
SIAM J. APPLIED DYNAMICAL SYSTEMS © 2023 Society for Industrial and Applied Mathematics
Vol. 22, No. 3, pp. 1523–1551

The Adaptive Spectral Koopman Method for Dynamical Systems*

Bian Li†, Yian Ma‡, J. Nathan Kutz§, and Xiu Yang†

Abstract. Dynamical systems have a wide range of applications in mechanics, electrical engineering, chem-
istry, and so on. In this work, we propose the adaptive spectral Koopman (ASK) method to solve
nonlinear autonomous dynamical systems. This novel numerical method leverages the spectral-
collocation (i.e., pseudospectral) method and properties of the Koopman operator to obtain the
solution of a dynamical system. Specifically, this solution is represented as a linear combination of
the multiplication of the Koopman operator’s eigenfunctions and eigenvalues, and these eigenpairs
are approximated by the spectral method. Unlike conventional time evolution algorithms such as
Euler’s scheme and the Runge–Kutta scheme, ASK is mesh free and hence is more flexible when
evaluating the solution. Numerical experiments demonstrate high accuracy of ASK for solving one-,
two-, and three-dimensional dynamical systems.

Key words. dynamical system, Koopman operator, spectral-collocation method

MSC codes. 65L05, 65L15, 58C40

DOI. 10.1137/22M1487941

1. Introduction. The Koopman operator, introduced in 1931 by B. O. Koopman [12],
is an infinite-dimensional linear operator that describes the evolution of a set of observables
rather than the system state itself. The Koopman operator approach to nonlinear dynamical
systems has attracted considerable attention recently, as it provides a rigorous method for
globally linearizing the system dynamics. Specifically, because it is a linear operator, one
can define its eigenvalues, eigenfunctions, and modes and use them to represent dynamically
interpretable low-dimensional embeddings of high-dimensional state spaces, which helps to
understand the behavior of the underlying system and construct solutions through linear
superposition [4]. In this procedure, the system dynamics is typically decomposed into linearly
independent Koopman modes even if the system is nonlinear. In particular, as pointed out in

*Received by the editors March 31, 2022; accepted for publication (in revised form) by K. Lin January 23, 2023;
published electronically July 12, 2023.

https://doi.org/10.1137/22M1487941
Funding: The fourth author was supported by the U.S. Department of Energy (DOE), Office of Science, Office

of Advanced Scientific Computing Research (ASCR), as part of Multifaceted Mathematics for Rare, Extreme Events
in Complex Energy and Environment Systems (MACSER). The first author was partially supported by Los Alamos
National Laboratory. The second author was supported in part by National Science Foundation (NSF) grants NSF-
SCALE MoDL(2134209) and NSF-CCF-2112665 and the Facebook research award. The work of the third author
was supported in part by NSF AI Institute for Dynamical Systems (dynamicsai.org) grant 2112085.

†
Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18015 USA (bil215@

lehigh.edu, xiy518@lehigh.edu).
‡
Halicioğlu Data Science Institute and Department of Computer Science and Engineering, University of California

San Diego, La Jolla, CA 92093 USA (yianma@ucsd.edu).
§
Department of Applied Mathematics, University of Washington, Seattle, WA 98195 USA (kutz@uw.edu).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1523

D
o
w

n
lo

ad
ed

 1
0
/1

8
/2

4
 t

o
 1

3
7
.1

1
0
.2

0
6
.2

1
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1524 BIAN LI, YIAN MA, J. NATHAN KUTZ, AND XIU YANG

[20, 13, 21], if the dynamics is ergodic but nonchaotic, the spectrum of the Koopman operator
in properly defined spaces does not contain continuous spectra, and the observables of the
system can be represented as a linear combination of eigenfunctions associated with discrete
eigenvalues of the Koopman operator.

The Koopman operator provides powerful analytic tools to understand behaviors of dy-
namical systems. For example, dynamical evolution of a finite-dimensional system described
by ODEs can be studied by conducting Koopman mode analysis. Such analysis starts with
a choice of a set of linearly independent observables, and the Koopman operator is then an-
alyzed through its action on the subspace spanned by the chosen observables [19]. Moreover,
it is also shown that the Koopman operator approach can be formally generalized to infinite-
dimensional dynamical systems described by PDEs, providing new perspectives on the analysis
and control of these nonlinear spatiotemporal dynamics [37, 22, 24, 21]. In addition, ergodic
quotients and eigenquotients allow the Koopman operator to be used for the extraction and
analysis of invariant and periodic structures in the state space [5]. Moreover, Mezić provided
a Hilbert space setting for spectral analysis of disspative dynamical systems and proved that
the spectrum of the Koopman operator on these spaces is the closure of the product of the
“on-attractor” and “off-attractor” spectra [20].

On the computational side, most existing numerical schemes motivated by the Koopman
operator are categorized as data-driven methods, as they use spatiotemporal data to approx-
imate a few of the leading Koopman eigenvalues, eigenfunctions, and modes. In particular,
the emerging computational method dynamic mode decomposition (DMD) [26, 27, 32, 25, 15,
22, 1] as well as its variant, such as extended DMD (EDMD) [36], uses snapshots of a dy-
namical system to extract temporal features as well as correlated spatial activity via matrix
decomposition techniques. DMD and EDMD produce results for any appropriately formatted
set of data, but connecting these outputs to the Koopman operator requires additional knowl-
edge about the nature of the underlying system in that the system should be autonomous.
Later, a modified EDMD [35] was proposed to compensate for the effects of system actuation
when it is used to explore state space during the data collection, reestablishing the connec-
tion between EDMD and the Koopman operator in this more general class of data sets. A
review of many of the DMD variants for approximating the Koopman operator can be found
in Brunton et al. [4]. Moreover, theoretical results of identifying Koopman eigenfrequencies
and eigenfunctions from a discretely sampled time series generated by such a system with
unknown dynamics is provided in [7] for a Fourier function.

Our aim in this paper is to provide a numerical method based on the spectral-collocation
method (i.e., the pseudospectral method) to implement the Koopman operator approach to
solving nonlinear ODEs. Unlike the data-driven methods, this approach is on the other end
of the “spectrum” of numerical methods, as it is based on the classical spectral method [8,
31]. The main idea is to approximate eigenvalues, eigenfunctions, and modes of the Koop-
man operator based on its discretized form. Specifically, this method uses the differentiation
matrix in the spectral method to approximate the generator of the Koopman operator and
then conducts eigendecomposition numerically to obtain eigenvalues and eigenvectors that
approximate the Koopman operator’s eigenvalues and eigenfunctions, respectively. Here, each
element of an eigenvector is the approximation of the associated eigenfunction evaluated at
a collocation point. The modes are approximated by the computed eigenvalues, eigenvectors,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

8
/2

4
 t

o
 1

3
7
.1

1
0
.2

0
6
.2

1
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

THE ASK METHOD FOR DYNAMICAL SYSTEMS 1525

and the initial state (or observable). This work focuses on autonomous systems, and it would
serve as a starting point for a new framework of numerical methods for dynamical systems.

