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Differential cross sections are measured for the standard model Higgs boson produced in association
with vector bosons (W, Z) and decaying to a pair of b quarks. Measurements are performed within the
framework of the simplified template cross sections. The analysis relies on the leptonic decays of the W and
Z bosons, resulting in final states with 0, 1, or 2 electrons or muons. The Higgs boson candidates are either
reconstructed from pairs of resolved b-tagged jets, or from single large-radius jets containing the particles
arising from two b quarks. Proton-proton collision data at \/s = 13 TeV, collected by the CMS experiment

in 2016-2018 and corresponding to a total integrated luminosity of 138 fb~!, are analyzed. The inclusive
signal strength, defined as the product of the observed production cross section and branching fraction

+0.22

relative to the standard model expectation, combining all analysis categories, is found to be y = 1.15757.
This corresponds to an observed (expected) significance of 6.3 (5.6) standard deviations.
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I. INTRODUCTION

The discovery of a Higgs boson (H) with a mass near
125 GeV by the ATLAS [1] and CMS [2,3] Collaborations
at the CERN LHC was a major milestone in the under-
standing of electroweak (EW) symmetry breaking in the
standard model (SM) of particle physics [4-9]. Since its
observation, most of the Higgs boson production modes
and many decay channels predicted by the SM have been
measured. In particular, decays of the Higgs boson into the
vy, ZZ, WW, 7z, and bb channels have been observed
[10-21]. Higgs boson production in association with a top
quark-antiquark pair (¢7) [22,23] has also been observed. To
date, all the measured properties [24,25] are compatible
with the hypothesis that this particle is the Higgs boson
predicted by the SM. Evidence for the Higgs boson
decaying to a pair of muons has been reported by the
CMS Collaboration, which further supports compatibility
with the SM hypothesis [26].

For an SM Higgs boson with a mass (my) of 125 GeV,
the largest Yukawa coupling that is directly accessible by
studying a specific Higgs boson decay channel is the
coupling between the Higgs boson and b quarks. The
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Yukawa couplings to fermions are proportional to the
fermion masses. The Higgs boson decay into pairs of b
quarks is kinematically allowed, and out of all Higgs boson
decay channels, the H — bb decay has the largest branch-
ing fraction. This decay was previously observed by the
ATLAS and CMS Collaborations [21,27]. Using the data
collected at /s = 7, 8, and 13 TeV in 2011-2017, the CMS
measurement of the H — bb decay in the vector boson
(V, V=W, Z) associated production mode (VH) had a
significance of 4.8 standard deviations over the back-
ground-only hypothesis. The corresponding measured sig-
nal strength, defined as the production cross section times
branching fraction relative to its SM expectation, was
u =1.01 £0.22. In combination with other production
modes, the measured signal strength in the H — bb
channel was 1.04 £ 0.20, corresponding to an observed
significance of 5.6 standard deviations [27].

The large size of the dataset delivered by the LHC
between 2016 and 2018 permits both the ATLAS and CMS
Collaborations to make detailed measurements of the
kinematic properties of VH production using the H —
bb decay channel. The analysis targets the following decay
channels of the W or Z boson: Z — vv, W — £v, and
Z — ¢¢. These decay modes are referred to as O-lepton,
1-lepton, and 2-lepton channels, respectively. The leptons
considered in the analysis are electrons and muons.

The cross section measurement is performed in exclusive
regions of phase space defined according to the type of
vector boson, its transverse momentum pp(V), and the
presence of additional jets. A standardized scheme for these
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measurement regions, called bins, is given by the definition
of simplified template cross sections (STXS) [28,29],
which were introduced to reduce the theoretical depend-
ence in the measurements and to allow for a straightforward
comparison of theoretical models with the measurements.

While inclusive cross section measurements are suitable
for establishing a given decay mode with limited sample
size, using the STXS approach allows the kinematic
properties of the Higgs boson production to be probed
in a model-independent way. The sensitivity to the VH
production STXS bins is expected to be dominated by
measurements of the H — bb decay channel. An STXS
measurement in this channel was performed by the ATLAS
Collaboration with data collected between 2015 and 2018.
The corresponding inclusive signal strength was measured
to be 1.027018 [30].

This paper reports the study of VH production with
subsequent H — bb decay, using the full CMS proton-
proton (pp) collision dataset collected in 2016-2018 at
\/s = 13 TeV. The integrated luminosities are 36.3, 41.5,
and 59.8 fb~! for the 2016 [31], 2017 [32], and 2018 [33]
data-taking periods, respectively, corresponding to a total
of 138 fb~!. Unlike in the previous publications [27,34,35],
dedicated categories are introduced for topologies that arise
when the Higgs boson is highly Lorentz-boosted so that its
decay products are reconstructed as a single merged jet. A
similar large-radius-jet topology was explored by the
ATLAS Collaboration [36].

The paper is organized as follows. A brief description of
the CMS detector and the simulated samples used in the
analysis is given in Sec. II. The event reconstruction, with
particular emphasis on the objects used in the measure-
ment, is described in Sec. III. The trigger-level selection
employed in the analysis is given in Sec. IV. The event
selection and categorization, as well as the description of
the STXS scheme, are documented in Sec. V. The sources
of systematic uncertainties included in the measurement are
listed in Sec. VI. The analysis strategy and results are
discussed in Sec. VII with tabulated versions provided in
HEPData [37]. Section VIII provides the summary of the
analysis results.

II. THE CMS DETECTOR
AND SIMULATED SAMPLES

The central feature of the CMS apparatus is a super-
conducting solenoid of 6 m internal diameter, providing a
magnetic field of 3.8 T. Within the solenoid volume are a
silicon pixel and strip tracker, a lead tungstate crystal
electromagnetic calorimeter (ECAL), and a brass and
scintillator hadron calorimeter (HCAL), each composed
of a barrel and two end cap sections. Forward calorimeters
extend the pseudorapidity (1) coverage provided by the
barrel and endcap detectors. Muons are detected in gas-
ionization chambers embedded in the steel flux-return yoke

outside the solenoid. Events of interest are selected using a
two-tiered trigger system [38]. The first level, composed of
custom hardware processors, uses information from the
calorimeters and muon detectors to select events at a rate of
around 100 kHz within a fixed time interval of about 4 ps.
The second level, known as the high-level trigger, consists
of a farm of processors running a version of the full event
reconstruction software optimized for fast processing, and
reduces the event rate to around 1 kHz before data storage.
A more detailed description of the CMS detector, together
with a definition of the coordinate system used and the
relevant kinematic variables, can be found in Ref. [39].
Several Monte Carlo (MC) event generators are used to
simulate signal and background processes. The signal
processes contain Higgs bosons, with my = 125 GeV,
produced in association with W or Z bosons. In this
analysis, only decays of the W and Z bosons involving
muons, electrons, and/or neutrinos are considered. The
quark-induced ZH and WH processes are generated at
next-to-leading order (NLO) using the POWHEG v2 [40—42]
event generator extended with the MINLO procedure
[43,44], while the gluon-induced ZH process (denoted
ggZH) is generated at leading-order (LO) accuracy with
POWHEG v2. The diboson processes ZZ, WZ, and WW are
simulated with MadGraph 5_aMC@NLO [45] v2.2.2 (v2.4.2) in
2016 (2017 and 2018) simulations at NLO using the FxFx
merging scheme [46] with up to two additional partons. For
the analysis of 2017 and 2018 data, the same generator with
NLO accuracy is used to simulate W + jets and Z + jets
processes. For the analysis of 2016 data, LO accurate
MadGraph simulations with the MLM matching scheme
[47] are used to simulate W 4 jets and Z + jets events, in
inclusive and b-quark-enriched configurations. Corrections
at NLO and next-to-NLO (NNLO) accuracy are applied to
the 2016 LO W +jets and Z + jets event samples to
achieve NNLO precision in shape and normalization.
The NLO corrections are derived from simulation, while
the NNLO corrections are obtained from theoretical cal-
culations [48]. While the NLO samples provide a more
precise modeling of the kinematic properties of the V 4 jets
processes, and are used for analyzing the 2017 and 2018
datasets, the corrections for the LO samples used in the
analysis of the 2016 data are well validated. The production
of simulated samples at NLO requires more computing
resources than the production of samples at LO, which
means the number of events in the NLO samples is limited.
Thus, the LO samples are used in the 2016 analysis to
reduce the uncertainty in the measurement arising from the
limited size of the simulated samples. NLO V + jets MC
samples are produced in nonoverlapping bins in jet
multiplicity and pr(V), which are then merged to maxi-
mize the statistical power of the analysis. Two or more
samples contributing to overlapping regions of the phase
space are reweighted, such that the total cross section of a
given process is conserved. The simulated W + jets and
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Z + jets samples at NLO are additionally corrected differ-
entially in the angular momentum separation between jets
[AR(jj)], in the region AR(jj) < 1. This correction is
needed to account for a shape mismodeling observed in
the region AR(jj) < 1. The correction improves the agree-
ment between data and the NLO V + jets predictions. The
reweighting is derived for V 4 jets events and is para-
metrized as flavor-agnostic, hence one single correction is
derived for the V + jets processes, regardless of the jet
flavor. This flavor-agnostic parametrization is justified
because of the observation that the shape corrections are
consistent across flavors of additional jets. The simulation-
to-data reweighting is propagated to V + jets events in all
analysis regions. Shape-altering uncertainties associated
with this correction are uncorrelated across analysis chan-
nels, and will be discussed in Sec. VI.

Samples of 77 events, as well as those of single top quark
events produced in the 7 channel, are generated with
POWHEG v2. Samples of single top quark events produced
in the tW and s channels are generated with POWHEG vl1.

