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Figure 1: A statistical learning platform featuring a tilting interface where students can explore data physicalizations using 
tangible tokens. The platform enables students to: A) construct and manipulate data representations by stacking tokens, B) hear 
data and statistical parameters by pressing on specific regions of the representation, C) engage with the concept of mean by 
feeling the representation tilting off-balance when an emulated fulcrum deviates from the statistical mean (top), and practice 
sliding the fulcrum to the mean to restore balance (bottom), and D) explore the concepts of median and percentile by feeling 
symmetric values mirrored across the median through vibrations. 

ABSTRACT 
Interactive data learning tools provide explorable ways for students 
to build intuitions about data, data representations, and statistical 
parameters. However, these tools rely on visual consumption and 
are not accessible to blind and low vision (BLV) students. In this 
work, we investigate opportunities to leverage active exploration, 
enriched with multimodal feedback and embodied interaction, to 
foster an understanding of the relationships among individual data 
values, data representations, and statistical measures. We explore 
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these opportunities in the form of an accessible learning platform 
that allows students to hear and feel how statistical measures are 
changing in real time as they construct and manipulate physicalized 
data representations. We introduced the platform to four teachers 
of students with visual impairments (TVIs) through a two-hour-
long focus group. TVIs embraced the platform’s exploratory nature 
and universality and recommended the consideration of additional 
auditory and texture-based interactions to enhance engagement. 

CCS CONCEPTS 
• Human-centered computing → Visualization systems and 
tools; Interactive systems and tools; Accessibility systems 
and tools. 
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1 INTRODUCTION 
The rapid growth of computing resources and data during the 
digital age has marked a paradigm shift in the way we perceive and 
consume information. As governments, industries, and individuals 
increasingly rely on data to communicate and make decisions, the 
ability to understand data and statistics is not only an applied skill 
but also a means to greater social inclusion [8]. Consequently, there 
is growing acknowledgment of the need to teach data and statistical 
concepts in ways that are more cohesive, [13, 67], participatory [71], 
and contextually-situated [71]. 

Several interactive data learning platforms have been developed 
to meet these needs [1, 3]. These platforms 1) provide closely cou-
pled visualizations between the data, data representation, and sta-
tistical measures to surface relationships them, and 2) emphasize 
active exploration and participatory sense-making to reinforce a 
concept’s underlying dynamics [47, 60]. However, blind and low-
vision (BLV) students lack accessible non-visual or multimodal tools 
that benefit from similar types of interactivity [19]. Representation 
of BLV people in STEM-related fields is disproportionately low [44] 
and reports have found BLV students lagging in skills to efficiently 
and accurately interpret graphical information from as early as 
primary school [6]. 

To make spatial representations of information more accessible, 
researchers and practitioners often look towards other modalities, 
such as touch and sound [37]. Within these modalities, digital infor-
mation is commonly described aurally, such as with screen readers 
[40], or rendered tactilely, such as using embossed graphics and 
multi-line displays [35, 52]. Multimodal interfaces use both tactile 
and auditory representations to teach early mathematical concepts 
in more interactive ways [39, 58]. However, the exploration of 
multimodal systems for teaching statistical concepts is relatively 
limited. 

Additionally, there are opportunities to make use of qualities 
unique to non-visual modalities to help support a deeper under-
standing of data. Embodied cognition emphasizes the role of the 
body [20] and provides one avenue to leverage touch feedback. 
Prior work has shown how bodily movement [27, 49] and physical 
manipulation [5, 45, 53, 68, 77] help students learn when supported 
movements relate to target concepts [10, 64]. We hypothesize that 
the use of embodied analogies, which draw parallels between bodily 
experiences and abstract concepts, can enhance students’ compre-
hension of statistics. 

In this work, we explore: (RQ1) How might we leverage feedback 
and interactivity to help BLV students learn and build intuition 
for early statistical concepts and (RQ2) What additional factors 

should statistics learning platforms consider when designing for 
accessibility? 

