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Abstract—Conventional wisdom holds that discrimination in
machine learning is a result of historical discrimination: biased
training data leads to biased models. We show that the reality is
more nuanced; machine learning can be expected to induce types
of bias not found in the training data. In particular, if different
groups have different optimal models, and the optimal model
for one group has higher accuracy, the optimal accuracy joint
model will induce disparate impact even when the training data
does not display disparate impact. We argue that due to systemic
bias, this is a likely situation, and simply ensuring training data
appears unbiased is insufficient to ensure fair machine learning.

Index Terms—Machine Learning, Fairness, Systemic Bias

I. INTRODUCTION

We are witnessing an unprecedented rise in automatic

decision making models with long-lasting impact on human

lives. Examples include hiring [1], bail/sentencing [2], lending

[3], and medical treatment [4]. Machine learning (ML) models

typically target high predictive accuracy. However, debates on

ML model fairness introduce a new element.

Fairness is defined as equal treatment towards individuals

irrespective of their sensitive attributes such as gender, race,

age, etc. Much of the fairness-aware ML research (discussed

more in Section II) assumes that unfair models result from

historical unfairness in the input data. FairML literature com-

monly assumes that the training data contains a dispropor-

tionate number of individuals from the unprivileged group

who received an incorrect/unfavorable outcome, which leads

to group-wise disproportionate predictions.

The key contribution of this paper is to show that ML

models can be expected to produce group-wise inequality even
when the training data is fair. We start with data having

no base rate disparity (equal favorable/unfavorable outcomes

between groups), no majority or minority group (balanced),

and all labels are presumed correct. We show that even with

such fair training data, in some circumstances (e.g. disparately

accurate features or feature disparity) an optimal accuracy

ML model is expected to introduce disparate impact (different

favorable outcome rates between groups) in predictions. In

particular, when the optimal group-wise models are different

we show theoretically that Bayes-optimal ML models can be

expected to introduce such bias; we back this up with empirical

results using multiple machine learning algorithms.

Furthermore, the circumstances where this occurs are a

likely situation due to systemic bias: the features used in build-

ing models tend to be those that work well for the privileged

group. For example, in college admission prediction, Test
Score may be highly predictive for the privileged but perform

poorly on the unprivileged. On the flip side, GPA may be more

effective for the unprivileged group, but not as predictive as

Test Score is for the privileged. In such a scenario, we show

that even when the training data labels are correct and balanced

between privileged and unprivileged groups, a Bayes-optimal

classifier will be biased towards one group.
Specifically, when resources are scarce (as with selective

admission colleges), ML models are expected to dispropor-

tionately favor the privileged group. In contrast, with an

overabundance of resources (as with admissions to some for-

profit schools), ML models disadvantage the unprivileged

group by disproportionately offering resources to the wrong

individuals in the unprivileged group (i.e., saddling individuals

who do not succeed with student loan debt.) This holds even

with equal group-wise base rates in the training data.
We discuss fairness metrics and a summary of literature in

Section II. Section III theoretically establishes model-induced

unfairness. We validate the theory empirically using synthetic

fair datasets in Section IV. Then, we discuss implications

of our findings, their relation to systemic bias, and feature

disparity in real-world datasets in Section V.

II. BACKGROUND

A. Fairness Metrics
Fairness notions are typically defined as group-wise equality

of prediction statistics. Let dataset D = {x(k), s(k), y(k)}Nk=1,

where x, s ∈ {p, u} and y ∈ {+,−} are the set of n features,

the sensitive attribute, and the target variable, respectively. Let,

s = p(= u) or in short p(u) indicates privileged (unprivileged)

group membership. Let the predicted outcome be ŷ. The most

popular fairness metrics, Disparate Impact, concentrates on

base rate equality. It requires equality of positive prediction

probability among the groups, i.e., P (ŷ = +|u) = P (ŷ =
+|p), often presented as a ratio.