The production cross sections used to normalize the
simulated samples of signal and V 4 jets events are
rescaled to NNLO quantum chromodynamic (QCD) pre-
dictions, inclusively in pp(V), and NLO EW accuracy,
combining the results from Refs. [49-51], VH@NNLO
[51,52], and HAWK v2.0 [53] generators, as described in
Ref. [28]. The NLO EW correction is applied as a function
of pr(V). The production cross section for {7 events is
calculated at NNLO with next-to-next-to-leading-logarith-
mic (NNLL) precision obtained using TOP++ v2.0 [54]. The
parton distribution functions (PDFs) used to produce
the NLO samples in the 2017-2018 analyses are from
the NNLO NNPDEF3.1 set [55], while the LO NNPDF3.0
set is used for the LO samples. For parton showering and
hadronization, all simulated samples are interfaced with
PYTHIA 8.2 [56]. The PYTHIA parameters for the underlying
event description correspond to the CUETP8MI tune for
the samples compatible with the 2016 dataset, and to the
CP5 tune for the simulation corresponding to the 2017 and
2018 datasets. These tunes were derived in Ref. [57] based
on the work described in Ref. [58]. For all processes, the
detector response is simulated with a detailed description of
the CMS detector, based on the Geant4 package [59]. The
event reconstruction is performed with the same algorithms
as for data. Additional interactions in the same or nearby
bunch crossings, referred to as pileup (PU), are generated
with PYTHIA and added to the simulated samples. The
simulated events are weighted such that the PU distribution
in the simulation matches the one observed in data.

III. EVENT RECONSTRUCTION

Events are reconstructed using a particle-flow (PF)
algorithm [60], which aims to reconstruct and identify
each individual particle in an event (PF candidate) with an
optimized combination of information from the various

elements of the CMS detector. The energy of photons is
obtained from the ECAL measurement. The energy of
electrons is determined from a combination of the electron
momentum at the primary interaction vertex as determined
by the tracker, the energy of the corresponding ECAL
cluster, and the energy sum of all bremsstrahlung photons
spatially compatible with originating from the electron
track. The energy of muons is obtained from the curvature
of the corresponding track. The energy of charged hadrons
is determined from a combination of their momentum
measured in the tracker and the matching ECAL and HCAL
energy deposits, corrected for the effect of hadronic
showers on the calorimeter response. Finally, the energy
of neutral hadrons is obtained from the corresponding
corrected ECAL and HCAL energies. Events that are found
to be affected by reconstruction failures and detector
malfunctions are identified and rejected. Correction factors
are applied to all reconstructed objects and used to equalize
the reconstruction and the identification efficiencies in data
and simulation.

The primary vertex (PV) is taken to be the vertex
corresponding to the hardest scattering in the event,
evaluated using tracking information alone, as described
in Ref. [61]. The PV position is reconstructed using tracks
clustered with the deterministic annealing algorithm [62].
The reconstructed PV is required to have a z position within
24 cm of the nominal detector center, and a radial position
within 2 cm of the beam axis. Displaced tracks originating
from b hadron decays are associated with secondary
vertices.

W and Z bosons are reconstructed using charged leptons
and missing transverse momentum ( ﬁ%‘i“). With two
opposite-charge, same-flavor leptons, a full Z boson
reconstruction is performed, which defines the 2-lepton
channel. With one charged lepton and interpreting the
missing transverse momentum in the event as the transverse
momentum of a neutrino, the transverse momentum of
the W boson candidate can be reconstructed, which
defines the 1-lepton, channel. In events without charged
leptons, the large missing transverse momentum is used to
estimate the Z(vv) boson transverse momentum directly.
This defines the O-lepton channel.

Electrons require the matching of a set of ECAL clusters,
denoted as superclusters, to a track in the silicon tracker.
The electron reconstruction is performed with the Gaussian
sum filter algorithm [63]. Electrons are preselected by
requiring pr > 7 GeV, |y <24, d,, <0.05cm and
d, < 0.2 cm, where d,, and d, are the transverse and
longitudinal impact parameters associated with the electron
tracks, respectively.

A tighter identification is then performed using a
multivariate approach (MVA ID). In addition, a set of
offline requirements on ECAL-based electron quantities is
applied. Two selections on the MVA ID discriminant are
used, defining two different working points based on the
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expected electron identification efficiency of either 90%
(loose working point) or 80% (tight working point). The
loose working point is used when counting the number of
additional leptons beyond the selected muons and electrons
in each event, as well as for the event selection of the
Z(ee)H channel. The tight working point is required to
select events in the W(ev)H channel. The electron pr
threshold in the W(ev)H channel is 30 GeV. For the
Z(ee)H channel, the thresholds are 25 and 17 GeV for
the two electrons. The working points and isolation require-
ments for the 2-lepton channel are generally looser than in
the 1-lepton, channel because requiring two leptons sig-
nificantly reduces the background from QCD multijet
events. In the 1-lepton, channel, tighter requirements are
needed to reduce the multijet background. After applying
the analysis selection, the QCD multijet background is
found to be negligible.

Muons are reconstructed from the combined fit of the
tracker and muon detector signals [64]. They are prese-
lected by requiring the following conditions: pp > 5 GeV,
In| <2.4,d,, <0.5cm,d, <1.0 cm. Two working points
corresponding to tight and loose muon identification
requirements are utilized to reduce the fraction of other
particles misidentified as muons. These working points
depend on several of the following identification criteria:
the number of hits in the tracker and muon system, the fit
quality of the extrapolated muon track, and its consistency
with the reconstructed PV. The muon p threshold in the
W(uv)H channel is 25 GeV, and 25 and 15 GeV in the
Z(uu)H channel.

The isolation of a lepton is defined relative to its
momentum by summing the pt of PF candidates, exclud-
ing the lepton itself, in geometrical cones around the lepton
track direction at the event vertex. The cone size is

expressed in terms of AR = y/(A¢)> + (An)?, where

A¢ (An) is the difference in the azimuthal angle (pseudor-
apidity) from the center of the cone to its edge. The lepton
isolation criteria reject most of the major background
consisting of nonprompt leptons produced in jets. The
isolation cone for muons and electrons is AR = 0.3, and
the ratio of the sum of each particle’s pr within the cone to
the lepton pt must be smaller than 0.06.

Jets are reconstructed from PF candidates using the anti-
kr clustering algorithm with a distance parameter of 0.4
(AK4 jets) [65]. Jet momentum is determined as the
vectorial sum of all particle momenta in the jet, and is
found from simulation to be, on average, within 5-10%
of the true momentum over the entire pr spectrum and
detector acceptance.

Pileup interactions can contribute additional tracks and
calorimetric energy depositions to the event, increasing the
apparent jet momentum. To mitigate this effect, tracks
identified to be originating from PU vertices are discarded
and an offset correction [65] is applied to correct for
remaining contributions.

Jet energy corrections are derived from simulation
studies so that the average measured energy of jets is
equal to that of particle-level jets. In situ measurements of
the momentum balance in dijet, photon + jet, Z + jet, and
multijet events are used to determine any residual
differences between the jet energy scale (JES) in data
and simulation, and appropriate corrections are made [65].
Additional selection criteria are applied to each jet to
remove jets potentially dominated by instrumental effects
or reconstruction failures. Jets that overlap geometrically
(AR < 0.4) with preselected electrons or muons are dis-
carded. Only jets with || < 2.5 are considered. In the WH
and Z(vv)H channels, a minimum threshold of jet pp >
25 GeV is used, while a looser selection (pr > 20 GeV) is
applied in the Z(#¢)H channel.

The jet energy resolution (JER) is about 15-20% at
20 GeV, 10% at 100 GeV, and 5% at 1 TeV, and the jet
energies in simulation are smeared to ensure their reso-
lutions match those of jets in data [65].

Jets from final-state radiation (FSR), exceeding 20 GeV
in momentum and fulfilling jet quality criteria are recov-
ered by an FSR recovery algorithm, which adds the
momenta of jets close to the Higgs boson candidate in
the dijet mass calculation. The FSR recovery algorithm is
applied to all analysis channels.

A reweighting of the additional jet multiplicity spectrum
in simulation is applied to the NLO W + jets and Z + jets
samples used in the analysis of the 2017 and 2018 datasets.
Here, additional jets are those jets that are retained in the
analysis selection, but that do not stem from the Higgs
boson candidate decay. This reweighting of the additional
jet multiplicity is parametrized as a function of pr(V) and
achieves improved modeling of the observed additional jet
multiplicity distribution from simulation compared to data.
Several shape-altering systematic uncertainties are associ-
ated with this reweighting, which will be discussed in
Sec. VL.

Jets that originate from the hadronization of b quarks are
identified by means of an algorithm based on a deep neural
network (DNN), named DEepCSV [66]. This DNN has
several probability outputs for jets resulting from quarks of
different flavors. The algorithm provides a continuous
discriminant output combining the information from track
impact parameters and identified secondary vertices within
jets, and from low-pr leptons produced by heavy-flavor
quark decays present in the jet. A jet with a DEEPCSV
discriminant value above a certain threshold is considered
to be from the decay of a b hadron, called a b-tagged jet.
The efficiency for tagging b jets and the rate at which other
jets are misidentified as b jets depend on the chosen
threshold of the DEePCSV discriminant. The efficiency
and the misidentification rate are both parametrized as
functions of the jet pr and . The loose (tight) threshold has
the highest (lowest) efficiency for tagging b jets, while
allowing the most (least) contamination from light, i.e., u,
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d, s, and gluon (g) jets, as well as ¢ jets. The working
points are defined such that a specific target for the
misidentification (mistag) rate is achieved: 10, 1.0, and
0.1% for the loose, medium, and tight working points,
respectively. Each channel is optimized separately, and
results in the same selection: the leading b jet candidate
in b tagging discriminant score must pass the medium
identification working point of the DEEPCSV algorithm.
For the next-to-highest b/ tagging discriminant score
(subleading) b jet candidate, the optimal selection requires
the loose working point of the DEEPCSV discriminant.
Along with these two b-tagged jets associated with the
Higgs boson candidate reconstruction, additional b-tagged
jets can be present in the event. These jets are included in
the analysis as discussed in Sec. V. The b tagging selections
for all three channels will be discussed in more detail
in Sec. V.

