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Abstract—Conventional wisdom holds that discrimination in
machine learning is a result of historical discrimination: biased
training data leads to biased models. We show that the reality is
more nuanced; machine learning can be expected to induce types
of bias not found in the training data. In particular, if different
groups have different optimal models, and the optimal model
for one group has higher accuracy, the optimal accuracy joint
model will induce disparate impact even when the training data
does not display disparate impact. We argue that due to systemic
bias, this is a likely situation, and simply ensuring training data
appears unbiased is insufficient to ensure fair machine learning.

Index Terms—Machine Learning, Fairness, Systemic Bias

I. INTRODUCTION

We are witnessing an unprecedented rise in automatic
decision making models with long-lasting impact on human
lives. Examples include hiring [1], bail/sentencing [2], lending
[3], and medical treatment [4]. Machine learning (ML) models
typically target high predictive accuracy. However, debates on
ML model fairness introduce a new element.

Fairness is defined as equal treatment towards individuals
irrespective of their sensitive attributes such as gender, race,
age, etc. Much of the fairness-aware ML research (discussed
more in Section II) assumes that unfair models result from
historical unfairness in the input data. FairML literature com-
monly assumes that the training data contains a dispropor-
tionate number of individuals from the unprivileged group
who received an incorrect/unfavorable outcome, which leads
to group-wise disproportionate predictions.

The key contribution of this paper is to show that ML
models can be expected to produce group-wise inequality even
when the training data is fair. We start with data having
no base rate disparity (equal favorable/unfavorable outcomes
between groups), no majority or minority group (balanced),
and all labels are presumed correct. We show that even with
such fair training data, in some circumstances (e.g. disparately
accurate features or feature disparity) an optimal accuracy
ML model is expected to introduce disparate impact (different
favorable outcome rates between groups) in predictions. In
particular, when the optimal group-wise models are different
we show theoretically that Bayes-optimal ML models can be
expected to introduce such bias; we back this up with empirical
results using multiple machine learning algorithms.

Furthermore, the circumstances where this occurs are a
likely situation due to systemic bias: the features used in build-
ing models tend to be those that work well for the privileged
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group. For example, in college admission prediction, Test
Score may be highly predictive for the privileged but perform
poorly on the unprivileged. On the flip side, GPA may be more
effective for the unprivileged group, but not as predictive as
Test Score is for the privileged. In such a scenario, we show
that even when the training data labels are correct and balanced
between privileged and unprivileged groups, a Bayes-optimal
classifier will be biased towards one group.

Specifically, when resources are scarce (as with selective
admission colleges), ML models are expected to dispropor-
tionately favor the privileged group. In contrast, with an
overabundance of resources (as with admissions to some for-
profit schools), ML models disadvantage the unprivileged
group by disproportionately offering resources to the wrong
individuals in the unprivileged group (i.e., saddling individuals
who do not succeed with student loan debt.) This holds even
with equal group-wise base rates in the training data.

We discuss fairness metrics and a summary of literature in
Section II. Section III theoretically establishes model-induced
unfairness. We validate the theory empirically using synthetic
fair datasets in Section IV. Then, we discuss implications
of our findings, their relation to systemic bias, and feature
disparity in real-world datasets in Section V.

II. BACKGROUND
A. Fairness Metrics

Fairness notions are typically defined as group-wise equality
of prediction statistics. Let dataset D = {x(®) s(F) ¢}V
where x,s € {p,u} and y € {+, —} are the set of n features,
the sensitive attribute, and the target variable, respectively. Let,
s = p(= w) or in short p(u) indicates privileged (unprivileged)
group membership. Let the predicted outcome be ¢. The most
popular fairness metrics, Disparate Impact, concentrates on
base rate equality. It requires equality of positive prediction
probability among the groups, i.e., P(y = +|u) = P(§y =
+|p), often presented as a ratio.

pr_ Pi=+W
P(j = +lp)
Disparate impact can also be defined as a characteristic of
Py = +|u)

the dataset rather than the model, DI = ———
L Py =+Ip)
Other definitions include group-conditioned accuracy (e.g.

equalized odds, equal opportunity), and group-conditioned cal-
ibration. For a comprehensive discussion of fairness metrics,
see [5] and [6].
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B. Related Work