The paper is organized as follows. Background topics are introduced in section 2. Then
the adaptive spectral Koopman (ASK) method is discussed in detail in section 3. We present
numerical results in section 4, and the discussion and conclusions follow in section 5.

2. Background.

2.1. Koopman operator. Borrowing notions from [14], we consider an autonomous system
described by the ODEs

(2.1)
dx

dt
= f(x),

where the state x= (x1, x2, . . . , xd)
> belongs to a d-dimensional smooth manifold M and the

dynamics f : M → M does not explicitly depend on time t. Here, f is a possibly nonlinear
vector-valued smooth function of the same dimension as x. In many studies, we are concerned
with the behavior of observables on the state space. To this end, we define an observable to be
a scalar function g :M →R, where g is an element of some function space G (e.g., G =L2(M)
as in [19]). The flow map Ft : M → M induced by the dynamical system (2.1) depicts the
evolution of the system as

(2.2) x(t0 + t) =Ft(x(t0)) =x(t0) +

∫ t0+t

t0

f(x(s))ds.

Now we define the Koopman operator for continuous-time dynamical systems as follows [20].

Definition 2.1. Consider a family of operators {Kt}t≥0 acting on the space of observables

so that

Ktg(x0) = g(Ft(x0)),

where x0 =x(t0). We call the family of operators Kt indexed by time t the Koopman operators

of the continuous-time system (2.1).

By definition, Kt is a linear operator acting on the function space G for each fixed t.
Moreover, {Kt} form a semigroup.

2.2. Infinitesimal generator. The Koopman spectral theory [19, 26] reveals properties
that enable the Koopman operator to convert nonlinear finite-dimensional dynamics into linear
infinite-dimensional dynamics. A key component in such spectral analysis is the infinitesimal
generator (or generator for brevity) of the Koopman operator. Specifically, the generator of
the Koopman operator Kt, denoted as K, is given by

Kg= lim
t→0

Ktg− g

t
.(2.3)

For any smooth function g, (2.3) implies that

Kg(x) =
dg(x)

dt
=∇g(x) ·

dx

dt
.(2.4)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

8
/2

4
 t

o
 1

3
7
.1

1
0
.2

0
6
.2

1
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1526 BIAN LI, YIAN MA, J. NATHAN KUTZ, AND XIU YANG

Denoting ϕ an eigenfunction of K and λ the eigenvalue associated with ϕ, we have

Kϕ(x) = λϕ(x).(2.5)

Thus,

λϕ(x) =Kϕ(x) =
dϕ(x)

dt
.(2.6)

This implies that ϕ(x(t0 + t)) = eλtϕ(x(t0)), i.e.,

(2.7) Ktϕ(x(t0)) = eλtϕ(x(t0)).

Therefore, ϕ is an eigenfunction of Kt associated with eigenvalue λ. Of note, following the
conventional notation, the eigenpair for Kt is considered as (ϕ,λ) instead of (ϕ, eλt).

Now suppose g exists in the function space spanned by all the eigenfunctions ϕj (associated
with eigenvalues λj) of K, i.e., g(x) =

∑

j cjϕj(x). Then

Kt[g(x(t0))] =Kt





∑

j

cjϕj(x(t0))



=
∑

j

cjKt[ϕj(x(t0))].(2.8)

Hence,

(2.9) g(x(t0 + t)) =
∑

j

cjϕj(x(t0))e
λjt.

Similarly, if we choose a vector-valued observable g : M → Rd with g := (g1(x), g2(x), . . . ,
gd(x))

>, the system of observables becomes

dg(x)

dt
=Kg(x) =











Kg1(x)
Kg2(x)

...
Kgd(x)











=
∑

j

λjϕj(x)cj ,(2.10)

where cj ∈ Cd is called the jth Koopman mode with cj := (c1j , c
2
j , . . . , c

d
j)

>. In general, there
is no universal guide for choosing observables, as this choice is problem dependent. A good
set of observables can lead to a system that is significantly easier to solve. An example from
[3, 18] is illustrated in Appendix A.

We finalize the introduction of the Koopman operator with the following simple example.
Consider the system dx

dt = µx with x,µ ∈ R and µ 6= 0. Then one can easily verify that
ϕn(x) := xn is an eigenfunction of the Koopman operator associated with this dynamical
system, and the corresponding eigenvalue is λn = nµ with n ∈ N+ (a similar example is
presented in [6]). According to (2.9), by setting g(x) = x and letting x(0) = x0, we have

x(t) =

∞
∑

j=1

cjϕj(x0)e
λjt =

∞
∑

j=1

cjx
j
0e

µjt.

Setting t= 0 gives x0 = x(0) =
∑∞

j=1 cjx
j
0, which indicates that c1 = 1 and cj = 0 when j 6= 1.

Therefore, we obtain the solution of the ODE as x(t) = x0e
µt.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

8
/2

4
 t

o
 1

3
7
.1

1
0
.2

0
6
.2

1
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

THE ASK METHOD FOR DYNAMICAL SYSTEMS 1527

3. ASK method. In this section, we introduce the ASK method, which is a numerical
method based on the Koopman operator and the spectral method to solve ODE systems.
Before describing details of this method, we introduce the notations used in this algorithm.
Let x(t) denote the solution of an ODE system with an initial condition x(t0) =x0. Assuming
that t0 = 0 in (2.2), we consider solutions in time interval [0, T] with T > 0. The letter n
denotes the number of “check points” (see details in subsection 3.4). The radius of the
neighborhood of x(t) is denoted by r, while γ is a parameter that controls the update of the
neighborhood.

3.1. Finite-dimensional approximation. Based on the preliminaries introduced in sub-
section 2.2, we aim to identify the following truncated approximation of (2.9):

(3.1) g(x(t))≈ gN (x(t)) =

N
∑

j=0

c̃jϕ
N
j (x0)e

λ̃jt,

where ϕN
j are polynomial approximations of ϕj and λ̃j and c̃j approximate λj and cj , re-

spectively. Next, because dx
dt = f(x), (2.4) and (2.6) indicate that for any eigenfunction ϕ,

Kϕ= f · ∇ϕ=

(

f1
∂ϕ

∂x1
+ f2

∂ϕ

∂x2
+ · · ·+ fd

∂ϕ

∂xd

)

=

(

f1
∂

∂x1
+ f2

∂

∂x2
+ · · ·+ fd

∂

∂xd

)

(ϕ).