Some b tagging inputs are used in the training of the
multivariate discriminants employed in the analysis signal
region (SR) to separate signal from background events. The
b tagging discriminant is corrected to equalize the effi-
ciency in data and simulation as a function of the b tagging
score and the kinematic properties of each jet. An index
with an integer value between 0 and 3 referring to the b
tagging working point requirement that the jet fulfills is
used as one of the inputs for deriving the signal-versus-
background discriminants.

The dijet invariant mass resolution is computed by
applying a multivariate regression analysis using a DNN
trained on simulated b jets stemming from ¢ events [67].
The training includes input features that describe the jet
energy and direction, as well as properties of the secondary
vertices of the jets. Information about tracks associated
with jets, jet constituents, low-pr electrons and muons in
the jet associated with semileptonic B hadron decays is also
used. The b jet energy regression improves the precision of
the jet four-vectors, which leads to a 10%—15% improve-
ment in the dijet invariant mass resolution, depending on
the pr of the reconstructed Higgs boson candidate. The
momenta of the Higgs boson candidate jets are corrected by
the application of the b jet energy regression described
above, unless otherwise specified. After the application of
the regression, a dedicated smearing is applied to the b jet
energy so that the dijet invariant mass resolution in
simulation will match the performance in data. The
smearing parameters are extracted in events where a jet
recoils against a Z boson that decays into leptons. Because
the Z boson pr is balanced with the jet pr, and given that
the lepton momentum measurement is precise, the ratio of
the reconstructed jet momentum (p%) to the Z boson
momentum (p{f ) enables a precise measurement of the
jet momentum and energy. The distribution of the energy
difference between the pt balance procedure and the
b jet energy regression is used to estimate the b jet
energy regression scale and resolution corrections and

uncertainties. The selected events are divided into four
regions of a = p4/p4, and this procedure is applied in
each a bin.

In signal events where the Higgs boson has a prg
exceeding 250 GeV, two jets reconstructed with the
AK4 clustering [68] algorithm will begin to overlap as
the opening angle between the jets shrinks. Therefore, these
events are reconstructed using a single large radius of 0.8,
producing what are termed AKS8 jets. The modified mass
drop tagger algorithm (soft-drop algorithm) [69] is applied
to remove soft and wide-angle radiation. This algorithm
identifies two hard AK4 subjets within the AKS8 jet. The
mass of the AK8 jet, upon application of the soft-drop
algorithm (mgp), is used as discriminating variable in the
analysis. The four-momenta of the two subjets are used to
calculate the kinematic properties of their corresponding
AKBS jet.

The DEeEPAKS algorithm [70] is used to tag boosted
H — bb topologies, exploiting AK8 jet (AR =0.8)
reconstruction. The tagger architecture is based on a set
of convolutional kernels spanning multiple candidates. It
makes use of a multioutput feed-forward neural network
with low-level input features (PF candidates), in addition to
the traditional observables of the boosted-jet environment
(tracks, jets, and secondary vertices).

Ten features for each charged and neutral PF candidate
are passed to one of these convolutional kernels, ordered in
candidate momentum, to learn the jet substructure. The
flavor content of the jet is learned by two other kernels. One
of these uses only charged constituents of the jet, sorted by
the displacement with respect to the PV, while the other one
uses secondary vertices. The DEEPAKS algorithm is decor-
related from the mass of the AKS jet, which is included in
the training of the network. The level of decorrelation is
such that no accumulation of events in mass is observed
even for very small values of the background mistag rate.
This means that the AKS jet mass shape associated with the
background does not become similar to that of the signal
after selection with the DEEPAKS tagger. The DEEPAKS
algorithm aims to classify a variety of resonances in
multiple decay modes. It provides separation for the
Lorentz-boosted H — bb signal against several back-
ground outputs: merged light jets, top quark jets, and
QCD multijets. Scale factors are used to correct the
simulation to account for differences in efficiency with
respect to the data. These scale factor are measured in
highly-boosted gluon splitting into bb events. They are
applied to the H — bb boosted signal output node. The
scale factors are parametrized as a function of the AKS jet
pt and 7, and are available for two working points, as
discussed in Sec. V.

The value of pi is crucial in the reconstruction of the
W — £v and Z — vv decays. The pi is computed as the
negative vector pr sum of all the PF candidates in an event,
and its magnitude is denoted as p%‘iss [71]. The calculation
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of piiss is modified to account for corrections to the energy
scale of the reconstructed jets in the event. Track-based
missing transverse momentum, denoted as p:, is also
used in the analysis. Only tracks that have a pt above a
minimum momentum threshold (2 GeV) and an impact
parameter consistent with the PV are considered in the
vectorial sum. The tracks are also required to pass quality
requirements, which were designed to limit the contribution
from misreconstructed tracks. The estimation of ps in
simulated events is improved by correcting it for the
difference between raw and calibrated jets, including scale
and resolution corrections. In addition, a set of recom-
mended filters to remove known issues related to instru-
mental noise and problematic events is applied [71].

In background event topologies, such as 7 events, there
is additional low-energy jet activity in the event (soft jets).
A collection of additional tracks (or PF candidates) is built
by requiring pr > 300 MeV, d, < 2 mm, a “high-purity”
quality identification, and not be associated with either the
leptons from the vector boson decay nor with the two
selected b-tagged jets in the event. A collection of soft jets
is clustered from these tracks using the anti-kt clustering
algorithm with a distance parameter of AR < 0.4. The soft
activity with a pg threshold at 5 GeV is used as a
discriminant variable for analysis channels where its
modeling in simulation is satisfactory, both in the resolved
and boosted topologies, as discussed in Sec. V.

IV. TRIGGER-LEVEL SELECTION

Several triggers are used to collect events containing
final-state particles consistent with the signal processes
considered. The trigger selection focuses on the final state
of the W or Z boson produced in association with the Higgs
boson. The triggers used to select events in the O-lepton
channel make use of p'™'** and missing hadronic transverse
momentum, HYS. These quantities are derived from the
reconstructed objects as identified by the PF algorithm.
Online, HP** is defined as the magnitude of the negative
vector pp sum of all reconstructed jets with pp > 20 GeV
and || < 2.5. The main triggers used in each of the data-
taking periods require the same threshold on pT* and
HTiss, This threshold is 110 GeV in 2016, and 120 GeV in
the 2017 and 2018 data-taking periods. In the 1-lepton
channel, single-lepton triggers are used. The pt threshold
for electrons is 27 GeV in the 2016 data-taking period,
rising to 32 GeV in 2017-2018. For muons, the pr
threshold is 24 GeV in the 2016 and 2018 data-taking
periods, and is increased to 27 GeV in 2017. Dilepton
triggers are used to select events in the 2-lepton channel.
The pr thresholds for electrons are 23 and 12 GeV in all
data-taking periods. For muons, the pr thresholds are 17
and 8 GeV in all data-taking periods; the triggers used in
2017 and 2018 differ from those used in 2016 by the
additional requirement that the dimuon invariant mass must

be greater than 3.8 GeV. In addition to the p thresholds,
the triggers require the leptons to pass stringent identifi-
cation criteria. The trigger-level leptons are also required to
be isolated from other tracks and energy deposits in the
calorimeters.

V. EVENT SELECTION AND MULTIVARIATE
DISCRIMINANTS FOR SIGNAL EXTRACTION

Though there are numerous features that differ between
the three lepton channels and the bb reconstruction
topologies, a unified analysis strategy is used.

Three control regions (CRs), each enriched in one of the
three primary backgrounds: 77, V + light-quark jets, and
V + b jets, are defined for every channel and b quark
reconstruction topology. The jet flavor in the V 4 jets
processes (V 4 bb jets, V+b jets, V+c jets and
V + light-quark jets) is defined based on the presence of
the corresponding hadrons at generator-level with trans-
verse momentum exceeding 25 GeV and || <2.5.
Templates derived from simulation are fitted to the data
with the normalizations of the three primary backgrounds
left unconstrained and incorporating several systematic
uncertainties that are allowed to modify the shapes. The
SRs are defined by requiring the dijet invariant mass to be
in the range 90-150 GeV and making a relatively tight
selection on the multivariate quark flavor discriminant that
target two b quarks. The selection values on the multivari-
ate quark flavor discriminants for the SR definitions are
reported in Tables I-III for the O-lepton, 1-lepton, and
2-lepton channels, respectively. The fitted observables in
the SRs are all DNN outputs, binned such that all bins
contain roughly equal expected signal yields. The observ-
ables used in the CRs vary between the channels, and are
selected to constrain particular features of the background
model. All SRs and CRs are fitted simultaneously to extract
the background shapes, background normalizations, and
signal strengths.

The requirement of an identified boosted W or Z bosons
in the signal events suppresses backgrounds from QCD
multijet events, while also providing an efficient trigger
path when the W or Z boson decays to charged leptons.
Requiring a large boost provides additional advantages. It
further reduces the large backgrounds from W and Z
production in association with jets, helps to suppress the
large background from top quark production in the signal
channels including neutrinos, and generally improves the
invariant mass resolution of the reconstructed Higgs boson
candidates. Therefore, in addition to the analysis targeting
resolved events where the b jets from the decay of the
Higgs boson candidate are reconstructed as separate AK4
jets, we also include boosted events where the b jets from
the decay of the Higgs boson candidates are both contained
in a large-radius jet reconstructed with the AKS algorithm.

The boosted analysis only considers events with
pr(V) > 250 GeV. The SRs and CRs for these analyses
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TABLE L

Definition of the SR and CRs for the resolved selection in the O-lepton channel. If the same selection is

applied in all SRs and CRs, this is indicated by the + symbol in the latter. If no selection is applied, this is indicated

by the --- symbol. The M(jj) and momenta variables have units of GeV.