Our investigation into the use of feedback and interactivity 
for building statistical intuition (RQ1) began with early discus-
sions among a multidisciplinary team of both blind and sighted 
researchers, educators, and students, who are the co-authors and 
contributors acknowledged in this paper. These conversations led to 
the development of a learning platform that uses physical manipula-
tion and supports a series of multimodal and embodied interactions 
to bridge students’ understandings of individual data points, physi-
cal representations, and statistical measures. 

To gather feedback on the platform and insights on accessible 
learning practices (RQ2), we ran a focus group with four experi-
enced teachers of students with visual impairments (TVIs) at the 
2023 National Federation of the Blind (NFB) National Convention. 
The teachers embraced the exploratory nature and universality 
of the platform and recommended the consideration of additional 
auditory and texture-based interactions to make the experience 
more engaging. 

Using these interactions as building blocks and drawing from 
learnings from the focus group, the next phase of our research 
encompasses a more extensive and structured co-design study with 
middle to high school BLV students and educators. By sharing our 
early findings with the research community, we hope to foster 
discussion around general needs in accessible data and statistical 
education, and surface opportunities to help BLV students learn and 
internalize statistical concepts in more interactive and engaging 
ways. 

2 RELATED WORK 
2.1 Data, Visualization, and Statistical Literacy 
Data and visualization literacy encompass the capacity to trans-
form questions into actionable queries and derive insights from 
data representations [12]. Prior research has examined the fun-
damental tasks individuals undertake to answer questions using 
data [79], how people establish connections between data and vi-
sual representations [33], and how these representations facilitate 
spatial reasoning tasks [30, 69]. With society’s growing reliance 
on computing devices and the increasing quantification of infor-
mation, proficiency in data and visualization literacy has become 
indispensable [16, 66]. 

Data and visualization literacy are often viewed as foundational 
skills in building statistical literacy [22, 63, 75], which Gal defines 
as the ability to interpret and critically evaluate statistical infor-
mation [22]. Graphs are important tools for understanding and 
assessing how statistical measures represent the underlying data 
[4]. Given the relationship between data, data representations, and 
statistics, there has been an increasing emphasis on teaching data 
and statistics in more complementary ways [67]. 

Several tools have been developed to help users build data, vi-
sualization, and statistical literacy by enhancing the ease of data 
manipulation and interactive exploration [7, 11, 16, 28, 29, 48]. How-
ever, limited research has explored how audio and haptic interac-
tivity can aid in the development of statistical literacy among BLV 
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students. This work seeks to understand how we can leverage au-
dio and haptic modalities to help BLV students engage with data, 
visualization, and statistical concepts in more interactive ways. 

2.2 Accessible Data Education 
Physical manipulatives, such as tokens and objects, are often first 
used to introduce data and graphical concepts to BLV students 
[61]. These manipulatives provide concrete experiences that can 
help students connect abstract concepts to realistic contexts [17, 
26, 59]. As students gain more experience, they begin transitioning 
to more standardized representations of graphs and charts. These 
representations, called tactile graphics, consist of raised lines that 
BLV students can tactilely explore with their fingers. Effective use 
of tactile graphics often takes time to learn [62]. 

Due to the lower spatial density of information that can be rea-
sonably understood tactilely compared to visually [52], and con-
sidering the time and effort required to produce tactile graphics 
[55], educators have increasingly turned toward auditory [72] and 
multimodal [21, 39] ways of teaching data. Interactive audio-tactile 
systems can improve the educational experience by monitoring 
student performance [46], offering immediate feedback [46], and 
fostering engagement through a variety of "fun" interactions [14]. 

Several studies have investigated the use of tangible user inter-
faces that support audio-tactile feedback in enhancing learning 
for BLV students. Pires et al. found that such systems can foster 
meaningful engagement, support hypothesis testing, encourage col-
laborative learning, and aid in the development of strategic thinking 
when used to teach programming [56] and counting [57]. Addition-
ally, various studies have introduced new hardware systems capable 
of tracking location and orientation to teach STEM topics [42, 43]. 
However, the use of these systems in teaching data and statistical 
concepts, particularly through the use of embodied analogies, re-
mains relatively unexplored. Building on insights gained from these 
multimodal systems, our work integrates embodied interactions to 
understand the role of these interactions on learning outcomes. 

