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Abstract

Function approximation based on data drawn randomly from an unknown distribution is an important
problem in machine learning. The manifold hypothesis assumes that the data is sampled from an unknown
submanifold of a high dimensional Euclidean space. A great deal of research deals with obtaining information
about this manifold, such as the eigendecomposition of the Laplace-Beltrami operator or coordinate charts, and
using this information for function approximation. This two-step approach implies some extra errors in the
approximation stemming from estimating the basic quantities of the data manifold in addition to the errors
inherent in function approximation. In this paper, we project the unknown manifold as a submanifold of
an ambient hypersphere and study the question of constructing a one-shot approximation using a specially
designed sequence of localized spherical polynomial kernels on the hypersphere. Our approach does not require
preprocessing of the data to obtain information about the manifold other than its dimension. We give optimal
rates of approximation for relatively “rough” functions.

1 Introduction

In the past quarter-century, machine leaning has impacted our lives ubiquitously, from driving cars to military
maneuvers. Shallow and deep neural networks have played a central role in these applications. In turn, a theoretical
justification for the use of these networks is their universal approximation property: they can approximate arbitrarily
well an arbitrary continuous function on an arbitrary compact subset of a Euclidean space of arbitrary dimension. In
mathematical terms, the challenge can be formulated as follows. We are given a data of the form D = {(y;, zj)}jj‘/il,
drawn randomly from an unknown probability distribution 7, and we wish to find a parametrized model G(0;y)
to minimize the generalization error E.(L(z,G(6,y))) for a judiciously chosen loss functional £. For example, in a
shallow neural network of the form >, | aro(wy-x+by), x € RY, the parameters are 8 = (ay, Wg,1, - , Wk,q, Ok) 7 1.
Since T is not known, one minimizes instead the empirical risk obtained by discretizing the expected value in terms
of the data. There is a huge amount of literature on the choice of the loss functional, usually involving the correct
choice of one or more regularization terms, the difference between the minimal empirical risk and the generalization
error in terms of the number of samples, strategies for the optimization involved, the geometry of the error surface,
ete.

Writing f(y) = E-(z]y), the fundamental problem is to approximate f given the data D. The role of approxi-
mation theory is to estimate the relation between the minimum generalization error and number of parameters in
0 in terms of some properties of f and G. Naturally, there is a huge amount of literature in this direction as well,
especially when L is a square loss or, since 7 is unknown, the uniform or probabilistic loss. In the case of the square
loss, the generalization error splits into the variance E. (]2 — f(y)|?) and the bias E, (| f(y) — G(6,y)|?), where v is
the marginal distribution of y.

We think that the whole paradigm of getting an insight into the number of parameters using approximation
theory, and then using an optimization procedure to actually obtain the approximation in a decoupled manner
needs to be revisited. We list some reasons.

1. The use of a global metric for measuring the generalization/approximation error is insensitive to local effects
in the target function (see Example 2.1).

2. The use of the degree of approximation to get an insight on the model complexity may be misleading, as we
will elaborate on shortly.
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3. There is no guarantee that the minimizer of the empirical risk would be the one which gives the best approxi-
mation error or generalization error. Moreover, absolute minima are hard to obtain, and perhaps not required
in practice anyway.

4. The training process may be very sensitive to the initialization of the parameters. It is observed in [22] that
with a wrong initialization of parameters, a deep network evaluating the ReLU activation function trained
to approximate |t| = t4 4+ (—t)+ results in a constant output. This is a phenomenon which they have called
“dead on arrival.”

Since the problem is fundamentally one of function approximation, it is natural to question whether one could
use a new paradigm where the approximation is constructed directly from the data, and the error on the data not
yet seen can be estimated directly as well. So far, approximation theory has played only a marginal role in machine
learning. There are several reasons for this.

1. Many papers on function approximation by shallow or deep networks ignore the fact that the approximation
needs to be constructed from the data. For example, the dimension independent bounds are typically derived
using probabilistic arguments resulting in estimates which could be misleading. Particularly, we have shown
in [28, 31] that drastically different estimates are obtained for approximation by ReLLU networks for the same
class of functions depending on whether the networks are constructed from the data or not.

2. We do not typically know whether the assumptions on the target function involved in the approximation
theory bounds are satisfied in practice, or whether the number of parameters is the right criterion to look at
in the first place. For example, when one considers approximation by radial basis function (RBF) networks,
it is observed in many papers (e.g., [27]) that the minimal separation among the centers is the right criterion
rather than the number of parameters. It is shown that if one measures the degree of approximation in
terms of the minimal separation, then one can determine the smoothness of the underlying target function by
examining the rate at which the degrees of approximation converge to 0.

3. Most of the approximation theory literature focuses on the question of estimating the difference between f
and G(6, o) in various norms and conditions on f, where the support of the marginal distribution v is assumed
to be a known domain, such as a torus, a cube, the whole Euclidean space, a hypersphere (simply referred to
as a sphere in the remainder of this paper), etc.; equivalently, one assumes that the data points y; are “dense”
on such a domain. This creates a gap between theory, where the domain of v is known, and practice, where
it is not. One consequence of approximating, say on a cube, is the curse of dimensionality. That is, if the
dimension of the input data is @, then the number of components in the parameter vector 8 to achieve an
accuracy of € will be Q(e~?).

Rather than approximating on a known domain, a relatively recent idea is to assume that the support of the
marginal distribution v is an unknown, low-dimensional submanifold of the high-dimensional ambient space in
which the data is located. This gives rise to a two-step procedure: manifold learning, where there is an effort to
find information about the manifold itself, and then function approzimation (which we have called learning on the
manifold in the title of this paper), where we assume the necessary information about the manifold to be known,
and study function approximation based on this information.

Works by Belkin, Niyogi, Singer, and others have shown that the so-called graph Laplacian (and the corre-
sponding eigendecomposition) constructed from data points converges to the manifold Laplacian and its eigende-
composition. Some preliminary papers in this direction are: [2, 3, 40]. An introduction to the subject is given
in [7]. Another approach is to estimate an atlas of the manifold, which thereby allows function approximation to
be conducted via local coordinate charts. One such effort is to utilize the underlying parametric structure of the
functions to determine the dimension of the manifold and the parameters involved [23]. Approximations utilizing
estimated coordinate charts have been implemented, for example, via deep learning [10, 39], moving least-squares
[42], local linear regression [6], or using Euclidean distances among the data points [8]. HNM and his collaborators
carried out an extensive investigation of function approximation on manifolds, some of which is summarized in [30].
With the two-step procedure, the estimates obtained in function approximation need to be tempered by the errors
accrued in the manifold learning step. In turn, the errors in the manifold learning step are very sensitive to the
choice of different parameters used in the process.

The purpose of this paper is to introduce a direct method of approximation on unknown manifolds without trying
to find out anything about the manifold other than its dimension. Toward this goal, we project the g-dimensional
manifold X in question from the ambient space R? to a sphere S? of the same dimension. We can then use a



specially designed, localized, univariate kernel ®,, , (cf. (4.12)) which is a spherical polynomial of degree < n on
S?, with n and ¢ being tunable hyperparameters. Our construction is very simple; we define

M
1
Fo(Ds ) = Mzzjq)n,q(x'yj)- (1.1)
i=1

We note that F,(D;o) is a function defined on the ambient sphere S?. The localization of the kernel allows us to
adapt the approximation to the unknown manifold.
Our main theorem (cf. Theorem 5.1) has the following form:

Theorem 1.1. (Informal statement) Let D = {(y;, z;)} )L, be a set of random samples chosen from a distribution
7. Suppose [ belongs to a smoothness class W., (detailed in Definition 5.1) with associated norm ||°||W1- Then

under some additional conditions and with a judicious choice of n, we have with high probability:

log M v/ (a+27)
1a(D3) = 1k < e (1] + 171, ) (502

where ¢ is a positive constant independent of f.

, (1.2)

We note some mathematical features of our construction and theorem which we find interesting.

1. The usual approach in machine learning is to construct the approximation using an optimization procedure,
usually involving a regularization term. The setting up of this optimization problem, especially the regu-
larization term, requires one to assume that the function belongs to some special function class, such as a
reproducing kernel Hilbert/Banach space. Thus, the constructions are not explicit nor universal. In contrast,
our construction (1.1) does not require a prior on the function in order to use our model. Of course, the theo-
rem and its high-probability convergence rates do require various assumptions on 7, the marginal distribution,
the dimension of the manifold, the smoothness of the target function, etc. The point is that the construction
itself does not require any assumptions.

2. A major problem in manifold learning is one of out of sample extension; i.e., extending the approximation
to outside the manifold. A usual procedure for this in the context of approximation using the eigenstructure
of the Laplace-Beltrami operator on the manifold is the Nystrom extension [11]. However, this extension is
no longer in terms of any orthogonal system on the ambient space, and hence there is no guarantee of the
quality of approximation even if the function is known outside the manifold. In contrast, the point = in (1.1)
is not restricted to the manifold, but rather freely chosen from S?. That is, our construction defines an out of
sample extension in terms of spherical polynomials on the ambient sphere, whose approximation capabilities
are well studied.

3. In terms of M, the estimate in (1.2) depends asymptotically on the dimension ¢ of the manifold rather than
the dimension @ of the ambient space.

4. We do not need to know anything about the manifold (e.g., eigendecomposition or atlas estimate) itself apart
from its dimension in order to prove our theorem. There are several papers in the literature for estimating the
dimension from the data, for example [20, 21, 23]. However, the simplicity of our construction allows us to
treat the dimension ¢ as a tunable parameter to be determined by the usual division of the data into training,
validation, and test data.