Variable SR Z + b jets Z + light-quark jets tt
Common selection:

min(p?i“, H$iss) >100 - = -
phiss >170 + + +
pr(n) >60 - - N
pr(ia) >35 - - -
prij) >120 + + +
AP(Z,j)) >2.0 + + +
AP, j) >0.5 + + +
SR/CR difference:

Ny <2 <2 <2 >2
M(jj) €[90-150] [90-150] and <250 <250 <250
btag(j;) >medium >medium <medium >medium
btag(j,) >loose >loose <loose >loose
Agp(pmiss, pmiss ) <0.5 <0.5 <0.5 e
mmA(ﬁ(ﬁ?“‘,J) <ﬂ—/2

TABLEII.

Definition of the SR and CRs for the resolved selection of the 1-lepton, channel. If the same selection is

applied in all SRs and CRes, this is indicated by the + symbol in the latter. If no selection is applied, this is indicated

by the --- symbol. The M(jj) and momenta variables have units of GeV.

Variable SR W + b jets W + light-quark jets 1t

Common selection:

pa(ii) >100 . : 5

pr(V) >150 + + +

Ny <1 + + =

pr(in) >25 - - -

pr(i2) . >25 - - -

Ag(lep, ™) <2 + + +

SR/CR difference:

btag(j,) >medium >medium [loose-medium] >tight

btag(j,) >loose >loose e -

M(jj) € [90-150] €[150-250] and <90 <250 <250

Ny <2 <2 cee >2
Py >2 >2 >2

a(pi™)

Ap(W,jj) >2.5 >2.5

TABLEIII. Definition of the SR and CRs for the resolved selection in the 2-lepton channel. If the same selection is

applied in all SRs and CRes, this is indicated by the + symbol in the latter. If no selection is applied, this is indicated

by the --- symbol. The M(jj), M(V), and momenta variables have units of GeV.

Variable SR Z + Db jets Z + light-quark jets tt

pr(V) >75 + + +

btag(j;) >medium >medium <loose >tight
btag(j,) >loose >loose <loose >loose

M(V) €[75-105] €[85-97] €[75-105] €[10-75] and >120
M(jj) €[90-150] &[90-150] and < 250 €[90-150] <250
AG(Z.ji) >2.5 >2.5 >2.5 -
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are optimized separately for the three analysis channels
(0-, 1-, and 2-lepton). Sections V B and V C describe the
main features of the resolved and boosted analyses.

Some of the events with pr(V) > 250 GeV can be
reconstructed in both the resolved and boosted topologies.
We refer to these as overlap events in what follows. There
are four categories that overlap events can enter, depending
on whether they are resolved or boosted, and whether they
belong to the SRs or the CRs. By studying all possible
permutations in simulation, the following priority ranking
was selected: resolved SRs, boosted SRs, resolved CRs,
and boosted CRs. The reason for this choice is that the
resolved SRs provide more sensitivity, gauged as the
uncertainty in the signal strength extracted using an
Asimov dataset, to the signal than the boosted SRs.
Overlap events that would be placed either in a resolved
CR or a boosted SR are assigned to the boosted SR to
improve the sensitivity of the analysis. This ranking
minimizes the expected uncertainties in the STXS mea-
surements and ensures that events satisfying both resolved
and boosted selection criteria are used only once.

A. Subcategorization in STXS bins

In all channels, additional subcategorizations are
employed to maximize the signal sensitivity to the different
STXS bins. The STXS categorization employed in the
analysis is shown in Fig. 1. The STXS binning for the V
(Ieptonic)H process [29] uses a division into three pro-
duction modes: WH, gqq — ZH, and gg — ZH. For each of
these production modes, the STXS classification defines
bins in pr(V): [0, 75), [75, 150), [150, 250), [250, 400),
>400 GeV.

The [150,250) GeV pr(V) STXS bin is split into two;
one bin without any additional jets and another bin with
additional jets. This categorization constitutes the STXS

= V (- leptons)H

, [ ad—>wH | [ aa—zH | [ gg—zH ]
o | |
L | [ |
o L [ S S N ey |
L N I S O | |
250 1 I I
B R REEr REEEEE NN SEPEET EEPPEPERPRES I SRR PRPEEE SRR
O-jet . 1-jet .2 2-jet O-jet . 1-jet .z 2-jet O-jet I 1-jet Iz 2-jet
FIG. 1. Overview of the STXS bins for the three V H production

modes [29]. The vertical axis reflects the p(V) bin ranges and
the horizontal axis the number of additional jets. The general bin
definitions are indicated by the green boxes. No distinction is
made between gluon- and quark-induced production modes in the
analysis. As mentioned in Sec. VA, some STXS bins are not
explicitly targeted by the analysis: contributions from these bins
are fixed to their SM expectations.

classification, that is, the generator-level division of events
into STXS bins. Not all of these bins are accessible in the
analysis. The gluon- and quark-induced ZH production
modes are merged because the sensitivity to the separate
processes is small with the currently available dataset. In
addition, the two exclusive jet bins for the WH process are
merged because of the low sensitivity to the bin with
additional jets. Apart from bins that are merged, there
are also STXS bins that are not within the analysis
selection acceptance. This concerns the lowest pr(V)
bin, [0,75) GeV, for all production processes, and the
[75,150) GeV bin for the WH process. Negligible con-
tributions from these bins can appear in the analysis
because generator-level quantities used to define the
STXS bins do not exactly match their reconstruction-level
equivalents. Where these bins do contribute to the analysis,
their rates are fixed to the SM expectations. To target the
STXS bins, we define corresponding reconstruction-level
categories, constituting the subcategorization of the five
channels considered in the measurement.

(i) For the O-lepton channel, we define three catego-
ries in reconstructed pr(V): [75,250] GeV,
[250,400) GeV, and > 400 GeV.

(i) For the 2-lepton channel, we define four catego-
ries in reconstructed pr(V): [75,150) GeV,
[150,250) GeV, [250,400) GeV, and > 400 GeV.

(iii) In the 0- and 2-lepton channels, the 150 < py(V) <
250 GeV category is further subdivided into a
subcategory without any additional jets and another
with at least one additional jet.

(iv) For the 1-lepton, channel, we define three catego-
ries in reconstructed pp(V): [150,250) GeV,
[250,400) GeV, and > 400 GeV. There is no fur-
ther subdivision into additional jet categories.

B. Analysis of the resolved jet topology

1. Analysis of the 0-lepton channel

The event topology of the O-lepton channel is charac-
terized by the presence of large p™'s* due to the Z — vi
decay and a pair of b jets from the Higgs boson decay
recoiling against the Z. Additional jet activity (N,) is
expected to be low, and no high-pr leptons should be
present. Events in the O-lepton channel are selected using
the high-level trigger paths described in Sec. IV. The piss
is required to be larger than 170 GeV. As a result of the
trigger acceptance, we require min(piiss, i) to exceed
100 GeV. The Higgs boson candidate is reconstructed
using the two jets with || < 2.5 that have the highest b
tagging score. The leading and subleading b jet associated
with the Higgs boson candidate, denoted with the suffixes
j1 and j,, must have pp > 60 and 35 GeV, respectively.
Since the Higgs boson recoils against the Z boson, we
require the difference in azimuthal angle between the jj
system and the Z boson to satisfy A¢(Z,jj) > 2.0. We also
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demand the invariant mass of the dijet system to be in the
range 50-500 GeV and have pr > 120 GeV. Events
containing at least one isolated lepton with pt >
15 GeV in the central region (|| < 2.5) are rejected. To
reduce the QCD multijet background, a requirement of
Ap(pRiss j) > 0.5 is applied for all jets with pp > 30 GeV
for both the SR and CRs. This means that events with any
energetic jets close to pI* in azimuth are not considered.
Events are split into four orthogonal categories, one SR and
three CRs. The selections used for the SR, as well as for the
CRs enriched in the main background processes (Z + b
jets, Z + light-quark jets, and f7), are summarized in
Table 1. The notation btag(j;) [btag(j,)] > (<) medium
(loose) indicates that the b tagging score associated with the
leading (subleading) jet of the Higgs boson candidate is
required to be larger (smaller) than the medium (loose) b
tagging working point.

2. Analysis of the 1-lepton channel

The topology of the 1-lepton, events is characterized by
the presence of a single isolated lepton from the decay of
the W boson recoiling against two b jets from the decay of
the Higgs boson. The presence of a single isolated lepton
provides a trigger path for this channel. The Higgs boson is
reconstructed using the two jets, with pr > 25 GeV, that
have the highest b tag scores, denoted with the suffixes j;
and j,. Only jets with || < 2.5 are considered. We require
the Higgs and W boson candidates to have pr > 100 and
150 GeV, respectively. An additional requirement on the
ratio of pMiss to its uncertainty, p'iss /o (p'ist), is applied to
the CRs enriched in W 4+ b and W + light-quark jets as
well as to the SR. Events are not considered if they contain
additional leptons (N,) with || < 2.5 and pr > 25 GeV.
The selected events are split into four orthogonal catego-
ries, one SR and three CRs. The selections used for the SR,
as well as for the CRs enriched in the main background
processes (W + b jets, W + light-quark jets, and f7), are
summarized in Table II. The notation btag(j;) [btag(j,)] >
(<) loose, medium, or tight indicates that the b tagging
score associated with the leading (subleading) jet of the
Higgs boson candidate is required to be larger (smaller)
than the corresponding loose, medium, or tight b tagging
working point. The notation [loose-medium] indicates that
the leading jet associated with the Higgs boson candidate is
required to have a b tagging score in the range loose—
medium b tagging working point.