Thus,

K= f1
∂

∂x1
+ f2

∂

∂x2
+ · · ·+ fd

∂

∂xd
.(3.2)

Here, we consider the case with d ≤ 3 and adopt the approaches in the spectral-collocation
method. Specifically, our algorithm uses Gauss–Lobatto points for the interpolation of ϕ and
approximates (partial) derivatives with differentiation matrices (see e.g., [11, 28, 10]) in (3.2).
Consequently, the first step is to discretize K.

(1) When d= 1. Let {ξi}
N
i=0 be the Gauss–Lobatto points and the polynomial interpola-

tion of ϕ(x) be

ϕ(x)≈ϕN (x) :=

N
∑

i=0

ϕN (ξi)Pi(x),

where the basis functions Pj are Lagrange polynomials satisfying Pj(ξi) = δij and δij
is the Kronecker delta function. Namely, ϕN (x) is the projection of ϕ(x) on the space
span{Pj(x)}

N
j=0. Letting ϕN = [ϕN (ξ0), ϕ

N (ξ1), . . . , ϕ
N (ξN)]>, we have

KϕN = diag(f(ξ0), f(ξ1), . . . , f(ξN))DϕN :=KϕN ,(3.3)

where D is the differentiation matrix associated with {ξi}
N
i=0 and K is an

(N + 1) × (N + 1) matrix. Here, we abuse the notation to let KϕN =
[KϕN (ξ0),KϕN (ξ1), . . . ,KϕN (ξN)]>, and similar notations are used in the following
d= 2,3 cases.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

8
/2

4
 t

o
 1

3
7
.1

1
0
.2

0
6
.2

1
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1528 BIAN LI, YIAN MA, J. NATHAN KUTZ, AND XIU YANG

(2) When d = 2. Let {ξi}
N
i=0 and {ηj}

N
j=0 be the Gauss–Lobatto points of x1 and x2,

respectively. Every eigenfunction ϕ is now a bivariate function whose polynomial
interpolation ϕN is

ϕ(x1, x2)≈ϕN (x1, x2) :=

N
∑

i=0

N
∑

j=0

ϕN (ξi, ηj)Pi(x1)Pj(x2).

Hence, we define a matrix ΦN as

ΦN =











ϕN (ξ0, η0) ϕN (ξ0, η1) · · · ϕN (ξ0, ηN)
ϕN (ξ1, η0) ϕN (ξ1, η1) · · · ϕN (ξ1, ηN)

...
...

. . .
...

ϕN (ξN , η0) ϕN (ξN , η1) · · · ϕN (ξN , ηN)











.

Let D1 and D2 be the differentiation matrices for x1 and x2, respectively, and F1 and
F2 be the matrices of f1 and f2 evaluated at (ξi, ηj). Also, we denote KΦN the matrix
with elements (KΦN)ij =KΦN (ξi, ηj). Then KΦN can be computed as

KΦN =F1 �
(

D1Φ
N
)

+F2 �
(

ΦND>
2

)

,

where � denotes the Hadamard product. In the computation, we vectorize ΦN (along
columns) to obtain

Kvec(ΦN) = vec(F1)�
(

(I⊗D1)vec(Φ
N)

)

+ vec(F2)�
(

(D2 ⊗ I)vec(ΦN)
)

=
[

diag(vec(F1))(I⊗D1) + diag(vec(F2))(D2 ⊗ I)
](

vec(ΦN)
)

:=Kvec(ΦN),

where ⊗ denotes the Kronecker product, I is the identity matrix, and K is an (N +
1)2 × (N + 1)2 matrix.

(3) When d = 3. Let {ξi}
N
i=0, {ηj}

N
j=0, and {ζk}

N
k=0 be the Gauss–Lobatto points of x1,

x2, and x3, respectively. The collocation points are then (ξi, ηj , ζk). In this case, ϕ is
approximated as

ϕ(x1, x2, x3)≈ϕN (x1, x2, x3) :=

N
∑

i=0

N
∑

j=0

N
∑

k=0

ϕN (ξi, ηj , ζk)Pi(x1)Pj(x2)Pk(x3).

Hence, the values of ϕN at the collocation points can be represented by a tensor ΦN

whose frontal slices are written as

ΦN (:, :, k) =











ϕN (ξ0, η0, ζk) ϕN (ξ0, η1, ζk) · · · ϕN (ξ0, ηN , ζk)
ϕN (ξ1, η0, ζk) ϕN (ξ1, η1, ζk) · · · ϕN (ξ1, ηN , ζk)

...
...

. . .
...

ϕN (ξN , η0, ζk) ϕN (ξN , η1, ζk) · · · ϕN (ξN , ηN , ζk)











.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

8
/2

4
 t

o
 1

3
7
.1

1
0
.2

0
6
.2

1
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

THE ASK METHOD FOR DYNAMICAL SYSTEMS 1529

With the n-mode multiplication in tensor algebra, we arrive at a compact representa-
tion of the approximation,

KΦN =F1 �
(

ΦN ×1 D1

)

+F2 �
(

ΦN ×2 D2

)

+F3 �
(

ΦN ×3 D3

)

,

where ×p denotes the mode-p tensor-matrix multiplication. Here, D1,D2,D3 are
the differentiation matrices, and F1,F2,F3 denote the tensors resulting from f1, f2, f3
evaluated at (ξi, ηj , ζk). Following the same idea of vectorization, we rewrite the tensor
representation as

Kvec(ΦN) = vec(F1)�
(

(I⊗ I⊗D1)vec(Φ
N)

)

+ vec(F2)�
(

(I⊗D2 ⊗ I)vec(ΦN)
)

+ vec(F3)�
(

(D3 ⊗ I⊗ I)vec(ΦN)
)

=
[

diag(vec(F1))(I⊗ I⊗D1)

+ diag(vec(F2))(I⊗D2 ⊗ I)

+ diag(vec(F3))(D3 ⊗ I⊗ I)
](

vec(ΦN)
)

:=Kvec(ΦN),

where K is an (N + 1)3 × (N + 1)3 matrix.
In all these cases, the discretized generator K can be represented as a matrix K. For

d = 2 and d = 3, the total number of eigenfuncitons used in (3.1) is (N + 1)2 and (N + 1)3,
respectively, instead of (N + 1). For brevity, gN is still used to denote the approximated
observable for different d. The derivation of higher-dimensional systems amounts to further
extensions of the three-dimensional case by the Kronecker product.