There are several other approaches superficially similar to our constructions. We will comment on some of these
in Section 2. We describe the main idea behind our proofs in Section 3. The paper requires an understanding of
the approximation properties of spherical polynomials. Accordingly, we describe some background on the spherical
polynomials, our localized kernels, and their use in approximation theory on subspheres of the ambient sphere in
Section 4. The main theorems for approximation on the unknown manifold are given in Section 5. The theorems
are illustrated with three numerical examples in Section 6. One of these examples is closely related to an important
problem in magnetic resonance relaxometry, in which one seeks to find the proportion of water molecules in the
myelin covering in the brain based on a model that involves inversion of the Laplace transform. The proofs of the
main theorems are given in Section 7. The appendix describes the encoding of the target function (A.1), gives some
background about the theory of manifolds which is used in this paper (A.2), and describes in detail the Clenshaw
algorithm used to evaluate our kernels and their implementation as a deep neural network (A.3).

We would like to thank Dr. Richard Spencer at the National Institute of Aging (NIH) for his helpful comments,
especially on Section 6.2, verifying that our simulation is consistent with what is used in the discipline of magnetic
resonance relaxometry.



2 Related ideas

Since our method is based on a highly localized kernel, it is expected to be comparable to the simple nearest
neighbor algorithm. However, rather than specifying the number of neighbors to consider in advance, our method
allows the selection of neighbors adaptively for each test point, controlled by the parameter n. Also, rather than
taking a simple averaging, our method is more sophisticated, designed to give an optimal order of magnitude of the
approximation error.

One of the oldest ideas for data based function approximation is the so-called Nadaraya-Watson estimator
(NWE), given by

S K (e — yy1/h)
NWy(z) = =2 ,
() S K (e — y,/h)

where K is a kernel with an effectively small support—the Gaussian kernel K (t) = exp(—t?), as a common example—
and h is a scaling parameter. Another possible choice is a B-spline (including Bernstein polynomials) which has a
compact support. This construction is designed to work on a Euclidean space by effectively shrinking the support
of K using the scaling parameter h — 0, analogously to spline approximation. The degree of approximation of such
methods is measured in terms of h. It is well known (e.g., [13]) that the use of a positive kernel K suffers from the
so-called saturation phenomenon: the degree of approximation cannot be smaller than O(h?) unless the function is
a trivial one in some sense.

Radial basis function (RBF) networks and neural networks are used widely for function approximation, using
either interpolation or least square fit. Standard RBF networks, such as Gaussian networks or thin plate spline
networks, use a fixed, scaled kernel. Typically, the matrices involved in either interpolation or least square approx-
imation are very ill-conditioned, and the approximation is not highly localized.

Restricted to the sphere, both of the notions are represented by a zonal function (ZF) network. A zonal function
on a sphere is a function of the form = — g(x - zo). A ZF network is a linear combination of finitely many zonal

functions. One may notice that
|z — 20|
g(x : Z'()) =g|1- )

2

so we can see that a ZF network is also a neural/RBF network. Conversely, a neural/RBF network restricted to
the sphere is a ZF network. The same observations about RBF networks hold for ZF networks as well. We note
that all the papers we are aware of which deal with approximation by ZF networks actually end up approximating
a spherical polynomial by the networks in question.

Rather than working with a fixed, scaled kernel, in this paper we deal with a sequence of highly localized
polynomial kernels. We do not need to solve any system of equations or do any optimization to arrive at our
construction. RBF networks and NWE were developed for approximation on Euclidean domains instead of unknown
manifolds. Both have a single hyperparameter h and work analogously to the spline approximation. In contrast, our
method is designed for approximation on unknown manifolds without having to learn anything about the manifold
besides the dimension. It has two integer hyperparameters (n and ¢) and yields a polynomial approximation.

If one chooses h small enough relative to a fixed n then NWE may be able to outperform our method as
measured in terms of a global error bound, such as the root mean square (RMS) error. If one instead chooses n
large enough relative to a fixed h then our method may be able to outperform NWE. So in order to give a fair
comparison in Example 2.1, we force the RMS error of both methods to be approximately equivalent and investigate
the qualitative differences of the errors produced by each method. We additionally show that both methods in the
example outperform an interpolatory RBF network.

Example 2.1. This example serves to illustrate two points. The first point is to compare the performance our
method with NWE and an RBF interpolant. In doing so, we show that the error associated with our method
is localized to singularities of the target function, whereas the other methods do not exhibit this behavior. The
second point is that using a global error estimate such as RMS can be misleading. Even if the RMS error with a
given method might be large, the percentage of test data points at which it is smaller than a threshold could be
substantially higher due to the local effects in the target function.

To ensure fair comparison, we use each of the three methods for approximation on S = {(cos#,sind) : 0 €
(—m, ]}, where the Gaussian kernel can be expressed in the form of a zonal function as explained above.

We consider the function

£(8) =1+ |cos 6"/ sin(cos 6 + sin 6) /2, 0 € (—m, 7). (2.1)



We note that the function is analytic except at 6 = +m/2, where it has a discontinuity in the 4th order derivative.
Our training data consists of 2'3 equidistantly spaced y;’s along the circle. We set z; = f(y;), and examine the
resulting error on a test data consisting of 2!! points chosen randomly according to the uniform distribution on S!.

We consider three approximation processes : (1) Nadaraya-Watson estimator NW;, with
Kp(t) = exp(—t*/h?), (2) interpolatory approximation by the RBF network of the form Y ay exp(—| o —y;|?/h?),
(3) our method with the kernel @5 ;.

We experimentally determined the optimal h value in NWE to be & 7.45e-4 (effectively simulating the mini-
mization of the actual generalization error on the test data), resulting in an RMS error of 1.8462e-7. The same
value of h was used for interpolation with the Gaussian RBF network, yielding a RMS error of 2.2290e-4. We then
chose n so as to yield a (comparable to NWE) RMS error of 1.8594e-7 (though we note that in this case our method
continues to provide a better approximation if n is further increased).

The detailed results are summarized in Figure 1 below.
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Figure 1: Error comparison between our method, the Nadaraya-Watson estimator, and an interpolatory RBF
network. (Left) Comparison of absolute errors between the methods with the target function plotted on the right
y-axis for benefit of the viewer. We note that the error from the RBF method is scaled by 1073 so as to not
dominate the figure. (Right) Percent point plot of the log absolute error for all three methods.

In the left plot in Figure 1, we can see a clear difference between the errors of the three methods. The (scaled by
10~2) error from the RBF network jumps throughout the whole domain, signaling the ill-conditioned nature of the
matrix. The error from the Nadaraya-Watson estimator exhibits some oscillation across the whole domain as well.
The error with our method is localized to the two singularity points of the function. In other words, our method
exhibits 1) sensitivity to the singularities of a function and 2) error adapting to the local smoothness of the function.
In comparison, RBF networks and NWE do not always exhibit such behavior. On the right plot of Figure 1, we
give a percent point plot of the log absolute error for all three methods. There are three curves corresponding to
the three methods being compared. Each point (z,y) along a given curve indicates that the corresponding method
approximated % of test points with absolute error below 10Y. This plot can also be thought of as the inverse
CDF for the random variable of the resulting log absolute error for a test point sampled uniformly at random.
For example, whereas the Nadaraya-Watson estimator yields an error below ~ 107785 for only about 10% of the
tested points, our method exhibits the same error or below for about 60% of the test points. Our method has the
higher uniform error, but lower error for over 90% of the test points. Although the overall RMS error is roughly the
same, our method exhibits a quicker decay from the uniform error. This illustrates, in particular, that measuring
the performance using a global measure for the error, such as the uniform or RMS error can be misleading. The
interpolatory RBF network performs the worst of the three methods as the right plot of Figure 1 shows clearly. W

There are some efforts [15, 19] to do function approximation on manifolds using tensor product splines or RBF
networks defined on an ambient space by first extending the target function to the ambient space. A locally adaptive
polynomial approach is used in [41] for accomplishing function approximation on manifolds using the data. All these
works require that the manifold be known.

In [29], we have suggested a direct approach to function approximation on an unknown submanifold of a Eu-
clidean space using a localized kernel based on Hermite polynomials. This construction was used successfully in
predicting diabetic sugar episodes [32] and recognition of hand gestures [24]. In particular, in [32], we constructed
our approximation based on one clinical data set and used it to predict the episodes based on another clinical data
set. In order to extend the applicability of such results to wearable devices, it is important that the approxima-
tion should be encoded by a hopefully small number of real numbers, which can then be hardwired or used for a



simpler approximation process [34]. However, the construction in [29] is a linear combination of kernels of the form
V(| o —y;|), where ¥(t) = P(t) exp(—t?/2) is a univariate kernel utilizing a judiciously chosen polynomial P. This
means that we get a good approximation, but the space from which the approximation takes place changes with
the point at which the approximation is desired. This does not allow us to encode the approximation using finitely
many real numbers. In contrast, the method proposed in this paper allows us to encode the approximation using
coefficients of the target function in the spherical harmonic expansion (defined in a distributional sense), computed
empirically. This sequence can be reduced using connections between ultraspherical polynomials with different
parameters and simple algorithms to detect and remove redundant coefficients. This is described in Appendix A.1.
Moreover, the degree of the polynomials involved in [29] to obtain same the rate of convergence in terms of the
number of samples is O(n?), while the degree of the polynomials involved in this paper is O(n). We note that the
construction in both the papers involve only univariate polynomials, so that the dimension of the input space enters
only linearly in the complexity of the construction.

3 An overview of the proof
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Figure 2: Visualization of our approximation approach. Here, X is a submanifold of the sphere S?. The map 7,,
analogous to the exponential map, allows us to relate the part of the integral in (3.3) near x with an integral on
the tangent sphere at x via a change of variables (solid curves). The localization of the kernels in our method allow
for the approximation to be extended over X and the tangent sphere S, (dotted curves).

