Fast LP-based Approximations for Geometric Packing and Covering Problems*

Chandra Chekuri'

Abstract

We derive fast approximation schemes for LP relaxations
of several well-studied geometric optimization problems
that include packing, covering, and mixed packing and
covering constraints. Previous work in computational
geometry concentrated mainly on the rounding stage to
prove approximation bounds, assuming that the underlying
LPs can be solved efficiently. This work demonstrates
that many of those results can be made to run in nearly
linear time. In contrast to prior work on this topic our
algorithms handle weights and capacities, side constraints,
and also apply to mixed packing and covering problems, in
a unified fashion. Our framework relies crucially on the
properties of a randomized MWU algorithm of [41]; we
demonstrate that it is well-suited for range spaces that
admit efficient approximate dynamic data structures for
emptiness oracles. Our framework cleanly separates the
MWU algorithm for solving the LP from the key geometric
data structure primitives, and this enables us to handle
side constraints in a simple way. Combined with rounding
algorithms that can also be implemented efficiently, we obtain
the first near-linear constant factor approximation algorithms

for several problems.

1. Introduction

Set Cover and Independent Set are two important prob-
lems, and are canonical examples of combinatorial cov-
ering and packing problems respectively. Both are NP-
HARD optimization problems and their approximability
is well understood in the worst case [21]. Set Cover
can be approximated up to a logarithmic factor, while
Independent Set can be approximated only up to qual-
ity “close” to n, and almost matching hardness of ap-
proximation results are known for these problems. The
geometric instances of the preceding problems, are usu-
ally associated with a range space (P, R), where P is

" *This work is supported in part by NSF grants CCF-1526799,
CCF-1910149 and CCF-1421231.

TDept. of Computer Science, University of Illinois, Urbana
IL 61801. chekuri@illinois.edu. http://chekuri.cs.illinois.
edu.

fDept. of Computer Science, University of Illinois, Urbana IL
61801. sariel@illinois.edu. http://sarielhp.org

SPurdue University, West Lafayette, Indiana, 47909. krq@
purdue.edu. https://kentquanrud.com.

Sariel Har-Peled?

Kent Quanrud®

a set of points/elements and R C 27 is a collection of
ranges/sets corresponding to some geometric objects
such as (pseudo) disks, half-spaces, rectangles, triangles,
etc. A range space is a set system that naturally defines
an instance of Set Cover or Set Multicover'. Indepen-
dent Set can be viewed as a special variant of packing,
where one has to pick maximum number of ranges, such
that no element is contained in more chosen ranges than
its specified capacity.

Usually, the range space is implicitly defined — the
geometric entities involved are specified, and the range
space arises out of their definition. For example, in the
Independent Set problem of a given collection of disks D
in the plane, the locations of the disks are specified.
Every face of the arrangement of A(D) specifies a
hyperedge (i.e., set) of disks such that one has to select
at most one of them in the independent set.

There has been extensive work on approximation
algorithms for geometric packing and covering and
related problems with several fundamental advances in
the last decade [25, 17, 24, 23, 28, 42, 33]. The three main
approaches that have been successful are local search,
separator based dynamic programming schemes, and LP-
relaxation based rounding. These powerful techniques
have led to PTASes and QPTASes and constant factor
approximations for several problems and these results
are in sharp contrast to known strong lower bounds for
the general non-geometric settings.

LP rounding in geometry. The LP based approxi-
mation algorithms which go back to the influential work
of Clarkson [3], whose reweighting algorithm can be
interpreted as solving and rounding the corresponding
LP simultaneously. Clarkson’s algorithm was restated
for spaces with bounded VC dimension by Brénnimann
and Goodrich [5], and the connection to LPs was made
explicit by Long [9]. There have been a number of pa-
pers in the recent years which have shown the utility
of the LP approach for geometric covering and packing
problems [13, 26, 25, 18, 24, 23, 37, 40] where they have
gone beyond VC dimension to exploit union complexity
bounds. The LP approach has been particularly use-
ful for weighted and capacitated problems where other

TWe do not explicitly consider the Hitting Set problem since it

is the same as Set Cover for the dual range space.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

chekuri@illinois.edu
http://chekuri.cs.illinois.edu
http://chekuri.cs.illinois.edu
sariel@illinois.edu
http://sarielhp.org
krq@purdue.edu
krq@purdue.edu
https://kentquanrud.com

approaches are less suitable. The general framework
here is to solve an appropriate LP relaxation for the
problem followed by a careful rounding procedure that
heavily relies on the underlying geometry to improve the
approximation bound.

Our goal is to compute fast approximation algorithms
for geometric packing and covering problems via the LP
approach. The LP relaxations fall under the category
of positive linear programs that include pure packing,
pure covering and mixed packing and covering. One
can write down the LP relaxation explicitly and then
apply known techniques for approximating positive linear
programs via Lagrangean relaxation and multiplicative
weight update (MWU) method to obtain several results.
There is a vast literature on this topic and we defer
a formal discussion to later part of the paper. The
running time of these algorithms is near-linear in the
number of non-zeroes in the incidence matrix I(P, R)
of the range space and can be O(|P||R|) in the worst
case. For some problems such as Set Multicover whose
relaxation is a mixed covering and packing LP, only
bicriteria approximations are feasible via the standard
positive linear programming approach.

As we remarked earlier, the range space (P, R) is
often supplied in an implicit fashion and the challenge
is to obtain a running time that is near-linear in the
input size rather than in the size of the incidence matrix
I(P, R). There have been significant successes in fast LP
solving for implicit instances arising from combinatorial
problems. Of particular relevance to this paper is the
methodology of combining MWU based methods with
data structures which has been successfully used in
several settings in graphs and geometry. Before we
discuss our contribution we briefly describe some closely
related work and some of their limitations.

Limitations of previous work. MWU based methods
are used in computational geometry where the reweight-
ing technique of Clarkson and others that we mentioned
earlier is routinely used. Most work applies this tech-
nique without explicitly referring to LP relaxation, and
in fact the technique is very often combined with round-
ing to directly generate an integer solution. This does
not always yield the best known approximation ratio.
For instance [22] obtains near-linear approximations for
several geometric hitting set problems but the approx-
imation ratios are worse by logarithmic factors in n
compared to the best known bounds. Agarwal and
Pan [43] developed near linear-time approximation al-
gorithms via the LP approach for unweighted instances
of geometric Set Cover and Hitting Set problems (and
via duality for some Independent Set problems). They
use the high-level paradigm of speeding up MWU based

algorithms via geometric data structures. They too, for
the most part, round as part of the algorithm. Their
work does not address weights or capacities. In [43]
the Set Multicover problem is explicitly mentioned as
an open problem since their framework did not capture
mixed packing and covering constraints. In essence, for
geometric packing and covering problems, there has been
no systematic effort to efficiently solve the underlying
LP relaxations to near-optimality; previous work relied
on exact algorithms or known results from positive linear
programming in a black-box fashion that did not exploit
geometry. In some previous work [36] we demonstrated
that for simple and well-behaved range spaces such as
intervals and points (and orthogonal boxes in constant
dimensions), it is feasible to solve the underlying LP
relaxations with weights and capacities efficiently. The
main limitation of this work is that the range space had
to have an efficient (poly-logarithmic query and update
time) dynamic weighted range search data structure
which is not available for many range spaces of inter-
est, for instance, disks and points in the plane that we
consider here.

Our contributions. We develop a broadly applica-
ble framework to obtain fast approximation schemes
for LP relaxations of geometric packing and covering
problems. We address limitations of prior approaches
and solve some of the problems left open in [43]. We
clearly demarcate the boundary between the high-level
randomized MWU algorithm from [41] that we build
upon, and its efficient implementation via geometric
data structures; in particular we abstract the properties
we need from the data structure. This clean separation
is useful in solving a variety of problems in a unified and
modular fashion even when there are side constraints
and multiple linear objectives. This will enable future
developments in geometric data structures to be easily
incorporated into the framework. In order to make our
contributions concrete we focus on the canonical set-
ting of disks and points in the plane. We obtain the
first nearly linear time approximation schemes for the
LP relaxations of the following problems which can be
combined with known rounding algorithms.

(A) MAXIMUM WEIGHT PACKING OF DISKS INTO CAPAC-
ITATED POINTS. Given a collection of weighted disks
and capacitated points, compute a subcollection of
disks of maximum weight such that the number of
disks containing any point is at most its capacity.
Ene et al [37] presented a rounding scheme for that
yields constant factor approximation.

MAXIMUM WEIGHT INDEPENDENT SET OF DISKS.
Given a collection of weighted disks in the plane,
compute a subcollection of disjoint disks of maxi-

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

mum weight. Chan and Har-Peled [25] showed that
the fractional solution to the underlying LP can
be rounded to give a constant factor approxima-
tion to this problem. This problem can be posed
as a discrete packing problem (as above) with a
quadratic number of points in the plane, but we
obtain running times nearly linear in the number of

disks.

WEIGHTED SET COVER OF POINTS BY DISKS. Given
a collection of weighted disks in the plane and a set
of points, the problem is to compute a subcollection
of disks of minimum weight, such that each point
is covered by at least one disk. Chan et al [24]
(extending the work by Varadarajan [18]) showed
how to round the LP to get a constant factor
approximation to the discrete problem.

MINIMUM WEIGHT MULTI-COVER OF POINTS BY
DISKS. Given a collection of weighted disks in
the plane and capacitated points, the problem is
to compute a subcollection of disks of minimum
weight such that the number of disks lying above
any point is at least the capacity of that point.
[26] showed that the fractional solution to the
underlying LP can be rounded to give a constant
factor approximation to the unweighted problem
and Bansal and Pruhs [23] extended the work of
[24] to obtain a constant factor for the weighted case.
We obtain a bicriteria approximation scheme for the
underlying LP relaxation. When the demands are
not too large the bicriteria approximation can be
converted into unicriteria approximation. Using
knapsack-cover inequalities and an algorithm of
[44] we also describe an O(mn)-time approximation
scheme for the LP. As far as we are aware no
fast approximation scheme for the LP was known
previously and [43] posed it as an open problem.

Our framework applies to any range space that admits
efficient emptiness oracles with deletions. We give a
formal description and example later in the paper.

Side constraints and mized packing and covering: We
highlight a particularly useful aspect of our framework
via two examples. Consider the problem of covering
points by weighted disks. We typically have a single
linear objective function but there are several applica-
tions where there are multiple linear cost functions that
we wish to simultaneously minimize (usually a small
number). In such cases we need to solve the LP relax-
ation for the problem with multiple linear costs which
are formulated via budget constraints. This results in a
mixed packing and covering LP where the packing con-
straints modeling the upper bounds on the costs do not
have much structure while the covering constraints come

from the geometric setting. Similarly, when considering
maximum independent set of disks, we may have multi-
ple objectives that we wish to simultaneously maximize
which results again in a mixed packing and covering LP.
We illustrate a different motivation for side constraints.
Consider again the problem of maximum independent
set of disks. It is natural in several applications to have
additional packing constraints. For example there could
be partition matroid constraints on choosing disks: in
more friendly language this corresponds to the setting
where disks are partitioned into color classes and there is
an prescribed upper bound on the number of disks that
can chosen from each color class. Rounding LP relax-
ations to handle multiple types of packing constraints is
often feasible via the approach of contention resolution
schemes [27]. Our framework allows us to cleanly handle
the implicit constraints imposed by the geometric range
space and the explicit constraints that may not have
much additional structure.