DI =
P (ŷ = +|u)
P (ŷ = +|p)

Disparate impact can also be defined as a characteristic of

the dataset rather than the model, DI =
P (y = +|u)
P (y = +|p)

Other definitions include group-conditioned accuracy (e.g.

equalized odds, equal opportunity), and group-conditioned cal-

ibration. For a comprehensive discussion of fairness metrics,

see [5] and [6].
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B. Related Work

The goal of fairness-aware machine learning is to develop

non-discriminatory models with respect to sensitive attributes

such as race, sex, etc. Fairness-interventions are broadly cate-

gorized as pre-processing, in-processing, and post-processing

techniques. Typically, training data bias were re-captured in

traditional models. Therefore, early work emphasized on pre-

processing techniques such as class-label modification [7],

sampling [8], [9], altering distributions to hide correlation

to the sensitive attributes [10], etc. In-processing techniques

involved modification of existing algorithms [11], [12], fair

regularization terms [13], and optimization with fairness con-

straints [14], [15] as fairness-interventions. Agarwal et al.

[16] modeled the fairness-intervention as a turn-taking game

between fairness and accuracy optimizer. Post-processing tech-

niques [12], [17] modify the predicted outcomes or model

parameters to obtain non-discriminatory predictions.

Introduced bias is recently studied in [18] which defined

requisite features as features d-connected to both the utility

function and the sensitive attributes. Requisite features lead

to introduced bias when p-admissible loss functions are op-

timized. Instead, we show requisite features lead to disparate

group-wise classifiers. Consequently, the joint optimized clas-

sifier skews towards the more accurate one. We further report

the impacts of resource constraints on induced bias.

Besides group-fairness, individual fairness (treat similar in-

dividual similarly) [14] and sub-group (middle ground between

individual and group-fairness) [19] fairness were proposed.

Specific fair learning applications, such as natural language

processing, graph embedding, computer vision, and causal

inference are also investigated. A detailed literature survey

can be found in [6].

III. FORMAL ANALYSIS

We show that an optimal classifier built on a fair balanced

dataset (FBD) can still produce unfair outcomes. Let P (p) =
βP (u). When β �= 1, the predictions are dominated by the

majority which was addressed in [9] through oversampling

minority group. In this work, we assume this issue has been

rectified, and show model-induced bias with balanced datasets.

A. Fair Balanced Dataset (FBD)

We assume that our fair, balanced training dataset has

identical group outcomes (i.e., equal base rates and sample

count). While all labels are correct, the features are insufficient

for a “perfect” (100% accuracy) classifier. The only distinction

between the privileged and unprivileged group is that the

Bayes-optimal model on the privileged group is different and

more accurate than the one on unprivileged. Keeping with legal

requirements in many countries, we discard the explicit use of

sensitive attributes to separate the privileged and unprivileged

groups when making predictions. We refer to the disparity in

feature predictivity as feature disparity. We show that feature

disparity leads to outcome bias in the joint optimal model.

Formally, an FBD D has DI(D) = 1 and y �⊥⊥ s. y+(y−)
indicates positive(negative) samples. Then P (y+) = α =

1−P (y−). Assuming normally distributed features, a feature

with higher distinction between samples from different classes

is more predictive. In contrast, a non-predictive feature’s

distribution is independent of its class labels. A proxy measure

of feature disparity is the separation of positive and negative

sample distributions. Here, separation sep between two normal

distributions N (μ1, σ), and N (μ2, σ) is,

sep =
|μ1 − μ2|

σ
(1)