We can think of F,,(D;x) defined in (5.5) as an empirical approximation for an expected value with respect to
the data distribution 7:

E.(F,(D;z)) = /zén,q(x <y)dT(y). (3.1)

Assuming that the marginal distribution of 7 on X is absolutely continuous with respect to the Riemannian volume
measure ¥ on X; i.e., given by fodu* for some smooth function fy, we have

E. (F,(D:x)) = / F@) fol)®n o - y)du* (1), (3.2)

Accordingly, we define an integral reconstruction operator by

(X, f)(2) = /X Bgle- )W) (),  fECX), zeX, (3.3)

study the approximation properties of this operator, and use it with f fy in place of f. The approximation properties
of the operator o, in the case of when X is the ¢g-dimensional sphere S? are well known (Proposition 4.2), and can be
easily transferred to a g-dimensional equator of the ambient sphere S@ (Section 4.4, Theorem 4.1). We introduce a
local exponential map 7, at © € X between X and the tangent equatorial sphere S, (i.e., a rotated version of S? that
shares the tangent space with X at x). We give an illustration of this setup in Figure 2. Locally, a change of variable
formula and the properties of this map allow us to compare the integral over a small manifold ball with that of its
image on S, (cf. (7.10)). We keep track of the errors using the Bernstein inequality for spherical polynomials (cf.
(4.14)) and standard approximations between geodesic distances and volume elements on the manifold by those on
S;. This constitutes the main part of the proof of the critical Lemma 7.1. We use the high localization property of
our kernel @, , to lift the rest of the integral in (3.3) on X at any point z € X to the rest of S, with small error (cf.
(7.11), (7.12)). After this, we can use known results from the theory of approximation on the sphere by spherical
polynomials (cf. Proposition 4.2 and Theorem 4.1). A partition of unity argument is used often in the proof.



Having obtained the approximation result for the integral reconstruction operator, we then discretize the integral
and keep track of the errors using concentration inequalities.

4 Background

In this section, we outline some important details about spherical harmonics (Section 4.1) which leads to the
construction of the kernels of interest in this paper (Section 4.2). We then review some classical approximation
results using these kernels on spheres (Section 4.3) and equators of spheres (Section 4.4).

4.1 Spherical harmonics

The material in this section is based on [33, 43]. Let 0 < ¢ < @ be integers. We define the g-dimensional sphere
embedded in @ + 1-dimensional space as follows
ST = {(z1,...,2g41,0,...,0) 12T + - + 2l 4 =1} (4.1)
——
Q—q
Observe that S? is a g-dimensional compact manifold with geodesic defined by p(z,y) = arccos(z - y).

Let p; denote the normalized volume measure on S7. By representing a point = € S? as (2 sin ¢, cos f)) for some
2’ € S471, one has the recursive formula for measures

Wq

dps(x) = sin?"(0)dfdps . (z'), (4.2)

Wg—1
where w, denotes the surface volume of S¢. One can write w, recursively by

or, ifg=1,

= 2T - (43)
I((g+1)/2) ﬁqu,h if ¢ > 2,

where I' denotes the Gamma function.

The restriction of a homogenous harmonic polynomial in ¢ + 1 variables to the g-dimensional unit sphere S? is
called a spherical harmonic. The space of all spherical harmonics of degree ¢ in ¢ 4+ 1 variables will be denoted by
H}. The space of the restriction of all ¢ + 1 variable polynomials of degree < n to S? will be denoted by I1Z. We
extend this notation for an arbitrary real value & > 0 by writing I1 = H‘iz |- It is known that HY is orthogonal to

n—1

HY in L?(p;) whenever j # £, and IT}, = @Hg. In particular, L*(u}) = @H‘j.

£=0 =0
If we let {Yg’k}zi:ml(m) be an orthonormal basis for Hf with respect to u, we can define
dim (HY)
Koo(r,y) = > Yir(@)Yer(y)- (4.4)
k=1
In [33, 43], it is shown that
Ko o(,y) = wc::pq,e(l)pq,z(x Y, (4.5)

where p, ¢ denotes the orthonormalized ultraspherical polynomial of dimension ¢ and degree ¢. These ultraspherical
polynomials satisfy the following orthogonality condition.

1
/ (1- xz)(q/Qil)pq,M(x)pqyn(x)dx =0mn- (4.6)
—1
Computationally, it is customary to use the following recurrence relation:

\/ (n+1)(n+q—1)
(

Mm+q—1)2n+q+1

B B n(n+q—2)
)pq’"H(x) = () \/(2n +q-1)2n+q-3)

1/27(1/2:[‘((]_1) r) = 21/2-a/2 F(Q)F(‘I"‘l)x
2 Ry el =2 rg2)  ©

pq,n—l(x)a n>1,

(4.7)

Pg.0(T) = pgo =



We note further that

21/2=4/2 [T(n+q—-1)2n+q—1)
I'(q/2) I'(n+1)

pqm(l) = (4'8)

Remark 4.1. Many notations have been used for ultraspherical polynomials in the past. For example, [44] uses

the notation of P,(LA) for the Gegenbauer polynomials, also commonly denoted by C’ff‘). It is also usual to use a
normalization, which we will denote by RZ in this remark, given by R = pg./pq.n(1). Ultraspherical polynomials

PT(LH’B)

are also simply a special case of the Jacobi polynomials where a = 3. Setting

I'(n+ q/2)?

ho =201 4.9
@ nl(n+q—1)2n+q—1)’ (4.9)
we have the following connection between these notations:
_ _ _ I'(g—1) n!(2n+q—1) _
n — p-1/2plg/2-1,¢/2-1) — Cla/2-1/2)
pq, (LE) q,n n (l‘) F(q/2) 2q_11—\(n + q— 1) n (l‘) (4 10)
_ 22792 P(n+q-1)T(2n+q UR‘?.
T'(q/2) I'(n+1) "
]

Furthermore, the ultraspherical polynomials for the sphere of dimension d; can be represented by those for the
sphere of dimension ds in the following manner

n
Parn =Y, Cayay (6,1)pay - (4.11)
£=0

The coefficients C have been studied, and explicit formulas are given in [1, Equation 7.34] and [44, Equation 4.10.27].
The constant convention

In the sequel, c,cy1,--- will denote generic positive constants depending upon the fized quantities in the discussion,

such as the manifold, the dimensions q, Q, and various parameters such as S to be introduced below. Their values

may be different at different occurrences, even within a single formula. The notation A < B means A <c¢B, A> B

means B S A, and A~ B means A S B S A.

4.2 Localized kernels

Let h be an infinitely differentiable function supported on [0, 1] where h(z) = 1 on [0,1/2]. This function will be
fixed in the rest of this paper, and its mention will be omitted from the notation. Then we define the following
univariate kernel for ¢ € [—1,1]:

n

Byg(t) = Bg(hit) = > h <§> Kogt) = 23 (7‘;) Pae(D)pg.e(t). (4.12)
=0

W
-1 =,

The following proposition lists some technical properties of these kernels which we will often use, sometimes without
an explicit mention.

Proposition 4.1. Let z,y € S9. For any S > 0, the kernel ®,, ,(,y) satisfies the localization bound

nd
D ENIDS , 4.13
[®na(z-9)| 5 max(1, narccos(z - y))® (4.13)
where the constant involved may depend upon S. Further, we have the Lipschitz condition:
1@y ( - y) — @ g(x - y)] S 09T arccos(x - y) — arccos(z - y')], y €S9, (4.14)

Proof. The estimate (4.13) is proved in [25]. Since 6 — ®,, 4(cos ) is a trigonometric polynomial of degree < n, the
Bernstein inequality for the derivatives of trigonometric polynomials implies that

[P g(cos 0) — Dr, g (cos §)| < 1| Prgllold — @] < 7O — 4.
This leads easily to (4.14). ]



4.3 Approximation on spheres

Methods of approximating functions on S? have been studied in, for example, [26, 38] and some details are summa-
rized in Proposition 4.2.

For a compact set A, let C(A) denote the space of continuous functions on A, equipped with the supremum
norm || f|| , = maxzea | f(x)]. We define the degree of approximation for a function f € C(S?) to be

E,(f) = inf — Pllgq - 4.15
(f) Pléln?,, II.f lls (4.15)
Let W, (S?) be the class of all f € C(S?) such that

1f 1w, s = [Ifllse + sup 2" Ean(f) < oo. (4.16)

We note that an alternative smoothness characterized in terms of constructive properties of f is explored by many
authors; some examples are given in [12]. We define the approximation operator for S¢ by

oulf)(@) = on(S", )(z) = /S g ) )i ) (4.17)

With this setup, we now review some bounds on how well o,,(f) approximates f (cf. [26]).
Proposition 4.2. Letn > 1.

(a) For all P € HZ/Q, we have o, (P) = P.

(b) For any f € C(S?), we have

En(f) < If = on(llse S Enya(f)- (4.18)
In particular, if v > 0 then f € W,(S9) if and only if
I1f —on(Fllga S ||f||W7(§,q)n77- (4.19)

Remark 4.2. Part (a) is known as a reproduction property, which shows that polynomials up to degree < n/2
are unchanged when passed through the operator o,,. Part (b) demonstrates that o, yields what we term a good
approzimation, where its approximation error is no more than some constant multiple of the degree of approximation.
Part (c) not only gives the approximation bounds in terms of the smoothness parameter 7, but shows also that the
rate of decrease of the approximation error obtained by o,,(f) determines the smoothness . ]

4.4 Approximation on equators

Let SO(Q+1) denote group of all unitary (@ + 1) x (Q + 1) matrices with determinant equal to 1. A g-dimensional
equator of S@ is a set of the form Y = {Ru : u € S7} for some R € SO(Q + 1). The goal in the remainder of this
section is to give approximation results for equators.