Rounding the LP relaxation: For many problems
of interest the procedure for rounding the solution to
the LP can be done in near linear time with some basic
preprocessing and data structures — for example see [25,
43] for rounding the setting of independent set of disks.
Here, we mainly focus on solving the LP relaxation. Full
details of the rounding schemes are beyond the scope of
this current version.

2. Background and formal statement of results

We state our results using the following abstraction.

DEFINITION 2.1. A range space is pair (P, R), where
P is a set of points (or elements), and R C 2% is a
collection of subset of P called ranges. We let m = |P)|
denote the number of points (when P is finite) and
n = |R| denote the number of ranges.

We make the standard technical assumption that
a set of ranges R is always in “general position”; in
particular, any two ranges in R intersect at most a
finite number of times, and any intersection is a proper
crossing.

DEFINITION 2.2. A positive linear program (a.k.a. a
mized packing and covering LP) is a linear program of
the form

(2.1) findz € RS s.t. Ax <1 and Bz > 1,

X
where A € RZZ™"
coefficients.

and B € RZs™™ have nonnegative

Note that there is no objective function in Eq. (2.1).
One can model an objective with positive coefficients as

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

a constraint; since both packing and covering constraints
are allowed, both maximization and minimization objec-
tives can be modeled.

Several applications fall into the setting of pure
packing where we aim to solve an LP of the following
form where ¢ € R>o,

(2.2) max(c,z) s.t. Ax <1 and z >0
and pure covering where we aim to solve an LP of the
following form,

(2.3) min(c, z) s.t. Bx > 1 and « > 0.

DEFINITION 2.3. A wector y € R%, is a (1 £ ¢)-
approximate solution to a positive linear program if
it satisfies the property that Ay < (14 ¢)1 and By >
(1—e)1.

We note that if y is a (1 4 ¢)-approximation solution
one can, by scaling, also obtain a solution that satisfies
the packing constraints and only violates the covering
constraints by a (1 — O(e))-factor. Similarly one can
obtain a solution that satisfies the covering constraints
and only violates the packing constraints by a (1+0(e))-
factor.

DEFINITION 2.4. Given a range space (P, R), let I(P, R)
(or simply I, when (P,R) is clear) be the incidence
matriz between the points and ranges. Formally, we have
Ie€{0,1}™", with I(p,r) =1 ifp€r and I(p,r) =0
otherwise, where m = |P| and n = |R).

Geometric packing and covering problems are in-
duced by the incident matrix I. For instance, we get the
following LPs:

1. Weighted Set Cover:

mianimi s.t. Iz > 1 and x > 0.

K2

2. Weighted Set Multicover:

mianixi st.Jx >dand 0 <z <1.

7
3. Packing weighted ranges into points:

maXZci:ci s.t. Iz <1 and x > 0.

7

In some cases, points and ranges can have non-negative
capacities and demands associated with them. We define
a general class of positive LPs induced by a range space.

DEFINITION 2.5. Let (P, R) be a range space. A matrix
A € R™*™ is associated with (P, R) if it can be written
as A = diag(«)I diag(p), where a € RY,, f € R, and
I=1I(P/R). - -

A matrix associated with (P, R) can be interpreted as
assigning weights to the points (i.e., &) and to the ranges
(i.e., 8). This work is concerned with solving positive
linear programs with packing and covering constraints
induced by a geometric range system (P, R), without
explicitly computing the incidence matrices. To solve
such implicitly defined LP’s in time faster than the
explicit size of the LP, we require a data structure for
the range system (P, R), which has been established for
several geometric range spaces.

DEFINITION 2.6. Let (P, R) be a fized range system. An
emptiness oracle is a (randomized) data structure that
takes as initial input a subset Q C P, and given a query
range r € R returns whether Q Nr = O or not. An
emptiness oracle with deletions is an oracle that also
allows deletions from the set Q).

REMARK 2.1. Randomization is crucial to obtain ef-
ficient emptiness oracles. In our application we will
assume that the randomized data structures are either
Las Vegas or that they answer all queries (which may be
adaptive) correctly with high probability.

Related queries include count queries, that return
|Q Nr|, and reporting queries, that list the elements
of @ Nr. When the range system (P, R) takes on
different geometries, one can obtain different tradeoffs
in performance for these queries. We abstract out
specific geometric considerations by assuming access
to an “efficient” emptiness oracle, where our definition
of efficiency is somewhat loose.

Suppressing logarithmic factors: There is a deep
and extensive literature determining tight sublinear
factors in geometric settings. However, it is difficult to
account for the varying logarithmic factors of each setting
precisely without breaking our analysis into very detailed
cases. Moreover, the basic run-time improvements in this
work are by larger orders of magnitude, from quadratic
or more to nearly-linear. At this level of granularity, we
do not emphasize logarithmic factors, and for ease of
exposition, we adopt the following convention.

NOTATION 2.1. The notation O(-) hides polynomial
factors in log(m), log(n), and log(1/c). Moreover, a
event holds “with high-probability” if the event occurs
with probability at least 1 — 1/ poly(m,n).

DEFINITION 2.7. A range space has nearly linear
emptiness oracle if an emptiness oracle can be im-
plemented with (expected) initialization time O(|Q]) for

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Q C P and (expected) query time 6(1) A range space
has nearly linear emptiness oracle with deletions if it
supports deletions from @Q in O(1) amortized time.

We list below some important classes of range spaces
for which we have nearly linear emptiness oracles with
deletion:

o (P,R) when P is a set of points and R is a set of
half-spaces in R® [16, 38]. This also holds for the
dual range space. Via standard reduction, this also
holds when P is a set of points and R is a set of
disks in the plane and its dual range space.

e P is a set of points in the plane and R is a set of fat
triangles [20]. Also for the dual range space where
P is a set of fat triangles and R is a set of points

[8]-

e P is a set of points and R is a set of orthogonal
boxes in R? where d is a fixed constant (also for
the dual range space). For these shapes there are
efficient weighted range search data structures.

Improved approximations for geometric range spaces
such as (pseudo) disks and other shapes have been shown
via the notion of union complexity which plays a crucial
role in both running times and approximation bounds.

DEFINITION 2.8. A set R of regions in the plane has

low-union complexity, if

(A) every range in R has finite descriptive complezity,

(B) the boundaries of any pair of ranges of R intersect
only a constant number of times,

(C) and, for any subset X C R of t ranges, the
descriptive complexity of the boundary of the union
ofUX, is bounded by O(tf(t)), where f(t) = o(t)

(usually f(t) = O(polylogt)).

Some ranges for which near linear union complexity
is known are the following. We refer the reader to a
comprehensive survey [14] for the extensive literature on
this topic.

e Pseudo disks (and hence disks) in the plane.

e Fat triangles in the plane and generalizations to
(a, B)-covered objects [11].

e Half spaces and axis aligned unit cubes in R3.

REMARK 2.2. In this paper we focus on range spaces
with nearly linear emptiness oracles. Our framework,
however, applies to range spaces with less efficient
oracles as well. For instance if a range space admits
an emptiness oracle with O(v/m) query time we can

obtain a running time of the form O((m + n)v/m) to
solve the associated LPs. A more detailed treatment will
be done in a future version.

We assume that all the nonzero entries in the input
are within a poly(m, n, 1/¢)-multiplicative factor of each
other. When working with (1 + ¢)-approximation and
relaxations of {0,1} positive integer programs we can
arrange this by simple scaling ideas.

2.1. Results We now describe our results. The first
theorem handles positive LP s that consist of packing
constraints induced by a range space with nearly linear
emptiness oracle, along with mixed packing and covering
constraints that are given explicitly.

THEOREM 2.1. Let (P, R) be a range system with nearly
linear emptiness oracle, a parameter ¢ > 0, m = |P|,
and n = |R|. Consider a positive linear program of the
form

findz € RS s.t. [x <1, Az <1,and Bx > 1,

where I € RUS™ is associated with (P, R), and A and B
are matrices. One can compute, with high probability, in
O(Ne™! +rows(B)e™? + (m +n)e™*) time, an (1£e)-
approzimation to the LP (see Definition 2.3), where
N = [Allg + 1Bllo-

The next theorem extends the previous theorem to allow
both packing and covering constraints associated with
(P, R) when (P, R) has stronger, nearly linear emptiness
oracle with deletions.

THEOREM 2.2. Let (P, R) be a range system with nearly
linear emptiness oracle with deletions, and ¢ > 0.
Consider a positive linear program of the form

find x € RE,
st. Az <1, Bx<1, Bz >1, and C'z > 1,

where A, B € RUS™ are associated with (P, R). Then,
one can (1+¢)-approzimate this LP, with high probability,
in 5(1\75_1 + rows(C")e™? + (m + n)e™*) randomized
time, where N = || B'[|; + [|C"]l,-

The preceding theorems allow us to efficiently solve
a variety of geometric packing, covering, and mixed
packing and covering LPs induced by geometric range
spaces. Note that pure covering and pure packing
problems can be reduced to mixed packing and covering
by guessing the optimal objective value (using binary
search) and encoding the objective as a packing or
covering constraint. One can also treat them separately,
which in some cases leads to more intuitive algorithms.
For the sake of concreteness, we list a few applications
for disks and points in the plane.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

COROLLARY 2.1. Given m capacitated points and n
weighted disks, one can (1 £ &)-approzimate, with high
probability, the mazimum weight fractional packing of
the disks into the capacitated points, in O((m + n)674)
time.

COROLLARY 2.2. Given m points in the plane and n
weighted disks, one can (1 + &)-approzimate, with high
probability, the mazimum weight fractional set cover of
the points by the disks in O((m + n)5*4) time.

For mixed packing and covering, we obtain a
bicriteria approximation guarantee, as seen in the
following. The bicriteria approximation can be avoided
by incorporating knapsack covering constraints and using
the algorithm from [44] which we state subsequently.

DEFINITION 2.9. An instance of Set Multicover is a
tuple (P, R,d,c), where d : P — Z>(are the demands
on the points, and w : R — Rsq are the weights on the
ranges. A feasible fractional solution assigns a fraction
to each range x : R — [0,1], such that for any p € P, we
have that Z x, > dp, where R(p) ={re R|per}.
reR(p)

An integer solution satisfies the additional property that
z € {0,1}7.