2.3 Embodied Cognition 
Embodied cognition emphasizes the role of the body in our cogni-
tive abilities [65]. In educational contexts, researchers have shown 
that engaging students’ bodies can improve learning outcomes 
[41], such as directly feeling torques to learn angular momentum 
[38], or more abstractly, enacting data points to understand data 
representations [15]. 

Several theories propose when and how embodied cognition 
can improve learning outcomes. Conceptual salience theory posits 
that learning is enhanced when manipulation engages students in 
actions that draw attention to conceptually salient features [51]. 
Haptic encoding posits that parallel processing [51, 74] made avail-
able by haptic cues enhances learning. Embodied schema theory 
positions cognition as mental simulations of the body’s actions in 
the world [24] and emphasizes learning through bodily experiences 
that align with concepts [34]. 

Several other learning paradigms also make use of embodied 
interactions to improve learning. Enactive cognition proposes that 
understanding is actively constructed through dynamic interac-
tions between the body and its environment [23]. Constructive 

visualization encourages the physical construction of data represen-
tations and has been shown to encourage critical thinking of basic 
concepts [9, 18, 76]. With the lack of accessible statistical learning 
platforms, we see embodied learning approaches as opportunities to 
help students better internalize and reason about data and statistics. 

3 SYSTEM INTRODUCTION 
3.1 Learning Goals 
We ground our system design in lessons on measures of central ten-
dency and spread, which are core introductory statistical concepts 
[2]. We expand on the learning objectives defined by The Mathe-
matics Framework for California Public Schools [50] to produce an 
initial set of learning goals, which are as follows: 

• Represent univariate data with histograms. 
• Understand the purpose of qualifying shapes of a distribu-
tion. 

• Understand concepts of modality, symmetry, and skew. 
• Understand the purpose of measures of central tendency. 
• Calculate and interpret measures of central tendency for a 
set of data. 

• Understand the sensitivity between measures of central ten-
dency to different data points. 

• Understand strengths and weaknesses of central tendency 
and when one might be used compared to another. 

• Calculate and interpret the interquartile range and under-
stand how it relates to the median of a distribution. 

• Calculate and interpret standard deviation and how it relates 
to the mean of a distribution. 

3.2 System Motivation and Interactions 
To translate these learning goals into an interactive system, the au-
thors first collaboratively shared insights on effective practices for 
inclusive learning. TVIs shared their experiences adapting materials 
to meet different needs and highlighted the critical role of building 
intuition through active exploration. They often employ physical 
objects and tokens to introduce data concepts to BLV students. Stu-
dents underscored the significance of exploratory play in fostering 
engagement and intuition. Education researchers highlighted the 
pivotal role of analogies and metaphors in aiding students’ compre-
hension and retention of complex concepts. Design and engineering 
researchers integrated established guidelines [31, 78] and drew from 
their own experiences in crafting and assessing accessible systems. 

These perspectives informed several guiding principles moti-
vating our design, which are: (DP1) encourage active exploration 
and play, (DP2) emphasize intuition-building through embodied 
and analogous interactions, (DP3) support customization, in addi-
tion to our objective of (DP4) providing non-visual access to all 
information. 

Guided by these principles, we designed a data education plat-
form to support data and statistical inquiry from representation 
construction to analysis. The platform supports the following data-
driven interactions: 

Construction and Manipulation (Figure 1A): When building 
data literacy, students need to consider the relationship between 
the data values and their corresponding data representation [9]. 
Tokens and physical manipulatives are often used to introduce 
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complex and abstract math concepts across different abilities [25, 32, 
61]. Constructive visualization provides a token-based framework 
that draws on Froebelian theories of play and encourages active 
exploration [32] (DP1). Following these approaches, our platform 
supports the use of tokens to construct and manipulate univariate 
datasets along 12 physical stacks (i.e. 12 bins of a histogram). The 
stacks are oriented vertically in close proximity, allowing students 
to enclose their hands over multiple stacks to gauge overall shape. 
A connected laptop allows educators to configure the value that 
each stack represents and monitor (visually or through a screen 
reader) the representation in real time. 