Let the most predictive feature set for the privi-

leged and unprivileged group be {x1, x2, . . . , xr} and

{xr+1, xr+2, . . . , x2r} respectively. Let, xsy
i indicate the ran-

dom variable corresponding to the feature xi of the members

of group s in class y and μsy
i = E[xsy

i ]. If i ≤ r,

xp+
i ∼ N (μp+

i , σ2
i ) xp−

i ∼ N (μp−
i , σ2

i )

xu+
i , xu−

i ∼ N (μ
pavg

i + δ, σ2
i ) μ

pavg

i =
μp+
i + μp−

i

2

Here, δ(= 0) is a constant. Similarly, we define the distribu-

tions of xr+1≤i≤2r. Finally, x2r<i≤n ∼ N (μi, σ
2
i ). Without

loss of generality, we assume μs−
i < μs+

i .
We consider a Bayesian classifier θ, the theoretical optimal

classifier for normally distributed features. Estimating predic-

tion probabilities with Bayesian boundary and multivariate

normal distribution requires generalized chi-squared distribu-

tion estimation [20]. Except for limited cases such as lower-

dimensional linear boundary, the lack of known closed form

probability estimates has led to several computational methods

[20]. As such, we limit analytical results to σi �⊥⊥ y (linear

boundary) with r = 1, n = 2 in Section III-B. Consequently,

the unprivileged group is less separable than the privileged if

σ1 < σ2; the groups are equally separable when σ1 = σ2. We

show that even in such a simplified case, the model is expected

to produce outcome bias not present in the training data;

computational estimates (omitted due to space constraints)

show this also holds for n > 2.1

B. Less Separable Unprivileged Group
A Bayesian classifier θ computes μθ

i and σθ
i for each feature

xi. For x ∈ D, the decision boundary of θ is defined as,

P (ŷ+|x) > P (ŷ−|x) (2)

Here, P (ŷ+|y+, s) and P (ŷ+|y−, s) are group-wise true pos-

itive rate (TPRs) and false positive rate (FPRs). Therefore,

the group-wise selection rate (SRs) is,

P(ŷ+|s) = αP(ŷ+|y+, s) + (1− α)P(ŷ+|y−, s) (3)

where P(ŷ+|y, s) =
∫

x s.t.
P (ŷ+|x)>P (ŷ−|x)

P (x|y, s)dx (4)

Applying the conditional independence assumption of the

Naive Bayesian classifier (NBC) to (2), we get (5).

(x1 − μavg
1 )Δ

2(σθ
1)

2
+

(x2 − μavg
2 )Δ

2(σθ
2)

2
+ cα ≥ 0 (5)

1https://github.com/rakinhaider/Inherent-AI-Bias
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Here, cα = log α
1−α . The range of feature xi that secures

positive prediction is,

bi(xj) ≤ xi < ∞ i, j ∈ {1, 2} s.t. i �= j (6)

Here, bi(xj) = μavg
i − 2(σθ

i )
2

Δ

(
cα +

(xj − μavg
j )Δ

2(σθ
j )

2

)

Equation (4) is expanded as follows,

P(ŷ+|y, s) = 1

2
− 1

2
Ex1∼P (xsy

1 )

[
erf

(
b2(x1)− μsy

2√
2σ2

)]
(7)

Here, erf is the error function [21]. According to [21],

Ex∼N (μ,σ2) [erf (mx+ n)] = erf

(
mμ+ n√
1 + 2m2σ2

)
(8)

Theoretically, NBC is expected to yield

μθ+
i =

1

2
(μp+

i + μu+
i ); μθ−

i =
1

2
(μp−

i + μu−
i ); σθ

i ≥ σi

According to our assumptions,

μ
pavg

2 = μp+
2 μ

pavg

1 − μp+
1 = −Δ

2

μ
uavg

1 = μp+
1 μ

uavg

2 − μp+
2 = −Δ

2

To simplify the expressions, we define the following notations,

cdenom = 2
√
2Δ

√
(σθ

1)
4σ2

2 + (σθ
2)

4σ2
1 c2 =

4(σθ
1σ

θ
2)

2

cdenom

c1 =
Δ2(σθ

2)
2

cdenom
c3 =

Δ2(σθ
1)

