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ABSTRACT: Microcrystal electron diffraction (microED) is an
emerging technique for rapid crystallographic analysis of small
molecule micro- and nanocrystals. In this report, we evaluate the
applicability of microED to pharmaceutical compounds through
the analysis of 30 samples obtained from the process and medicinal
chemistry groups at Amgen Inc. Using only 40 h of microscope
time, 15 of 30 crystal structures were elucidated. From these crystal
structures, all chiral compounds had the correct absolute
stereochemistry assigned by dynamical refinement of continuous
rotation electron diffraction data, confirming dynamical refinement as a promising tool for the absolute stereochemistry
determination of pharmaceutically relevant compounds.

Structural determination of a drug substance and its
intermediates is critical for pharmaceutical research to

assign the composition and molecular connectivity of active
pharmaceutical ingredients (APIs). Depending on the
molecular complexity, state-of-the-art spectroscopic techniques
such as nuclear magnetic resonance (NMR) can be time-
consuming and may lead to ambiguous structural assign-
ments.1 Single crystal X-ray diffraction (SCXRD) can provide
three-dimensional structural information and absolute stereo-
chemistry for the compound of interest; however, this
technique can be limited by the ability to grow crystals of
sufficient quality and size2 or by weak anomalous scattering
effects in organic structures.3 Thus, developing an analytical
technique capable of fast structural elucidation of pharmaceuti-
cally relevant compounds can lead to a significant reduction in
time and costs associated with the drug discovery process.
Recently, microcrystal electron diffraction (microED) has

increased in use as a crystallographic technique capable of the
structural determination of micro- or nanocrystals. This
technique has been applied for the structural elucidation of a
wide range of chemicals, including proteins, materials, metal−
organic frameworks (MOFs), small organic molecules,
complex natural products, and organometallic species.4−7

MicroED utilizes crystals smaller than those suitable for
SCXRD. Samples isolated by preparative crystallizations or
“seemingly amorphous” powders obtained from chromatog-
raphy can be used, thereby avoiding lengthy crystallization
experiments typically necessary for SCXRD.8 MicroED can
also detect different polymorphs and crystalline impurities in

the nanomolar regime, which can offer important applications
for drug discovery.9

As approximately 50% of small molecule drugs recently
approved by the Food and Drug Administration (FDA) are
chiral,10,11 the determination of the absolute stereochemistry of
an API is an essential step for drug discovery and development.
For microED diffraction data, stereochemical elucidation has
been largely limited to molecules obtained from biological
feedstocks, or to those cocrystallized with a chiral compound
of known stereochemistry.12−14 Typically, microED data is
processed and refined using a kinematical approach, where
diffraction intensities are treated without considering multiple
scattering events that occur between the electron beam and the
crystal.14,15

By taking into consideration multiple scattering events
during microED data processing and refinement, Palatinus et
al. reported the determination of the crystal structure and
absolute stereochemistry of a pharmaceutical cocrystal of
sofosbuvir and L-proline. More recently, the absolute stereo-
chemistry of a small subset of microED structures has been
elucidated by dynamical refinement.14−19 While most of the
previously referenced examples provide a foundation for the
pharmaceutical use of microED, in this study, we sought to
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evaluate microED using real-world samples from a large
pharmaceutical company, providing practical insight into the
performance of structure elucidation and absolute stereo-
chemistry determination by this method.
Thirty powders obtained from process and medicinal

chemistry groups at Amgen Inc. were chosen as the subject
of the study. Our workflow was divided into three tiers: In the
first tier, 30 powder samples were screened for diffraction in a
TEM at room temperature with microscope time limited to 1 h
per sample (Figure 1). The diffraction data sets were processed
by using an in-house script to automatically process and index
the data sets with XDS software (Supporting Information,
section 7),20 and structures were initially solved with SHELXT
or SHELXD software using kinematical approaches (SI,
section 8).21−23 Six crystal structures (compounds 1−6)
were obtained directly in this screening tier, although
compound 5 exhibited rotational disorder in the camphorsul-
fonate motif, at this temperature (compound 5.1, Figure S4,
Table S3).
In tier 2, data were collected from samples 7−10 that

displayed diffraction patterns consistent with single crystals but
were beam-sensitive at room temperature (Figure 2a). In this
tier, TEM time was limited to 3 h per sample, and data were
collected at cryogenic temperature (80 K). Here, cryogenic
temperatures reduced crystallographic disorder and radiation
degradation, enabling structural assignment (SI, section 4). In
tier 3 of this workflow, samples that were notably polycrystal-
line had poor diffraction resolution, or provided no diffraction
at cryogenic temperatures (Figure 2b). These samples
underwent crystallization screenings, where the crystal
structures of samples 11−15 were elucidated (SI, section 5).
Overall, for the kinematical approach, structural elucidation

for 15 of 30 samples was obtained using approximately 40 h of
TEM time and approximately 70 h of automated data
processing using an in-house python script and user-driven
crystal structure refinement. The remaining 15 compounds

failed to produce structures within 3 h of TEM time per
sample and/or after recrystallization attempts. These samples
consisted of three enantiomeric pairs and nine chiral
proteolysis targeting chimera (PROTACs) molecules (Figure
S1).
Of the 15 crystal structures obtained in the initial three-tier