The goal of fairness-aware machine learning is to develop
non-discriminatory models with respect to sensitive attributes
such as race, sex, etc. Fairness-interventions are broadly cate-
gorized as pre-processing, in-processing, and post-processing
techniques. Typically, training data bias were re-captured in
traditional models. Therefore, early work emphasized on pre-
processing techniques such as class-label modification [7],
sampling [8], [9], altering distributions to hide correlation
to the sensitive attributes [10], etc. In-processing techniques
involved modification of existing algorithms [11], [12], fair
regularization terms [13], and optimization with fairness con-
straints [14], [15] as fairness-interventions. Agarwal et al.
[16] modeled the fairness-intervention as a turn-taking game
between fairness and accuracy optimizer. Post-processing tech-
niques [12], [17] modify the predicted outcomes or model
parameters to obtain non-discriminatory predictions.

Introduced bias is recently studied in [18] which defined
requisite features as features d-connected to both the utility
function and the sensitive attributes. Requisite features lead
to introduced bias when p-admissible loss functions are op-
timized. Instead, we show requisite features lead to disparate
group-wise classifiers. Consequently, the joint optimized clas-
sifier skews towards the more accurate one. We further report
the impacts of resource constraints on induced bias.

Besides group-fairness, individual fairness (treat similar in-
dividual similarly) [14] and sub-group (middle ground between
individual and group-fairness) [19] fairness were proposed.
Specific fair learning applications, such as natural language
processing, graph embedding, computer vision, and causal
inference are also investigated. A detailed literature survey
can be found in [6].

III. FORMAL ANALYSIS

We show that an optimal classifier built on a fair balanced
dataset (FBD) can still produce unfair outcomes. Let P(p) =
BP(u). When 8 # 1, the predictions are dominated by the
majority which was addressed in [9] through oversampling
minority group. In this work, we assume this issue has been
rectified, and show model-induced bias with balanced datasets.

A. Fair Balanced Dataset (FBD)

We assume that our fair, balanced training dataset has
identical group outcomes (i.e., equal base rates and sample
count). While all labels are correct, the features are insufficient
for a “perfect” (100% accuracy) classifier. The only distinction
between the privileged and unprivileged group is that the
Bayes-optimal model on the privileged group is different and
more accurate than the one on unprivileged. Keeping with legal
requirements in many countries, we discard the explicit use of
sensitive attributes to separate the privileged and unprivileged
groups when making predictions. We refer to the disparity in
feature predictivity as feature disparity. We show that feature
disparity leads to outcome bias in the joint optimal model.

Formally, an FBD D has DI(D) =1 and y U s. y*(y7)
indicates positive(negative) samples. Then P(y*) = =

958

1 — P(y~). Assuming normally distributed features, a feature
with higher distinction between samples from different classes
is more predictive. In contrast, a non-predictive feature’s
distribution is independent of its class labels. A proxy measure
of feature disparity is the separation of positive and negative
sample distributions. Here, separation sep between two normal
distributions N (p1,0), and N (uz, o) is,

sep = |H’1_,u’2| (1)

o
Let the most predictive feature set for the privi-
leged and unprivileged group be {x1,x9,...,z,.} and

{Zr41, Trt2, ..., T2} respectively. Let, z;¥ indicate the ran-
dom variable corresponding to the feature x; of the members
of group s in class y and p;¥ = E[z;Y]. If i <,
af T~ Nt of) alT ~ N (o))

e — AR

¢ 2
Here, 6(= 0) is a constant. Similarly, we define the distribu-
tions of x,1<ij<o,. Finally, To, <<y ~ ./\f(,ui,a?). Without
loss of generality, we assume i~ < pSt.