Since there exist infinite options for R € SO(Q + 1) to generate the set Y, we first give a definition of degree of
approximation in terms of spherical polynomials that is invariant to the choice of R.

Fix Y to be a given g-dimensional equator of S¥ and let R,S € SO(Q + 1) mapping S to Y. Observe that if
P € 1%, then P(RTSo) € 114 and vice versa. As a result, the functions Fg = f(Ro) and Fs = f(So) defined on
S9 satisfy

Eu(Fr) = En(Fs). (4.20)

Since the degree of approximation in this context is invariant to the choice of R € SO(Q+ 1), we may simply choose
any such matrix that maps S9 to Y, drop the subscript R from Fg, and define

E (Y, f) = E,(F). (4.21)
This allows us to define the space W, (Y) as the class of all f € C(Y) such that

Lfllw oy = 11 f 1y + sup 2" Ean (Y, f) < oo. (4.22)
nz
We can also define the approximation operator on the set Y as

ou(Y, )(z) = /Y Dol ) (0)dpt(v), (4.23)



where p%(y) is the probability volume measure on Y. Let Fr € C(SY) satisfy Fr = f o R. We observe that

mul¥. 1)) = [ oo R f(Ruty ()
= [ B0 (R0 Fr )iy ) (4.24)
=0,(S9, Fr)(Rz).

We now give an analogue of Proposition 4.2 for approximation on equators.

Theorem 4.1. Let f € C(Y).

(a) We have
En(Y, f) < llon(Y, f) = flly S Enj2(Y, f). (4.25)
(b) If v > 0, then f € W,(Y) if and only if
llon (Y, £) = flly S 277 1 llw, oy - (4.26)

Proof. Let F(o) = f(Ro) for some R € SO(Q + 1) with Y = {Ru : u € S?}. To see (4.25), we check using
Proposition 4.2 that

llon(Y, £) = flly = [|on (8%, F)(R0) = F(RTo)||,, = [|on(S7, F) = Fllgs < Enj2(F) = Eypa(Y, f). (4.27)

Additionally, E,(Y, f) < ||on(Y, f) — flly since 0, (Y, f) = 0,,(S%, F)(RTz) € II4. Part (b) can be seen from part
(a) and the definitions. |

5 Function approximation on manifolds

In this section, we develop the notion of smoothness for the target function defined on a manifold, and state our
main theorem: Theorem 5.1. For a brief introduction to manifolds and some results we will be using in this paper,
see Appendix A.2.

Let Q > g > 1 be integers and X be a g-dimensional, compact, connected, submanifold of S€ without boundary.
Let p denote the geodesic distance and p* be the normalized volume measure (that is, p*(X) = 1). For any = € X,
observe that the tangent space T,(X) is a g-dimensional vector space tangent to S?. We define S, = S,(X) to be
the g-dimensional equator of S? passing through 2 whose own tangent space at z is also T,(X). As an important
note, S, is also a ¢-dimensional compact manifold.

In this paper we will consider many spaces, and need to define balls on each of these spaces, which we list in
Table 1 below.

Space Description Definition
Ambient space | Euclidean ball | Boii(z,7) = {y € R [z —y[, < r}
Ambient sphere | Spherical cap | S9(z,r) = {y € S? : arccos(z - y) < r}
Br

(
Tangent space Tangent ball (x,r) ={y € T.(X) : ||z —y||]2 < r}
Tangent sphere | Tangent cap Sz(r) ={y € S, : arccos(z - y) < r}
Manifold Geodesic ball B(z,r) ={y € X: p(z,y) <r}

Table 1: Definition and description of balls in different spaces.

We also need to define the smoothness classes we will be considering for functions on X. Let C(X) denote the
space of all continuous functions on X, and C*°(X) C C(X) denote the space of all infinitely differentiable functions
on X. Let €, be the exponential map at x for S, and €, be the exponential map at = for X. Since both X and
S, are compact, we have some t1, 15 such that ¢,,%, are defined on Br(z,t1), Br(x, 1) respectively for any x. We
write ¢* = min{1, 1,2} and define 7, : S;(¢*) — X by 1, : €, 0, '. Thus,

p(x,ny(y)) = arccos(z - y), zeX, yeS,(L). (5.1)

10



Definition 5.1. We say that f € C(X) is y-smooth for some v > 0, or also that f € W, (X), if for every z € X
and ¢ € C*°(X) supported on B(x,¢*), the function Fy 4 : S; — R defined by Fy ¢ = f(1:(u))¢(nz(u)) belongs to
W, (S;) as outlined in Section 4.3 (in particular, Equation (4.22)). We also define

||f”WW(x) = sup HFrﬁHWW(Sz) : (5.2)

eXde)HW,Y(SI)Sl

Our main theorem, describing the approximation of ffy (the target function weighted by the density of data
points) by the operator defined in (1.1), is the following. We note that approximation of f fo includes local approx-
imation on X in the sense that when the training data is sampled only from a subset of X, this fact can be encoded
by fo being supported on this subset.

Theorem 5.1. We assume that

i (Bla,r)

sup <1. (5.3)

zeX,r>0 rd
Let D = {(yj, zj)}j]‘il be a random sample from a joint distribution 7. We assume that the marginal distribution of
T restricted to X is absolutely continuous with respect to p* with density fo, and that the random variable z has a
bounded range. We say z € [— ||2||, ||z||]. Let

f(y) =E-(z]y), (5.4)
and
| M
F,.(D;z) = yYi Z 2i®n q( - y5), r €S9, (5.5)
j=1

where O, , is defined in (4.12).
Let 0 < v <2 and ffo € Wy(X). Then for everyn >1,0< 4 <1/2 and

M > n? log(n/s), (5.6)

we have with T-probability > 1 —§:

Vol 1zl + I1f follw, x)
ny '

[Fn(D;0) = ffollx < (5.7)
Equivalently, for integer M > 2 and n satisfying (5.6), we have with T-probability > 1 — 0:
log M 5q+2’y v/ (a+27)
1Fu(:0) = £l < ol ol 1 foll, e b (1B - 5.9
g M

We discuss two corollaries of this theorem, which demonstrate how the theorem can be used for both estimation
of the probability density fy and the approximation of the function f in the case when the training data is sampled
from the volume measure on X.

The first corollary is a result on function approximation in the case when the marginal distribution of y is p*;
ie., fo=1.

Corollary 5.1. Assume the setup of Theorem 5.1. Suppose also that the marginal distribution of T restricted to X
is uniform. Then we have with T-probability > 1 —§:

211+ 111w, x)

co) — <
IFa(Dso) = flly S ——3

(5.9)

The second corollary is obtained by setting f = 1, to point out that our theorem gives a method for density
estimation. In practice, one may not have knowledge of fy (or even the manifold X). So, the following corollary
can be applied to estimate this critical quantity. We use this fact in our numerical examples in Section 6.

Typically, a positive kernel is used for the problem of density estimation in order to ensure that the approximation
is also a positive measure. It is well known in approximation theory that this results in a saturation for the rate of
convergence. Our method does not use positive kernels, and does not suffer from such saturation.

Corollary 5.2. Assume the setup of Theorem 5.1. Then we have with T-probability > 1 —§:

1 < o < Wollw, ) 510
2t 5| 5 LR 510
- X
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6 Numerical examples

In this section, we illustrate our theory with some numerical experiments. In Section 6.1, we consider the ap-
proximation of a piecewise differentiable function, and demonstrate how the localization of the kernel leads to a
determination of the locations of the singularities. The example in Section 6.2 is motivated by magnetic resonance
relaxomety. Since it is relevant to our method for practical applications, we have included some discussion and
results about how ¢ effects the approximation in this example. The example in Section 6.3 illustrates how our
method can be used for inverse problems in the realm of differential equations. In all the examples, we will examine
how the accuracy of the approximation depends on the maximal degree n of the polynomial, the number M of
samples, and the level of noise.

6.1 Piecewise differentiable function

In this example only we define the function to be approximated as

F(8) =1+ |cos8]"/? sin(cos f + sin 6) /2, (6.1)
defined on the ellipse
E ={(3cosb,6sinf) : 0 € (—m, x|} (6.2)
We project E to the sphere S? using an inverse stereographic projection defined by
(x,1)
P(x) = (6.3)
1, D],

and call X = P(F). Each x € X is associated with the value 6y satisfying x = P((3 c0s By, 6 sin t9x)), so that
f(x) == f(bx) is a continuous function on X.

We generate our data points by taking y; = P((3 cos 0,6 sin Hj)), where 0; are each sampled uniformly at
random from (—m,7]. We then define z; = f(y;) + ¢; where €; are sampled from some mean-zero normal noise.
Our data set is thus D = {(y;, f(y;) + €) ;‘il We will measure the magnitude of noise using the signal-to-noise
ratio (SNR), defined by

2010830 (|| (F(va)s - S, /[ (exs- o venn) I, )- (6.4)

Since fy # 1 in this case, we could calculate fy from the projection, or we may estimate it using Corollary 5.2.
That is,

1 M
fo@) & 37 > Pna(x- ;). (6:5)

This option may be desirable in cases where fy is not feasible to compute (i.e. if the underlying domain of the data
is unknown or irregularly shaped). Our approximation is thus:

M

Fn(D;X) _Z(f(yj)+€j)cbn,1(x'yj)/ Z(Dn,l(x'yj) . (66)

j=1

Figure 3 shows a plot of the true function and our approximation on the left y-axis and the absolute error on
the right y-axis. The plot demonstrates that the approximation achieves much lower error than the uniform error
bound at points where the function is relatively smooth, and only spikes locally at the singularities of the function
(0 = £m/2). Figure 4 displays three percent point plots illustrating how the distribution of log,, |F,, — f| behaves
for various choices of n, M,e. Each point (z,y) on a curve indicates that 2% of test points were approximated by
our method with absolute error below 10Y for the n, M, and € value associated with the curve. The first graph
shows the trend for various n values. As we increase n, we see consistent drop in log error. The second graph shows
various values of M. We again see a decrease in the overall log error as M is increased. The third graph shows
how the log error decreases as the noise decreases. We can see that the approximation is much worse for low SNR
values, but nearly indistinguishable from the noiseless case when the SNR is above 60.

