and the intrinsic relaxation rate of 
the individual atoms in the contact layer. In particular, kcont 
is essentially independent of the temperature and the atomic 
mass of the AFM tip, and is also less dependent on the nor-
mal load if the contact geometry remains unchanged in elas-
tic contact. With these two critical parameters being fully 
understood and determined, the PT model can reproduce the 
stick–slip motion of the tip apex predicted by expensive MD 
simulations. More importantly, a practice of using direct MD 
simulation to determine kcont and γ brings in a fundamental 
understanding of the origin of these two parameters in the 
phenomenological PT model. We emphasize that it is the 
damping ratio ζ, which connects the intrinsic damping coef-
ficient (γ) of the contact layer with the external mechanical 
driving system (k), that ultimately determines the friction 
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state of the system. Such an intriguing correlation suggests 
that, perhaps, given the same dissipation rate γ in the con-
tact layer, the way of energy dissipation should critically 
depend on the extrinsic behavior of the mechanical driven 
system, such as its k and m. We anticipate that the method 
of calculating kcont and γ may find new applications in mod-
eling nanoscale friction in many different systems, and may 
pave a new revenue to unravel friction dissipation in AFM 
experimentation.
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