3. Analysis of the 2-lepton channel

The topology of the signal events in the 2-lepton channel
is characterized by the presence of two isolated leptons
from the decay of the Z boson, recoiling against two b jets
from the decay of the Higgs boson. Figure 2 shows the
simulated invariant mass for signal events (without any
additional recoiling jet) generated with my = 125 GeV in

% 0.2 2017 (13 TeV)
(Lg 018 :_ O Kinematic fit + b-jet regression + FSR recovery CMS Simulation
- B Wu=1245GeV,0=11.1GeV e
a o ) ) o. Z(I'H(bb)
aC) 0.16 - O  b-jet regression + FSR recovery ) p-r(z) 5 150 GeV
P u=125.1GeV, o = 14.3 GeV
i - F
0.14 [ A  FSRrecovery ' N
F B
012: ***** H=118.GeV, o = 15.5 GeV y§$ é
"TE vV Without FSR recovery A é\\ ﬁ‘l
04F="" u=116.9 GeV, o = 16.3 GeV KE.; Ny
F TR R
0.08F ,;’X Ly
o g B A%
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FIG. 2. Dijet invariant mass distributions in samples of simu-
lated (2017 simulation) signal events passing the 2-lepton
channel requirements without any additional recoiling jet. Dis-
tributions are shown without the usage of the FSR recovery
algorithm (purple triangles), before (red triangles) and after (blue
squares) the energy corrections from the b jet regression are
applied, and when a kinematic fit procedure (green circles) is
used in addition to them. The fitted mean and width of the core of
the distribution, obtained by fitting a Bukin function [72], are
displayed in the figure. The statistical uncertainties are smaller
than the marker height.

the 2-lepton channel using the FSR recovery algorithm
mentioned in Sec. III, along with the addition of the b jet
energy regression (discussed in Sec. III), and a kinematic
fit. Since there is no genuine P in the hard-scattering
process for this event topology, a kinematic fit is performed
to improve the resolution of the dijet invariant mass. In this
fit, the mass of the dilepton system is constrained to the Z
boson mass (PDG), while the total py of all the particles
must sum to zero. This kinematic fit imposes a balance
between the Z boson pr, which is expected to be well
measured because of the good momentum resolution for
high-p leptons, and the vectorial sum of the jet momenta.
The objects used in the fit are the two b-tagged jets that
form the Higgs boson candidate after application of the b
jet energy regression, and the FSR recovery algorithm, two
lepton candidates, and up to one jet produced by initial-
state radiation (ISR). Only jets with |n| < 2.5 are included
in the analysis. As shown in Fig. 2, a large improvement in
resolution in the region of the mass peak is achieved when
the kinematic fit, the b jet energy regression, and the FSR
recovery algorithms are employed together.

The Higgs boson is reconstructed using the two highest b
tagging score jets, denoted with the suffixes j; and j,, that
have pp > 20 GeV, and pp(V) is required to exceed
75 GeV. The selections used to define the SR and CRs,
which are enriched in the main background processes
(Z + b jets, Z + light-quark jets, ¢f) are summarized in
Table III. Similarly to the 0- and 1-lepton channels, the 77
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CR is very pure in 77 events. The additional requirement
that the dilepton invariant mass lie in the Z boson mass
window ensures the Z + jets purity in the corresponding
regions is high. The notation btag(j;) [btag(j,)] > (<)
loose, medium, or tight indicates that the b tagging score
associated with the leading (subleading) jet of the Higgs
boson candidate is required to be larger (smaller) than the
corresponding loose, medium, or tight b tagging work-
ing point.

4. Multivariate discriminants in the SR
and the heavy-flavor CRs

In order to improve the separation between signal and
background, a DNN classifier trained to discriminate the
VH, H — bb signal against all background processes is
used for all the channels. The same network architecture is
used for both the DNN signal/background classifier and the
DNN multiclass background classifier discussed later in this
section. A DNN classifier with six hidden fully connected
layers is trained, with each layer containing 512, 256, 128,
64, 64, and 64 nodes [73]. The final layer is a softmax layer
[73], giving the probability for an event to be in a particular

class. The classifier is trained to minimize the cross-entropy
loss function [73] using the Adam optimizer algorithm [74]
trained on a minibatch of size 1024.

The input features used in the DNN training encompass
the kinematic properties of the final state: the masses,
momenta, and angles of the jets, dijet, vector boson
candidate, and leptons. The additional reconstructed jet
multiplicity is also used. While many potentially discrimi-
nating variables were considered, variables that did not
contribute to the analysis sensitivity were dropped. The
modeling of these variables in the simulation is also
inspected. When the modeling of such variables is observed
to be unsatisfactory, the variables are removed from the
input feature list of the DNN training.

The full list of input variables is shown in Table IV for
the 0-, 1-, and 2-lepton channels. These variables are used
as inputs to the DNN trainings in all the STXS categories in
which the DNN trainings are performed separately. To
evaluate the recoil jet multiplicity, used as an input variable
in the DNN training for the 2-lepton channel, recoil jets are
identified as ISR jets. They must have pr > 20 GeV, pass
reconstruction quality requirements, and cannot be part of
the Higgs boson candidate or one of the FSR jets.

TABLE IV. Input variables used for the DNN training in the resolved SR of the 0-, 1-, and 2-lepton channels. Reconstructed jets

associated with the Higgs boson candidate are classified as leading (labeled with suffix j;) and subleading (labeled with suffix j,) based
on their b tag score.

Variable Description O-lepton  1-lepton,  2-lepton

M(jj) Dijet invariant mass 4 v v

pr(jj) Dijet transverse momentum v v v

piiss Missing transverse momentum v v v

M(V) Transverse mass of the vector boson v

pr(V) Transverse momentum of the vector boson 4 v

pr(i)/pr(V) Ratio of transverse momenta of the dijet system and the vector boson v v

AP(V,jj Azimuthal angle between the vector boson and the dijet directions v v v

btag(j,) b tagging score of leading jet v v v

btag(j,) b tagging score of subleading jet v v v

An(3)) Pseudorapidity difference between leading and subleading jet v v v

Ap(jj) Azimuthal angle between leading and subleading jet v v

Pt (1, J2) Maximum transverse momentum of jet between leading and subleading jet 4 v

SAS Number of soft-track jets with momentum greater than 5 GeV v v

Ny Number of additional jets v v

btag,.« (add) Maximum b tagging discriminant score among additional jets v

PP (add) Maximum transverse momentum among additional jets 4

Ad(jet, priss) Azimuthal angle between additional jet and piiss v

Ag(lep, piss) Azimuthal angle between lepton and piiss v

M, Reconstructed top quark mass v

pr() Transverse momentum of leading jet v

pr(a) Transverse momentum of subleading jet v

M(V) Reconstructed vector boson mass v

AR(V,jj) Angular separation between the vector boson and the dijet system v

AR(V,jj) (kin)  Angular separation between the vector boson and the dijet system v
(reconstructed after kinematic fit)

o(M(jj)) Resolution of dijet invariant mass v

Niee Number of recoil jets v
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Among the most discriminating variables for all channels
are M(jj), pr(V), the number of additional jets, and the
angular separation between the two jets forming the Higgs
boson candidate. To estimate the feature importance for the
DNN training, the classifier is retrained sampling from
the distribution of all possible feature combinations. The
relative feature importance is defined using the approxi-
mate median significance metric [73]. All trainings are
repeated 10 times to average out fluctuations from ran-
domized initial weights and the stochastic gradient descent.
The mean value of the estimated significance is used to
compare with the baseline. In the 2-lepton channel, both
regressed variables and variables evaluated after the kin-
ematic fit are employed. The b tagging status of the jets is
exploited by using the DEEPCSV working point informa-
tion. The trainings are performed in categories defined to
target particular STXS bins for all channels, and the
subsequent evaluation is performed for the same STXS
bins. In the 0- and 1-lepton channels, a multiclass DNN
(HFDNN) is trained in the heavy-flavor Z + b and W + b
CRes, to separate the different V + jets components (vector
boson production associated with light-quark, ¢, and b
jets), single top quark, and #7 backgrounds. The same input
features and DNN architecture as for the signal/background
classification are used (as shown in Table IV). Instead of
labels for the signal/background classification, the output
of the DNN is an m-dimensional vector of probabilities for
the m background classes. Figure 3 shows the HFDNN
discriminants in the 0- and 1-lepton heavy-flavor CRs, after
a maximum likelihood fit to the data. This is a simultaneous
fit of all SRs and CRs in the analysis.

The DNN score is used as a discriminating variable in
each resolved SR, while different strategies are used in the
resolved CRs, as discussed in Sec. VII.

C. Analysis of the large-radius jet topology

The boosted topology is included in the measurement in
addition to the resolved analysis and targets the two STXS
pr(V) bins above 250 GeV (i.e., 250-400 GeV and
> 400 GeV). In the boosted event categories a single
AKS jet is used to reconstruct the Higgs boson candidate,
with the DEEPAKS bb tagging algorithm applied to the
Higgs boson candidate decay products. This accounts for
the kinematic properties of the event in the region where the
two AK4 jets start to overlap.

An important feature of the analysis is the usage of the
bb tagging algorithm, both as a selection variable to define
SR and CRs, and as a discriminating input feature of the
MVA discriminant trained in the SR. The output of the
discriminant node against light-quark jets of the DEEPAKS
algorithm (DeepAK8bbVsLight) is used in this measure-
ment, since it is observed to provide the highest sensitivity
for signal/background separation in the boosted analysis
region. The H — bb boosted signal output node is cali-
brated by performing data and simulation -efficiency
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FIG. 3. Distribution of the HFDNN scores in the O-lepton

(upper) and 1-lepton, (lower) Z + b and W + b heavy-flavor CRs
for the 2016 dataset, after the fit to data. The output nodes target
enrichment in the V + light-quark (first bin), V + ¢ (second bin),
V + b (third bin), V + bb (fourth bin), single top quark (fifth
bin), and #7 (sixth bin) backgrounds. The lower plots display the
ratio of the data to the MC expectations. The vertical bars on
the points represent the statistical uncertainty in the ratio, and the
hatched area shows the MC uncertainty.

measurements, as described in Sec. III. The corresponding
uncertainties are used as prior constraints in the fit. No
external efficiency measurements are available for high-
momentum light-quark, ¢, and b jets stemming from top
quark decays. These components are dominant in the
V + light-quark jets, V + b jets, and #7 analysis CRs.
Therefore, the normalizations of these processes are
extracted in situ in the combined fit by including
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unconstrained parameters that scale the normalizations of
these processes in the CRs, as discussed in Sec. VIL

The SRs and CRs for the 0-, 1-, and 2-lepton channels
are defined separately. In addition to the application of the
baseline event selection defining the lepton channels
discussed in Sec. VB for the resolved analysis, the
common preselection valid for all channels in the large-
radius jet topology requires mgp > 50 GeV, pr(H) >
250 GeV, and pr(V) > 250 GeV. Only jets with || <
2.5 are considered. We define three CRs, enriched in the
main background processes (V + b jets, V + light-quark
jets, and f7), and one SR for the extraction of the boosted
H — bb signal. To enrich the SR and CRs in #7 and V + b
jets processes, the DEEPAKS discriminant must be larger
than 0.8. For the light-quark jets region, the complementary
requirement (<0.8) is used. The value of 0.8 was optimized
to retain most of the signal while minimizing the back-
ground contamination. In the 0- and 1-lepton channels,
events in the /7 CRs are selected if they have at least one
AK4 b-tagged jet, identified using the medium DEEPCSV
working point. No additional leptons are allowed in SR
and CRs. The dijet soft-drop mass must be in the range
90-150 GeV for the SR, outside this range for the V + b
jets CR, and above 50 GeV for the V + light-quark jets and
tt CRs. Since all of the Z boson decay products are visible
in the 2-lepton final state, M(V) must be in the range
75-105 GeV for the SR, Z + b jets, and Z + light-quark
jets CRs, and outside this range for the 7 CR. Table V
summarizes the SR and CR selections in the boosted
analysis.