Value and Statistical Retrieval (Figure 1B): Immediate feed-
back has been shown to improve learning [36]. In data contexts, 
auditory feedback is often used to provide details on demand non-
visually [73, 78]. Using the platform, educators can configure the 
connected laptop to provide real-time auditory feedback on a set 
of data and statistical values (DP4). Data values include the value 
of a bin, the number of tokens in a bin, and the percentiles rep-
resented by each bin. Statistical values include the mean, median, 
mode, standard deviation, and interquartile range. The feedback can 
be configured to be triggered through two ways: 1) automatically 
whenever the student changes the physical representation, and 2) 
manually when the student presses on a token stack. For data val-
ues, only measures relating to where the change occurred or where 
the student pressed are spoken. With these options, educators have 
the flexibility to configure the spoken information and triggers to 
accommodate and scaffold a variety of learning activities (DP3). 

Embodied Mean (Figure 1C): Stone et al. found center-of-
balance to be a promising analogy to help students conceptualize 
the notion of mean in a univariate distribution [70]. We hypothesize 
that enabling active exploration through this notion draws upon 
students’ prior schemas of balance to gain better intuition for the 
sensitivity of the mean to individual points and regions (DP2). 
We therefore situate the representation on a tilting board that is 
simulated to balance on a sliding fulcrum. As the students build 
and manipulate different distributions, they feel how the board tilts 
based on the relative position of the fulcrum to the distribution’s 
center of balance. The further the fulcrum is from the mean, the 
more the entire physical representation tilts toward the direction 
of the mean. Students physically move the fulcrum to the balance 
point of the constructed representation to find the mean. 

Embodied Median, Percentiles, and Interquartile Range 
(Figure 1D): We are exploring the use of the analogy of symmetry 
across the median to introduce concepts of median, percentiles, and 
interquartile range (DP2). As students press and hold one stack to 
retrieve percentile values, stacks representing the 1-p percentiles 
vibrate. Students can narrow in on the median by feeling the per-
centiles converge using an outside-in approach and can follow a 
similar procedure for finding quartiles. We hypothesize that the 
exploration of percentiles and their mirrors across distributions of 
different skews will help build intuition for how these statistical 
measures are reflected by distribution shape. 

3.3 Learning Activities 
The interactions were designed to serve as building blocks from 
which students and educators can design learning activities in sub-
sequent co-design sessions. In the meantime, we provide a sample 
scenario to convey one way the interactions might be used together 
in practice. 

Customize Dataset: Suppose a student enjoys basketball and 
follows the Golden State Warriors. To integrate learning with the 
student’s interests, the teacher uses the platform to anchor a data 
and statistics lesson around NBA All-Star Stephen Curry’s 3-point 
shooting performance. They procure a dataset containing the num-
ber of 3-pointers Curry has made in the past fifty games. Using the 
connected laptop, they configure the x-axis range and interval to 
accommodate the dataset. 

Representation Construction and Feedback: The student 
begins by plotting a histogram of Curry’s performance by stacking 
the tokens, representing individual games, into the corresponding 
bin along the platform, denoting the number of 3-pointers made 
in a game. As they plot individual data points, they can enclose 
their hands over the resultant shape to perceive how each token 
contributes to the overall distribution. They track the number of 
games in which Curry has made six 3-pointers by gauging the 
height of the corresponding stack, counting the number of tokens 
in that stack, or pressing on the stack to hear the count, reinforcing 
the connection between shape, quantity, and context. 

Embodied Exploration: The teacher now introduces the con-
cept of statistical mean to the student. The platform provides a 
way for the student to conceptualize the mean by likening it to the 
distribution’s geometric center of balance. As the student continues 
updating the distribution with data from additional games, they 
can sense, through the tilt of the board, the impact that each game 
has on Curry’s mean 3-point performance. Modifying the fulcrum 
position as data is manipulated offers a tangible indication of the 
mean’s responsiveness to these alterations. Similarly, students can 
investigate the sensitivity of data manipulations to other statistical 
measures through real-time haptic or auditory feedback of those 
measures. 