We consider a Bayesian classifier , the theoretical optimal
classifier for normally distributed features. Estimating predic-
tion probabilities with Bayesian boundary and multivariate
normal distribution requires generalized chi-squared distribu-
tion estimation [20]. Except for limited cases such as lower-
dimensional linear boundary, the lack of known closed form
probability estimates has led to several computational methods
[20]. As such, we limit analytical results to o; U y (linear
boundary) with » = 1, n = 2 in Section III-B. Consequently,
the unprivileged group is less separable than the privileged if
01 < 09; the groups are equally separable when o = g5. We
show that even in such a simplified case, the model is expected
to produce outcome bias not present in the training data;
computational estimates (omitted due to space constraints)
show this also holds for n > 2.!

u—
7

zuT

i L NN(:UI;MQ + 57 022)

B. Less Separable Unprivileged Group

A Bayesian classifier § computes 1/ and o¢ for each feature
x;. For x € D, the decision boundary of 6 is defined as,

P(5"]x) > P(§ |x) 2)

Here, P(¢"|y™,s) and P(§"|y~,s) are group-wise true pos-
itive rate (T'PR;) and false positive rate (F'PRj). Therefore,
the group-wise selection rate (SRy) is,

P(gtls) = aP@ly" s) + (1 - )P y~,s) 3

where P(§7 |y, s) = P(xly,s)dx (4)

X S.t.
PgFIx)>P(§™ |x)
Applying the conditional independence assumption of the
Naive Bayesian classifier (NBC) to (2), we get (5).
(1= m)A (22— py™)A
2(0f)? 2(09)?

Uhttps://github.com/rakinhaider/Inherent- Al-Bias

+ca 20 5
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Here, ¢, = log ;%-. The range of feature x; that secures
positive prediction is,

bl(xj) <z; <00 i,] € {1,2} St.i#j

)2 () — W) A
) <ca + 72(0é)2 )

avg Q(Ji
J

(6)

Here, b;(z;) = p; A

Equation (4) is expanded as follows,

1

2

ba(x1) — 5’

1
— §Ez1~P(J:fy) [erf <W)]
(7

P(5" |y, s) =

Here, erf is the error function [21]. According to [21],

mu+n

oo [erf (ma +n)] = erf < W) ®

Theoretically, NBC is expected to yield

1 1
0 + 0— - - 0
e A S A E D (A A
According to our assumptions,
o o A
o = gty =t = =
, - A
et =ty -t ==
To simplify the expressions, we define the following notations,
4 0_90.9 2
Cdenom = 2\/§A\/(U?)40’% + (03)40% = 7( ! 2)
Cdenom
A%(09)” A%(0])” 1+ ey
G =—— B — avg — T o
Cdenom Cdenom 2

Let, [ = 1,—,-. Using (7) and (8), we get,

(=1
2

1
2

P(jly,s) = 5 + erf [e1lls—p + cslymy + (—1)'c2]

&)
Having 01 < o9 and pit — p~ A; Vi, according to
the definition of pooled variance, of < o§. Since the error
function is a strictly increasing function, from (9), we conclude
(10
(11)
Equations (10) and (11) concludes that feature disparity results
in imbalanced TPR and FPR. We now show the introduced

disparity in selection rates. More precisely, SR, > SR, when
a < 0.5. Extending (3) with (9), it is equivalent to show that:

P(tly*,p) > Pyt u)
and, P(5" |y~ ,p) < P(" |y~ ,u)

alerf(er + caca) —erf(es + caca)] > (1 —

[erf(c1 — caca) —erf(cs — cacy)]

)

Since o1 # o9, it implies that ¢; # c3. Therefore, from Fig.
1, we conclude that:

d
erf(ci £ cacy) —erf(es £+ cacy) x —erf(x)
dz CavgEC2Ca

(13)

959

1.0
0.5
®
)
t 0.0
[0}
70.5 -
—1.0
T T T T T
—2 -1 0 1 2
X

Fig. 1. Erf Function with A = 10,01 = 2 and 02 = 5

From (12),(13) and the definition of the erf function,

exp (—(Cavg — ¢2¢a)?) @
exp (—(Cavg + 2¢0)?) 1—«
- e4caugCQCa — e < ()

o (degugea — 1)cq <0

<0

(14)

With ¢, < 0, (14) holds only when 4c,,4c2 > 1. Moreover,
o, < of , implies that 4cq.gc2 > 1. Therefore, (12) holds
and we conclude that SR, > SR, when o < 0.5 Similarly,
we can show that SR, < SR, when o > 0.5. (When
a = 0.5, the selection rates are expected to be equal.) To
summarize, an NBC trained on FBD D with disparate group-
wise optimal model accuracy (due to feature disparity) can
result in disparate selection rates among the groups.