structural determination stage, 14 samples were chiral and
enantioenriched, and dynamical refinement was used for the
confirmation of the absolute stereochemistry of these
compounds. Data sets with the best overall statistics
(completeness higher than 65%, Robs lower than 30%,
resolution better than 1.1 Å, and Pearson correlation
coefficient (CC1/2) higher than 97% (Table S5)) were
reprocessed with Pets2.0 software to generate new kinematical
and dynamical reflection files.24 When possible, the kinematical
solution of the crystal structures was obtained and refined
using the single diffraction data set with SHELXT22 within the
Jana2020 suite.25 Otherwise, the crystallographic information
file (CIF) was imported and refined against the reflection file
obtained with Pets2.0 software. Dynamical refinement was
performed by refining the crystal structure against the dynamic
reflection file. The crystal structure was then inverted and
refined against the same reflection file (SI, sections 8−11). To
find the correct enantiomer, values of the residual-factor after
refinement (Robs, wRobs, Rall, and wRall, Table S6) for both
enantiomeric forms were compared. The enantiomer with
lower values is assigned as the correct one while a higher value
of R factors indicates the incorrect enantiomer.14

The absolute configuration of all compounds presented in
this work was previously determined by Amgen Inc. (Table
S1), and in some cases, SCXRD was used to unambiguously
assign the correct stereochemistry of the compounds, for
structural comparison, and for confirmation of previous
findings (SI, Section 12). Overall, dynamical refinement
confirmed the assignment of the correct enantiomer with an
R factor difference between incorrect and correct enantiomers

Figure 1. Structures solved by microED where a preliminary solution was obtained in under 1 h each. Partial view of the asymmetric unit shown for
samples 1 and 3 (Z′ = 2). Hydrogen atoms have been omitted for clarity.
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higher than 0.7% (Table S6) and high confidence levels (Table
S7). Sample 8 had a low confidence level in comparison with
the other samples (0.2σ); however, high ΔwRall (2.2%)
indicates the assignment of the correct enantiomer (Table 1).
Dynamical refinement served as a tool to confirm the correct

enantiomer from a single diffraction data set for each sample
by refining the crystal structures with isotropic atoms or with
fixed atomic coordinates. Due to the poor quality of some
diffraction data sets, the final solution after refinement had
interatomic bonds breaking or the presence of nonpositive
definite atoms (NPD). Merging multiple diffraction data sets
or carefully collecting higher quality single data sets will likely
provide a better dynamical solution but is not required to
correctly assign absolute stereochemistry. Here, the crystal
structures were not refined to standards common to SCXRD.
The purpose of this work was to simulate the use of microED
in a pharmaceutical setting where structural elucidation or
dynamical refinement is used to answer a question. Thus,
structural elucidation does not necessitate full adherence to
crystallographic refinement standards. In this work, data

processing and refinement utilizing a dynamical approach
was standardized to be performed in computers with the same
computing capacity. Depending on the molecular complexity,
refinement took between 20 min and 44 h of total computing
time per sample, including the dynamical refinement of both
enantiomers.
A typical range between 2 h and 2 days per sample is

required for microED data collection, processing, analysis, and
dynamical refinement for absolute stereochemistry confirma-
tion. In the rapid screening stage (tier 1), crystal structures
were obtained without recrystallization, and we were able to
assign the correct enantiomer in 2 h (samples 2, 4, and 6,
Table 1). Although the large computing time for dynamical
refinement in some of the samples might still prevent it from
being a high throughput methodology, it represents a
significant time and resource savings for samples where it is
difficult to grow large and high-quality single crystals for
SCRXD determination.
In this study, we evaluated the practicality of microED as a

tool to routinely determine crystal structures of pharmaceuti-

Figure 2. Structures solved by microED where a preliminary solution was obtained (a) at cryogenic temperatures and in under 3 h each and (b) by
extensive screening time and recrystallization trials. Partial view of the asymmetric unit shown for samples 7 (Z′ = 2), 11, 13, and 15 (Z′ = 4).
Hydrogen atoms omitted for clarity.
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cally relevant compounds, as well as their absolute stereo-
chemistry assignment. Thirty pharmaceutical samples were
selected for evaluation, spanning a range of chemical
complexity from both medicinal and process chemistry sectors,
from Amgen Inc. Crystal structures of half of the compounds
analyzed were solved from data sets collected directly from
powders obtained following routine purification and no
recrystallization steps, by adjusting the temperature conditions
under which samples were measured or by recrystallization of
the samples. Moreover, absolute stereochemistry was con-
firmed by dynamical refinement for all 14 chiral samples,
highlighting dynamical refinement as a promising tool for
enantiomeric assignment of micro- and nanosized crystals
analyzed by microED. The speed and minimal sample
preparation required for structural determination demonstrate
that microED, in combination with dynamical refinement, can
be used as routine analytical tools for absolute structural
elucidation in the pharmaceutical pipeline.
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merged
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computing
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total
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time
SC-
XRD

Flack
parameter
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6 3 free all 3.40% 12.1σ 18 h 19 h yes 0.006(11)
2 9 1 free all 2.10% 4.3σ 1 h 2 h
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13 18 2 free all 3.50% 19.0σ 44 h 47 h
14 5 2 partially fixed 2.20% 2.6σ 20 min 3.5 h yes −0.05(25)
15 6 4 3 h

aΔwRall is the wRall difference between the wrong and correct enantiomers. Confidence levels (z score) indicate the probability that one enantiomer
better fits the experimental data. Samples 1−14 are chiral, and sample 15 is achiral. bSample 12 required more than 3 h of screening time to obtain
a suitable crystal structure. Total experimental time does not consider user-driven data processing.
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