COROLLARY 2.3. Given an instance of Set Multicover
(P, R,d,w), where the ranges R are disks in the plane,
and a parameter € > 0. Then, one can compute,
with high probability, a fractional feasible solution x for
(P, R, (1 —¢€)d,c) with c(x) < OPT where OPT is the
value of an optimum fractional solution. The running
time of the algorithm is O((m+n)5_4). This also implies
that a fractional feasible solution x for the original
instance with ¢(x) < (14 ¢) OPT can be computed with
high probability in time 5((m + n)dfnaxsfll) where dpax
is the maximum demand.

The preceding corollary allows us to obtain a
fast algorithm for Set Multicover if one settles for a
bicriteria approximation or when the maximum demand
is small. If one wants a unicriteria approximation, fast
approximation schemes for positive linear programs are
not directly helpful other than choosing ¢ to be very
small. However, we show that one can use knapsack
cover inequalities and a result from [44] to obtain the
following.

COROLLARY 2.4. Given an instance of Set Multicover
(P,R,d,w), where the ranges R are disks in the plane,
and a parameter € > 0. Then, one can compute,
with high probability, a fractional feasible solution x for
(P,R,d,c) with c(x) < (1 +¢) OPT where OPT is the

value of an optimum fractional solution. The running
time of the algorithm is O(N/e™® + (m + n)/e”) where
N is the number of nonzeroes in I(P, R).

Theorem 2.1 and Theorem 2.2 obtain nearly linear
running time with respect to |P| 4+ |R|, i.e., when the
range space (P, R) is given explicitly. The next theorem
allows us to consider a set of problems where the range
space is continuous or implicitly defines a range space
(P, R) where |P| + |R| is larger than the input size.

THEOREM 2.3. Let R be a weighted set of n shapes
in the plane, with low-union complezity, that can be
maintained efficiently under deletions and emptiness
stabbing queries (i.e., each operation can be done in
amortized polylogarithmic time). Then one can compute,
n 6(71/54) time, with high probability., a (1 £ €)-
approzimation to the fractional solution of the following
LP (for the mazimum weight independent set):

maXZchr s.t. Z z, <1 VpeR?

x>0
reR r€R(p)

where ¢, is the weight of r.

Combining the preceding theorem with the rounding
in [25] we obtain the following corollary.

COROLLARY 2.5. Given a collection of n weighted disks
in the plane and ¢ > 0, one can compute an (1 —
€)-approximation to the maximum weight fractional
independent set in near linear time. By rounding it,
one can compute a constant factor approximation to the
mazimum weight discrete independent set in near linear
time. The algorithm succeeds with high probability.

REMARK 2.3. Consider the problem of minimum weight
dominating set in a collection of disks in the plane.
One can obtain a constant factor approximation via the
natural LP relazation [39] even in the more general
setting of pseduo disks. For disks we can obtain a
near-linear time approrimation scheme to solve the LP
via Theorem 2.2 and a geometric transformation that
converts the dominating set problem into a problem about
covering points by cones in three dimensions, and using
certain facts about their arrangement [38]. We defer
details of this reduction to a future version of the paper.

Efficient emptiness oracles are much more easy to
develop than emptiness oracles that handle deletions.
We need deletions to handle covering constraints that
get dropped after they are sufficiently covered and this
is crucial for width-independent running times. It is an
interesting open problem whether the MWU framework
can be revisited from a more general perspective so that
that can be avoided.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

2.2. Technical ideas and other related work
Our work is inspired by two streams of work. The
first is the already mentioned line of work which
showed that LP relaxations can be used to obtain
improved approximation algorithms for a certain class
of geometric packing and covering problems. The LP
approach is particularly useful in the weighted setting
as well as in capacitated settings. The second line
of work is on approximation schemes for positive LPs
starting with work of Grigoriadis and Khachiyan [4] and
Plotkin, Shmoys and Tardos [6] and many subsequent
developments. This line of work has led to the so-
called width-independent running times for positive LPs
which culminated in a deterministic algorithm for an
explicitly given mixed packing and covering LP whose

running time is O(—; Nlog N) where N is the number

of non-zeroes in the input [30]. There have been several
recent exciting improvements that have been inspired by
techniques from continuous optimization and this has
resulted in algorithms with a better dependence on ¢ for
pure packing [31] and pure covering [34].

LPs that arise in discrete and combinatorial opti-
mization problems such as graphs, geometry and other
areas have additional structure and are often implicit
(in some cases the size of the LP is exponential in the
input size). For such problems the best running time is
obtained by combining several ideas. In this paper we
rely on MWU type algorithms and here the properties of
MWU algorithm, problem-specific data structures, and
their interplay is crucial. Recent work [36, 35, 41] has
adapted ideas from [30, 29] to develop fast algorithms for
a variety of LPs that arise in combinatorial optimization.
[36] obtained near-linear deterministic algorithms for
some geometric packing problems which involved axis
aligned boxes in low dimensions by taking advantage of
the structure of the range search data structures. One of
the algorithms of Agarwal and Pan [43] is quite similar
to that of Koufagiannis and Young [29] which is based
on a randomized two player game.

The limitation of the algorithm of [43, 29] is two
fold. First, it applies only to pure packing and covering
LPs. Second, the primal-dual algorithm requires one to
explicitly maintain both primal and dual variables and in
some implicit settings this is not suitable. To overcome
the preceding limitations we rely on the randomized
MWU algorithm in [41] which is inspired by [29, 30] —
some features of this algorithm were partly motivated
by geometric packing and covering problems involving
disks and points in the plane which were not amenable
to the techniques in [36]. In a sense [41] combines the
correlated weight update feature of [29] with ideas from
[30] to obtain a randomized width independent algorithm

for mixed packing and covering. The correlated weight
update is a key ingredient that we exploit here. In
addition the algorithm does not need to explicitly
maintain the primal variables as long as certain oracle is
available. This is particularly useful in implicit settings
as we will demonstrate.

We set up a general framework that essentially
abstracts away all the complexity of weights, capacities,
and side constraints to the availability of efficient
emptiness oracles (with deletion) for the underlying
range space. A key technical challenges is to implement
the weight decrease in the MWU framework for covering
constraints with only access to an emptiness oracle with
deletions.

3. Randomized MWU for Positive LPs

In this section we give an overview of a randomized
MWTU algorithm from [41] that forms the basis for the
results in the paper. We set up some useful notation.

NoOTATION 3.1. It would be convenient to consider the
coordinates of a vector as indexed by the objects under
consideration. As such, for a set of objects C, we use
RC to denote the space R™, where m = |C|. Thus, for a
vector v € RS, and an object o € C, we denote by v, the
coordinate of v that corresponds to o. In particular, for a
set Q C C, and vectors x,y € R, let (T,9)0 = Z TiYs-
i€Q
Consider a positive LP

(3.4) findx >0s.t. Av <1,Bxr>1

The first component appropriated from [41]2, called
random-mwu and sketched in Figure 1, is (at a high-level)
a variant of a deterministic algorithm for mixed packing
and covering originally proposed in [10] and refined
in [30]. The algorithm falls in the broad framework
of Lagrangian relaxation algorithms that iteratively
solve a relaxation of the original problem as follows.
The algorithm maintains non-negative weights for each
constraint (which can be interpreted as dual variables).
We let v denote the weight vector for packing constraints
Az < 1, and w denote the vector for covering constraints
Bz > 1; v and w are both initialized to the all-1’s vector
1. In each iteration, the algorithm uses v and w to
collapse the packing and covering constraints in to a
single packing and covering and finds a feasible solution
y to the following relaxed problem:

(3.5) find > 0 s.t. (v, Az) < (v,1), (w, Bx) > (w,1)

ZWe note that for pure packing and pure covering problems,
one can also instrument the framework of [29] to obtain some

similar results.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

random-mwu (A € [R;’S",B € [Rczén’s)

1. n=(Inm)/e // parameter to control step size
2. 0«1, w1 // packing € covering weights
3. 9+ [C] // Q: active covering constraints
4. t+0 // time goes from 0 to 1
5. while t <1 and Q # 0

A. choose y € RY, such that

/* y is an approzimate solution to Lagrangian
relazation w/r/t weights v, w */

1. (v,Ay) < (1+0(g))(v, 1)
2. (w,By)g 2 (1 -0(e))(w,1)4
B. if no y € R, satisfies (*) and (**) then

return ‘“‘infeasible’’

C. § + max value J >0 such that // step size

e jnAy <el
e)nBy < el
et+6<1
D. & < x+dy // increment current solution by dy
E.t+t+90 // increment time
F. pick 0 € [0,1] uniformly at random
G. for i € P // wupdate packing weights
// approzimate v; < exp(dnle;, Ay))v;
1. if 0 < dnle;, Ay)/e
a. v; < exp(e)v;
H. for i€ Q // update active covering weights

// approximate w; < exp(—on{e;, By))
1. if 0 < énles, By)/e
a. w; < exp(—e)w;
b. if w; <exp(—n)
// i made inactive if weight small enough

1. 9+ Q—1i

6. return x

Figure 1: A randomized, width-independent implementation
of the MWU framework from [}1].

The relaxed problem is infeasible only if the original
problem is infeasible. The basic observation motivating
this approach is the relative simplicity of (3.5) compared
to (3.4). For 1 <i < mn,let oy = (v, A4),/(v,1) and let
Bi = (w, B),/(w,1). Then (3.5) is feasible iff there exists
an 7 such that a;/8; < 1. Setting y; = 1/6; and all other
coordinates to zero is a feasible solution. The fact that
y is supported by a single coordinate is instrumental to
fast running times. Moreover, random-mwu requires only

approximate solutions to the relaxed problem. A (1+¢)-
approximate solution to the relaxed problem translates
to a (1+e)-approximate solution to the original problem.
Approximation offers considerable flexibility and leads
to substantial improvements in the running time.

The algorithm adds the solution y to the current
solution (which is initialized to 0) with an appropriate
step size §. The algorithm follows the “timed” frame-
work from [32] that indexes progress by a “time” ¢ that
increases from 0 to 1, with the step size and other pa-
rameters appropriately normalized. After each iteration
the packing and covering weights are updated multiplica-
tively (packing weights are increased in an exponential
fashion and covering weights are decreased).