12



(Left y-axis) Plot of f, Faz' and (Right y-axis) corresponding error

g with M=2"3 training points and no noise.

—F 4, Approximation

—True Function
Absolute Error (right y-axis)

Figure 3: Left y-axis: Plot of the true function f compared with Fs, constructed by 2'2 noiseless training points.
Right y-axis: Plot of |f — F3a|.

Distribution of log error for F,, approximation Distribution of log error for F ., approximation with no noise for various M. Distribution of log error for F,, approximation with M=2"2 and various noise
v 0 T T T T T

with M=2"3 and no noise for various n.
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Figure 4: (Left) Percent point plot of log absolute error for various n with M = 23 training points and no noise.
(Center) Percent point plot of log absolute error for various choices of M with no noise. (Right) Percent point plot
of log absolute error for various noise levels with M = 2'3 training points.

6.2 Parameter estimation in bi-exponential sums

This example is motivated by magnetic resonance relaxometry, in which the proton nuclei of water are first excited
with radio frequency pulses and then exhibit an exponentially decaying electromagnetic signal. When one may
assume the presence of two water compartments undergoing slow exchange, with signal corrupted by additive
Gaussian noise, the signal is modeled typically as a bi-exponential decay function (6.7) (cf. [37]):

F(t) =C eXp(—t/TgJ) + co eXp(—t/Tgﬁg) + E(t),

where E is the noise, T5 1,752 > 0, and the time ¢ is typically sampled at equal intervals. The problem is

to determine cy,c2,7%,1,7% 2. The problem appears also in many other medical applications, such as intravoxel

incoherent motion studies in magnetic resonance. An accessible survey of these applications is given in [18].
Writing ¢t = j6, Ay = 0/T5,1, A2 = §/T5 2, we may reformulate the data as

FG) = FO, A2, 5) = cre™ + ce™ 2 4 e(j), (6.7)

where €(j) are samples of mean-zero normal noise.
In this example, suggested by Dr. Spencer at the National Institute of Aging (NIH), we consider the case where
c1 = .7,c5 = .3 and use our method to determine the values A1, A2, given data of the form

y(A1, A2) = (f(1), f(2),. .., £(100)). (6.8)

We “train” our approximation process with M samples of (A1, A2) € [.1,.7] x [1.1,1.7] chosen uniformly at random
and then plugging those values into (6.7) to generate vectors of the form shown in (6.8). The dimension of the
input data is @ = 100, however (in the noiseless case) the data lies on a ¢ = 2 dimensional manifold, so we will use
®,, » to generate our approximations.

We note that our method is agnostic to the particular model (6.8) used to generate the data. We treat A, Ao
as functions of y without a prior knowledge of this function. In the noisy case, this problem does not perfectly fit
the theory studied in this paper since the noise is applied to the input values f(¢) meaning we cannot assume they
lie directly on an unknown manifold anymore. Nevertheless, we can see some success with our method. We define
the operators
(0,100)

T(¥) = 1000y — (380,189, 116,0,...,0 Plo) = o
(Y) y ( ) ) ) ) ) )7 (O) ||(07 100)”2

(6.9)
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and denote y = P(T(¥)). In practice, the values used to define T and P need to be treated as hyperparameters of
the model. In this example, we did not conduct a rigorous grid search. We use the same density estimation as in
Section 6.1:

( )\1,)\2) Zq)nz x(A1, A2) - y()\1],>\2,3)) (6.10)

As a result, our approximation process looks like:

B;] ~ T, (x(A, A)) = f: BU] ®,,9(x(A1, A2) - y (A, )\QJ))/DE (x(A1, A2))- (6.11)

=1 2,3

Similar to Example 6.1, we will include figures showing how the results are effected as n, M, ¢ are adjusted. We
measure noise using the signal-to-noise ratio (SNR) defined by

20logy, (||y||2/y|(e(1),...,e(1oo))”2) . (6.12)

Unlike Example 6.1, we will now be considering percent approximation error instead of uniform error as it is more
relevant in this problem. We define the combined error to be

j : |)\j true = japproxl (6 13)
Aj j,true
Distribution of log error for F_ approximation
n N .. ) ) - T, ) ;
TR TR — Distribution of log error for F, approximation with no noise for various M. Distribution of log error for F ,, approximation with M=2"" and various noise.

o

0.5

log, o(Combined Error)

g, o(Combined Error)
log, g(Combined Error)

m=2"
M=2"®

—

0 20 40 60 80 100 ] 20 0 80 80 100 0 1 2 3 40 5 6 70 8 % 10
Percentage of test points below error threshold Percentage of test points below error threshold Percentage of test points below error threshold

Figure 5: (Left) Percent point plot of log combined error for various n with M = 213 training points, and no noise.
(Center) Percent point plot of log combined error for fixed n = 32, various choices of M, and no noise. (Right)
Percent point plot of log combined error for fixed n = 32, fixed M = 2'3 training points, and various noise levels.

RMS error of F32 as a function of q with M=2"2 and no noise.
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Figure 6: Plot of RMS error for approximation by Fsy for various ¢ values with M = 2'3 and no noise.
Figure 5 depicts three percent point plots showing the distribution of sorted log;,(Combined Error) points for
various n, M, e. Each point (z,y) on a curve indicates that % of test points were approximated by our method with
combined error below 10¥ for the n, M, and e associated with the curve. In the first graph, we see the distribution
of for various choices of n. As n increases, the overall log error decreases. An interesting phenomenon occurring in
this figure is with the n = 128 case where the uniform error is actually higher than the n = 64 case. This is likely
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due to the fact that overfitting can occur if n gets too large relative to a fixed M. The second graph illustrates how
the approximation improves as M is increased. As expected, we see log error decay as we include more and more
training points. In the third graph, we see that the approximation improves up to a limit as the noise decreases.
There is very little noticeable difference between the noiseless case and any case where SNR> 50.

Another question that may arise when utilizing our method on various data is what value of ¢ to use. While
the theory predicts that ¢ should be associated with the intrinsic dimension of the manifold underlying the data, in
practice this can only be estimated and so ¢ should be treated as a hyperparameter. In Figure 6, we explore how
changing ¢ effects the approximation in this example. In this case, the intrinsic dimension is 2, and when ¢ = 2,3
the approximation does well. If g is chosen too high or two low, the approximation yields a greater error.

6.3 Darcy flow problem

In this section we will look at a numerical example from the realm of PDE inverse problems. Steady-state Darcy
flow is given by the following PDE (see for example, [35, Eq. (4.7)]):

—V - (aVy) = f, (6.14)

defined on a domain D with the property that y|sp = 0. The problem is to predict the diffusion coefficient a and
forcing term f given some noisy samples of y on D. In this paper we consider a 1-dimensional version and suppose
that @ = et and f = pe~*! for some p, s. We take noisy samples of y(p, s;0) = y satisfying the following boundary

value problem:
d, _ _

—o e @) =pe, y(1) =0,y9(0) = 1. (6.15)
In this sample, we take a similar approach to that of Example 6.2 by “training” our model with a data set of the
form {y;, (pj,s;)}}L,, where (p;,s;) € [.1,.25] x [1.5,2.5] are sampled uniformly at random for each j. Letting y;
denote the y satisfying (6.15) with p = p;,s = s;, then y; = P(y;(t1),y;(t2),...,y;(t100)), where t1,%2, ..., t100 are
sampled uniformly from [0, 1] and P is the projection to the sphere. In this example, the projection first consists
of finding the center C' and maximum spread over a single feature r of the data. That is,

C = (mjax yj(tl) + mjln yj (tl), . ,mjax yj(tloo) + Hl]ln yj (tloo)) /27

(6.16)
7= max <mjax yi(t1) — mjin yi(t),. .. , max yj(ti00) — mjin yj(t100)> .
Then, we define
(O — Ca T)
Plo)= 1) (6.17)
lI(e = C,m)ll,

Our approximation process then looks like:

[ﬂ ~Fo(y) = % {’;ﬂ @,y -y5) / DE(y), (6.18)

Jj=1

where
M
DE(y) = Y ®nal(y - y;)- (6.19)
j=1

Also similar to Example 6.2, we use the same notion of SNR and evaluate the success of our model using a combined
error, now defined to be
( ) . (6.20)

In Figure 7, we provide some percent point plots from using our method on this data. Each point (z,y) on a
curve indicates that 2% of test points were approximated by our method with combined error below 10¥ for the n,
M, and e associated with the curve. We see in the left-most plot that as we increase n, the error tends to decrease.
In contrast to previous examples, the middle plot does not show much improvement by increasing M. This may be
an indication of the fact that we have chosen a tight parameter space in this example (as compared to 6.2) and not
many samples are needed to sufficiently cover the space. On the right-most plot, we see a decrease in error with
the decrease of noise as expected, with convergence appearing to occur around the SNR=70 mark, as indicated by
the green and light-blue lines being so close together.