1. Multivariate discriminant in the SR
Jor the boosted topology

Boosted decision trees (BDTSs) were trained in the SRs
for the 0-, 1-, and 2-lepton channels to separate the boosted

Higgs boson decay signal from the sum of all background
processes. Input variable optimizations, as well as over-
training checks, were performed. The input features of the
BDT training take into account the kinematic properties of
the event and include observables related to the AKS jet
candidate, such as its soft-drop mass and pr. The invariant
mass of the dijet system, as well as additional variables
used for the DNN training in the resolved topology, are also
added for events in the overlap region between the boosted
and resolved analyses. For purely boosted events, these
variables are set to default values in the BDT training and
are not considered further. This training strategy is found to
improve the BDT sensitivity by approximately 25% as a
result of the very good M(jj) resolution. Additionally, the
properties of the reconstructed vector boson recoiling
against the Higgs boson candidate, and the DEEPAKS
output node against light-quark-jet discrimination, are used
as inputs in the training. The inclusion of the DEEPAKS
discriminant in the BDT training leads to an improvement
of around 30% in the expected sensitivity in this region.
Because the data-to-simulation corrections for the
DEEPAKS tagger are extracted for fixed operating points
of the DEEPAKS discriminant and do not correct the full
shape of the output, binned working point values of the
discriminant are used in the training instead of its full
shape. The definition of the optimal working point used in
the training is found from a scan of the expected sensitivity
when varying the choice of the DEEPAKS working point.
For each configuration, a dedicated BDT is trained. The
BDT score is used as the fitted variable in the boosted SR,
while the DEEPAKS output node is used in the boosted CRs.
The V + b jets, V + light-quark jets and /7 CRs make use
of two bins in b tagging score. The bin boundaries
correspond to the b tagging working points: [0.8, 0.97,
1]. The V —+ light-quark jets CR uses two bins in the
complementary region, [0, 0.4, 0.8].

TABLE V. Selection criteria for the SR and CRs in the boosted topology for 0-, 1-, and 2-lepton channels. The
DeepAKS8bbVsLight designation represents the DEEPAKS discriminant for the light-quark flavor discrimination

node. The M(jj) and M(V) variables have units of GeV.

Variable SR V + b jets V + light-quark jets 1t
0-lepton

DeepAK8bbVsLight >0.8 >0.8 <0.8 >0.8
M(jj) €[90-150] €[50-90] or €[150-250] >50 >50
Ny =0 =0 =0
Ny =0 =0 >0
1-lepton

DeepAK8bbVsLight >0.8 >0.8 <0.8 >0.8
M(jj) €[90-150] €[50-90] or €[150-250] >50 >50
Ny = =0 =0
Ny =0 =0 >0
2-lepton

DeepAK8bbVsLight >0.8 >0.8 <0.8 >0.8
M(jj) €[90-150] €[50-90] or €[150-250] €[90-150] >50
M(V) €[75-105] € [75-105] €[75-105] &[75-105]
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VI. SYSTEMATIC UNCERTAINTIES

Several systematic uncertainties affect the normaliza-
tions of the simulated signal and background processes, as
well as the shapes of the multivariate discriminants fitted in
the SRs.

The theoretical uncertainty in the H — bb branching
fraction is 0.5% [28]. Theoretical uncertainties in the
inclusive production cross sections are derived from fac-
torization (up) and renormalization (ug) scale variations
and amount to 0.7, 0.6, and 25% for the WH, quark-
induced ZH, and gluon-induced ZH processes, respec-
tively [28]. Migration uncertainties between the STXS bins
are evaluated by studying the effect on the total cross
section above each py(V) and N,; boundary by varying uy
and up individually up and down by a factor of two around
their default values and neglecting the largest variations.
The largest change is used as the absolute uncertainty from
this source. This change is then employed to increase the
process normalization in STXS bins above the given pr(V)
or N, boundary, and decreasing it in the bins below. These
uncertainties are in the range of 3—11 and 30-40% for the
quark- and gluon-induced processes, respectively, depend-
ing on the STXS bin considered. The gluon-induced
process uncertainty is larger than for the quark-induced
process because of the larger bin migration in the former
case. Acceptance effects within each STXS bin are taken
into account by varying ug and pg, including a normali-
zation factor to ensure these variations do not change the
overall cross section of that particular STXS bin.

Theoretical uncertainties due to the choice of PDFs and
the value of the strong coupling constant are derived for
each signal and background process following the recom-
mendations given in Ref. [75] and are fully correlated
across data-taking years. They are 1.9% for the quark-
induced ZH and WH processes, and 2.4% for the gluon-
induced ZH process. Uncertainties coming from the
variations of up and ug are applied to all background
processes and are fully correlated across data-taking years.
The NLO EW corrections to the ZH and WH processes
have a 2% systematic uncertainty [28]. The uncertainties in
the diboson and single top quark production cross sections
in the high-p(V) region are both set to 15%. These
uncertainties are derived from CMS measurements of these
processes [76,77]. However, they are increased to account
for the different in the phase space between the present
analysis and the previous measurement.

The shapes of various distributions of the V + jet
processes are derived by comparing simulation to data in
control regions. The uncertainties affecting the V 4 jets
processes impact both the process normalization and the
shape of the distributions. The reweighting in the number of
additional jets, discussed in Sec. III, is derived from the
data-to-simulation ratio in the 2-lepton Z+ b CR as a
function of the number of additional jets and pr(V), which
is shown in Fig. 4 (left panel). The full value of the weight
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il s
S b Number of additional jets
o 35
s [ 2-lepton, 2017 0
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8 3% V+bCR 1
3 AN
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185 el Tt
BT LT
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p.(V) [GeV]
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£
é CMS ¢ Data [ ZH(bb)
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& []Z+c [ Z+udsg
2-lepton (e), 2017 [ ] tt I VV+LF
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FIG. 4. The data-to-simulation ratio in the 2-lepton Z + b CR is
parametrized as a two-dimensional function of the number of
additional jets and p(V). The values of the parametrization are
shown as a function of these variables in the upper panel. The
distribution of the number of additional jets in the low-p(V)
STXS SR of the 2-lepton channel with (histogram) and without
(red line) the application of the reweighting correction and
associated systematic uncertainty is shown in the lower panel
for the 2017 dataset, after the likelihood fit to data. In the ratio
pad, the hatched bands associated with the corrected (gray) and
noncorrected (red) number of additional jets indicate the sys-
tematic uncertainty in the sum of the signal and background
templates.

is used as the shape uncertainty associated with the
reweighting. The uncertainties are treated as uncorrelated
between data-taking years and across background proc-
esses to account for differences in the level of mismodeling
between processes and data-taking periods. Figure 4 (right
panel) shows an example distribution, after the likelihood
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fit to data, of the noncorrected and the corrected number of
additional jets, for the 2017 dataset in the low-p(V) STXS
region SR (2-lepton channel).

The shape uncertainty associated with the number of
additional jets reweighting correction, which is the full
value of the weight, is included in the hatched gray band.
Therefore, its size is significantly larger than the overall
uncertainty associated with the noncorrected number of
additional jets. The statistical uncertainty in the data yields
is not included in the hatched bands and is present in the
error bar associated with the data points in the ratio panel.
The reweighting model, discussed in Sec. III, significantly
improves the description of the data by the simulation in
this observable. It also provides an additional uncertainty in
this distribution.

Regarding the reweighting of the jet angular separation
observable in the AR(jj) < 1 region discussed in Sec. II,
shape variations are derived by extracting the statistical
uncertainties of the AR(jj) templates in data and simulation
used for the reweighting procedure for each V + jets
process. These shape uncertainties are treated as uncorre-
lated across analysis channels, STXS categories and data-
taking periods. Normalization uncertainties in the NLO EW
and NNLO QCD corrections applied to the high-p(V)
region in the signal and V' + jets samples are estimated as 2
and 5% for the NLO EW and NNLO QCD corrections,
respectively.

The uncertainty in the integrated luminosity measure-
ment is 1.2, 2.3, and 2.5% in the 2016, 2017, and 2018
data-taking periods, respectively [31-33]. These uncertain-
ties are treated as partially correlated between the three
data-taking years. A 4.6% uncertainty in the total inelastic
cross section [78], used to evaluate the PU profile in data
for reweighting to the simulated PU profile, is applied.

The corrections applied to simulated samples to account
for differences in the electron and muon trigger,
reconstruction, and identification efficiencies with respect
to data are affected by systematic uncertainties. These
uncertainties originate from choices made in the efficiency
measurement method, the selection applied to the leptons,
and the limited size of the simulated samples used in the
measurement. They depend on the lepton pr and 7, and
affect the process normalizations by 1-2%. An uncertainty
in the pMss trigger efficiency correction is included in the
model and has a 1% effect.