The efficiency of the algorithm depends on the
number of iterations and the work done in each iteration.
The randomized algorithm is shown to terminate with
high probability in O(mlogm/e?) iterations where m
is the total number of constraints in the LP. Each
iteration requires two main steps: (i) finding a solution
to (3.5), and (ii) updating the weights. The key to
implementation efficiency is the randomized weight
update step that is borrowed from the work of [29].
Where the standard deterministic update might increase
a weight by a multiplicative factor of exp(ep) for
some p € [0,1], random-mwu increases the weight by
a multiplicative factor of exp(e) with probability p. In
expectation, random-mwu makes the appropriate update
with respect to the logarithm of the weight. The crucial
property is that all the weight updates are correlated via
a single random variable . The pseudocode in Figure 1
is incomplete, as we leave the implementation of lines
(5.4) and (5.C) unspecified. One can take advantage
of this in implicit problems, where (5.A) and (5.C) can
be supplied by domain-specific oracles. The correlated
weight update steps (56.G.1) and (5.H.i) can also be
implemented efficiently in implicit settings as we will
discuss shortly.

random-mwu-pack (see Figure 2) and random-mwu-
cover (see Figure 3) specialize random-mwu to pure
packing and pure covering problems. [41] proved that
random-mwu terminates both successfully and efficiently
with high probability.

THEOREM 3.1. ([41]) Let A € RZZ™™ and B € RZg*"
be nonnegative matrices for which there exists a non-
negative x € RY, such that Ax < 1 and Bz > 1. Let
m = my, +me, and let N be the total number of nonzero
coefficients in A and B.

With probability 1 — 1/poly(m), random-
mwu(A,B,s) returns a point & such that
Az < (1+4+0(@E)L and B > (1—-0(g))1 in

O((me +min{m,, n})In(n)/e*) iterations and, ez-
cluding the time spent in lines (5.A) and (5.C),

Copyright (© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

random-mwu-pack (A € [R;g" ,c€RYp,8)

1. n=(Inm)/e // parameter to control step size
2. v+ 1 // v: packing weights
3.1+0 // time goes from 0 to 1
4. while t <1

A. choose y € R, such that

(c,y) > (1 —O(e)) max{(c, 2) : (v, Az) < (v,1)}

// vy is APX soln to Lagrangean relaxation w/r/t v
B. § < max value J >0 such that

1. dnAy <el
2. t+6<1

// step size

x <+ x+ 0y // increment current solution by oy
t—t+9 // increment time
pick 6 € [0,1] uniformly at random
for i € P
1. if (0 < dn(e;, Ay)/e)

// approzimate v; < exp(dn{e;, Ay))v;

MmO Q

// wupdate/increase packing weights

a. v; < exp(e)v;

5. return x

Figure 2: A randomized, width-independent implementation
of the MWU framework from [41] specialized to pure packing
problem of the form max(c,z) s.t Az <1,z > 0.

O(N + mln(n)/e?) time. Each packing weight v;,i € P
increases along integral powers of exp(e) from 1 to (at
most) exp(ln(my)/e). Each covering weight w;,i € C
decreases along integral powers of exp(e) from 1 to
exp(—n(m,) fe).

The O(N) term comes from examining each nonzero
of A and B in order to prepare for the randomized
update step in lines (5.G.1i) and (5.H.i). In geometric
instances, the number of nonzeroes in A and B may be
large, and N could be quadratic in the input size m + n.
Next we show how to avoid the dependence on N in the
geometric setting via data structures.

The second component appropriated from [41] is par-
tially dynamic randomized data structure that maintains
relative coordinatewise approximations of the vectors
ATy and BTw as v increases and w decreases when A
and B are given explicitly. This data structure will be
used to handle the explicit “side constraints” given by A’
and B’ in the statements of Theorem 2.1 and Theorem
2.2. A simplified version of the result in [41] that suffices
for our setting is as follows.

c
random-mwu-cover (B € R3y",c € R%0,€)

1. n=(lnm)/e // parameter to control step size
2. w1 // w: covering weights
3. 9+ [C] // Q: active covering constraints
4. t«+0 // time goes from 0 to 1
5. while t<1 and Q #0

A. choose y € RY, such that
(c,y) < (1+0(e)) min{{c, z) : (w, Bz) 5 > (w,1) 5}

// y is APX soln to Lagrangean relaxation w/r/t w
B. § + max value § > 0 such that

1. inBy < el
2. t+6<1

// step size

z < x+ 6y // increment current solution by dy
t—t+0 // increment time
pick 6 € [0,1] uniformly at random
for i€ Q
1. if 0 < dnle;, By)/e

// approximate w; < exp(—in(e;, By))

MmO Q

// decrease active covering weights

a. w; + exp(—e)w;
b. if w; <exp(—n)
// i made inactive if weight small enough

1. 9« Q—1i

6. return x

Figure 3: A randomized, width-independent implementation
of the MWU framework from [41] specialized to a pure
covering problem of the form min({c,z) s.t Bx > 1,z > 0.

THEOREM 3.2. ([41]) Let e > 0 and W > 1 be fized
and known.

(i) Let A € RYS™ be a nonnegative matriz with N

nonzero coordinates all in the range 2791 2001
and v € RTy be a positive vector initialized to
1 and incremented online by T, such that v; <
W for all j at all times. Then one can main-
tain an (1 + e)-multiplicative approzimation of
each coordinate of ATv in with high probability

~ log W
mn O(T + Nlog W + OB total randomized

o2
time.
(i) Let B € RIF™ be a nonnegative matriz with N

nonzero coordinates all in the range {2_6(1), 26(1)},

and let w € RY, be a nonnegative vector initialized

Copyright (© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

to 1 and decremented online by T single coordinate
updates, such that w; € [1,1/W]U {0} at all times.
Then one can maintain an (1 £ e)-multiplicative
approzimation of each coordinate of BT w in with

log W
high probability in O (T + Nlog W + r og) to-
tal randomized time.
4. Fast Implementation of random-mwu for

Geometric Problems

We describe how (randomized) geometric data structures
can be used to develop fast implementations of random-
mwu in various settings. We focus on the most general
setting of mixed packing and covering from Theorem 2.2.
Recall that in this setting we wish to solve a positive LP
of the form

find z € RY,
st. Ar <1, B’z <1, Bx > 1, and C'z > 1,

where A, B € RZ;" are associated with a geometric
range space (P, R) with n = |R| and m = |P| , and B’
and ¢ are general non-negative matrices that model
side constraints and are given explicitly while A, B are
implicitly specified. Let A = diag (aA)I(P, R) diag(84)
and B = diag(a®”)I(P, R)diag(8”) where I(P,R) is
incidence matrix of (P, R).

The two key components in the implementation
are: (i) updating the weights of the constraints in each
iteration (ii) solving the simplified optimization problem
in each iteration. The next two subsections show how
to efficiently handle the implicit matrices A, B. We put
together the details for the overall running time in the
final subsection.

4.1. Implementing randomized weight updates
via range searching We address the efficient imple-
mentation of the weight update step in random-mwu hen
we are working with an positive LP defined by a range
space (P, R). This consists of finding the step size 0
in (5.C) and updating the weights of the packing con-
straints and covering constraints (steps (5.G.i) and
(5.H.1)). We first focus on the weight update process.
We focus on updating implicit packing weights since up-
dating the covering weights is similar. Recall that in the
general setting, the algorithm picks a random 6 and up-
dates the weights of all rows i such that 0 < dn{e;, Ay)/e.
In the implicit setting, for a range space (P, R), A is
of the form A = diag(a)I diag(3) where a € R, and
g e |R§0, and y is of the form ~ye, for some r € R. Sub-
stituting in, we have that for any p € P, we update the
weight for p iff p € r and 0 < dnayB,/e. Thatis, iff p € r

and o, > . Crucially, the threshold

Oc
against
By ﬁ, onB,

which we compare «,, is independent of the weight of p.
Thus the weight update reduces to the following search
problem: given a range r € R and a threshold 7, find
all the points in p € PN r such that a, > 7. We em-
phasize that oy, is static and does not change over the
course of the algorithm. This is essentially range search,
formalized below.

DEFINITION 4.1. Let (P, R) be a range space. A range
search takes as input a range r € R and returns P Nr.
Given static values p: P — R, an interval range search
takes as input a range r € R and an interval [a,b] C R,
and returns the set {p € PNr:a < u(p) < b} A range
search with deletions (resp. interval range search with
deletions) data structure allows points to be deleted from
the underlying point set P.

Very efficient range search data structures are known
for various geometric settings. For instance when the
ranges are d-dimensional axis-aligned boxes in R?, range
search with query time logo(d) n can be achieved via
relatively simple data structures. Here we are assuming
only emptiness oracles and very little else. It is well-
known that range search with static values can be
implemented via emptiness oracles with only logarithmic
overhead. (One can improve the logarithmic factors in
more specified setting, but we abstain from these details
per the discussion before Notation 2.1.) We describe it
below for sake of completeness.

LEMMA 4.1. Given an emptiness oracle (resp. empti-
ness oracle with deletions) data structure for (P, R), one
can itmplement an interval range search (resp. interval
range search with deletions) data structure for static
values p where the overhead per query is O(log m).

Proof. We sort the points P in increasing order of their
1 values and build a balanced binary tree T over P. For
each internal node v in the tree T', build an emptiness
oracle data structure over all the points in the subtree
T, rooted at v. Each interval range query (r,|a,b])
decomposes into queries of (unweighted) range reporting
queries with range r at a logarithmic number of nodes
in T. For each such node v we can use the emptiness
oracle data structure at v (and within T,) to report all
the points in T, contained in r in time proportional
to number of points reported (this is standard: if r
has no points in T, we stop otherwise we recursively
explore the two children of v). Thus the total time is
O((k+ 1) log m) queries to the emptiness oracle where k
is the total number of points reported. To delete a point
p we remove it from the emptiness oracle data structure
at ©(log m) levels in which p participates so that future

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

queries are handled correctly. We note that the tree T
is unchanged even though points are removed from the
emptiness oracle data structures. 0

The preceding lemma with the observation at the
start of the subsection allows us to efficiently (assuming
efficient emptiness oracle data structure) list all the
points p in a range r whose packing and covering weights
need to be updated after 6 is chosen randomly.

We address the issue of choosing the step size §.
Suppose we have chosen to update z by the single
coordinate solution y = de, for some range r. Note
that ¢ is chosen in (5.C). To determine § in the implicit
setting we need to find the bottleneck point p € r with
the largest value of a;,. We can find this from the same
data structure as in Lemma 4.1 in O(1) time as follows.
Recall that T stores P in sorted order of o, values. We
start at the root of the tree T' and explore the left and
right child of the root to see if r has any points in the
subtrees. Since T stores points in increasing order of
«a values, we recursively explore the right child if r is
non-empty on that side, otherwise we recursively explore
the left child. It is easy to see that in O(logm) queries
we will find the desired point.

The preceding discussion leads to the following
lemma that captures the total time spent on updating
weights.

LEMMA 4.2. Let € > 0 be given. Consider a positive
LP with m,, explicit packing constraints and m. explicit
covering constraints, in addition to packing and covering
constraints induced by a range space (P,R). Let the
explicit packing and covering constraints be given by N
NONZeroes.