Ptrue — Papprox Strue — Sapprox

+

DPtrue Strue
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Distribution of log error for F,, approximation with M=2"2 and no noise for various n. Distribution of log error for F ., approximation with no noise for various M. Distribution of log error for F,, approximation with M=2'2 for various noise.
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Figure 7: (Left) Percent point plot of log combined error for various n, fixed M = 23, and no noise. (Center)
Percent point plot of log combined error for fixed n = 64, various M, and no noise. (Right) Percent point plot of
log combined error for fixed n = 64, fixed M = 2'3, and various noise levels.

7 Proofs

The purpose of this section is to prove Theorem 5.1.

In Section 7.1, we study the approximation properties of the integral reconstruction operator defined in (3.3)
(Theorem 7.1). In Section 7.2, we use this theorem with ffy in place of f, and use the Bernstein concentration
inequality (Proposition 7.1) to discretize the integral expression in (3.3) and complete the proof of Theorem 5.1.

7.1 Integral reconstruction operator

In this section, we prove the following theorem which is an integral analogue of Theorem 5.1.

Theorem 7.1. Let 0 < vy <2, f € W,(X), 0, be as defined in (3.3). Then for n > 1, we have

I1f = on(X Hllx S 277 [1fllw, x) - (7.1)

In order to prove this theorem, we will use a covering of X using balls of radius ¢*, and a corresponding partition
of unity. A key lemma to facilitate the details here is the following.

Lemma 7.1. Let x € X. Let g € C(X) be supported on B(x,.*). If G(u) = g(n.(u)), 0 <~y < 2. Then

‘/X@n,q(ﬂi'y)g(y)du*(y)—/S Oy gz - w)G(u)dpg, (w)| S n”7lgllx. (7.2)

If ¢ € C*°(X) is supported on B(x, +*), then we may apply this theorem with g = f¢, thereby providing locally a
lifting of the integral on X to the tangent equator S, with the function corresponding to g on this tangent equator.

Naturally, the first step in this proof is to show that the Lebesgue constant for the kernel ®,, , is bounded
independently of n (cf. (7.4)). Moreover, one can even leverage the localization of the kernel to improve on this
bound when the integral is taken away from the point x (cf. (7.3)). These are both done in the following lemma.

Lemma 7.2. Letr >0 and n > 1/r. If ®, , is given as in (4.12) with S > ¢, then

S“p/ 1®y.q(x - )| dp* (y) S max(1,nr)?=S, (7.3)
ze€X JX\B(z,r)
Additionally,
sup / 1By (- )i (4) < 1. (7.4)
rzeX JX

Proof. Recall from Proposition A.2 that p(z,y) ~ arccos(z - y), so (4.13) implies

nd nd

[Png(z-y)| S (7.5)

<
max(1,narccos(z - y))S ~ max(1,np(z,y))S"

In this proof only, we fix x € X. Let Ay = B(z,r) and Ay = B(z,2%r) \ B(z,25"1r), k > 1. Then p*(A4;) < 2kqre,
and for any y € Ay, 287 1r < p(x,y) < 2Fr.
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First, let nr > 1. In view of (5.3) and (7.5), it follows that

- — A (Ag)n?
Bugle - )ldn @) =3 [ [@ngla-w)lda () €3 B
/X\]B%(x,r) ! kz::l Akl ! ;("2’“717")5
o (7.6)
Snr) 179 " 2ka=9) < (nr)a9,
k=0

Using this estimate with » = 1/n and the condition (5.3) on the measures of balls we see that
[1nste @) = [ @ugle e @)+ [ (@uglelda’ ) S 1 ()7 1
X Ao X\B(z,r)

Since the choice of x was arbitrary, we have proven (7.4). Then (7.4) and (7.6) combined give the bounds for
(7.3). n

Next, we prove Lemma 7.1.

PRrROOF OF LEMMA 7.1.
Since v < 2, we may choose (for sufficiently large n)

5= poOFaED/(a43) s /a8 5 | g 24T (7.7)
bl b 2 _ ’y

We may assume further that ¢ < ¢*. Then, by using (4.14) and Proposition A.2, we see that

’@n,q(x Np(w)) — Py gz -u)| S ndtl |arccos(z « 1, (u)) — arccos(z - u)|

=t Jarccos(e - 1, (w)) — pla, 1 ()] S 0T pla, o (w))® S T,

(7.8)

for any u € S,(d). Let g1,g2 be the metric tensors associated with the exponential maps ¢, : T,(X) — X and
Zp : T (X) — S,, respectively. Then we have the following change of variables formulas (cf. Table 1):

/Ewd“*@f(“” [ Vel [ agw- | Vel ) (7.9

Br(z,6) S« ()

We set v = 2, !(u) and use the fact (cf. (A.10)) that on Br(z,6), [v/|g1] — 1| < 6% and |/|ga| — 1| < §2. Then by
applying Equations (7.8), (7.9), (4.13), and (4.14), we can deduce

/ B, oz - 1)g(y)dp" () — / By (@ ) Clu)dyis, ()
B(z,5) Sz (8)

<

/B Ly Pale Dol ) (Vi - Vigad)

(7.10)

+

/ (B g - 71 (1)) — By (- 10)) G (), (1)
Sz (6)

Sllgll (6720 + 87 3nh) < 575301 |g]|y (1/(nd) + 1) < Mlgllen ™.

Now it only remains to examine the terms away from S,(J),B(x,d). Utilizing Lemma 7.2, and the fact that

S > 2;’1'37, we have
B!
/ Cp (- 9)9(W)du" (y)| S Mlgllyx (08)175 = [|gllx n'1=E=/ @) gl n =7, (7.11)
X\B(,6)
Similarly, again using Lemma 7.2 (with S, as the manifold) and observing ||g||x = ||G]|s,, we can conclude

SIGlls, ()" < llgllxn™, (7.12)

[ tusteGldn, @
S2\Sx(9)
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completing the proof. |
We are now in a position to complete the proof of Theorem 7.1.

PrROOF OF THEOREM 7.1.

Let z € X. Choose ¢ € C such that 0 < ¢(y) < 1 for all y € X, ¢(y) = 1 on B(z,t*/2), and ¢(y) = 0 on
X\B(x,:*). Then f¢ is supported on B(x,:*) and F(u) = ¢(nz(w))f(nz(u)) belongs to W, (S;). We observe that
1fllx < HfHWW(X)' By Lemma 7.2,

\ [ @nsle w11 - ¢(y))du*(y)‘ < Iflke | (B g 9)| dir* (9) S 07 ||l g - (7.13)
X X

\B(z,0*/2)

Note that the constant above is chosen to account for the case where n < 2/¢*. By Lemma 7.1,

\ / Dog - ) F WO W) — 0u(Sa. F) (@) S0 (1£0llx S0 1l g - (7.14)

Observe that since f(z) = F(z) and |[Fl[y, s, ) < Hf||W7(X),

[f(2) = on(X, f)(2)|
<|f(x) = F(z)] + [F(2) = on(Se, F)(@)| + |on(Se, F)(2) — on(X, f)(2)]

SO0+n 7 Flly, s, + Un(Sx»F)(ér)*/X‘I’n,q(w-y)f(yW(y)du*(y) +‘/X¢’n,q(w-y)f(y)(1¢(y))du*(y)

<n’7 ||fHWW(X) .
(7.15)
Since this bound is independent of z, the proof is completed. |

7.2 Discretization

In order to complete the proof of Theorem 5.1, we need to discretize the integral operator in Theorem 7.1 while
keeping track of the error. If the manifold were known and we could use the eigendecomposition of the Laplace-
Beltrami operator, we could do this discretization without losing the accuracy using quadrature formulas (cf.,
e.g., [30]). In our current set up, it is more natural to use concentration inequalities. We will use the inequality
summarized in Proposition 7.1 below (c.f. [5]).

Proposition 7.1 (Bernstein concentration inequality). Let Z1,--- , Zy be independent real valued random variables
such that for each j =1,...,M, |Z;| <R, and E(Z]Q) < V. Then for anyt > 0,

M

1 Mt?
Prob MZ(Zj—IE(Zj)) >t] <2exp <2(V+Rt/3)> (7.16)

j=1

In the following, we will set Z;(z) = 2;®, 4(z - y;), where (y;,2;) are sampled from 7. The following lemma
estimates the variance of Z;.

Lemma 7.3. With the setup from Theorem 5.1, we have

sup [ |o®nglo i) dr(y2) Sut el lfolle, @ €5 (r.17)
TE
Proof.
We observe that (4.13) and Lemma 7.2 imply that
sup [ (o9 o) S ntsup [ [@g(a-9)|du ) S 0. (7.15)
zeX JX zeX JX
Hence,
Sul}z/IZ(y, €)Prg(w - y)|*dr(y, 2) < HZ\|2||fonsu§/ B g - )2 du* (y) S n 121 1] fol - (7.19)
faS faS X
]

18



A limitation of the Bernstein concentration inequality is that it only considers a single x value. Since we are
interested in supremum-norm bounds, we must first relate the supremum norm of Z; over all x € S? to a finite set
of points. We set up the connection in the following lemma.

Lemma 7.4. Let v be any (bounded variation) measure on X. Then there exists a finite set C of size |C| ~ n? such
that

< 2max
seQ zeC

H/X P q(0 - y)dr(y)

/@nﬁq(x~y)dy(y) . (7.20)
X

Proof.
In view of the Bernstein inequality for the derivatives of spherical polynomials, we see that

|P(z) = P(y)| < enlle —yll o [|1Pllo,  Pel. (7.21)

We can see by construction that [ @, 4(t - y)dv(y) is a polynomial of degree < n in the variable ¢. Since S? is a
compact space and polynomials of degree < n are continuous functions, there exists some z* € S¥ such that

| [#nito navts

/CI’n’q(x* ~y)dv(y)| . (7.22)
X

se

Let ¢ be the same as in (7.21) and C be a finite set satisfying

i — < —. 7.23
max min |z -yl < 5 (7.23)

Since S€ is a compact Q-dimensional space, the set C needs no more than ~ n®? points.