Uncertainties in the b tagging efficiency and misidenti-
fication rate measurements used in the analysis of the
resolved topology depend on the jet flavor, and the pr and 5
of the jet. These uncertainties are split into 9 independent
sources and 15 py and 7 bins, and treated as uncorrelated
between the three data-taking periods. For the bb tagging
efficiencies used in the analysis of the boosted topology,
uncertainties are provided for the H — bb signal output
node of the DeepAKS discriminant. They account for the
limited size of the simulated samples available for the

calibration; the relative uncertainty in the fraction of
boosted jet contributions present in the calibration; and
for the normalizations of these contributions. The bb
tagging uncertainties are uncorrelated between the effi-
ciency working points and are parametrized in regions of jet
pt (200-300, 300-400, 400-500, 500-600, >600) GeV.

Uncertainties in the JES and JER depend on the pt and 5
of the jets, and affect the kinematic properties of resolved
and boosted jets, as well as the p?i“ in the event. The
uncertainties in the JES are split into independent
sources [65] accounting for different experimental effects.
Some of these uncertainty sources are correlated between
the different data-taking periods, e.g., when that uncertainty
component depends on the size of the available data
sample. For b-tagged jets, to which the previously
described b jet energy regression is applied, dedicated
uncertainties in the JES and JER corrections are applied, as
discussed in Sec. III.

Uncertainties affecting the shape of the p(V) spectrum
are taken into account. The discriminants used for the
signal extraction in the resolved and boosted SRs are
pr(V)-dependent and pr(V) represents an important
source of discrimination between signal and background,
as discussed in Secs. VB4 and V C. Additionally, the
STXS categorization is based on pr(V), as described in
Sec. VA. Because the shape of the p(V) spectrum is used
in the fit model, the parameters that scale the background
process normalizations are parametrized continuously in
pr(V) rather than in individual STXS bins. To account for
differences between adjacent categories, uncertainties in
the py shapes are defined for each p(V) boundary. These
pr(V) uncertainties are parametrized with linear variation
shape uncertainties are anticorrelated, following the STXS
categorization at the pr(V) boundaries of 150 GeV
(2-lepton channel only) and 250 GeV (all channels) for
all processes. These uncertainties are also considered as
uncorrelated across lepton channels, background processes,
and data-taking eras. They are implemented with large prior
constraints in the fit model to mimic freely floating flat
prior uncertainties and are significantly constrained by the
fit to data.

In addition to the pr(V)-based uncertainties, freely
floating parameters that scale the normalizations of the
main background components, i.e., production of a vector
boson associated with heavy (b, c) or light-quark jets and
tt, are included in the fit as described in Sec. VII. These
parameters are constrained in the dedicated background-
enriched regions discussed in Sec. V, i.e., V+ b jets,
V + light-quark jets, and 77. The parameters that scale
the process normalizations are treated as uncorrelated
between lepton flavors (e, u).

To account for the finite sizes of the simulated samples,
each bin of the simulated signal-plus-background tem-
plate is allowed to vary within its statistical uncertainty,
independently from the other bins in the distribution,

092011-14



MEASUREMENT OF SIMPLIFIED TEMPLATE CROSS SECTIONS ...

PHYS. REV. D 109, 092011 (2024)

TABLE VI. Discriminating variables fitted in each SR and CR. The DeepAK8bbVsLight designation represents the DEEPAKS
discriminant for the light-quark flavor discrimination node.

SR tt CR V + light-quark jets CR V + b jets CR
0-lepton, resolved DNN pr(V) pr(V) HFDNN
0-lepton, boosted BDT DeepAK8bbVsLight DeepAK8bbVsLight DeepAKS8bbVsLight
1-lepton, resolved DNN pr(V) pr(V) HFDNN
1-lepton, boosted BDT DeepAK8bbVsLight DeepAK8bbVsLight DeepAKS8bbVsLight
2-lepton, resolved DNN pr(V) pr(V) DEEPCSV scores
2-lepton, boosted BDT DeepAKS8bbVsLight DeepAKS8bbVsLight DeepAKS8bbVsLight

CMS 138 fb™ (13 TeV) 1
ZH,p(V)>400 | 0,01 0.02 -0.06 0.05 0.01 -0.07 0.16 0.8
ZH,250 <p (V)<400 | 0,02 -0.07 -0.00 0.10 -0.02 -0.07 0.16 0.6
ZH, 150 <p,(V)<250.21J |.0.02 -0.01 -0.01 0.06 -0.21.-0.07 -0.07 =04
0 — 0.2
ZH,150<p,(V)<250,=0J 1.0.09 -0.01 0.00 0.08 -0.21 -0.02 0.01
- — 0
ZH,75<p(V)<150 | .0,01 0.00 -0.00 . 0.08 0.06 0.10 0.05
| — 0.2
WH, p,(V)>400 1.0.00 0.02 .-o.oo 0.00 -0.01 -0.00 -0.06 —| 04
WH, 250 <p (V) <400 | 0 11 . 0.02 0.00 -0.01 -0.01 -0.07 0.02 | —| 06
— 0.8
WH, 150 < p,(v) <250 -0.11 -0.00 -0.01 -0.09 -0.02 0.02 0.01
| | | | | |
|
W
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following the Barlow—Beeston “light” approach [79]. The
impact of the systematic uncertainties in the measured
cross sections in the different STXS bins is discussed in
Sec. VIL

VII. ANALYSIS RESULTS

The analysis targets the measurement of the Higgs boson
signal strength using VH production with a subsequent
H — bb decay and interprets the results in terms of the
STXS categorization for the V(leptonic)H process, as
discussed in Sec. VA. Results are extracted from a
simultaneous maximum likelihood fit of the signal-plus-
background model to the data distributions in all SRs and
CRs, based on the templates detailed in Table VI.

In the resolved and boosted SRs, the DNN and BDT
classifiers presented in Sec. V are employed. The variable
used in the resolved CRs depends on the channel. In the 0-
and 1-lepton channels, the multiclassifier DNN described
in Sec. V B is employed in the V + b jets CR, while p1(V)
is used in the 77 and V + light-quark jets CRs. In the
2-lepton channel, the fitted variable in the V + b jets CR is
the score of the DEEPCSV discriminant, binned to align
with the established working points, while the remaining
CRs use pp(V) as in the 0- and 1-lepton channels. In the
boosted CRs, the DEEPAKS discriminant for the light-quark
jet discrimination node (DeepAK8bbVsLight) is used in
conjunction with the selection requirement described in
Sec. VC. For the V + b jets and 17 CRs, the DEEPAKS
discriminant is tagged as in the SR, while for the V + light-
quark jets CR, the DEEPAKS discriminant is required to
be <0.8.

The analysis regions are partitioned into categories
targeting specific STXS bins in order to maximize the
sensitivity to the different STXS bin signals, as discussed in
Sec. V. The shapes and normalizations of all distributions
for the signal and background components are allowed to
vary within the systematic uncertainties described in
Sec. VI. These uncertainties are treated as independent
nuisance parameters in the fit to the data. For the nuisance
parameters with shape-altering effects, alternative tem-
plates that correspond to a variation of +1 standard
deviation of the associated nuisance parameter are used.

To reduce the effects from statistical fluctuations on these
alternative templates in the SRs, a smoothing technique is
applied to templates exhibiting the largest fluctuations with
respect to the nominal templates. The normalization of the
systematic variation is fixed, and the ratio of the template
with respect to the nominal is smoothed. The uncertainty
sources that show the largest fraction of bin-to-bin fluctua-
tions are the JES, JER, and PU uncertainties. For those
uncertainties, the smoothing procedure is applied to all
processes in the analysis SRs. Freely floating parameters,
termed process scale factors, accounting for the difference in
normalization between simulation and data for the main
background processes, namely 77, V 4+ udsg, V + ¢, V + b,

and V + bb, are constrained in the CRs and SRs. These
process scale factors are correlated across lepton channels.
In the 0- and 2-lepton channels, the V + b and V + bb
components are split by employing freely floating parame-
ters. In the 1-lepton, channel, a freely floating parameter for
the V + bb process is used in addition to a prior constraint
that governs the ratio of V + b to V + bb. This implemen-
tation is employed because the number of V + b events in the
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FIG. 7. Signal strengths (points) for the 0-, 1-, and 2-lepton
channels (upper) and the ZH and W H production modes (lower).
The horizontal red and blue bars on the points represent the
systematic and total uncertainties, respectively. The combined
inclusive signal strength is shown by the vertical line, with the
green band giving the 68% confidence interval. The results
combine the 2016-2018 data-taking years. The first and the
second uncertainty values correspond to the statistical and
systematic uncertainties, respectively.
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1-lepton, channel is limited due to the tight b tagging
requirement applied in the selection.

To allow for shape uncertainties of the p(V) spectrum
predictions in the categories targeting different STXS bins,
linear variations as a function of the reconstructed pr(V)
are created, as discussed in Sec. VI. Process scale factors
correcting for the normalization difference between

simulation and data for the main background processes
are employed, together with this pr(V)-based uncertainty,
to correct the shape of the pr (V) spectrum in simulation to
match data.

Additional unconstrained parameters, used to measure
flavor tagging scale factors in situ in the boosted analysis
regions, are employed to account for the (mis)tagging

138 fb' (13 TeV)
CMS e Observed
. — 1o (Stat @ syst)
VH, H-bb m— +1o (syst)
ZH, p,(V) > 400 GeV —. = 1.83 +0.63 + 0.42
ZH, 250 < p (V) < 400 GeV —.- 1.52 +0.36 = 0.33
ZH, 150 <p (V) <250 GeV, > 1) | —mmmmmm— | -0.56 + 0.78 + 0.72
ZH, 150 < pT(V) <250 GeV, =0J -—- 0.42 +0.37 £ 0.30
ZH, 75 <p (V) < 150 GeV - . - 1.42 £ 0.52 £ 0.56
WH, p_(V) > 400 GeV - - 1.90 + 0.63 + 0.49
WH, 250 < p_(V) < 400 GeV | —e— 1.88 + 0.47 + 0.38
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FIG. 8.