C. Less Separable Unprivileged Group with Resource Con-
straints

Resource availability are often not aligned with the demand.
Scarcity of resources compels selection of a sub-sample of
deserving candidates. In contrast, for higher utilization, surplus
resources can distributed with relaxed qualification consid-
erations. Typical approaches to enforce resource constraints
may involve decision boundary modification or probabilistic
ranking with pre-established cut-off for selection. While the
former method approximates the constraint, the latter guar-
antees exact resource allocation. Let, the decision boundary
is constrained with a constant ¢,., that controls the rate of
positive predictions. Using (15), we can obtain (16).

P(g+|x) > Cresp(gib()

PG5y, 5) = 5 + (~1)'3erf(2)

5)
(16)

Here, 2 = c114—p + c3loy + (—1)lea — (—1)l%

Since ¢p.s M s, equation (16) is similar to (9) and the
relationship in (10) and (11) still hold. Later, in Section IV-C2,
we show that probabilistic ranking with pre-established cut-off

further exacerbates the outcome fairness.
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Fig. 2. Example of feature distributions when the unprivileged group is
equally separable to the privileged group, but optimal models are different.
The blue (dotted) and orange (dashed) curves represent positive and negative
sample distributions. The brown (dashdot) curve indicates two distributions
(positive and negative) are overlapping.

TABLE I
MODEL PERFORMANCES ON EQUALLY SEPARABLE UNPRIVILEGED GROUP

o« AC, AC, SR, SR, FPR, FPR,
025 996 993 207 210 004 00.5
050 994 995 501 498 042 03.7
075 995 993 786 788 158 16.7

IV. EXPERIMENTAL RESULTS
A. Fair Balanced Datasets

Real world data typically contain historical unfairness.
Instead, we conduct experiments on synthetic fair balanced
datasets (SFBD). Following Section III, the r group-specific
predictive attributes are sampled conditioned on class labels
whereas the n — 2r non-predictive attributes are uncondi-
tionally sampled from a random normal distribution. For
example, in college admission prediction, privileged samples
are generated by sampling z’fg and 27 from two distinct
distributions. In contrast, :z:’g; 4 and zf., , are sampled from
the same distribution. In this work, each SFBD contains 10000
samples. We limit the discussion to SFBD with 2 attributes
(r = 1,n = 2) due to space limitations. Experiments with
more features produced a similar outcome. We generate one
SFBD for each o € {0.25,0.5,0.75} with p?* = 13,y =
10 and A = 10.

B. Equally Separable Unprivileged Group

We first consider equally separable privileged and unpriv-
ileged group, i.e., 01 = 02 = 2. In the college admission
scenario, this corresponds to org ogpa-. Fig. 2 shows
the distribution of the attributes where the groups are equally
separable. Clearly x;, and zy are equally predictive for the
privileged and the unprivileged group respectively. Table I
denotes the group-wise optimal model accuracy as ACj.
We observe similar AC;, SRy and FPR, for each group
indicating unbiased joint-optimal model.

960
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Fig. 3. Example of feature distributions when the unprivileged group is
less separable than the privileged group. The plot colors and patterns convey

similar meaning as described in Fig. 2.

MODEL PERFORMANCES ON LESS SEPARABLE UNPRIVILEGED GROUP

TABLE II

Method «@ ACp,  ACy,  SRp SRy FPRy  FPRy
025 996 874 211 15.4 00.3 07.2
NBC 050 994 844 499 494 03.0 259
075 995 87.1 783 85.6 13.6 61.3
025 996 874 21.7 19.4 01.5 07.2
SVM 050 994 842 500 49.9 05.9 20.4
075 995 871 773 81.3 14.2 45.6
025 995 874 21.7 21.7 02.0 09.0
DTs 050 994 838 525 57.9 08.6 30.5
075 994 865 77.6 82.7 16.4 49.0
025 995 875 250 21.4 00.3 06.1
PR 050 994 844 50.1 49.1 00.6 14.7
075 995 871 75.6 75.8 02.8 30.2
025 995 875 221 21.8 01.1 10.1
RBC 050 994 844 50.1 49.0 04.7 22.1
075 995 87.1 768 78.4 11.9 432