(a) If there are only induced packing constraints, and
(P,R) has nearly linear emptiness oracles, then
modulo the time spent in lines (5.4) and (5.C),

~ m
random-mwu can be implemented in O<N+ 7)
€
total time.
(b) If (P,R) has nearly linear emptiness oracles with
deletions, then modulo the time spent in lines (5.A)
and (5.C), random-mwu can be implemented in

5(]\7 + %) total time.
€

In either case, the packing weights are increased mono-
tonically along integer powers of exp(e) from 1 to
mCP/e) and the covering weights are decreased mono-

tonically along integer powers of exp(—e) from 1 to
m—90/e)

Proof. We apply Theorem 3.1 to an implementation
where the randomized weight updates are implemented

by range search data structure. By Lemma 4.1, with
O(m) initialization time, we can implement the sampling
steps in lines (5.G.i) and (5.H.i) in O(1) time per

point listed in the sample. Each point listed has its
/1

corresponding weight updated at most O(2> times,
€

so the total time spent on sampling weights of induced
constraints is O (m/ 52). We note that when an induced
covering constraint corresponding to a point p € P is
dropped in line (56.H.1i.b), the point p has to be removed
from the range search data structure. If the emptiness
oracles have O(1) time deletions, then p can be removed
from all future weight updates in 6(1) time as described
in Lemma 4.1. The desired running times then follow
from Theorem 3.1. |

4.2. Implementing the greedy oracle (approxi-
mately) with emptiness oracles Lemma 4.2 reduces
positive linear programs defined implicitly over range
spaces with nearly linear emptiness oracles to a fast
implementation of line (5.4). In particular, to obtain
nearly linear running times, we need to implement (5.4)
in O(1) amortized time. The subproblem solved in (5.4)
is relatively simple compared to the original positive lin-
ear program and the basic set up is as follows. We let
vectors v and v’ denote the weight vectors maintained
by the MWU algorithm for the packing constraints de-
fined by A, A’ respectively, and w,w’ denote the weight
vectors maintained by the algorithm for the covering
constraints defined by B, B’ respectively. The pack-
ing weights increase monotonically and the covering
weights decrease monotonically as the corresponding con-
straints tighten. In each iteration, we need to compute a
range r € R that approximately maximizes the ratio
(w', B'ey) + (w, Be,) (w',B'e,) + P > per agw,

(v, Aley) + (v, Aey) (v, Aler) + B ZpGT apvp
We note that whenever an induced covering constraint for
a point p € P is deleted in line (5.H.1i.b), we decrease
wp to 0.

The main technical challenge is to handle decreasing
weights. We overcome this challenge in our setting via a
careful analysis of the requirements of the randomized
MWU algorithm.

4.2.1. Depth estimation We first consider a simpler
setting with just one set of weights w : P — R>p. A
basic and seemingly necessary task is approximating the
weight Z wy, of any range r € R. Formally, the setup

per
is as follows.

SETTING 4.1. Let (P, R) be a range space with m points
and n ranges and equipped with nearly linear emptiness

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

oracles. Let P be weighted by w: P — R>¢. Forr € R,

let w(r) = pr denote the sum weight with respect to
peET

w of points in r. We assume that the weight wW(r) of

any range r € R is always either 0 or in the interval

[1/W, W] for a fized and known W > 0.

For some geometries, such as intervals on a line or
rectangles in the plane, one can compute and maintain
the total weight of each range in polylogarithmic time.
Other basic settings such as disks (and in particular,
those without well-behaved “canonical sets”) are known
to require polynomial time to maintain weights exactly.
When it comes to relative approximations, however, [15]
observed that nearly linear emptiness oracles suffice to
efficiently estimate the weight by sampling.

Fact 4.1. ([15]) There is a randomized algorithm that

~ (mloglog W

builds a data structure in O time which

3
€
can estimate the weight of any range r € R to within

~ (log log W

an (1 + €)-multiplicative factor in O 5 time.
€

The algorithm succeeds with high probability.

Note that the above is for a given set of static
weights. Applying the standard dynamization techniques
of Bentley and Saxe [1], one obtains the following
partially dynamic guarantees when the weights are
Increasing.

Fact 4.2. Suppose w is updated online by
T = poly(m,n) single-coordinate weight incre-

ments. There is a randomized data structure that
w0 (m+T)loglog W
mn

total time estimates the

3
€
weight W(r) of any given range r € R to within an
~ (loglog W
(1 & €)-multiplicative factor in O % time. All
€
the estimates are correct with high probability even for
adaptive queries.

4.2.2. Maintaining the maximum ratio range
We return now to implementing random-mwu. To
implement (5.4), it suffices to find a range r € R that
approximately maximizes the ratio of two sets of weights,
(w', B'e,) + BB > per apr
(v, Ale,) + BA Zpe’r‘ af,‘vp
To model this, we consider the following setting

SETTING 4.2. Let (P, R) be a range space with m points
and n ranges and equipped with nearly linear emptiness
oracles. Let P be weighted by two different sets of weights
v:P — Rsog and w: P — R>g. Let R be weighted by
w” : R — Rsg and v" : R — Rsq. Let B4 € RE and

BB e [leo. For a fixed and known W > 0, we assume
that the weight of any point with respect to v or range
with respect to v' is always in the interval [1/W, W],
and the weight of any point with respect to w or range
with respect to w' is always either 0 or in the interval
[1/W, W].

In the preceding setting, v and w” in Setting 4.2 will
correspond to approximations of (A")Tv" and (B')Tw’
maintained by Theorem 3.2. We abuse notation slightly
and use 7(r) to denote the quantity Z a;f‘vp and w(r)

per
to denote the quantity Z af Wp
peET

LEMMA 4.3. Suppose w and w' are decreased online
and v and v' are increased online by T = poly(m,n)
single-coordinate weight updates. Let 82,88 € [ng0
be two fixed wvectors with coordinates in the range

{2_6(1)725(1) . One can maintain, with high proba-
~<((m+n)logW+T)loglogW

bility in O 3 > total time,
€

wy + Brw(r)
v + B(r)
(1 &£ e)-multiplicative factor of the maximum ratio range.

a range r € R with weighted ratio within a

Proof. Let W= 22(1)W. By assumption, the maximum
i —
ratio max M
reR vl + BAV(r)
[WQ, I/WQ] at any point in time, and is monotonically
decreasing as w and w’ decrease and v and v’ increase.
By Fact 4.2, we can maintain a (1 + ¢)-multiplicative
estimate of T(r) for all » € R in the allotted time and
space. Maintaining w(r) is not straightforward because
w is decreasing. However, for the sake of maintaining the
maximum ratio range (up to an (1 + O(e))-multiplicative
factor) we can apply thresholding techniques to reduce
decremental weight estimation to a more feasible decision
problem as follows.
We maintain a threshold A such that A >
W+ Brw(r)
rerR vl + BAD(r)
by powers of (1 —). At any point, we either output a
range r € R with ratio at least (1 — O(g))A, or certify
that there is no range with ratio at least (1 —¢)\. In
the latter case, we replace A with (1 — &)\. Note that A
log W
€

is either 0 or in the range

. A\ is initialized to W2 and decreased

decreases at most O < > times before it falls out

of the range [1/W?2, W?2].

Fix a value A. We claim that it suffices to implement
the following query efficiently: given r € R, decide if its
ratio is < (1 —€)A, or its ratio is > (1 — O(e))A. Indeed,
given such a query, we test each » € R in (any) fixed order

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

until we find a range r with ratio at least (1 — O(g))\.
We pause the search at this range and output it. As the
algorithm proceeds and the weights of the constraints
change, the ratios of ranges are affected. Note, however,
that the ratio of any range monotonically decreases.
Thus, we can keep updating and using the currently
held range r as long as its ratio is at least (1 — O(e))\.
Once its ratio falls below (1 — €)A we resume the search
for a new range among the ranges in the fixed order
(continuing from r), until we either find another range
with ratio at least (1 — O(e))A, or declare that all ranges
have ratio < (1 —e)\. Since the ratio of any range is
monotonically decreasing, after rejecting a range once
for a fixed A, we do not need to inspect it again.

Thus, for a fixed upper bound A on the ratio of any
range, we want to decide, for each range r, whether the
ratio of 7 is < (1 —e)A or > (1 — O(g))\. (Note that the
overlap allows for either decision if the ratio lies between
(1 —e)X and (1 — O(e))A.) The technical difficulty lies
in the fact that the weights w : P — R~ are decreasing,
while Fact 4.2 can only maintain estimates for increasing
weights. To circumvent this, we periodically take a
snapshot w® of w, and track the increasing difference
w® — w. Intuitively, if w® is reset frequently enough,
then (1 + &)-multiplicative estimates for w® and w° — w
sum to sufficiently good multiplicative estimates for
w:w0+(w0—w).

More precisely, we set (and maintain) an index
¢ = [log A]. ¢ is initially [log Wﬂ and decreases at
most O(log W) times. Whenever £ is set or reset, we
build the following data structures. w’ denotes the
values of the weights w when £ is decreased. By Fact 4.1,

we can compute (1 & ¢)-multiplicative approximations

~<mlog log W

with respect to w® in O time. By Fact

23
4.2, until ¢ decreases, we can maintain an (1+e¢)-
multiplicative approximation with respect to w® — w
~ (T loglog W
€
number of increments until ¢ decreases.

Now, given r € R, we decide if the ratio of r is at
least (1 — O(eg))A or (1 — &)X as follows. Using (1 £ ¢)-
multiplicative estimates for w®, w® — w, and v, let p €
(1Le)(w)! + BPw°(r)), o € (1 xe)BF (W°(r) —w(r)),
and 7 € (1 £¢)(v) + B{0(r)) (all with high probability).
(g

total time, where Ty is the total

> (1 —0O(g))A (for a sufficiently large constant
-
hidden in O(e)), we decide that r has ratio at least
(1-0(e))\ (for a slightly larger hidden constant);
P9 < (1 —0O(e))A, we decide that r has
-

ratio less than (1 —¢)A.

We claim that, if p € (14e)(w!+ ﬁf@o(r)),
o € (1£e)B? (@ (r) —w(r)), and 7 €

otherwise if

(1+¢e)(v) + B2o(r)), then the decision is correct.
To this end, we first observe that since
P (@’ (r) —w(r))
vy + Bo(r)

wy + B’ (r)
vl + Bv(r)

<O,

we have
B2 (@°(r) —w(r))
o + BA(r)

)~ (1)
o7+ B

REAS

< (14 0(¢))
_ BP(@°(

+ O(eN),

p—0o

Thus, if > (1 —0(g))A, we have

wy! + BP0 (r)

ol + B(r)

B (@°(r) —w(r))

w! + BPw(r) r) —
vy + BAu(r)

ol + BAo(r)

za-og»f-%-ogm
> (1-0() == - 0N

w)! + BPw(r)
o+ ()

w” B0y
o S
o+ BP0 ()
wraemy O
w! + BPw(r
> (1- 0 2)

as desired. Conversely, if > (1 —¢)A, then

p—0

> (1-

—O(eN)

as desired. Thus we can implement the overlapping
decision problem correctly with high probability, and
thus maintain an approximately maximum ratio range,
as desired. We now analyze the total time. Let T be
the total number of weight estimate queries with respect
to w for a fixed value of \; we have Z ="T.