Then there exists some z* € C such that
/ (B (2 - ) — B g2 - )@)| Sl — 2| ‘ / B o (" - y)dv(y)] (7.24)
X X
which implies (7.20).

|

With this preparation, we now state the following theorem which gives a bound on the difference between our
discrete approximation F), and continuous approximation o,, with high probability.

Theorem 7.2. Assume the setup of Theorem 5.1. Then for every n > 1 and M = n9%?¥log(n/d) we have

Prob, (I1Fa(Dse) = 0n X, £l > clalln~lfll ) <o (7.25)

Proof. In this proof only, constants ¢, ci,¢s,... will maintain their value once used. Let Z;(z) = z; Py q( - y;).
Since z is integrable with respect to 7, one has the following for any x € S%:

E,(Z;(x)) = / E, (2fg) B g (2 - y)dv* () = /X F@) P o - 9) folw)d* (0) = ou(K, ffo) (@) (7.26)

We have from (4.13) that [Z;| < n?||2||. Lemma 7.3 informs us that E-(Z7) < n? s | follx. Assume 0 <7 <1
and set t = r||2|| ]| fo||x. From Proposition 7.1, we see

Prob ii/I:Z‘(x)—a X, ffo)(x)| >t] <2exp | —c Mt

T\ [ T e R = R T a1 ol + e [2114/3) 727)
Mllfolx?“2>

ol

<2exp <62 .

Let § € (0,1/2), C be a finite set satisfying (7.23) with |C| < c3n®@ (without loss of generality we assume c3 > 1),

o> max (logg(cs) +1, Q) , (7.28)

C2
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and
M > cyn® 7 log(n/$). (7.29)

We now fix

log(n/§). (7.30)

T =

nd
CA— 77
M || follx

Notice that since || fo||x > 1, our assumption of M in (7.29) implies

r<n [yllfoll <1, (7.31)

so our choice of r may be substituted into (7.27). Further,

12 follx < ellzl[n™ /1 follx- (7.32)

With this preparation, we can conclude

Prob, (HFn<D;o> = X, ) o = el n‘”\/llfon)

M
1
< Prob, i ZZj —on(X, ffo) > r|2]] | follx (from (7.32))
Jj=1 sQ
1M
< Prob, gg}é i ; Zj(xk) —on(X, ffo)(ze)| | >t (by Lemma 7.4)
IC] M
1 (7.33)
<> Prob, i Z Zj(xk) — on(X, ffo)(zr)| = ¢
k=1 j=1
M 2
<|C|exp <—02W> (from (7.27))
<egn@c2cagezca (from (7.30))
1 logy /5(1/cs)
<ezn®¢@ <2> 0 (from (7.28) and ¢ < 1/2)
<.

We are now ready for the proof of Theorem 5.1.

Proof of Theorem 5.1 (and Corollary 5.1 and 5.2). Since f, fo € W,(X), we can determine that ffy, € W, (X) as
well. Utilizing Theorem 7.1 with f fy and Theorem 7.2, we obtain with probability at least 1 — § that

1Ea(D;0) = 1 folly < 1Fn(D50) — 0 (55 £ folly + lom(: £ o) — £l
VIRl 2l + 1 follw, o (7.34)
< - .

n

Corollary 5.1 is seen immediately by setting fo = 1. Corollary 5.2 follows from setting z = 1 and then observing

that f =1 and /[[follx S [lfollw. x)- u
8 Conclusions

We have discussed a central problem of machine learning, namely to approximate an unknown target function
based only on the data drawn from an unknown probability distribution. While the prevalent paradigm to solve

this problem in general is to minimize a loss functional, we have initiated a new paradigm where we can do the
approximation directly from the data, under the so-called manifold assumption. This is a substantial theoretical
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improvement over the classical manifold learning technology, which involves a two-step procedure: first to get some
information about the manifold and then to do the approximation. Our method is a “one-shot” method that
bypasses collecting any information about the manifold itself: it learns on the manifold without manifold learning.
Our construction in itself does not require any assumptions on the probability distribution or the target function.
We derive uniform error bounds with high probability regardless of the nature of the distribution, provided we
know the dimension of the unknown manifold. The theorems are illustrated with some numerical examples. One
of these is closely related to an important problem in magnetic resonance relaxometry, in which one seeks to find
the proportion of water molecules in the myelin covering in the brain based on a model that involves the inversion
of Laplace transform.

We view our paper as the beginning of a new direction. As such, there are plenty of future research projects,
some of which we plan to undertake ourselves.

e Find alternative methods that improve upon the error estimates on unknown manifolds, and more general
compact sets. The encoding described in Section A.l gives a representation of a function on an unknown
manifold. Such an encoding is useful in the emerging area of approximation of operators. It is clear that the
encoding described in Section A.1 for functions on manifolds itself forms a submanifold of a Euclidean space,
which in turn can be projected to a submanifold of a sphere. We plan to develop this theme further in the
context of approximation of operators defined in different function spaces.

e Explore real-life applications other than the examples which we have discussed in this paper.

e We feel that our method will work best if we are working in the right feature space. One of the vexing problems
in machine learning is to identify the right features in the data. Deep networks are supposed to be doing this
task automatically. However, there is no clear explanation of whether they work in every problem or otherwise
develop a theory of what “features” should mean and how deep networks can extract these automatically.

List of Symbols

N Composite map €, 0 g, ! defined in Section 5.

L1, 12, % Injectivity radii of €., &;, 1., respectively.

H Space of homogenous, harmonic polynomials of degree ¢ in ¢ dimensions.

S%, u;  Sphere of g-dimensions with probability measure j; as defined in (4.1).

Sz The unique ¢-dimensional equator of S that shares a tangent space T, with the point € X.
X, p, w* Submanifold of S? with geodesic p and normalized volume measure p*.

Y Equator of S?, as defined in Section 4.4.

g1,82 Metric tensors associated with €., ¢,, respectively. See A.2 for details.

D, Set of data D = {yj,zj}jj‘il sampled from distribution 7. It is assumed the y;’s lie on a g-dimensional
submanifold of S€.

w Volume of the g-dimensional sphere.

q
®,, , Localized kernels as defined in (4.12).
e Space of spherical polynomials of degree < n. See Section 4.1.

On Continuous approximation (a.k.a. integral reconstruction) operator as defined on S in (4.17), Y in (4.23),
and X in (3.3).

€z,E; Exponential map for XS, respectively. See A.2 for details.
Boti(z,7),S9(z,7), Br,S;, B Balls on various spaces. See Table 1 for reference.

E, Degree of approximation as defined in Sections 4.3 and 4.4.
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F, Our proposed constructive approximation for finite data as defined in (5.5).

Da,¢ orthonormalized ultraspherical polynomial of degree ¢ and dimension ¢ as defined in Section 4.1.

Q,q Ambient dimension of the data and dimension of the underlying manifold, respectively.

w, Smoothness class of functions as defined on S? in Section 4.3, on Y in Section 4.4, and on X in Definition 5.1.

Yy  Basis elements for the space of homogenous, harmonic polynomials of degree £.

Appendix
A.1 Encoding

Our construction in (5.5) allows us to encode the target function in terms of finitely many real numbers. For each

im Q
integer ¢ > 0, let {YQM}ZL(% ) be an orthonormal basis for H? on S9. We define the encoding of f by

M

. 1

200, k) = i > 2 Y0k (v;)- (A1)
j=1

Given this encoding, the decoding algorithm is given in the following proposition.

Proposition A.1. Assume ®, , is given as in (4.12). Given the encoding of f as given in (A.1), one can rewrite
the approximation in (5.5) as

n dim(HZ)
Fo(Diz) =Y Tyn Y. 40 K)Yguk(x) z€S@, (A.2)
£=0 k=1

where

T <:l> poil) o o) (A.3)

wQWq—1 4= pQ.e(1)
and Cg 4(£,1) is defined in (4.11).

Proof. The proof follows from writing out

M n .
p) = e , Y, (- ys
RuDio) =t Y5 3 (£) pastOmaite ). (A4)
making substitutions using (4.11), (4.4), and (4.5), then collecting terms. ]

pa)
Remark A.1. The encoding (A.1) is not parsimonious. Since the basis functions {YQ7g7k}?:g?;(j? ) is not necessarily

independent on X, the encoding can be made parsimonious by exploiting linear relationships in this system. Given

i dim(HY)

a reparametrization the functions as {Y¥;} i , we form the discrete Gram matrix G by the entries

1 M
Gug = 37 D VY () = [ Vi ode ). (A.5)

In practice, one may formulate a QR decomposition by fixing some first basis vector and proceeding by the Gram-
Schmidt process until a basis is formed, then setting some threshold on the eigenvalues to get the desired depen-
dencies among the Y;’s. [ ]
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A.2 Background on manifolds

This introduction to manifolds covers the main ideas which we use in this paper without going into much detail.
We mostly follow along with the notation and definitions in [14]. For details, we refer the reader to texts such as
[4, 14, 17].

Definition A.1 (Differentiable Manifold). A (boundary-less) differentiable manifold of dimension ¢ is a set X
together with a family of open subsets {U,} of R? and functions {x,} such that

Xq 1 Uy = X (A.6)
is injective, and the following 3 properties hold:
e Uy xa(Ua) =X,

e x,(Us) Nxg(Ug) = W # 0 implies that x;l(W),xgl(W) are open sets and xgl 0 X, is an infinitely differen-
tiable function.

e The family Ax = {(Uqa,Xq)} is maximal regarding the above conditions.