C. Less Separable Unprivileged Group

1) Without Resource Constraints: The less separable un-
privileged group has higher standard deviation in predictive
attributes. The less separable unprivileged group has org =
o1 =2and ogpa = 0o = 5. Fig. 3 is the distribution of a less
separable unprivileged group, which is similar to Fig. 2 except
that o; < 0. Clearly, 27 is a better predictor for the privileged
group than x5 is for the unprivileged. NBC achieves lower
unprivileged model accuracy on the less separable unprivilegd
group (Table II). We observe significant SR, and FPR,
disparity for oo € {0.25,0.75}. SR, is higher when a = 0.25,
but opposite for a« = 0.75. This confirms the theoretical result
of Section III-B. The higher SR,, at o« = 0.75 is largely due to
the high F'PR,, of 61.28%. In the running example of college
admission predictions, highly selective campuses offer 37.36%
more admission to privileged students. With low selectivity, the
unprivileged individuals are admitted at a 9.44% higher rate,
but a significant portion of acceptances are received by under-
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TABLE III
MODEL PERFORMANCES ON LESS SEPARABLE UNPRIVILEGED GROUP
WITH SCARCE OR SURPLUS RESOURCES

TABLE IV
MODEL PERFORMANCES FOR COMPAS SFBD DE-BIASED BY INFLATING
PRIVILEGED OR UNPRIVILEGED UNFAVORED CLASS

Re-

Inflated

ourens AC, AC, SR, SR, FPR, FPR, s AC, AC, SR, SR, FPR, FPR,
025 924 836 149 051 000 01.3 025 733 740 211 109 155 06.5

Scarce 050 69.6 641 173 027 000 00.3 Priv. 050 618 616 624 416 521 30.3
075 449 414 181 019 000 00.0 075 759 722 890 819 765 68.7
025 450 405 813 987 750 98.3 025 746 725 162 054 120 06.0

Surplus 050  69.6  63.6 824 976 647 95.5 Unpriv. 050 612 612 752 511  67.6 34.0
075 927 832 845 955 378 85.6 075 747 736 917 783 833 68.7

qualified students, with the risk of higher drop-out rate and
additional student loan burden among the unprivileged group.

Table II shows comparison of five classifiers including two
state-of-the-art fairness-aware algorithms. Traditional models
such as SVM and Decision Tree (maximum depth is fixed
at five to reduce over-fitting) (D75) demonstrates similar
behavior to Naive Bayes. Notably, D75 has the lowest false
positive differences among SVM and NBC. Prejudice Re-
mover (PR) [13] and Reduction based classifier (RBC) [16]
appear inherently less biased than traditional models. Although
specifically designed to reduce disparate impact, they still
suffer with respect to false positive rates. A more realistic
experiment, with » > 1 and n > 2 features dampened
group-wise accuracy disparity and selection rate disparity (not
shown due to space constraints). However, false positive rate
disparity still existed and increased with «. The biased and
unbiased outcomes shown in Table II and Table I respectively,
demonstrate that poor feature selection is sufficient to cause
outcome bias in an otherwise fair and balanced dataset.

2) With Resource Constraints: We adapt the probabilistic
predictions of Naive Bayes classifier as rankings and set cut-
off to limit positive (or negative) outcomes. Let, p,.s is the
resource to candidate ratio. We experiment with scarce (p,es =
10%) and surplus (pyes = 90%) resources. We vary the true
need for the resource between o =25%, 50%, and 75%.

Table III shows that with insufficient resources, privileged
individuals are selected 3 times more than unprivileged ones.
This corresponds to selecting more privileged group members
at highly selective prestigious colleges where the unprivileged
intake rate degrades as the competition increases. In contrast,
surplus resources lead to high F'PR, which yields higher
acceptance rate in unprivileged group. We draw parallels
between such model behavior and predatory colleges, that
offers admission to unqualified minorities eventually creating
higher drop out rate and additional student loan burden.