STXS signal strengths from the analysis of the 2016-2018 data. The vertical dashed line corresponds to the SM value of the

signal strength. The first and the second uncertainty values correspond to the statistical and systematic uncertainties, respectively.
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FIG. 9. Measured values of o3, defined as the product of the VH production cross sections multiplied by the branching fractions of
V — leptons and H — bb, evaluated in the same STXS bins as for the signal strengths, combining all years. In the lower panel, the ratio
of the observed results, with associated uncertainties, to the SM expectations is shown. If the observed signal strength for a given STXS

bin is negative, no value is plotted for 613 in the upper panel.
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TABLE VIIL.

Predicted and measured values of the product of the cross section and branching fractions in the V

(Ieptonic)H STXS process scheme. The SM predictions for each bin are calculated using the inclusive values
reported in Ref. [28]. The uncertainties shown are the combined statistical and systematic components.

STXS bin Expected o5 [fb] Observed o8B [fb] Best-fit u
ZH 75 < p1(Z) < 150 GeV 50.0 £5.3 71 + 38 1.44+0.8
ZH 150 < p1(Z) < 250 GeV 0 jets 9.0+ 1.4 3.84+4.1 044+0.5
ZH 150 < p(Z) < 250 GeV > 1 jets 10.1 2.2 <0 -06+1.0
ZH 250 < p1(Z) < 400 GeV 45+0.9 69 +£22 1.5+£0.5
ZH pr(Z) > 400 GeV 0.94+0.1 1.6 0.6 1.8 £0.8
WH 150 < pr(W) < 250 GeV 249+ 1.8 6+t16 0.2+0.7
WH 250 < pr(W) < 400 GeV 6.3+0.5 11.9£3.8 1.9+0.6
WH pr(W) > 400 GeV 1.4+0.1 2.7+ 1.1 1.940.8
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FIG. 10. Post-fit distributions of the DNN discriminant in the 250 < pt(V) < 400 GeV category of the O-lepton (top left), 1-lepton,
(top right) and 2-lepton (bottom) channels for the electron final state using the 2018 dataset. The background contributions after the
maximum likelihood fit are shown as filled histograms. The Higgs boson signal is also shown as a filled histogram, and is normalized to
the signal strength shown in Fig. 8. The hatched band indicates the combined statistical and systematic uncertainty in the sum of the
signal and background templates. The ratio of the data to the sum of the fitted signal and background is shown in the lower panel. The
distributions that enter the maximum likelihood fit use the same binning as shown here.
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efficiency difference between data and simulation for high-
momentum light-quark, ¢, and b jets. The procedure is
described in more detail in Sec. V C. These parameters are
treated as fully correlated between channels, and are not
correlated with the background process scale factors. As
discussed in Sec. VI, the process scale factors and in situ
flavor tagging scale factors are fully uncorrelated between
lepton flavors.

Figure 5 shows the correlation matrix of the signal
strengths split by STXS bin for the analysis of all data-
taking years combined. As expected (see Sec. V A), the signal
strengths for the medium pp(V) STXS bins with 0 and at
least 1 jet exhibit the largest correlation (—21%). The
fractional contribution of each STXS bin to the total signal
in each category is shown in Fig. 6. The signal purity is higher
in the 2-lepton channel than in the O- and 1-lepton channels.

The inclusive signal strength extracted from a simulta-
neous maximum likelihood fit of the SRs and CRs, combin-
ing all three data-taking years, is u = 1.157032, where
the uncertainties include both the statistical and system-
atic components. The individual signal strengths are
u=143+£037, 4 =0.68£0.36, and y =1.23+0.30
for the 2016, 2017, and 2018 data-taking years, respectively.
Figure 7 shows the signal strengths per analysis channel, as
well as the signal strengths split by production mode (ZH or
WH). The p-value compatibility of the individual deviations
of the three analysis channels from the SM expectation
(u = 1) 1is 64%, while the p-value compatibility of the three
analysis channels with the inclusive VH, H — bb signal
strength is 84%.

The measured signal strengths in the different STXS bins,
fitting all data-taking years (2016-2018) are shown in Fig. 8.
These results are interpreted in Fig. 9 as o8, the product of
the production cross sections and the branching fractions for
V — leptons and H — bb. To convert the results to mea-
surements of the production cross section alone, theoretical
uncertainties that modify the overall cross section of the
individual STXS bins, or the inclusive cross section, are
removed from the fit. These measured cross sections, along
with the SM predictions, are given in Table VII. The local
inclusive observed (expected) significance of the measured
ZH and WH signals, over the background-only expectation,
is found to be 6.3 (5.6) standard deviations when taking into
account all three data-taking years. Examples of post-fit
distributions of the DNN output scores in the SRs of the
2018 dataset are shown in Fig. 10 for the 0-, 1-, and 2-lepton
channels in the category targeting the 250 < pp(V) <
400 GeV STXS bin. Figure 11 shows the distribution of
events in all channels, sorted according to the observed value
of log;, (S/B), for the three data-taking years combined;
here, the signal (S) and background (B) yields are deter-
mined from the discriminant scores used in the resolved and
boosted analyses.

Table VIII shows the contribution, in terms of absolute
uncertainties, to the uncertainty in the measured inclusive

138 fb™' (13 TeV)

c 10F T T T T
] CMS ¢ Data

k2] 10° [ Background

5 VH, H-bb I VH, Hobb

o [ Background uncertainty

—— Signal + Background

10*
10°
102
10
1 T
()]
% 2
g e
©
D0HH\‘H‘\HH\HH\HH\HH
-3 -2.5 -2 -1.5 -1 -0.5 0
Iogm(S/B)
FIG. 11. Distributions of signal, background, and observed data

event yields sorted into bins of similar signal-to-background
ratio, as given by the result of the fit to the multivariate
discriminants in the resolved and boosted categories. All events
in the signal regions of the 20162018 dataset are included. The
red histogram indicates the Higgs boson signal assuming SM
yields (4 = 1) and the sum of all backgrounds is given by the gray
histogram. The lower panel shows the ratio of the observed data
to the background expectation, with the total uncertainty in the
background prediction indicated by the gray hatching. The red
line indicates the sum of signal assuming the SM prediction plus
background contribution, divided by the background.

signal strength originating from the various sources of
systematic uncertainty. This contribution for a given group
of uncertainties is defined as the difference in quadrature
between the total uncertainty in the signal strength and the
uncertainty in the signal strength with the nuisance param-
eters of the corresponding group fixed to their best-fit values.
The total statistical uncertainty is defined as the uncertainty

TABLE VIII. The sources of systematic uncertainty in the
inclusive signal strength measurement and their positive and
negative values.

Ap
Background (theory) +0.043 —0.043
Signal (theory) +0.088 — 0.059
MC sample size +0.078 — 0.078
Simulation modeling +0.059 — 0.059
b tagging +0.050 — 0.046
Jet energy resolution +0.036 — 0.028
Int. luminosity +0.032 - 0.027
Jet energy scale +0.025 — 0.025
Lepton ident. +0.008 — 0.007
Trigger (pyiss) -+0.002 — 0.001
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in the signal strength when all the constrained nuisance
parameters are fixed to their best-fit values, while the total
systematic uncertainty is defined as the difference in quad-
rature between the total uncertainty in the signal strength and
the total statistical uncertainty. Table VIII breaks the total
uncertainty down into the following sources.

(i) Theoretical uncertainties in the signal and back-

ground components.

(i) Limited size of simulated samples.

(iii) Simulation modeling, including uncertainty sources
associated with the modeling of the V + jets back-
ground components, as discussed in Sec. II. Addi-
tionally, the pr(V) migration uncertainties are
included in this category.

(iv) Experimental uncertainties (b tagging, integrated
luminosity, JES and JER, lepton identification, and
trigger). The JES and JER components include the
dedicated uncertainty in mass scale and smearing that
is applied for jets subject to the b jet energy regression.

The limited size of the NLO V + jets samples is the
largest contribution to the overall VH, H — bb signal
strength uncertainty.

A. Cross-check analysis: Extraction
of VZ with Z — bb

The VZ process, where the Z boson decays into a bb pair,
has an identical final state to the VH process with H — bb.
Therefore, it is used to cross-check the methodology for the
VH,H — bb analysis. The DNN and BDT discriminants in
the resolved and boosted SRs are trained using the simulated
diboson sample as signal. All other processes are considered
as background. The VZ, Z — bb analysis makes use of the
same event categorization as the VH analysis discussed in
Sec. V, with the only modification being the requirement that
M (jj) lies in the range 60—120 GeV to define the SR for all
channels. The inclusive observed VZ, Z — bb signal
strength is p = 1.25 £ 0.14, corresponding to observed
and expected significances well above 5 standard deviations.
The per-production process signal strengths, i, and py,
are 1.19 £ 0.09(stat) & 0.11(syst) and 1.61 & 0.18(stat)
0.24(syst), respectively.

VIII. SUMMARY

Measurements are presented of the cross section for the
associated production of the 125 GeV Higgs boson and a
W or Z boson, where the Higgs boson decays to bb and the
vector bosons decay to leptons. Proton-proton collision
data collected by the CMS experiment during 20162018 at
\/s =13 TeV are used, corresponding to an integrated
luminosity of 138 fb~!. Five decay channels are analyzed,
and both resolved as well as merged-jet topology are
employed in each vector boson decay mode. An additional
subcategorization in the transverse momentum of the
vector boson and the number of additional jets in the

event is applied to maximize the sensitivity of different
simplified template cross section bins. The overall signal
strength, combining all analysis categories, is found to be
p=1.157033. The production of the Higgs boson in
association with a vector boson and decays to bottom
quark pairs is established with an observed (expected)
significance of 6.3 (5.6) standard deviations.
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