Context-driven Inquiry: Moreover, the teacher can pose con-
textually situated questions to help students build intuition for these 
statistical measures, such as: how many 3-pointers does Curry need 
to make in next game to bring his average up by one, or how much 
might the mean and median go down if Curry only made two 3-
pointers over the next three games. The teacher encourages the 
student to first form a hypothesis, then evaluate and reflect on that 
hypothesis by physically updating the distribution and locating 
the measure of interest. The student can also conduct their own 
inquiries by directly manipulating the data and perceiving how the 
measures change. 

Scaffolding Feedback: As the student grows more adept with 
these statistical measures and no longer needs the embodied inter-
actions for internalization, the teacher, via the interface, can deacti-
vate the interaction and enable the interface to directly verbalize 
the measures whenever a token is updated. This allows students 
to more quickly explore the effect of many different distributions 
with respect to the measures. 



Tangible Stats CHI EA ’24, May 11–16, 2024, Honolulu, HI, USA 

Data Export: Finally, to bridge data inquiry using our tool with 
those commonly employed in practice, teachers can export the 
constructed dataset as a CSV file, which can be explored through a 
spreadsheet editor or translated into a tactile graphic. This allows 
students to establish connections between various methods for 
communicating the same data. 

By the end of the activity, the student would have gained experi-
ence creating their own distribution based on a topic of interest; 
sensed how individual points, through their contributions to distri-
bution shape, affect statistical measures of interest; reasoned about 
these measures in context with the data; and perceived how the 
distribution they created reflects other common representations of 
the same dataset. By enabling students to construct and explore 
their own data "microworld"— which Papert views as an exploratory 
incubator that enables learners to manipulate and perform activities 
through exploration and manipulation [54]— we hope that they 
learn the dynamics underlying the data and statics that govern it. 

These activities represent one of many that we envision to be 
supported by the base interactions. Support for auditory feedback 
offers additional opportunities to guide students through various 
activities and enhance engagement with immersive sound effects. 
Token sensing enables the interface to gauge student understanding 
based on their response to prompts. Localized vibrotactile feedback 
can direct students’ attention to different parts of the graph. These 
opportunities provide a rich design space for our follow-up co-
design studies. 

4 PLATFORM DESIGN 
The current platform (shown in Figure 2A) consists of three key 
components: 1) tokens that represent individual data points, 2) a 
tilting board that the tokens are placed upon to construct data rep-
resentations, and 3) a Chromium-supported computer that provides 
audio-visual and learning-related interactions. 

Tokens: The tokens (Figure 2A, shaded green) are 2.8 cm x 2.8 cm 
x 0.725 cm. They are stackable and countable by the tilting board. To 
enable stacking, the outside of the tokens are 3D-printed with slots 
and plugs that vertically align (Figure 2B). Embedded neodymium 
magnets further assist with alignment stability. To be counted by 
the tilting board, enclosed in tokens are PCBs, each consisting 
of a resistor and two pogo pin connectors on both the top and 
bottom faces. When the top pogo pin connector of one token makes 
contact with the bottom connector of another token, the resistors 
connect in parallel causing a drop in equivalent resistance. This 
drop is measured by the tilting board to determine the number of 
tokens in a stack. Both the housing shape and pogo pin connectors 
are constructed in a way such that the tokens exhibit 90-degree 
rotational symmetry along the z-axis. A 0.15 cm lip at the top of 
each token allows students to count tokens in a stack by running 
their fingers up each stack. 

Board: The tilting board consists of two subsystems. One subsys-
tem consists of twelve base plates that sense the number of tokens 
along 12 individual stacks (Figure 2A, shaded purple). The other 
subsystem consists of a sliding fulcrum and tilt mechanism (Figure 
2A, shaded red) that causes the entire representation to tilt based 
on the fulcrum. 

Each base plate contains a token-sensing circuit, a coin vibra-
tion motor, and a switch (Figure 2B). The token-sensing circuit is a 
simple voltage divider in which the output voltage drops as addi-
tional tokens are added to the base plate. The coin vibration motor 
is controlled with an n-type mosfet and is used to draw students’ 
attention to particular stacks. The switch allows for stack-specific 
feedback to be triggered whenever the stack is pressed upon. 