3.2. Eigendecomposition. Now the eigenvalue problem of the Koopman operator in (2.5)
is discretized as the eigenvalue problem of matrix K, i.e., Kv = λ̃v, where λ̃ ∈ C and v is a
complex vector. The vector v is an approximation of K’s eigenfunction ϕ evaluated at the
collocation points, and λ̃ is the approximation of the associated eigenvalue of K. The matrix
form of the eigenvalue problem is

(3.4) KV=VΛ,

where V consists of columns vj and the diagonal elements of Λ are λ̃j . By construction, for
d = 1, (vj)i = ϕN

j (ξi) ≈ ϕj(ξi), and for d = 2 or 3, vj = vec(ΦN
j), where ΦN

j approximates
the values of eigenfunction ϕj at the collocation points. Of note, the collocation points in
multidimensional cases are constructed by the tensor product of one-dimensional collocation
points, but we have not specified how to obtain such points, the details of which are given in
subsection 3.3. Also, we emphasize that these collocation points are related to x instead of
t. In other words, ASK discretizes ϕ(x) in space instead of discretizing x(t) in time, which is
different from conventional spectral methods for ODEs.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

8
/2

4
 t

o
 1

3
7
.1

1
0
.2

0
6
.2

1
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1530 BIAN LI, YIAN MA, J. NATHAN KUTZ, AND XIU YANG

3.3. Constructing the solution. Let us first consider d= 1. By the eigendecomposition,
one can access values of eigenfunctions at the Gauss–Lobatto points Ξ := {ξi}

N
i=0, where

ξ0 < ξ1 < · · · < ξN . Therefore, ϕ(x0) can be approximated when ξ0 ≤ x0 ≤ ξN . To avoid
polynomial interpolation, ASK uses an even number for N and sets ξN/2 = x0. Based on
this setting, we consider a neighborhood of x0 with radius r, i.e., [x0 − r,x0 + r], where r is
tunable. Gauss–Lobatto points are then generated such that x0 − r = ξ0 < ξ1 < · · · < ξN/2 =
x0 < · · ·< ξN =x0 + r. Thus, gN is constructed as

(3.5) gN (x(t)) =

N
∑

j=0

c̃jϕ
N
j (x0)e

λ̃jt =

N
∑

j=0

c̃jϕ
N
j (ξN/2)e

λ̃jt =

N
∑

j=0

c̃j(vj)N/2e
λ̃jt,

where vj are eigenvectors of matrix K computed in subsection 3.1.
To approximate Koopman modes cj , we set t= 0 in (3.5), which yields

g(x0)≈ gN (x0) =

N
∑

j=0

c̃jϕ
N
j (x0),

which holds for different initial state x0, e.g.,

g(ξi)≈ gN (ξi) =

N
∑

j=0

c̃jϕ
N
j (ξi), i= 0, . . . ,N,

where ξi are the aforementioned Gauss–Lobatto points. Thus, we can obtain c̃j by solving
a linear system Vc = g(Ξ), where V is defined in (3.4), g(Ξ) = (g(ξ0), . . . , g(ξN))>, and
c= (c̃0, . . . , c̃N)>. As an example, if g(x) :=x, then g(Ξ) = (ξ0, . . . , ξN)>.

For d= 2, we consider the neighborhood of x0 = (x10, x
2
0)

> as [x10−r,x10+r]×[x20−r,x20+r].
Similarly, for d = 3, the neighborhood is [x10 − r,x10 + r] × [x20 − r,x20 + r] × [x30 − r,x30 + r],
where x0 = (x10, x

2
0, x

3
0)

>. We then generate (N + 1) Gauss–Lobatto points in each direction
and use the tensor product rule to construct multidimensional collocation points. In practice,
one can use standard Gauss–Lobatto points in the spectral method, such as Legendre–Gauss–
Lobatto and Chebyshev–Gauss–Lobatto points. Now the set of all collocation points is Ξ =
{(ξi, ηj)}

N
i,j=0 for d = 2 and Ξ = {(ξi, ηj , ζk)}

N
i,j=0 for d = 3. Of note, the isotropic setup is

applied here for demonstration purposes; i.e., we use a fixed r in each direction and admit the
same number of Gauss–Lobatto points in each dimension. However, this is not necessarily the
optimal choice, and one can use different r and different numbers of Gauss–Lobatto points in
different directions.

Next, since we vectorize matrix (or tensor) ΦN column by column (or slice by slice) as
shown in subsection 3.1, ϕj(x0) is again approximated by the “middle” element of vector
vec(ΦN

j), which leads to

(3.6) gN (x(t)) =



























(N+1)2−1
∑

j=0

cj (vj)[(N+1)2−1]/2 e
λ̃jt, d= 2,

(N+1)3−1
∑

j=0

cj (vj)[(N+1)3−1]/2 e
λ̃jt, d= 3.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

8
/2

4
 t

o
 1

3
7
.1

1
0
.2

0
6
.2

1
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

THE ASK METHOD FOR DYNAMICAL SYSTEMS 1531

Here, each element of the modes cj = (c̃1j , · · · , c̃
d
j)

> corresponds to a component of g, and
it is computed in the same manner as in the d = 1 case. For example, for d = 2, i.e.,
g(x) = (g1(x), g2(x))

> (correspondingly, gN (x) = (g1N (x), g2N (x))>), we have g1N (x(t)) =
∑(N+1)2−1

j=0 c̃1jvec(Φ
N
j)[(N+1)2−1]/2e

λ̃jt. Consider matrix g1(Ξ), whose elements are (g1(Ξ))ij =

g1(ξi, ηj). The modes c1 = (c̃10, . . . , c̃
1
N)> are obtained by solving a linear system Vc1 =

vec(g1(Ξ)). Similarly, we can compute the modes for g2N (x). In practice, our algorithm solves
the linear system VC = g(Ξ), where C = (c1,c2) and g(Ξ) = (vec(g1(Ξ)), vec(g2(Ξ))). The
modes for d= 3 are computed in the same manner. In addition, a pseudocode is presented in
Appendix B to illustrate how the solution is constructed.

3.4. Adaptivity. Since we apply a finite-dimensional approximation of the Koopman op-
erator and exploit the Lagrange interpolation to approximate the eigenfunctions, the accuracy
of the solution may decay as time evolves, especially for highly nonlinear systems. To further
improve the accuracy, we propose an adaptive approach to update V,Λ, and cj . The main
idea is to identify the time to repeat the procedure described in subsections 3.1–3.3. To this
end, we set check points 0 < τ1 < τ2 < · · · < τn < T to examine the “validity” of the neigh-
borhood of x(τk). Specifically, the component of x(τk) = (x1(τk), . . . , xd(τk))

> is acceptable if
xi(τk)∈Ri, where

Ri := [Li + γri,Ui − γri].(3.7)

Here, Li and Ui are the lower and upper bounds, ri is the radius in the ith direction, and
γ ∈ (0,1] is a tunable parameter. Recall that the isotropic setup is used in this work; thus,
ri ≡ r. In the initial step, Li := xi0 − ri and Ui := xi0 + ri, i.e., γ = 1. In practice, one can
fix γ = 1 (or other real number in (0,1]) and tune ri only. Hereby, we keep both γ and ri for
future extension to anisotropic design and more advanced adaptivity criterion.