2

cdenom
cavg =

c1 + c3
2

Let, l = 1y=y− . Using (7) and (8), we get,

P(ŷ+|y, s) = 1

2
+

(−1)l

2
erf

[
c11s=p + c31s=u + (−1)lc2

]
(9)

Having σ1 < σ2 and μs+
i − μs−

i = Δ; ∀i, according to

the definition of pooled variance, σθ
1 < σθ

2 . Since the error

function is a strictly increasing function, from (9), we conclude

P (ŷ+|y+, p) > P (ŷ+|y+, u) (10)

and, P (ŷ+|y−, p) < P (ŷ+|y−, u) (11)

Equations (10) and (11) concludes that feature disparity results

in imbalanced TPR and FPR. We now show the introduced

disparity in selection rates. More precisely, SRp > SRu when

α < 0.5. Extending (3) with (9), it is equivalent to show that:

α [erf(c1 + c2cα)− erf(c3 + c2cα)] > (1− α)

[erf(c1 − c2cα)− erf(c3 − c2cα)]
(12)

Since σ1 �= σ2, it implies that c1 �= c3. Therefore, from Fig.

1, we conclude that:

erf(c1 ± c2cα)− erf(c3 ± c2cα) ∝ d

dx
erf(x)

∣∣∣∣
cavg±c2cα

(13)

−2 −1 0 1 2
x
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0.0

0.5

1.0

e
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)
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c
3 c
1
+
c
2 ∗

c
α

c
3
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c
2 ∗

c
α

c
3 −

c
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c
α

c
1 −

c
2 ∗

c
α

Fig. 1. Erf Function with Δ = 10, σ1 = 2 and σ2 = 5

From (12),(13) and the definition of the erf function,

exp (−(cavg − c2cα)
2)

exp (−(cavg + c2cα)2)
− α

1− α
< 0

∴ e4cavgc2cα − ecα < 0

∴ (4cavgc2 − 1)cα < 0 (14)

With cα < 0, (14) holds only when 4cavgc2 > 1. Moreover,

σi < σθ
i , implies that 4cavgc2 > 1. Therefore, (12) holds

and we conclude that SRp > SRu when α < 0.5 Similarly,

we can show that SRp < SRu when α > 0.5. (When

α = 0.5, the selection rates are expected to be equal.) To

summarize, an NBC trained on FBD D with disparate group-

wise optimal model accuracy (due to feature disparity) can

result in disparate selection rates among the groups.

C. Less Separable Unprivileged Group with Resource Con-
straints

Resource availability are often not aligned with the demand.

Scarcity of resources compels selection of a sub-sample of

deserving candidates. In contrast, for higher utilization, surplus

resources can distributed with relaxed qualification consid-

erations. Typical approaches to enforce resource constraints

may involve decision boundary modification or probabilistic

ranking with pre-established cut-off for selection. While the

former method approximates the constraint, the latter guar-

antees exact resource allocation. Let, the decision boundary

is constrained with a constant cres that controls the rate of

positive predictions. Using (15), we can obtain (16).

P (ŷ+|x) > cresP (ŷ−|x) (15)

P(ŷ+|y, s) = 1

2
+ (−1)l

1

2
erf(z) (16)

Here, z = c11s=p + c31s=u + (−1)lc2 − (−1)l log cres
cdenom

Since cres �⊥⊥ s, equation (16) is similar to (9) and the

relationship in (10) and (11) still hold. Later, in Section IV-C2,

we show that probabilistic ranking with pre-established cut-off

further exacerbates the outcome fairness.
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Fig. 2. Example of feature distributions when the unprivileged group is
equally separable to the privileged group, but optimal models are different.
The blue (dotted) and orange (dashed) curves represent positive and negative
sample distributions. The brown (dashdot) curve indicates two distributions
(positive and negative) are overlapping.