D. Fairly Sampled Balanced COMPAS Dataset

We experiment with the real-world COMPAS dataset [22].
The dataset consists of privileged (also the minority) Cau-
casians and unprivileged African American group where the
base positive (no-recidivism) rate difference between them is
14%. We use a de-biasing algorithm [9] that generates syn-
thetic samples, using the SMOTE algorithm [23], to balance
the group-wise positive rates.

961

We resampled the de-biased COMPAS dataset to obtain
datasets with a € {0.25,0.5,0.75}. We perform a 70:30 train
to test split. Since the preprocessed COMPAS dataset [24]
contains only binary variables, instead of Gaussian we assume
Bernoulli distributed attributes. Although the de-biased dataset
has slight group-wise optimal model accuracy disparity, we
observe significant disparity in group-wise selection rates. It
can be ascribed to both inherent bias and data bias. Consis-
tent with Section IV-C1, the selection rate increases for the
unprivileged group as « increases.

V. SYSTEMIC BI1AS: WHY WE EXPECT THESE OUTCOMES

It could be argued that in an otherwise hypothetical fair
world we would not see accuracy differences between within-
group optimal models. We suggest that this is instead a
common and likely form of systemic bias. ML systems are
generally designed by the privileged group, and the features
considered are the ones that seem natural to that group. The
(privileged) developers are unaware of or do not consider
features that are effective for unprivileged groups, leading to
inherently more accurate systems for the privileged group.

We cite two well-known examples of feature disparity
from medical research. Chest pain or discomfort, most-taught
symptoms of heart attack, turned out to be only dominant in
men. Women are more likely to experience other symptoms,
particularly shortness of breath, nausea, and back or jaw pain
[25]. Similarly, cancer research long focused on lung cancer,
which at the time disproportionately impacted young males
(average age of diagnosis was 66 in 1975-1999 [26]). Public
outcry over this gender disparity led to increased investment
in breast cancer, which became overfunded relative to other
cancers in terms of years of life lost [27]. While not directly a
machine learning issue, we see that investments followed the
stakes of the privileged group. These exemplify the situations
were features used or studied are obvious to (and work well
for) the privileged, eventually harming the unprivileged.

We analyzed the feature set of COMPAS dataset. The
overall privileged to unprivileged group accuracy difference of
NBC on COMPAS dataset is 0.5%. Since COMPAS contains
historical bias, disparity in number of group samples and base-
rates, a small accuracy difference could be a mixed outcome
of feature disparity and other biases. Therefore, we analyze
predictive power disparity of each feature f, PPy, defined as
the prediction accuracy of the models using a single feature f.
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TABLE V
PREDICTIVE POWERS OF EACH FEATURE IN COMPAS DATASET.

Feature f Avg. PPJf Avg. PP}‘ PPDy
juv_fel_count 61.25 50.02 11.23
juv_misd_count 62.15 51.68 10.47
juv_other_count 61.82 53.26 8.56
age_cat 60.91 54.96 5.95
c_charge_degree 60.91 55.18 5.73
priors_count 64.91 60.41 4.50

We obtain predictive power difference of feature f, PPD; =
PP — PP} from group-wise single-feature predictive powers
of f PP;. We perform 10-fold cross-validation to obtain PP}.
Table V shows the maximum absolute PPD; in COMPAS is
11.2%. It suggests that disproportionately predictive features
are commonplace in real-world machine learning datasets.
Two credit-scoring datasets showed similar trends, but are not
shown due to space constraints.

VI. CONCLUSION

In this work, we demonstrate model-induced bias, as op-
posed to data-induced bias. We show that a Bayes-optimal
classifier can be expected to induce biases in the outcome that
are otherwise absent in the data. Experimental results validate
that if group-wise optimal model accuracy for demographic
groups are different, the joint optimal Bayesian model trained
on a fair dataset demonstrates disparate impact. The disparity
in group-wise accuracy can arise from disproportionately
predictive features. We argue feature disparity is a form of
systemic bias, and machine learning exacerbates this bias. It is
tempting to address this by using separate models for different
groups, but this may violate ethical and legal standards (e.g.,
U.S. civil rights laws, E.U. GDPR Article 9). A second
approach is to optimize for fairness rather than accuracy [16],
as in [28] and many more recent works. We suggest that
a better approach is to eliminate the underlying disparity,
using methods such as participatory design to produce better
predictive features for all.
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