If xi(τk)∈Ri for all i, then R1× · · · ×Rd is a valid neighborhood of x(τk). Otherwise, we
update all Li,Ui and reconstruct ϕN

j , λ̃j , c̃j to obtain x(t) (t > τk) as follows:
1. Set Li = xi(τk)− ri,Ui = xi(τk) + ri, 1≤ i≤ d.
2. Generate Gauss–Lobatto points and the differentiation matrix in each interval [Lk

i ,U
k
i].

Repeat the procedure in subsection 3.1 to compute matrix K.
3. Repeat the eigendecomposition in subsection 3.2 to update V and Λ in (3.4).
4. Compute coefficient cj as in subsection 3.3 with the updated V.

5. Construct solution x(t) by replacing eλ̃jt with eλ̃j(t−τk) in (3.5) (or (3.6) for d= 2,3).
Note that the modification of constructing the solution in step 5 is necessary because when
an update is performed, we need to set t0 = τk and x0 =x(t0) =x(τk).

The parameter γ decides how often we update the neighborhood and reconstruct the solu-
tion. By construction, a larger γ demands updating the eigendecomposition more frequently.
The extreme case γ = 1 enforces the update at every check point. In this work, we set
τk+1 − τk ≡ ∆τ . Notably, since the solution is discretized in space instead of in time as in
conventional ODE solvers, the check points are different from time grids 0 < t1 < t2 < · · ·
in those solvers. If we set k = 0, then no update is made, which indicates that the solu-
tion x(t) only relies on the eigendecomposition based on x0 (see the example pseudocode in
Appendix B).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

8
/2

4
 t

o
 1

3
7
.1

1
0
.2

0
6
.2

1
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1532 BIAN LI, YIAN MA, J. NATHAN KUTZ, AND XIU YANG

3.5. Properties of the algorithm. In this work, x, f ,g are real-valued functions. Now we
show that the solutions obtained by ASK are real numbers, although V,Λ,cj may contain
complex values. We start with reiterating a well-known conclusion.

Lemma 3.1. If a real matrix has complex eigenvalues, then they always occur in complex

conjugate pairs. Furthermore, a complex conjugate pair of eigenvalues have a complex

conjugate pair of associated eigenvectors.

Proof. Suppose the matrix K ∈ Rn×n has an eigenpair v and λ such that Kv = λv. Let
·̄ operator denote the complex conjugate. Taking the complex conjugate of both sides of the
equation, we have K̄v̄ = λ̄v̄. However, K= K̄ since K has real entries. Thus, Kv̄ = λ̄v̄. The
claim follows.

Our main theorem is presented next.

Theorem 3.2. ASK yields real-valued solutions for dynamical systems with real-valued

x, f ,g.

Proof. We only need to consider the d = 1 case since the solution for high-dimensional
cases are constructed in the same manner. Let v be a eigenvector. Then it is a column of
matrix V in (3.4). It is only necessary to consider the case where v is not a real-valued vector.
According to Lemma 3.1, v̄ is also a column of V. Let u be a row of V−1 such that u · v= 1
and u · ṽ = 0, where ṽ is any column of V other than v. It is clear that ū · v̄ = 1 and
ū · ṽ = 0. Therefore, ū is also a row of V−1. Next, as shown in subsection 3.3, we compute
the modes c as c = V−1g(Ξ). Let cm be the element of c such that cm = u · g(Ξ). Then
ū · g(Ξ) =u · g(Ξ) = c̄m is also an element of c.

In the numerical solution, it suffices to consider cmνeλt+ c̄mν̄eλ̄t, where ν ∈C denotes the
middle element of the eigenvector v. For convenience, we dentoe ν =A+Bi,λ=C+Di, cm =
E + Fi. Here, A,B,C,D,E,F ∈R. Then

cmνeλt + c̄mν̄eλ̄t = (E + Fi)(A+Bi)e(C+Di)t + (E − Fi)(A−Bi)e(C−Di)t

= (P +Qi)e(C+Di)t + (P −Qi)e(C−Di)t

= (PeCt +QeCti)eDti + (PeCt −QeCti)e−Dti

= (PeCt +QeCti)[cos(Dt) + sin(Dt)i]

+ (PeCt −QeCti)[cos(Dt)− sin(Dt)i]

= 2PeCt cos(Dt) + 2(QeCti) sin(Dt)i

= 2PeCt cos(Dt)− 2QeCt sin(Dt)∈R,

among which P =AE −BF and Q=AF +BE.

Remark 3.3. In practice, the imaginary part may be nonzero due to the round-off error. In
all numerical examples shown in this work, the magnitude of the imaginary part is extremely
small (if it is nonzero), and we only keep the real part of the solution.

3.6. Algorithm summary. As a ssummary, subsections 3.1–3.3 present a numerical scheme
that solves an autonomous ODE system using the eigendecomposition and a linear system
solver. Subsection 3.4 introduces a heuristic adaptivity criterion to repeat the aforementioned

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

8
/2

4
 t

o
 1

3
7
.1

1
0
.2

0
6
.2

1
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

THE ASK METHOD FOR DYNAMICAL SYSTEMS 1533

Algorithm 3.1 ASK method.

Require: n,T,N,x0, r, γ
1: Set check points at 0 = τ0 < τ1 < · · ·< τn <T .
2: Let Li = xi0 − ri,Ui = xi0 + ri, and set neighborhood Ri as Ri = [Li + γri,Ui − γri] for

i= 1,2, . . . , d, where ri = r.
3: Generate Gauss–Lobatto points and differentiation matrix Di in [Li,Ui] for i= 1,2, . . . , d.

Construct collocation points Ξ for d> 1 using the tensor product rule. (For d= 1, Ξ is
the set of the Gauss–Lobatto points.)

4: Construct matrix K using the formulas in subsection 3.1.
5: Compute eigendecomposition KV=VΛ.
6: Solve linear system VC = g(Ξ), where the lth column of matrix g(Ξ) consists of the lth

component of all collocation points (see subsection 3.3).
7: for k= 1,2,3, . . . , n do

8: Let νj be the middle element of the jth column of V. Construct solution at time τk as

g(x(τk)) =
∑

j C(j, :)νje
λ̃j(τk−τk−1), where C(j, :) is the jth row of C.