The tilt mechanism is controlled by a single servo motor and 
a 3D-printed emulated fulcrum that slides along a 200 mm flexi-
ble membrane linear potentiometer. The physical position of the 
fulcrum is localized by its contact with the potentiometer. The tilt 
of the servo, which is coupled to the board, is computed based on 
the difference between the fulcrum and the token representation’s 
center of mass. Although the location of the servo should follow 
the simulated fulcrum, we found through early pilot studies that 
a stationary motor was compelling enough to not warrant the ad-
ditional complexities associated with creating such a system. The 
tilting board and fulcrum are lined with Braille lettered from "A" 
through "L" to aid in distinguishing the twelve bins. 

An Arduino Mega is used to read the position of the emulated 
fulcrum and control the servo motor in the tilt mechanism. For all 
base plates, the Mega is also used to read the voltage divider output 
that senses the number of tokens in each stack, read the status 
of the switch, and control the vibration motors. A custom power 
distribution board is used to drive the servo motor (9V), vibration 
motors (3.3V), and circuit logic (5V). 

Software: The microcontroller communicates sensed informa-
tion to a Chromium-supported browser via web serial. The current 
browser interface supports a series of interactions. These include 
text fields that define the x-axis of the representation and toggles 
that select when and what types of auditory feedback are deliv-
ered. The constructed representation is also visualized through 
HighCharts in real time, which supports screen reader access. 

5 PRELIMINARY FINDINGS 
We conducted a focus group with four TVIs to introduce our proto-
type platform, gather their feedback, and surface key considerations 
for our forthcoming co-design study. This focus group received 
approval from Stanford’s Institutional Review Board and NFB’s 
research advisory council. Participants were selected through an 
NFB mailing list and screened based on their experience teaching 
BLV students and their self-reported frequency of developing or 
experimenting with new educational tools and activities. Partici-
pants (P1-P4) reported 5-20 years of experience teaching STEM to 
BLV students and often experimented with new educational tools 
and activities. Among the TVIs, three are blind, and one is sighted. 
The focus group was structured around semi-structured discussion 
questions divided into three sections: 1) reflections on current prac-
tices in teaching data concepts, 2) reflections on using educational 
tools, and 3) exploratory feedback on the platform. Participants 
were compensated $160 for their participation in the 2-hour-long 
focus group. 

The entire focus group was audio-recorded, transcribed, and 
inductively coded by two members of the research team. Codes 
were categorized and synthesized into themes according to the four 
guiding principles, which are (DP1) encourage active exploration 
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Figure 2: CAD Model of the Statistical Learning Platform 

and play, (DP2) emphasize intuition-building through embodied and 
analogous interactions, (DP3) support customization, in addition to 
our objective of (DP4) providing non-visual access to all information. 
This classification was undertaken to scrutinize our underlying 
assumptions and offer deeper insights into these guiding principles, 
as well as to assess the extent to which the platform interactions 
aligned with or diverged from them. 

5.1 Encourage Active Exploration and Play 
Educational materials are often not motivated in contexts that are 
engaging for BLV students. P3 described how "a lot of times for 
our blind kids, unfortunately, [is that] they feel isolated because they 
don’t necessarily engage in all those same activities or feel a part 
of those activities. So if you can find a way to get them interested 
and involved and engage, that’s a possible way to make them feel 
invested". Additionally, many students that they work with often 
do not get opportunities to actively explore their surroundings in a 
way that is conducive to learning. P1 shared that "what happens a 
lot in the formative years of blind children’s development, is that they 
are in a bubble. They’re not experiencing any of the errors, so they 
can’t detect them, so they can’t correct them". There is a need for 
learning experiences that better engage learners in their interests 
and allow them to make and learn from their mistakes. 

When interacting with our platform, participants found the use 
of physical tokens to be fun (P1), playful (P2), and encouraging of 
active exploration (P1, P4). P1 described how they “like that [the 
platform] is exploratory. So [students] could just explore it and see how 
things are changing [to] figure these things out”. Participants also 
recommended we explore other uses of sounds and token textures 
to make the experience more engaging (P1, P2, P3). Identifying the 
contexts that can ignite BLV students’ interest in data and statistics, 
and investigating how platform features like sound and texture can 

engage students more deeply in these contexts are important next 
steps in our upcoming co-design sessions. 