TABLE I
MODEL PERFORMANCES ON EQUALLY SEPARABLE UNPRIVILEGED GROUP

α ACp ACu SRp SRu FPRp FPRu

0.25 99.6 99.3 20.7 21.0 00.4 00.5
0.50 99.4 99.5 50.1 49.8 04.2 03.7
0.75 99.5 99.3 78.6 78.8 15.8 16.7

IV. EXPERIMENTAL RESULTS

A. Fair Balanced Datasets

Real world data typically contain historical unfairness.

Instead, we conduct experiments on synthetic fair balanced

datasets (SFBD). Following Section III, the r group-specific

predictive attributes are sampled conditioned on class labels

whereas the n − 2r non-predictive attributes are uncondi-

tionally sampled from a random normal distribution. For

example, in college admission prediction, privileged samples

are generated by sampling xp+
TS and xp−

TS from two distinct

distributions. In contrast, xp+
GPA and xp+

GPA are sampled from

the same distribution. In this work, each SFBD contains 10000

samples. We limit the discussion to SFBD with 2 attributes

(r = 1, n = 2) due to space limitations. Experiments with

more features produced a similar outcome. We generate one

SFBD for each α ∈ {0.25, 0.5, 0.75} with μp+
1 = 13, μu+

2 =
10 and Δ = 10.

B. Equally Separable Unprivileged Group

We first consider equally separable privileged and unpriv-

ileged group, i.e., σ1 = σ2 = 2. In the college admission

scenario, this corresponds to σTS = σGPA. Fig. 2 shows

the distribution of the attributes where the groups are equally

separable. Clearly x1 and x2 are equally predictive for the

privileged and the unprivileged group respectively. Table I

denotes the group-wise optimal model accuracy as ACs.

We observe similar ACs, SRs and FPRs for each group

indicating unbiased joint-optimal model.
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Fig. 3. Example of feature distributions when the unprivileged group is
less separable than the privileged group. The plot colors and patterns convey
similar meaning as described in Fig. 2.

TABLE II
MODEL PERFORMANCES ON LESS SEPARABLE UNPRIVILEGED GROUP

Method α ACp ACu SRp SRu FPRp FPRu

NBC
0.25 99.6 87.4 21.1 15.4 00.3 07.2
0.50 99.4 84.4 49.9 49.4 03.0 25.9
0.75 99.5 87.1 78.3 85.6 13.6 61.3

SVM
0.25 99.6 87.4 21.7 19.4 01.5 07.2
0.50 99.4 84.2 50.0 49.9 05.9 20.4
0.75 99.5 87.1 77.3 81.3 14.2 45.6

DT5

0.25 99.5 87.4 21.7 21.7 02.0 09.0
0.50 99.4 83.8 52.5 57.9 08.6 30.5
0.75 99.4 86.5 77.6 82.7 16.4 49.0

PR
0.25 99.5 87.5 25.0 21.4 00.3 06.1
0.50 99.4 84.4 50.1 49.1 00.6 14.7
0.75 99.5 87.1 75.6 75.8 02.8 30.2

RBC
0.25 99.5 87.5 22.1 21.8 01.1 10.1
0.50 99.4 84.4 50.1 49.0 04.7 22.1
0.75 99.5 87.1 76.8 78.4 11.9 43.2

C. Less Separable Unprivileged Group

1) Without Resource Constraints: The less separable un-

privileged group has higher standard deviation in predictive

attributes. The less separable unprivileged group has σTS =
σ1 = 2 and σGPA = σ2 = 5. Fig. 3 is the distribution of a less

separable unprivileged group, which is similar to Fig. 2 except

that σ1 < σ2. Clearly, x1 is a better predictor for the privileged

group than x2 is for the unprivileged. NBC achieves lower

unprivileged model accuracy on the less separable unprivilegd

group (Table II). We observe significant SRs and FPRs

disparity for α ∈ {0.25, 0.75}. SRp is higher when α = 0.25,

but opposite for α = 0.75. This confirms the theoretical result

of Section III-B. The higher SRu at α = 0.75 is largely due to

the high FPRu of 61.28%. In the running example of college

admission predictions, highly selective campuses offer 37.36%

more admission to privileged students. With low selectivity, the

unprivileged individuals are admitted at a 9.44% higher rate,

but a significant portion of acceptances are received by under-
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TABLE III
MODEL PERFORMANCES ON LESS SEPARABLE UNPRIVILEGED GROUP