9: if (x(τk))i /∈Ri for any i then
10: Reset Li = xi(τk)− ri,Ui = xi(τk) + ri and Ri = [Li + γri,Ui − γri].
11: Repeat steps 3− 6.
12: end if

13: end for

14: return g(x(T)) =
∑

j C(j, :)νje
λ̃j(T−τn).

procedure at appropriate time points to further enhance the accuracy. We conclude the
algorithm in Algorithm 3.1.

In the ASK scheme, the neighborhood for all components must be updated in the adaptiv-
ity step. This is because we set the current state of each component to be the midpoint of the
corresponding neighborhood to avoid computing interpolation. Also, following the standard
practice in the spectral method, we generate Gauss–Lobatto points ξi and the associated dif-
ferentiation matrix Di on [−1,1] first and then scale them to [Li,Ui] as

Ui−Li

2 (ξi+1)+Li and
2Di

Ui−Li
to improve the computational efficiency. Moreover, it is worth emphasizing again that

the isotropic setup (i.e., using the same number of Gauss–Lobatto points in each direction
and fixing ri ≡ r) is not necessarily the optimal choice and that the adaptivity in different
directions may improve the efficiency of the algorithm. This is beyond the scope of this work
and will be included in a future study.

Remark 3.4. The spectral method has been implemented to solve ODEs. The existing
methods expand solution x(t) with orthogonal polynomials of t, which is again a discretization
in time. In this setting, when f is nonlinear, one needs to solve a nonlinear system. Taking
a one-dimensional problem, for example, the pseudospectral approach requires solving Dy =
f(y), where D is the differentiation matrix, y consists of the value of x(t) at collocation

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

8
/2

4
 t

o
 1

3
7
.1

1
0
.2

0
6
.2

1
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1534 BIAN LI, YIAN MA, J. NATHAN KUTZ, AND XIU YANG

points (i.e., at different t), and f(y) is a vector of evaluating f at y. Therefore, the accuracy
and efficiency rely on the property of f as well as the performance of the nonlinear system
solver, selection of initial points, etc. In other words, even if a high-order polynomial is used
to approximate a smooth solution, the accuracy may be limited by the performance of the
nonlinear solver. On the other hand, ASK uses discretization in space, and the accuracy and
efficiency are influenced by the eigensolver and the linear solver. These solvers are more mature
and stable than nonlinear solvers in general and typically have a (much) better guarantee in
accuracy and efficiency.

4. Numerical results. In this section, we first present the performance of ASK on six non-
linear ODE systems, including d = 1,2,3 in subsection 4.1. In each example, we investigate
the influence of the number of Gauss–Lobatto points N , the number of check points n, and the
radius r on the accuracy. The reference solution is generated by Verner’s ninth-order Runge–
Kutta (RK9) method [33] with sufficiently small time step if a closed-form solution is not
available. Next, in subsection 4.2, we compare the efficiency of ASK with conventional ODE
solvers, including the Euler forward method, the fourth-order Runge–Kutta (RK4) method,
the five-step Adams–Bashforth (AB5) method, and the four-step Adams–Moulton (AM4)
method since these are common methods used to solve ODEs. These comparisons include
error against number of function calls, where the function refers to f in the ODE. Also, we
compare the error against running time (i.e., wall time) for different methods when evalu-
ating f is costly. Finally, subsection 4.3 shows a preliminary study on reusing computed
eigenpairs and Koopman modes for solving new initial value problems. Here, we consider
an uncertainty quantification (UQ) problem with random initial condition for demonstra-
tion purposes. The mean and standard deviation of the solution are computed by ASK
and RK4 to compare the performance. Throughout the numerical examples, ASK employs
the Chebyshev–Gauss–Lobatto points. Additionally, we also tested Legendre–Gauss–Lobatto
points, but there was no significant difference. (All the MATLAB codes can be downloaded
at https://github.com/Navarro33/Adaptive-Spectral-Koopman-Method.)

4.1. Solving ODEs with ASK.

4.1.1. Cosine model. The cosine model is a synthetic model invented for our demonstra-
tion purposes. The governing ODE is written as

dx

dt
=−0.5cos2(x).

We set x(0) = π
4 and T = 20 in this example. Despite the nonlinearity, the system has a closed-

form solution x(t) = arctan(−0.5t+tan(x0)). We aim to compute the solution at T = 20. The
three experiments used the following parameters:

(a) test of N : n= 200, r= π
20 ;

(b) test of n: N = 9, r= π
20 ;

(c) test of r: n= 200,N = 9.
In all these tests, we set γ = 0.2. Figure 1 summarizes these results in plots (a), (b), and
(c), respectively. The first test shows the exponential convergence of ASK with respect to N ,
which is similar to the conclusions in conventional spectral methods. Test (b) shows that the
accuracy does not change monotonically as n varies given the parameter setting in this work.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

8
/2

4
 t

o
 1

3
7
.1

1
0
.2

0
6
.2

1
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

THE ASK METHOD FOR DYNAMICAL SYSTEMS 1535

2 4 6 8 10

10
-8

10
-6

10
-4

10
-2

(a) Gauss-Lobatto points

0 100 200 300 400 500
10

-8

10
-7

10
-6

(b) Check points

0 0.02 0.04 0.06 0.08 0.1
10

-15

10
-13

10
-11

10
-9

10
-7

(c) Radius

Figure 1. Cosine model: (a) testing number of Gauss–Lobatto points N ; (b) testing number of check points
n; (c) testing radius r.

On the other hand, using no more than 100 check points is sufficient to obtain good accuracy.
The last test illustrates that the accuracy shows a “V shape” with respect to the radius; i.e.,
r cannot be too large or too small.

4.1.2. Lotka–Volterra model. The Lotka–Volterra equations model the interactive evo-
lution of the population of prey and predators [2]. Specifically, it is defined by

dx1
dt

= 1.1x1 − 0.4x1x2,

dx2
dt

= 0.1x1x2 − 0.4x2.

We set x(0) = (10,5)> and T = 20 in this example. The parameters used in the three different
tests are as follows:

(a) test of N : n= 200, r= 1.5;
(b) test of n: N = 5, r= 1.5;
(c) test of r: n= 200,N = 5.