A

o (m+1T) liog log W

3 time for maintaining an
€
(1 &+ &)-multiplicative factor with respect to v;

. 6<(m+Tg)loglogW

23
maintaining estimates for w° and w" — w for each
fixed ¢, and

~<(n+ 7)) log log W

) time for building and

e O

2 time for querying weight
estimates for ranges with respect to w for fixed A.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Index ¢ takes O(log W) different values and A takes

log W
0 different values d E T E T, < T
< - > ifferent values, an a by 4 ¢ = 1

so summing the above together, the total time is
~ 1 T)log 1
O(((m+n) og W + 1) log ogW>7 as desired. O

3

REMARK 4.1. A careful reader may wonder where in the
preceding proof did we need emptiness oracle for deletions.
In the setting of Theorem 2.1 we only have packing
constraints associated with (P, R) and packing weights
only increase and no points are ever deleted. However,
when there are covering constraints Bx < 1 associated
with (P, R), we need to maintain decreasing weights
and a point corresponding to a covering constraint is
made inactive when its weight becomes too low. We
implemented decreasing weights by using snapshots and
rebuilding data structures that handle increments. Once
a point p is dropped for covering, it does not participate in
those rebuilt data structures. Thus we use the emptiness
oracle for deletions only in Section 4.1 where we need to
report active points in a range for updating the weights.

4.3. Putting together the implementation of
random-mwu We now complete the proofs of Theorem
2.1 and Theorem 2.2.

Proof. (Proofs of Theorem 2.1 and Theorem 2.2) By
Lemma 4.2, it suffices to implement lines (5.4) and
(5.C) in O(1) amortized time. We implement lines
(5.4) to (5.C) via Lemma 4.3 as follows. By Theorem
3.2, we can maintain (1 & ¢)-multiplicative approxima-
tions to each coordinate of (A') v and (B') w in the
allotted time. By Lemma 4.3, taking ar as a, fr as
B, apr,p as wy, for each p, the (1 + ¢)-multiplicative
approximation of (A')Tw’ as w’, aﬁvp as v, for each p,
and the (1 +)-multiplicative approximation (4’) v’ as
v, we can maintain a range r with weighted ratio

(w', B'e,) 4+ (w, Be,) (W', B'er) + Bror D per ay wy

(v, A’e,) + (v, Ae,.) (W', Aley) + ap.r ZpeR QR rUp

within a (1 4+ O(e))-multiplicative factor of the maxi-
mum ratio range. With (1 &+ ¢)-multiplicative approxi-

mations for Z a]‘;‘vp, we can also choose v > 0 such that
pER

'yaR7rZal‘?vp € (1te) Z vp. It is easy to see then

peEr pEP
that y = e, satisfies the conditions of line (5.4). For y

of this form, (5.C) can be implemented (approximately)
by range search data structures to find the “bottleneck
constraint” and set § accordingly, by the same construc-
tion as when implementing the random sampling step
in Section 4.1.

By Theorem 3.1, we have T = 6(m/52) and

W = mOW/e, Plugging into the bounds of Lemma
4.3 gives us the time complexity we seek. |

5. Implicit range spaces

Section 4.2 shows how to solve positive linear programs
defined implicitly over range spaces in nearly linear
time, even when there are Q(mn) incidences between
points and ranges. In this section, we consider an even
more difficult setting where not only is the incidence
structure a large polynomial in the input size, but even
the range space is a large polynomial in the input size.
A motivating example of this situation is the following.

EXAMPLE 5.1. Given n disks D in the plane weighted
by c: D — Rsq, consider the following LP for computing
the mazimum (weight) independent set.

mazimaize E cpxp over x: D — Rxq
D

s.t. Z xp <1 forallp e R2.
D>p

The above gives packing constraints continuously through-
out the plane, but they can be discretized by listing
the m = O(nQ) distinct points in their arrangement.
The first problem here, from the standpoint of obtaining
nearly linear running times, is that the number of points
in the implicit range space is still quadratic, let alone the
fact that the incidence matriz may be dense.

In this section, we consider problems in the following
formal setting.

DEFINITION 5.1. Let R be a set of objects in the plane.
The union complexity v : N — N of R is the function
mapping n € N to the maximum number of arcs on the
boundary of the union of any n objects in R.

SETTING 5.1. Let (R?, R) be a range space consisting of
n = |R| ranges such that

(a) The dual range space (R,R?) has nearly linear
emptiness oracles with deletions.

(b) R has nearly linear union complezity u(n) = O(n).
Let R be equipped with positive weights ¢ : R — R~g.

We note that disks and fat triangles in the plane
satisfy the above conditions. Pseudo disks have linear
sized union complexity. We also need the range
space (R,2) to have nearly linear emptiness oracle with
deletions. For pseudo disks this is also possible to achieve
via known techniques [38].

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Given Setting 5.1, we consider the problem of
computing the maximum weight fractional independent
set:

maximize E crxp over 0 R — Rxg
reR

s.t. Zxr <1 for all p € R%.

r3p

To this end, we apply the MWU framework to the
associated dual problem:

minimize E x, over = : R? — R
pER?

s.t. Zasp >c¢, forallr € R.

per

The above is a hitting set problem, where we want to
compute a minimum cardinality (fractional) set of points
hitting each disk. Not only does the MWU framework
give an (1 =+ e)-multiplicative approximation to the above
(dual) problem, but standard techniques (see, e.g., [35])
can extract a (1 & ¢)-multiplicative approximation to the
original (primal) problem from the evolving sequence of
weights w, as desired.

By Theorem 3.1 and Lemma 4.2, random-mwu with
randomized weight updates implemented by emptiness
oracles gives an algorithm that takes O(n/<€2) time plus
6(71/62) calls to an oracle in line (5.4) that, for this
particular case of pure covering, reduces to the following
subproblem:

maximize E Tp OVEr T : R? — R>o
pER?

s.t. Z%pr > Zwr,

rer " pET reR

where w : R — R>(are nonnegative weights on R each
decreasing monotonically from 1 to m~9®) and then
to 0. This subproblem can be solved (approximately)
by finding the point p with (approximately) maximum

w w
depth Z —~, and taking y = e, for v = in'
Cr > -
rOp TOp Cp
The goal, then, is to approximate the deepest point with
respect to the weights w, /¢, in O(poly(1/e)) amortized
time per iteration.

5.1. Approximating the deepest point in O(1/¢?)
amortized time We want to approximate the deepest
point in a weighted set of regions, in time faster then
listing all the possible intersection points. To this
end, we apply sampling techniques that leverage the
underlying geometry to generate a comprehensive list of

O(n) points to test. The machinery for this sampling-
based approach is built on well-known techniques in
computational geometry; see [19] for a more general
overview and other applications of these techniques.

DEFINITION 5.2. Let R be a set of ranges in the plane
with total weight W, and € € {0,1}. An e-cutting is a
decomposition C' of the plane into regions such that (a)
the number of regions in C' is small and (b) for c € C, the
total weight of ranges v € R whose boundary intersects
the interior of ¢ is at most eW.

Fact 5.1. ([2]) Consider a family of ranges with union
complexity u. Then the number of vertices induced
by n ranges with (unweighted) depth < k is at most
O(k*u(n/k)).

LEMMA 5.1. Let R be a collection of n ranges in the

plane with nearly linear union complezity u(k) = O(k)

and weighted by w : R — Rsg. Let W = Zwr be the
reR

total weight, and let D > maxz w,- be an upper bound

€R?
p 2P

on the mazimum weighted depth_of D. The one can
compute, with high probability in O(n) randomized time,
a set of 6(71) points P C R? such that, for any subset
of ranges S C R with nonempty intersection and total

weight wW(S) > D/4, we have PN ﬂ r| #0.
res

The constant 1/4 is arbitrary, and chosen for conve-
nience.

, and note that é = O<W) <

D
Proof. Let ¢ = iiid)

O<W) _
maXyrepR Wy

range r € R independently with probability 5(

O(n). Let S C R sample each

) -

=~ Wy . . A 1 A .
O(f) S has cardinality |S| = O<E> = O(n) with

high probability. [42, Lemma 3.9] implies that the
vertical decomposition A induced by S is an e-cutting
with respect to R. Moreover, by combining the union
bound with the Chernoff inequality, S has (unweighted)
depth at most (5(1) with high probability. As such,
a sweeping construction of A takes O(|S|) = O(n)
time. By Fact 5.1, since R (hence S) has nearly linear
union complexity, and S has depth 6(1)7 the vertical
decomposition A of S has O(|S|) = O(n) vertices
V. We claim that, since A is e-cutting, any subset
T C R with nonempty intersection and total weight
> w, =D/ =W had VO ((reT) # 0. To this
reT

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

end, we first observe that for any region a in the vertical
decomposition A, vertex v of a, point p € a that is not
a vertex of a, and range r € R, we have p € r and a ¢ r
iff the boundary of r properly crosses the interior of
a. (This follows from our assumption on the general
position of R.) Now, let T C R have total weight at
least eW and p € ﬂ r. Then p is in some region a of
reT
A If ﬂ r does not contain any vertices of A, then in

reT
particular p is not a vertex of a, and every range r € T

misses some vertex of a. By the above claim, then, every
r € T has boundary intersecting the interior of a. But
then the sum of ranges whose boundary intersects the
interior of a is at least eW, a contradiction to the fact
that A is an e-cutting. By contradiction, then, we must

have V N (ﬂ r | # 0, as desired. d

reT

SETTING 5.2. Continuing Setting 5.1, let R have non-
negative weights w : R — R>q decreased online by T
single-weight updates. Let W > 0 be a known and
fixed value such that for any range r € R, we have
w, € {0} U [1/W,W]. For p € R?, let w(p) = Zw,.
TER
denote the weighted depth of p. ©

~(nlogW+T

LEMMA 5.2. One can maintain, in O nog3—|—>
€

total time, a (1 % €)-multiplicative approzimation to the

deepest point in the arrangement of R.

Proof. There are two basic technical difficulties to
overcome. The first, encountered earlier in Lemma
4.3, is that the weights w are monotonically decreasing,
whereas Fact 4.2 only lets us maintain approximate
depths when the weights are increasing. The second
challenge, unique to this setting, is that the total number
of candidate points in the explicit LP is on the order of
the number of vertices in the arrangement of R, and a
large polynomial in n. Even enumerating these points
(let alone computing the arrangement) is too slow. We
need to maintain the heaviest point without explicitly
checking most of them.

Observe that as w decreases, the depth of any
point is monotonically decreasing. Thus, we can
apply thresholding strategies similar to Lemma 4.3 and
reduce the problem instead to single-resolution decision
problems, as follows.