WITH SCARCE OR SURPLUS RESOURCES

Re-

sources
α ACp ACu SRp SRu FPRp FPRu

Scarce
0.25 92.4 83.6 14.9 05.1 00.0 01.3
0.50 69.6 64.1 17.3 02.7 00.0 00.3
0.75 44.9 41.4 18.1 01.9 00.0 00.0

Surplus
0.25 45.0 40.5 81.3 98.7 75.0 98.3
0.50 69.6 63.6 82.4 97.6 64.7 95.5
0.75 92.7 83.2 84.5 95.5 37.8 85.6

qualified students, with the risk of higher drop-out rate and

additional student loan burden among the unprivileged group.

Table II shows comparison of five classifiers including two

state-of-the-art fairness-aware algorithms. Traditional models

such as SVM and Decision Tree (maximum depth is fixed

at five to reduce over-fitting) (DT5) demonstrates similar

behavior to Naive Bayes. Notably, DT5 has the lowest false

positive differences among SVM and NBC. Prejudice Re-

mover (PR) [13] and Reduction based classifier (RBC) [16]

appear inherently less biased than traditional models. Although

specifically designed to reduce disparate impact, they still

suffer with respect to false positive rates. A more realistic

experiment, with r > 1 and n > 2 features dampened

group-wise accuracy disparity and selection rate disparity (not

shown due to space constraints). However, false positive rate

disparity still existed and increased with α. The biased and

unbiased outcomes shown in Table II and Table I respectively,

demonstrate that poor feature selection is sufficient to cause

outcome bias in an otherwise fair and balanced dataset.

2) With Resource Constraints: We adapt the probabilistic

predictions of Naive Bayes classifier as rankings and set cut-

off to limit positive (or negative) outcomes. Let, pres is the

resource to candidate ratio. We experiment with scarce (pres =
10%) and surplus (pres = 90%) resources. We vary the true

need for the resource between α =25%, 50%, and 75%.

Table III shows that with insufficient resources, privileged

individuals are selected 3 times more than unprivileged ones.

This corresponds to selecting more privileged group members

at highly selective prestigious colleges where the unprivileged

intake rate degrades as the competition increases. In contrast,

surplus resources lead to high FPRu which yields higher

acceptance rate in unprivileged group. We draw parallels

between such model behavior and predatory colleges, that

offers admission to unqualified minorities eventually creating

higher drop out rate and additional student loan burden.

D. Fairly Sampled Balanced COMPAS Dataset

We experiment with the real-world COMPAS dataset [22].

The dataset consists of privileged (also the minority) Cau-
casians and unprivileged African American group where the

base positive (no-recidivism) rate difference between them is

14%. We use a de-biasing algorithm [9] that generates syn-

thetic samples, using the SMOTE algorithm [23], to balance

the group-wise positive rates.

TABLE IV
MODEL PERFORMANCES FOR COMPAS SFBD DE-BIASED BY INFLATING

PRIVILEGED OR UNPRIVILEGED UNFAVORED CLASS

Inflated

Class
α ACp ACu SRp SRu FPRp FPRu

Priv.
0.25 73.3 74.0 21.1 10.9 15.5 06.5
0.50 61.8 61.6 62.4 41.6 52.1 30.3
0.75 75.9 72.2 89.0 81.9 76.5 68.7

Unpriv.
0.25 74.6 72.5 16.2 05.4 12.0 06.0
0.50 61.2 61.2 75.2 51.1 67.6 34.0
0.75 74.7 73.6 91.7 78.3 83.3 68.7

We resampled the de-biased COMPAS dataset to obtain

datasets with α ∈ {0.25, 0.5, 0.75}. We perform a 70:30 train

to test split. Since the preprocessed COMPAS dataset [24]

contains only binary variables, instead of Gaussian we assume

Bernoulli distributed attributes. Although the de-biased dataset

has slight group-wise optimal model accuracy disparity, we

observe significant disparity in group-wise selection rates. It

can be ascribed to both inherent bias and data bias. Consis-

tent with Section IV-C1, the selection rate increases for the

unprivileged group as α increases.