In all the tests, γ is set to 0.5. Note that for multidimensional systems in the test of radius,
all components share the same radius if it is not specififed otherwise. Figure 2 presents the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

8
/2

4
 t

o
 1

3
7
.1

1
0
.2

0
6
.2

1
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1536 BIAN LI, YIAN MA, J. NATHAN KUTZ, AND XIU YANG

2 4 6 8 10

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

(a) Gauss-Lobatto points

500 1000 1500 2000
10

-8

10
-7

10
-6

(b) Check points

0 0.2 0.4 0.6 0.8 1
10

-10

10
-8

10
-6

10
-4

(c) Radius

Figure 2. Lotka–Volterra model: (a) testing number of Gauss–Lobatto points N (total number of collocation
points is (N+1)2); (b) testing number of check points n; (c) testing radius r. ◯, ◻ denote x1, x2, respectively.

results of these tests. Similar to the cosine model, the error decreases exponentially with
respect to N . The accuracy is quite stable with respect to the number of check points in
this case. Furthermore, Figure 2c shows that the radius cannot be too small as in the first
example.

4.1.3. Simple pendulum. The simple pendulum is well studied in physics and mechanics.
The movement of the pendulum is described by a second-order ODE:

d2θ

dt2
=−

g

L
sin(θ).

Here, θ is the displacement angle, and L denotes the length of the pendulum. The parameter g
is the gravity acceleration. This second-order equation can be converted to a two-dimensional
first-order ODE system. To keep the notations consistent, we define x1 := θ and x2 := dθ

dt .
Also, we set L= g= 9.8 in our numerical experiments. Correspondingly,

dx1
dt

= x2,

dx2
dt

=− sinx1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

8
/2

4
 t

o
 1

3
7
.1

1
0
.2

0
6
.2

1
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

THE ASK METHOD FOR DYNAMICAL SYSTEMS 1537

2 4 6 8 10

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

(a) Gauss-Lobatto points

500 1000 1500 2000

1

1.5

2

2.5

10
-8

(b) Check points

0 0.2 0.4 0.6 0.8 1

10
-11

10
-9

10
-7

10
-5

10
-3

(c) Radius

Figure 3. Simple pendulum: (a) testing number of Gauss–Lobatto points N (i.e., (N+1)2 collocation points
in total); (b) testing number of check points n; (c) testing radius r. ◯, ◻ denote x1, x2, respectively.

We set x(0) = (−π
4 ,

π
6)

> and T = 20. The parameters used in the three tests are as follows:
(a) test of N : n= 200, r= (π8 ,

π
12);

(b) test of n: N = 7, r= (π8 ,
π
12);

(c) test of r: n= 200,N = 7.
We set γ = 0.2 in all these tests. The results are presented in Figure 3. Again, we observe
exponential convergence with respect to N in Figure 3a. Figure 3b implies that more check
points can improve the accuracy, but the difference is not very large. Figure 3c indicates there
exists an “optimal” r as in the Lotka–Volterra example.

4.1.4. Limit cycle. The limit cycle is applied to model oscillatory systems in multiple
research fields [34]. Here, we follow the definition

dx1
dt

=−x1 − x2 +
x1

√

x21 + x22
,

dx2
dt

= x1 − x2 +
x2

√

x21 + x22
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

8
/2

4
 t

o
 1

3
7
.1

1
0
.2

0
6
.2

1
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1538 BIAN LI, YIAN MA, J. NATHAN KUTZ, AND XIU YANG

2 4 6 8 10
10

-10

10
-8

10
-6

10
-4

10
-2

(a) Gauss-Lobatto points

500 1000 1500 2000

2

4

6

8

10

12
10

-7

(b) Check points

0 0.1 0.2 0.3 0.4 0.5
10

-10

10
-8

10
-6

10
-4

10
-2

(c) Radius

Figure 4. Limit cycle: (a) testing number of Gauss–Lobatto points N (i.e., (N + 1)2 collocation points in
total); (b) testing number of check points n; (c) testing radius r. ◯, ◻ denote x1, x2, respectively.

The closed-form solution is

x1(t) =
[

1−
(

1−
√

x1(0)2 + x2(0)2
)

e−t
]

cos(t+ arctan(x2(0)/x1(0))),

x2(t) =
[

1−
(

1−
√

x1(0)2 + x2(0)2
)

e−t
]

sin(t+ arctan(x2(0)/x1(0))).

We set x(0) = (
√
2
2 ,−

√
2
2)> and T = 20 in this example. The parameters used in the experi-

ments are specified as follows:
(a) test of N : n= 200, r=

√
2
6 ;

(b) test of n: N = 7, r=
√
2
6 ;

(c) test of r: n= 200,N = 7.
We set γ = 0.2 in all these tests. The results shown in Figure 4 reveal similar patterns to the
results of the simple pendulum, except that a very small r can still lead to accurate results.

For this example, we also compared ASK with RK4 at various times within [0, T]. Given
the closed-form solution xC(t), we computed the errors by |xASK(t)− xC(t)| and |xRK4(t)−
xC(t)|. Here, RK4 employed M = 200 equidistant time points on [0, T]. The purpose of this
comparison is to demonstrate that the meaning of the check points in ASK is different from
the time grids in RK4 (and other conventional ODE solvers). In this specific case, we set

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

8
/2

4
 t

o
 1

3
7
.1

1
0
.2

0
6
.2

1
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

THE ASK METHOD FOR DYNAMICAL SYSTEMS 1539

0 5 10 15 20
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

(a) Error of x1

0 5 10 15 20
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

(b) Error of x2

Figure 5. Errors of the limit cycle solution on [0, T]: ◯ denotes ASK, and △ denotes RK4.

Figure 6. Limit cycle solution trajectory: ◯ denotes ASK, and − denotes the closed-form solutions.

n = M . As for ASK, we used N = 9, r =
√
2
8 , γ = 0.2, and the check points are set to be the

same as the time points in RK4. With this set of parameters, ASK constantly outperforms
RK4 significantly, as illustrated in Figure 5. For both components x1 and x2, the errors of
ASK remain almost constant at the level of 10−10. In comparison, the error of RK4 exhibits a
periodic pattern, rising slowly from 10−6 to 10−5. Moreover, Figure 6 illustrates the evolution
of the limit cycle model along time. The path decided by the two components elevates spirally
as time evolves. If seen from above, the cross section is an exact circle.

4.1.5. Kraichnan–Orszag model. The Kraichnan–Orszag model comes from the problem
raised in [23]. This system is nonlinear and three-dimensional, defined by

dx1
dt

= x2x3,

dx2
dt

= x1x3,

dx3
dt

=−2x1x2.