5.2 Emphasize Intuition Building 
Because commonly used tools and practices for building intuition— 
such as diagrams, videos, and drawing boards— are not adapted 
to the needs of BLV students, participants shared how these stu-
dents often find themselves resorting to memorization rather than 
achieving a conceptual understanding of STEM topics (P1, P2, P4). 
P4 described how "a lot of kids can memorize step-by-step proce-
dures, but they don’t really understand what they’re doing". To help 
BLV students understand and build intuition around data concepts, 
TVIs shared their experiences starting with more concrete repre-
sentations that are easier to grasp to form bridges to more abstract 
representations (P1, P4). As an example, P1 shared how “we would 
put pins in on [a] little rubberized graph board and then we could 
do our trend line across that...and then we yank our paper out and 
it makes a really satisfying tear. And now we have our line. And so 
we could kind of go from very concrete to more abstract because that 
graph that we were using already had the lines on it... So I’m not 
telling the child, this is what works [or] this is why it works. They’re 
showing how it works by doing all the things that lead up to why we 
do it this way”. 

Furthermore, it’s common for gaps in conceptual understanding 
to go unnoticed. P1 observed that "a lot of teachers get really focused 
in on those scores. They want that right answer so they forget the 
process". Participants stressed the significance of being able to ask 
probing questions to assess understanding (P2, P4). P4 articulated 
that “the best feedback is based on how [students] are answering the 
questions. Based on how they answer, you can evaluate what they’re 
thinking and what their thoughts are and their understanding of the 
concepts that you’re trying to teach”. 
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When interacting with the platform, participants found that the 
embodied interactions hold promise for aiding students in culti-
vating an intuition for statistics through the lens of more familiar 
concepts (P1, P2, P4). P4 described how the haptic and audio feed-
back provides "a great way to show how numbers can affect other 
numbers related to it". However, P1 cautioned that assessing these 
interactions with BLV children who are new to these concepts is 
essential to measure their effectiveness. 

Taken together, participants’ comments highlight several im-
portant areas and opportunities for future work. First, exploring 
effective scaffolding methods between concrete examples and ab-
stract data and statistical concepts offers a promising approach to 
designing learning activities. Second, investigating strategies to 
systematically foster deeper conversations between students and 
teachers about the learning concepts through the platform and 
co-designed activities might assist teachers in monitoring students 
and ensuring their comprehension of taught materials. Similarly, 
maintaining opportunities for students to openly discuss and reflect 
on their reasoning will be essential for evaluating the effectiveness 
of our platform and activities. 

5.3 Support Customization 
Participants articulated a few reasons why being able to customize 
and adapt materials is important when working with BLV students 
in school settings (P1, P2, P3). One reason is the wide range of 
students’ prior experiences and abilities, which requires TVIs to 
evaluate and develop educational materials tailored to their learning 
needs. P2 described how "some children are going to need more 
support than others in order to be able to [get] access at the same 
level...even as a curriculum designer, I tell people I could give you the 
best curriculum possible, but that doesn’t mean it’s going to be the best 
curriculum ever for your specific student". Another is that TVIs often 
need to base their work on classroom lessons. As P1 shared, "APH 
used to have a data collection and analysis kit... I took all the stuff out 
of it and used it and didn’t use the curriculum that they came with it 
because I used the Gen ed materials to teach". Finally, systems that 
are too rigid do not leverage the expertise of experienced teachers. 
Where "cookie cutter curriculum is only for an inexperienced teacher" 
(P2), platforms that give level of flexibility allow TVIs to "do things 
that you didn’t even think of" (P3). 

When interacting with the platform, participants appreciated 
the ability to customize activities both internally (P1, P2) (such 
as through using the audio toggles) and externally (P1, P3) (such 
as in conjunction with tactile graphics or computing software). 
As P3 shared, "I feel like there’s more potential there for things like 
producing a tactile graph after interacting with your data...And then 
you take your computer home and analyze it at home and learn more 
about what you’ve collected or figured out separate from the activity". 