Remark A.2. The pair (U,,Xq) gives a local coordinate chart of the manifold, and the collection of all such charts
Ax is known as the atlas. u

Definition A.2 (Differentiable Map). Let X;,Xs be differentiable manifolds. We say a function ¢ : X; — X5 is
(infinitely) differentiable, denoted by ¢ € C*°(X), at a point z € X; if given a chart (V,y) of X, there exists a
chart (U,x) of X; such that x € x(U), ¢(x(U)) C y(V), and y~! 0 ¢ o x is infinitely differentiable at x~*(p) in the
traditional sense.

For any interval I of R, a differentiable function v : I — X is known as a curve. If x € X, ¢ > 0, and
v : (—€,€6) = X is a curve with z = v(0), then we can define the tangent vector to v at v(tg) as a functional +'(¢o)
acting on the class of differentiable functions f : X — R by

dF o) 1. (A7)

v (to) f = i

The tangent space of X at a point z € X, denoted by T.(X), is the set of all such functionals ~/(0).
A Riemannian manifold is a differentiable manifold with a family of inner products {(o,0)_}zex such that for
any X,Y € T,(X), the function ¢ : X — C given by = — (X(z),Y(z)), is differentiable. We can define an

x

associated norm || X|| = (X (), X (x)),. The length L() of a curve v defined on [a, b] is defined to be

b
wazfnwwmw (A.5)

We will call a curve 7 : [a,b] = X a geodesic if L(y) = inf{L(r) : r : [a,b] = X,r is a curve}. It is well-known that
if v is a geodesic, then ~/(t) - v (¢t) = 0 for any ¢ € [a, b].

In the sequel, we assume that X is a compact, connected, Riemannian manifold. Then for every =,y € X there
exists a geodesic v : [a,b] — X such that v(a) = z,7(b) = y. The quantity p(z,y) = L(y) defines a metric on X
such that the corresponding metric topology is consistent with the topology defined by any atlas on X.

For any z € X there exists a neighborhood V' C X of z, a number § = 6(z) > 0 and a mapping & : (—=2,2) xU —
X, where U = {(y,v) : y € V, v € T,)X, |v|]|l2 < ¢} such that ¢t — E(t,y,v) is the unique geodesic of X which,
at t = 0, passes through y and has the property that 0£/0t = v for each (y,v) € U. As a result, we can define
the exponential map at x to be the function &, : Byr(z,d(z)) C T,(X) = X by €, (v) = £(1,z,v). Intuitively, the
line joining z and v in T, (X) is mapped to the geodesic joining z with £, (v). We call the supremum of all §(z)
for which the exponential map is so defined the injectivity radius at x, denoted by «(z). We call 1* = inf ex ()
the global injectivity radius of X. Since x — ¢(x) is a continuous function of z, and «(x) > 0 for each z, it follows
that ¢* > 0 when X is compact. Correspondingly, on compact manifolds, one can conclude that for y € Br(z,t*),
ol 20 (1)) = Il — yll.

Next, we discuss the metric tensor and volume element on X. Let (U,x) be a coordinate chart with 0 € U,
x(0) = z € X, and 0;(x) be the tangent vector at z to the coordinate curve ¢t — x((0,...,0,¢,0,...,0)). Then we

j—1
can define the metric tensor g to be the matrix where g;; = (9;(x),0;(x)),. When one expands the metric tensor
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g as a Taylor series in local coordinates on B(x,¢*), it can be shown [36, pg. 21] that for any § < ¢*, on the ball
B(x,d) we have

lg| =14 0(6%). (A.9)
In turn, this implies

Vgl — 1562 (A.10)

The following proposition lists some important properties relating the geodesic distance p on an unknown
submanifold of SQ with the geodesic distance on S¥ as well as the Euclidean distance on Rt

Proposition A.2. Let n, be defined as in Section 5.
(a) For every n.(u) € B(z, ),

Jarceos(e - 1. (w) — p(, ns ()] S pla, ma (u))?. (A.11)

(b) For any =,y € X,
p(x,y) ~ arccos(x - y). (A.12)

Proof. First, we observe the fact that ||z —y||, ~ arccos(z - y) because ||z — y||, /2 = sin(arccos(z - y)/2) and
0/m <sin(0/2) < 0/2 for all § € [0, n]. Fix x € X and let y be a geodesic on X parametrized by length ¢ from z. In
particular we then have ||7/(0)||, = 1 and ~4/(0) - v/(0) = 0. Taking a Taylor expansion for v(¢) with [¢| < * (we
recall that ¢* < 1), we can see

700 (0 = 2(0) =) (O 320 + o))
=1y (0)lI5 £ +~/(0) - 7" (0)* + O(t?)
=t + O(t).

(A.13)

For any y € B(z,¢*), there exists a unique u € S;(¢*) such that y = 7, (u). We can write y = ~(¢) for some geodesic
7. We know, t = p(z,y) > arccos(z - y) > ||z — ylly = [|7(t) — 7(0)||,. Using the Cauchy-Schwarz inequality, we see

0<t—|lz—yll, <t—~"(0)- (y(t) —(0) S ¢t°. (A.14)
As a result we can conclude

p(, 1m0 (u)) — arccos( - 1o (w)) < p(@, 00 (w)) = [11:(w) = @[ly < p2,70(u))?, (A.15)

showing (A.11). Letting ¢ be the constant built into the notation of (A.11), then if we fix + € X and let y €

B(z,/1/(2c)), we have )

5P(@y) < pla,y) — cp(a,y)* < arccos(z - y). (A.16)

Furthermore, since A = X \ B(z, \/1/(2c)) is a compact set and g, (y) = arccos(z-y)/p(x,y) is a continuous function
of y defined on A, we can conclude that g, attains a minimum on A. Therefore,

p(x,y) ~ arccos(x - y) (A.17)

for every y € X. We note that the constants involved in this proof vary continuously with respect to the choice
of x, so in the theorem we may simply use the supremum over all such constants which must be finite since X is
compact. |

A.3 Network representation

Let {pi} be a system of orthonormal polynomials satisfying a recurrence relation
pr(z) = arapg—1(z) + brpr—2(x), k=1,2,---, b =0. (A.18)

The Clenshaw algorithm is a modification of the classical Horner method to compute polynomials expressed in the
monomial basis that evaluates a polynomial expressed in terms of the orthonormalized polynomials {py} [9, 16].
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Algorithm 1 Clenshaw algorithm to compute ZZ;S Cxpg, where

pr(z) = arpaxpr—1(x) + bppr—2(x), k =1,2,--- |n

1, by = 0.

a) Input: po, Cop,- -

Cn 1, T, an+17 o

b) Output: The value of Y ;_, ! Chopi-

NP

: outl <+ 0,out2 <+ 0,C_1 < 0,C,, + 0.
for k=n+1 down to 1 do

temp < ay * out; * & + out2

out2 < by x outl + Cr_o

outl < temp.
end for
Return: outl * pg.

a1, bpyr, -0, b1

ReLU

WoX+B),

LC

—WoX+B

Figure 8: The implementation of a linear combination as a ReLLU network. Here all operations are pointwise. The
symbols ® represents Hadamard product of matrices, @ is the sum of matrices.

Memory ‘ak, by, ‘
X—» X -
(Ika—>
Di—i B, — LC
Ek—b 1 —
e—1 F, — LC
CL(k)

Figure 9: One step of the Clenshaw algorithm, using two circuits of the form LC (4 neurons) as in Figure 8. The
circuit diagram is shown in general with four input pins and two output pins.

X >
0 >
0 >

Cn—l >

CL(n+1)

X >
P> O1(n + 1)
P>0s(n + 1)

Cn—‘z >

CL(n)

—»Ol(n)—>

b O2(n) > >0k + 1)

X

>

—>O1(k +1)>

Ch—2

>

CL(k)

X ol
> O (k )—» —»O (2)>]
> Os(k)> —»Oz( )|

0 >

CL(1)

> 01(1)

Figure 10: Unrolling the Clenshaw algorithm as a cascade of the circuits of the form CL(k) as in Figure 9.

To understand the method, let P = ZZ;& Cipr- It is convenient to write C = 0 if £ > n or k < 0. The recurrence
(A.18) shows that

Crpr(x) + Cr—1pr—1(x) + Cr_apr—2(z) =

(a1 Crx + Cr—1) pr—1(z) + (bxCr + Cr—2) pr—2.
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This leads to Algorithm 1.

By algorithm unrolling, we may express this algorithm in terms of a deep neural network evaluating a ReLU

activation function. The network is a cascade of different circuits. The most fundamental is the implementation of
a linear combination as a ReLU network (see Figure 8)

ar+b=(ax+b); — (—ax —b)4.

Using the circuits LC in Figure 8, we next construct a circuit to implement recursive reduction (A.19). This is
illustrated in Figure 9. Finally, we unroll the Clenshaw algorithm by cascading the circuits CL(k) from Figure 9 for
k =mn+1 down to k = 1 with different inputs and outputs as shown in Figure 10. We use this in order to compute
P, o(z - y;) by using the recursive formula for ultraspherical polynomials (4.7) in the following way. We set

Wq

G = 2 h(k/m)py (1)
vI@T(g+1) _
I'(g—1) Pt
ai = ) A.20)
2k+q—3)2k+q—1) (
\/ E(n+q—2) k22

b — (k—1)(k+q—3)2k+qg—1)
b k(k+q—2)02k+q—5)

For the matrix X shown in Figure 10, we consider the (Q+1) x N test data matrix S where each column represents
one test data x, and a (Q + 1) x M train data matrix R where column j represents data point y;. Then we set

X = STR. In this way, we would return ®,, ,(S” R) from running Algorithm 1, with a time complexity of O(NMn).
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