We maintain a threshold A > 0 with the invariant
that A > w(p) for all p € R%.) is initialized to O(W)
and decreased by powers of (1 —¢). At any point, we
either maintain a point p € R? with @w(p) > (1 — O(e))A,
or certify (with high probability) that w(p) < (1 — &)\

for all points p € R%. In the latter case, we replace \
with (1 —)\, and continue. Note that A decreases at

most O <10g w

[O(W),1/0(W)]. ~

Let ¢ = [log A]. ¢ is initialized to O(log W), and
decreases at most 5(log W) times. Whenever ¢ changes
value (including initially), we do the following. Let w®
denote the values of w when £ is set or reset. By Lemma
5.1, we generate a set of O(n) points P, C R? such
that for any subset S C R with nonempty intersection
and total weight at least ZU}T > 272 we have

res

> times before it falls out of the range

PN (n 7‘) # (. By Fact 4.1, we build a data
res

structure giving (1 & €)-multiplicative factor estimates

of the depth of any point p € P, with respect to w®°

~<n10glogW

n O 3 . By Fact 4.2, we also initialize and
€

maintain (1 £ e)-multiplicative factors of the depth of
0

any point p € P, with respect to the difference w” — w
~ (Tyloglog W
in total time O %
€

We claim that that if wW(p) < (1 —¢)A for all p € P,
then w(q) < (1—¢)\ for all ¢ € R? Indeed, let
q € R? with w(q) > (1 —e)\. Let S={rcR:qcr}
be the set of ranges containing ¢. S has nonempty
intersection (containing ¢) and total weight Zw,‘ =

res
w(g) > (1—e)A>(1- 5)2Z_1 > 272, By choice of P,

then, there exists p € P, N (m s) . Such a point p has
ses
depth w(p) > Zﬁ(s) > (1 —¢)A, as desired.
seS

Thus, for fixed), it suffices to maintain a point
p € P, with w(p) > (1—0(e))A, or certify that
all p € Py have depth w(p) < (1 —¢)A to conclude
that all points ¢ € R? have depth @w(q) < (1 —¢)A.
This situation, by the same sweeping technique as in
Lemma 4.3, reduces to the following overlapping decision
problem: given p € Py, decide if w(p) < (1 —¢)A or
w(p) > (1 — O(e))A. The same argument as in Lemma
4.3 shows that the (1 & ¢)-multiplicative estimates for
w"(p) and @° (p) —w(p) suffice to implement the decision
problem with high probability, and thus an (1 £+ O(e))-
multiplicative approximation of the deepest point in the
arrangement. The total running time consists of

e O(n) to construct P, for each /.

. 6<(n+T£)1§)glogW
€

> time building and main-

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

taining estimates for w® and w® — w for each fixed
value of ¢, where T, is the number of updates at
this value of /.

~<(n +T)log log W

o O =2

estimates for each fixed A\, where T) is the number
of updates at this value of .

time for queries to weight

¢ takes on O(log W) different values and A takes on

log W .
O(- > different values, and ;T)\ = ;Tg =T,

~ log W + T) log log W
so the total time is O<<n 08 +53) og log)7 as

desired. 0

5.2. Approximating max weight independent set
Now we complete the proof of Theorem 2.3.

Proof. (Proof of Theorem 2.3) Recall that we have
a pure covering LP. By Lemma 4.2, it suffices to
implement (5.4) in O(1/e®) amortized time. As
remarked above, this reduces to maintain an (1 4 ¢)-
multiplicative approximation of the deepest point in the
weighted range space (R?, R), with the weight of a range
r € R being w,/c, for nonnegative vector w: R — R>q
initialized to 1 and monotonically decreasing to n:o(l/ E),
and then straight to 0. By Lemma 5.2, for T' = O(n/sQ)

and W = no(l), such a point can be maintained in

O (24) total randomized time with high probability, as
€
desired. |

6. Set Multicover via KC Inequalities

In this section we consider the Set Multicover problem.
The natural LP relaxation for an instance (P, R, d,c) is
the following.

minimize E ¢rx, over @ R — [0, 1]
reR

s.t. Zmr > dy, for all p € P.

oD

An interesting example is when R is a set of disks
in the plane. For this case the integrality gap of the
preceding LP is known to be O(1) [26, 23]. The LP has
both covering and packing constraints and Theorem 2.2
implies that one can compute a (1 4 ¢)-approximation in
O(m + n) time if (P, R) admits nearly-linear emptiness
oracle with deletions. However, we only obtain a
bicriteria approximation. That is, the fractional solution
either satisfies the covering constraints exactly or the
packing constraints exactly but may not satisfy both.

Rounding such a fractional solution can violate the
covering constraints by a (1 —¢)-factor or we may need to
use two copies of each range. We give a slightly refined

statement below. Let dy.x = mag)(dp be the maximum
pe

demand.

LEMMA 6.1. Let x be a (1 % €)-approximate solution
to the LP for Set Multicover for a range space (P, R).
Suppose there is an a(m,n) approzimation for instances
of Set Multicover over a range space (P, R) via the LP
relazation. Let x be a (1 + &)-approzimate solution to
the LP. Then one can obtain an integer solution of cost
(2 + e)a(m,n) OPT that covers each point p € P to an

1
extent of | (1 —e)dy, + 3| In particular if € <

2dmax
then the fractional solution can be rounded to satisfy all

the constraints exactly.

Proof. We will assume that = € [0, 1]™ and hence satisfies

the packing constraints exactly, and that it satisfies the

covering constraints approximately, that is, for each

D Zw,« > (1—-¢)d,. Also Zcrxr < (1+¢)OPT.
rop rcR

We now consider a new fractional solution z’ where

z,. = min{1,2z,} for each r € R. It is easy to see that

1
Z x> 3 + Z :CTJ . Rounding ' gives us the desired
rop TP

solution. 0

Thus, we can obtain an algorithm with a running
time O(poly(dmax)(m+n)) that yields a 2(1+¢)a(m, n)
approximation. If dpay is small (say O(1)) then the
running time is reasonable and one would assume that in
most applications d,ax is likely to be small. It is also easy
to obtain a (1 4 €)a(m, n)(1 + log dmax)-approximation
in 6(m + n) time via the bicriteria approximation;
iteratively use it in O(log dax) rounds where in each
round we satisfy a constant factor of the residual demand
of each point. Now we discuss the case when dy,ax is
large.

LP with Knapsack Cover inequalities: We describe
an alternative approach for Set Multicover. The
weakness of the bicriteria fractional solution is even
more pronounced in the setting of general covering
integer programs (CIPs) [7, 12, 44]. A standard solution,
following the work of Carr et al 7], is to use the so-called
Knapsack Cover (KC) inequalities to strengthen the LP.
KC inequalities are typically used when the inequalities
have large numbers. However, as shown by Quanrud
[45], KC inequalities are useful even for a {0, 1} incidence
matrix as is the case here — KC inequalities allow one
to convert a mixed packing and covering LP into one

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

with only covering constraints at the expense of adding
an exponential number of constraints. The advantage
of the KC LP is that even an approximate solution is
sufficient for rounding.

We describe the derived LP via KC inequalities for
the Set Multicover problem. For p € P and S C R we
let R, = {r € R | p € r} denote the set of ranges in
R that contain p. Suppose z € {0,1} is an integer
feasible solution for the LP. Then, for any p € P and
S C R, the inequality Z z, > dp — |S] holds; the

reR,\S
quantity dp, — |S| is the residual demand of p assuming
that the ranges in S are already included in a partial
solution. For ease of notation we let resd(p, S) denote
the quantity d, — |S| where S C R,. Based on the
preceding observation we can write an LP relaxation for
Set Multicover as a pure covering LP below.

minimize g CrIy OVer x € I]?Is0
reR

s.t. Z x, > resd(p,S) forallpe P, SCR,
r€R\S

We note that the preceding LP and the original LP
are equivalent since the original LP has a {0, 1} incidence
matrix. However approximate solutions to first LP are
weaker than approximate solutions to the second LP. At
this point we do not know how to exploit the underlying
geometry to solve the LP with KC inequalities in nearly
linear time. However, Chekuri and Quanrud [44] showed
that for an explicitly specified CIP, the LP with KC
inequalities can be solved in O(N/e® + (m +n)/e”) time
where IV is the number of nonzeroes in the matrix. In
our setting N corresponds to the number of nonzeroes
in the matrix I(P, R), which in the worst case can be
mn. The advantage of the KC LP is captured by the
next lemma.

LEMMA 6.2. Let x be a (1 + &)-approzimate solution to
the LP with KC inequalities. Then x be rounded to an
integer solution of cost (14 O(g))a(m,n) OPT.

Proof. Given z let S = {r | #, > 1 —¢}. Let d, =

d, — |S N R,| be the residual demand of p after picking

S. Since x is an approximate solution to the KC LP we

have that Z x, > (1 —¢e)d,, for each p. Consider
r3p,r&S

the fractional solution z’ where x/. = min{1,x, /(1 —¢)}

for each range r. We have 2] = 1 for each r € S.

Further, for each p we have Z x> d,. Thus 2’

r3p,r&S
is a feasible solution to the original LP and its cost is

1
I—EZCTJUT < (1 + O(e))OPT. Thus rounding '
T

gives us the desired integer solution.]

References

[1] Jon Louis Bentley and James B. Saxe. “Decom-
posable Searching Problems I: Static-to-Dynamic
Transformation”. In: J. Algorithms 1.4 (1980),
pp. 301-358.

[2] Kenneth L. Clarkson and Peter W. Shor. “Ap-
plication of Random Sampling in Computational
Geometry, I1”. In: Discrete €& Computational Ge-
ometry 4 (1989), pp. 387-421.

[3] Kenneth L. Clarkson. “Algorithms for Polytope
Covering and Approximation”. In: Algorithms and
Data Structures, Third Workshop, WADS ’93,
Montréal, Canada, August 11-18, 1993, Proceed-
ings. 1993, pp. 246-252.

[4] Michael D. Grigoriadis and Leonid G. Khachiyan.
“Fast Approximation Schemes for Convex Pro-
grams with Many Blocks and Coupling Con-
straints”. In: SIAM Journal on Optimization 4.1
(1994), pp. 86-107.

[6] Hervé Bronnimann and Michael T. Goodrich. “Al-
most Optimal Set Covers in Finite VC-Dimension”.
In: Discrete & Computational Geometry 14.4
(1995), pp. 463-479.

[6] Serge A. Plotkin, David B. Shmoys, and Eva Tar-
dos. “Fast Approximation Algorithms for Frac-
tional Packing and Covering Problems”. In: Math.
Oper. Res. 20.2 (1995), pp. 257-301.