Given the frequent need to adapt materials, all participants sug-
gested developing a flexible activity guide rather than a rigid cur-
riculum to accompany the platform. P1 further elaborated how 
“what you want is an activity guide and a simple set of activities to 
get them started”, such as "[a guide], an extension [activity], and 
then give them a real-life application...for each of the types of skills 
you’re trying to teach". These findings underscore the importance 
of viewing the platform not merely as an isolated system, but as 

a tool among many that teachers can integrate into their existing 
practices and tailor to the needs of their students. The co-design 
effort should extend beyond identifying learning activities that can 
be supported by the platform and aim to formalize processes and 
highlight interactions that empower teachers to modify or develop 
their own activities. 

5.4 Provide Non-Visual Access to All 
Information 

While our efforts primarily focused on supporting non-visual modes 
of access to the data, data representations, interactions, and sta-
tistical values, participants emphasized the need for sighted peers 
to engage collaboratively as well (P1, P3, P4). This need not only 
stems from blind students often feeling isolated (as quoted by P3 in 
Section 5.1), but also because, as described by P4, "you’re not going 
to be working individually as a scientist. And so I think when possible, 
having things that you can work on with three students together is 
better than having every individual student have something. When 
you can work as a group, I think you’re teaching more life skills". 

Several participants (P1, P3) appreciated the educational value 
that sighted students might also gain from interacting with the 
platform. P3 articulated how "one thing I could say right now that I 
like about it is any student could use it. That’s already a benefit". In 
P2’s experience designing educational tools, providing ways that "a 
sighted student can use it along with their blind peers helps avoid that 
’I’m different’ awkwardness". These results highlight the importance 
of social inclusion in learning practices and the need to co-design 
interactions that not only facilitate student-teacher interactions but 
peer interactions as well. 

6 CONCLUSION AND FUTURE WORK 
This work outlines a preliminary set of auditory and tactile interac-
tions that were designed based on guiding principles co-developed 
by a multidisciplinary team of students, educators, and designers 
to support statistical learning (RQ1). By introducing these inter-
actions to a focus group of experienced TVIs, we gained insight 
into important contexts and factors that learning platforms should 
consider and enriched our understanding of the guiding principals 
and interactions supporting them (RQ2). 

Several of the guiding principles were reinforced by the obser-
vations shared by the TVIs in our focus group. These include our 
prioritization of active exploration (DP1) and intuition-building 
(DP2), especially as there is a reported lack of engaging opportuni-
ties for BLV students to gain intuition through active exploration 
and build understanding through accessible scaffolds. Positive feed-
back on the platform’s playful nature, emphasis on exploration, 
and use of familiar analogies highlight its potential to effectively 
address these needs. 

Insights from TVIs have also reshaped our perspective on the 
other principles. The importance of adapting materials to diverse 
student and curricular needs shifted our approach to customizabil-
ity (DP3), from designing a standalone system and curriculum to 
conceptualizing the platform as one among many tools that TVIs 
can creatively integrate to meet the needs and interests of students. 
Additionally, TVIs’ receptiveness to universal design has helped 
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us recognize the importance of offering compelling visual in addi-
tion to non-visual access (DP4). Doing so fosters collaboration and 
shared experiences between BLV students and sighted peers and 
enables the platform to better support learning across the diverse 
visual abilities and experiences of BLV students. 

Taken together, the focus group emphasized the importance 
of designing educational experiences that are engaging and not 
reductive, flexible and not prescriptive, universal and not alienating, 
as well as supportive of the valuable interpersonal interactions 
between TVIs, BLV students, and their peers. 

The next stage of the project is to co-design learning activities 
that provide effective scaffolding between the concrete and abstract. 
To situate learning in the specific contexts of both TVIs and BLV 
students, we are planning a series of multi-week co-design sessions 
that focus on defining learning objectives, brainstorming motivat-
ing contexts, discussing engagement, and designing activities to 
support statistical learning through these multimodal and embodied 
paradigms. Following the co-design sessions, we hope to run user 
evaluations to more concretely understand how these paradigms 
contribute to the way students reason about data and statistics. 
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