V. SYSTEMIC BIAS: WHY WE EXPECT THESE OUTCOMES

It could be argued that in an otherwise hypothetical fair

world we would not see accuracy differences between within-

group optimal models. We suggest that this is instead a

common and likely form of systemic bias. ML systems are

generally designed by the privileged group, and the features

considered are the ones that seem natural to that group. The

(privileged) developers are unaware of or do not consider

features that are effective for unprivileged groups, leading to

inherently more accurate systems for the privileged group.

We cite two well-known examples of feature disparity

from medical research. Chest pain or discomfort, most-taught

symptoms of heart attack, turned out to be only dominant in

men. Women are more likely to experience other symptoms,

particularly shortness of breath, nausea, and back or jaw pain

[25]. Similarly, cancer research long focused on lung cancer,

which at the time disproportionately impacted young males

(average age of diagnosis was 66 in 1975-1999 [26]). Public

outcry over this gender disparity led to increased investment

in breast cancer, which became overfunded relative to other

cancers in terms of years of life lost [27]. While not directly a

machine learning issue, we see that investments followed the

stakes of the privileged group. These exemplify the situations

were features used or studied are obvious to (and work well

for) the privileged, eventually harming the unprivileged.

We analyzed the feature set of COMPAS dataset. The

overall privileged to unprivileged group accuracy difference of

NBC on COMPAS dataset is 0.5%. Since COMPAS contains

historical bias, disparity in number of group samples and base-

rates, a small accuracy difference could be a mixed outcome

of feature disparity and other biases. Therefore, we analyze

predictive power disparity of each feature f , PPf , defined as

the prediction accuracy of the models using a single feature f .
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TABLE V
PREDICTIVE POWERS OF EACH FEATURE IN COMPAS DATASET.

Feature f Avg. PP p
f Avg. PPu

f PPDf

juv fel count 61.25 50.02 11.23
juv misd count 62.15 51.68 10.47
juv other count 61.82 53.26 8.56

age cat 60.91 54.96 5.95
c charge degree 60.91 55.18 5.73

priors count 64.91 60.41 4.50

We obtain predictive power difference of feature f , PPDf =
PP p

f −PPu
f from group-wise single-feature predictive powers

of f PP s
f . We perform 10-fold cross-validation to obtain PP s

f .

Table V shows the maximum absolute PPDf in COMPAS is

11.2%. It suggests that disproportionately predictive features

are commonplace in real-world machine learning datasets.

Two credit-scoring datasets showed similar trends, but are not

shown due to space constraints.

VI. CONCLUSION

In this work, we demonstrate model-induced bias, as op-

posed to data-induced bias. We show that a Bayes-optimal

classifier can be expected to induce biases in the outcome that

are otherwise absent in the data. Experimental results validate

that if group-wise optimal model accuracy for demographic

groups are different, the joint optimal Bayesian model trained

on a fair dataset demonstrates disparate impact. The disparity

in group-wise accuracy can arise from disproportionately

predictive features. We argue feature disparity is a form of

systemic bias, and machine learning exacerbates this bias. It is

tempting to address this by using separate models for different

groups, but this may violate ethical and legal standards (e.g.,

U.S. civil rights laws, E.U. GDPR Article 9). A second

approach is to optimize for fairness rather than accuracy [16],

as in [28] and many more recent works. We suggest that

a better approach is to eliminate the underlying disparity,

using methods such as participatory design to produce better

predictive features for all.
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