[7] Robert D. Carr, Lisa Fleischer, Vitus J. Leung,
and Cynthia A. Phillips. “Strengthening integrality
gaps for capacitated network design and covering
problems”. In: Proceedings of the Eleventh Annual
ACM-SIAM Symposium on Discrete Algorithms,
January 9-11, 2000, San Francisco, CA, USA.
2000, pp. 106-115.

[8] A. Efrat, M. J. Katz, F. Nielsen, and M. Sharir.
“Dynamic data structures for fat objects and
their applications”. In: Computational Geometry:
Theory and Algorithms 15 (2000), pp. 215-227.

[9] Philip M. Long. “Using the Pseudo-Dimension to
Analyze Approximation Algorithms for Integer
Programming”. In: Algorithms and Data Struc-
tures, 7th International Workshop, WADS 2001,
Providence, RI, USA, August 8-10, 2001, Proceed-
ings. Ed. by Frank K. H. A. Dehne, Jorg-Riidiger
Sack, and Roberto Tamassia. Vol. 2125. Lecture
Notes in Computer Science. Springer, 2001, pp. 26—
37.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Neal E. Young. “Sequential and Parallel Algorithms
for Mixed Packing and Covering”. In: 42nd An-
nual Symposium on Foundations of Computer Sci-
ence, FOCS 2001, 14-17 October 2001, Las Ve-
gas, Nevada, USA. IEEE Computer Society, 2001,
pp. 538-546.

Alon Efrat. “The Complexity of the Union of (al-
pha, beta)-Covered Objects”. In: STAM J. Comput.
34.4 (2005), pp. 775-787.

Stavros G. Kolliopoulos and Neal E. Young. “Ap-
proximation algorithms for covering/packing in-
teger programs”. In: J. Comput. Syst. Sci. 71.4
(2005), pp. 495-505.

Kenneth L Clarkson and Kasturi Varadarajan.
“Improved approximation algorithms for geometric
set cover”. In: Discrete & Computational Geometry
37.1 (2007), pp. 43-58.

P. K. Agarwal, J. Pach, and M. Sharir. “State
of the Union—of Geometric Objects”. In: Surveys
in Discrete and Computational Geometry Twenty
Years Later. Ed. by J. E. Goodman, J. Pach, and
R. Pollack. Vol. 453. Contemporary Mathematics.

AMS, 2008, pp. 9-48. URL: https://users.cs.

duke . edu/ “pankaj / publications / surveys /
union.pdf.

Boris Aronov and Sariel Har-Peled. “On Approx-
imating the Depth and Related Problems”. In:
SIAM J. Comput. 38.3 (2008), pp. 899-921.

Timothy M. Chan. “A dynamic data structure for
3-D convex hulls and 2-D nearest neighbor queries”.
In: J. ACM 57.3 (2010), 16:1-16:15.

Nabil H. Mustafa and Saurabh Ray. “Improved
Results on Geometric Hitting Set Problems”. In:
Discrete & Computational Geometry 44.4 (2010),
pp. 883-895.

Kasturi R. Varadarajan. “Weighted geometric set
cover via quasi-uniform sampling”. In: Proceedings
of the 42nd ACM Symposium on Theory of Com-
puting, STOC 2010, Cambridge, Massachusetts,
USA, 5-8 June 2010. Ed. by Leonard J. Schulman.
ACM, 2010, pp. 641-648.

Sariel Har-Peled. Geometric approzimation algo-
rithms. American Mathematical Society, 2011.

Hayim Shaul. “Range Searching: Emptiness, Re-
porting and Approximate Counting”. PhD thesis.
Tel-Aviv University, 2011.

David P Williamson and David B Shmoys. The

design of approzimation algorithms. Cambridge
university press, 2011.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Pankaj K. Agarwal, Esther Ezra, and Micha
Sharir. “Near-Linear Approximation Algorithms
for Geometric Hitting Sets”. In: Algorithmica 63.1-
2 (2012), pp. 1-25.

Nikhil Bansal and Kirk Pruhs. “Weighted geomet-
ric set multi-cover via quasi-uniform sampling”.
In: European Symposium on Algorithms. Springer.
2012, pp. 145-156.

Timothy M. Chan, Elyot Grant, Jochen Ko&ne-
mann, and Malcolm Sharpe. “Weighted capaci-
tated, priority, and geometric set cover via im-
proved quasi-uniform sampling”. In: Proceedings
of the Twenty-Third Annual ACM-SIAM Sympo-
stum on Discrete Algorithms, SODA 2012, Kyoto,
Japan, January 17-19, 2012. Ed. by Yuval Rabani.
STAM, 2012, pp. 1576-1585.

Timothy M. Chan and Sariel Har-Peled. “ Approxi-
mation Algorithms for Maximum Independent Set
of Pseudo-Disks”. In: Discrete & Computational
Geometry 48.2 (2012), pp. 373-392.

Chandra Chekuri, Kenneth L. Clarkson, and Sariel
Har-Peled. “On the set multicover problem in
geometric settings”. In: ACM Trans. Algorithms
9.1 (2012), 9:1-9:17.

Chandra Chekuri, Jan Vondrak, and Rico Zen-
klusen. “Submodular function maximization via
the multilinear relaxation and contention resolu-
tion schemes”. In: STAM Journal on Computing
43.6 (2014), pp. 1831-1879.

Vincent Cohen-Addad and Claire Mathieu. “The
unreasonable success of local search: Geometric
optimization”. In: arXiv preprint arXiv:1410.0553
(2014).

Christos Koufogiannakis and Neal E. Young. “A
Nearly Linear-Time PTAS for Explicit Fractional
Packing and Covering Linear Programs”. In: Algo-
rithmica 70.4 (2014), pp. 648-674.

Neal E. Young. “Nearly Linear-Time Approxima-
tion Schemes for Mixed Packing/Covering and
Facility-Location Linear Programs”. In: CoRR
abs/1407.3015 (2014).

Z. Allen-Zhu and L. Orecchia. “Nearly-Linear
Time Positive LP Solver with Faster Convergence
Rate”. In: Proc. 47th Annu. ACM Sympos. Theory
Computing (STOC). 2015, pp. 229-236.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

https://users.cs.duke.edu/~pankaj/publications/surveys/union.pdf
https://users.cs.duke.edu/~pankaj/publications/surveys/union.pdf
https://users.cs.duke.edu/~pankaj/publications/surveys/union.pdf

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Chandra Chekuri, T. S. Jayram, and Jan Vondrak.
“On Multiplicative Weight Updates for Concave
and Submodular Function Maximization”. In: Pro-
ceedings of the 2015 Conference on Innovations
in Theoretical Computer Science, ITCS 2015, Re-
hovot, Israel, January 11-13, 2015. Ed. by Tim
Roughgarden. ACM, 2015, pp. 201-210.

Nabil H Mustafa, Rajiv Raman, and Saurabh Ray.
“Quasi-polynomial time approximation scheme for
weighted geometric set cover on pseudodisks and
halfspaces”. In: STAM Journal on Computing 44.6
(2015), pp. 1650-1669.

Di Wang, Satish Rao, and Michael W. Mahoney.
“Unified Acceleration Method for Packing and
Covering Problems via Diameter Reduction”. In:
48rd International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2016, July 11-
15, 2016, Rome, Italy. Ed. by Ioannis Chatzigian-
nakis, Michael Mitzenmacher, Yuval Rabani, and
Davide Sangiorgi. Vol. 55. LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2016, 50:1—
50:13.

Chandra Chekuri and Kent Quanrud. “Approx-
imating the Held-Karp Bound for Metric TSP
in Nearly-Linear Time”. In: 58th IEEE Annual
Symposium on Foundations of Computer Science,
FOCS 2017, Berkeley, CA, USA, October 15-17,
2017. 2017, pp. 789-800.

Chandra Chekuri and Kent Quanrud. “Near-Linear
Time Approximation Schemes for some Implicit
Fractional Packing Problems”. In: Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2017, Barcelona,
Spain, Hotel Porta Fira, January 16-19. Ed. by
Philip N. Klein. STAM, 2017, pp. 801-820.

Alina Ene, Sariel Har-Peled, and Benjamin
Raichel. “Geometric Packing under Nonuniform
Constraints”. In: SIAM J. Comput. 46.6 (2017),
pp. 1745-1784.

Haim Kaplan, Wolfgang Mulzer, Liam Roditty,
Paul Seiferth, and Micha Sharir. “Dynamic planar
Voronoi diagrams for general distance functions
and their algorithmic applications”. In: Proceed-
ings of the Twenty-Fighth Annual ACM-SIAM
Symposium on Discrete Algorithms. STAM. 2017,
pp. 2495-2504.

Boris Aronov, Anirudh Donakonda, Esther Ezra,
and Rom Pinchasi. “On pseudo-disk hypergraphs”.
In: arXiv preprint arXiv:1802.08799 (2018).

[40]

[41]

[42]

[43]

[44]

[45]

Timothy M Chan, Thomas C van Dijk, Krzysztof
Fleszar, Joachim Spoerhase, and Alexander Wolff.
“Stabbing Rectangles by Line Segments-How De-
composition Reduces the Shallow-Cell Complexity”.
In: arXiv preprint arXiv:1806.02851 (2018).

Chandra Chekuri and Kent Quanrud. “Random-
ized MWU for Postive LPs”. In: Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2018, New Orleans,
Louisiana, USA, January 7-10, 2018. SIAM, 2018.

Anna Adamaszek, Sariel Har-Peled, and Andreas
Wiese. “Approximation Schemes for Independent
Set and Sparse Subsets of Polygons”. In: J. Assoc.
Comput. Mach. 66.4 (June 2019), 29:1-29:40. 1SSN:
0004-5411.

Pankaj K. Agarwal and Jiangwei Pan. “Near-Linear
Algorithms for Geometric Hitting Sets and Set
Covers”. In: Discrete €& Computational Geometry
(2019). Preliminary version appeared in Proc. of
SoCG, 2014.

Chandra Chekuri and Kent Quanrud. “On approx-
imating (sparse) covering integer programs”’. In:
Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms. STAM. 2019,
pp- 1596-1615.

Kent Quanrud. “Fast and Deterministic Approx-
imations for k-Cut”. In: Approximation, Ran-
domization, and Combinatorial Optimization. Al-
gorithms and Techniques, APPROX/RANDOM
2019, September 20-22, 2019, Massachusetts Insti-
tute of Technology, Cambridge, MA, USA. 2019,
23:1-23:20.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Background and formal statement of results
	Results
	Technical ideas and other related work

	Randomized MWU for Positive LPs
	Fast Implementation of random-mwu for Geometric Problems
	Implementing randomized weight updates via range searching
	Implementing the greedy oracle (approximately) with emptiness oracles
	Depth estimation
	Maintaining the maximum ratio range

	Putting together the implementation of random-mwu

	Implicit range spaces
	Approximating the deepest point in O"0365O1/2 amortized time
	Approximating max weight independent set

	Set Multicover via KC Inequalities