We set x(0) = (1,2,−3)> and T = 20. In the three experiments, we employed the following
parameters:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

8
/2

4
 t

o
 1

3
7
.1

1
0
.2

0
6
.2

1
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1540 BIAN LI, YIAN MA, J. NATHAN KUTZ, AND XIU YANG

2 4 6 8
10

-8

10
-6

10
-4

10
-2

10
0

(a) Gauss-Lobatto points

500 1000 1500 2000
10

-8

10
-6

10
-4

10
-2

10
0

(b) Check points

0 0.2 0.4 0.6 0.8 1
10

-6

10
-4

10
-2

10
0

(c) Radius

Figure 7. Kraichnan–Orszag model: (a) testing number of Gauss–Lobatto points N (i.e., (N +1)3 colloca-
tion points in total); (b) testing number of check points n; (c) testing radius r. ◯, ◻, △ denote x1, x2, x3,
respectively.

(a) test of N : n= 400, r= 1;
(b) test of n: N = 3, r= 0.1;
(c) test of r: n= 400,N = 3.

Also, in all the tests, we set γ = 0.15. The results are presented in Figure 7a. In particular,
different from previous examples, Figure 7b demonstrates that n significantly influences the
accuracy. This is because the Kraichnan–Orszag model exhibited strong oscillations, so it
requires more frequent updates of eigenpairs to guarantee high accuracy. Figure 7c indicates
that there is an “optimal” r as in the Lokta–Volterra example.

4.1.6. Lorenz attractor. The Lorenz attractor was first introduced by Lorenz [17]. It is a
highly chaotic system that models the turbulence in dynamic flows. The governing equations
are as follows:

dx1
dt

= 10(x2 − x1),

dx2
dt

= x1(28− x3)− x2,

dx3
dt

= x1x2 − 3x3.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

8
/2

4
 t

o
 1

3
7
.1

1
0
.2

0
6
.2

1
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

THE ASK METHOD FOR DYNAMICAL SYSTEMS 1541

2 4 6 8
10

-8

10
-6

10
-4

10
-2

10
0

(a) Gauss-Lobatto points

0 1000 2000 3000 4000 5000
10

-8

10
-6

10
-4

10
-2

(b) Check points

0.5 1 1.5
10

-6

10
-4

10
-2

10
0

10
2

(c) Radius

Figure 8. Loren attractor: (a) testing number of Gauss–Lobatto points N (i.e., (N +1)3 collocation points
in total); (b) testing number of check points n; (c) testing radius r. ◯, ◻, △ denote x1, x2, x3, respectively.

We set x(0) = (5,5,5)> and T = 10 in this example. Parameters used in the experiments are
listed here:

(a) test of N : n= 500, r= 4;
(b) test of n: N = 5, r= 1;
(c) test of r: n= 500,N = 5.

In all the tests, we set γ = 0.5. The results are summarized in Figure 8. As the Loren
attractor exhibits chaotic behavior, it requires a greater number of check points. Meanwhile,
a relatively large radius favored the convergence of the algorithm. This is probably because
the eigenfunctions need to be approximated in a larger neighborhood of the solution to include
sufficient information of the dynamics.

Next we compare the accuracy of ASK and RK4 to demonstrate the difference between
the check points and time grids as in the limit cycle example (see subsection 4.1.4). In this
test, T = 20, and RK4 uses M = 2000 time steps, i.e., step size ∆t = 0.01. Since the Lorenz
attractor does not have closed-form solutions, RK9 is used to compute the reference. To
guarantee accuracy, RK9 used step size ∆t= 0.001, i.e., M = 20000 time steps. On the other
hand, ASK was implemented with n= 2000,N = 5, r= 1, γ = 0.75. For comparison purposes,
we set n = M again and use a small tolerance for the acceptable range. Figure 9 reveals

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

8
/2

4
 t

o
 1

3
7
.1

1
0
.2

0
6
.2

1
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1542 BIAN LI, YIAN MA, J. NATHAN KUTZ, AND XIU YANG

0 5 10 15 20
10

-15

10
-10

10
-5

10
0

10
5

(a) Error of x1

0 5 10 15 20
10

-15

10
-10

10
-5

10
0

10
5

(b) Error of x2

0 5 10 15 20
10

-15

10
-10

10
-5

10
0

10
5

(c) Error of x3

Figure 9. Error of Lorenz attractor solutions on [0, T]: ◯ denotes ASK, and △ denotes RK4.

the accuracy of ASK in all three components. However, unlike the limit cycle case, the error
increases as time evolves. Although it rises to around 10−3 at t = 20, ASK still yields an
acceptable accuracy for such a chaotic system. In comparison, RK4’s error ascends to a level
that makes it impractical. To obtain an insight of how the Lorenz system evolves, we plot each
of its components in Figure 10. Up to time t = 10, solutions given by ASK, RK4, and RK9
almost coincide. Nevertheless, RK4 deviates from the other two completely starting at t= 11.
The evolution vibrates violently and does not possess periodicity, which imposes difficulty on
numerical solvers.

The chaos can also be observed in a three-dimensional graph depicting the trajectory, using
the numerical solutions given by ASK. As in Figure 11, the lemniscate shape demonstrates
the complexity of the system.

4.2. Computational complexity. By construction, the computational complexity of the
conventional explicit scheme solving ODEs is O(M), where M is the number of time steps. In
other words, it is M multiplied by a constant that represents the cost of evaluating function
f plus the cost of operations in each time step, which varies according to the accuracy of
the scheme. The computational complexity of ASK depends on the number of times that
eigenfunctions are constructed (and corresponding eigenvalues as well as Koopman modes are

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

8
/2

4
 t

o
 1

3
7
.1

1
0
.2

0
6
.2

1
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

THE ASK METHOD FOR DYNAMICAL SYSTEMS 1543

0 5 10 15 20

-20

-10

0

10

20

(a) x1

0 5 10 15 20

-30

-20

-10

0

10

20

30

(b) x2

0 5 10 15 20

0

10

20

30

40

50

(c) x3

Figure 10. Lorenz attractor evolution: ◯ and △ denote ASK and RK4, respectively; −− denotes the
reference solutions given by RK9.

Figure 11. Lorenz attractor three-dimensional visualization.

computed). In this construction procedure, ASK needs to perform the eigendecomposition
and solve a linear system. For d= 1, this is not costly because empirically we set 4≤N ≤ 10,
and the size of matrix in the eigendecomposition as well as the linear system is N ×N . But
when d > 1, the complexity will increase exponentially with the dimension of the current

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

8
/2

4
 t

o
 1

3
7
.1

1
0
.2

0
6
.2

1
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1544 BIAN LI, YIAN MA, J. NATHAN KUTZ, AND XIU YANG

Table 1

Error and running time of solving the simple pendulum problem with T = 20. Here, n = 200,N = 7,x0 =
(−π

4
, π

6
), r= (π

8
, π

12
), γ = 0.2 in ASK, and m= 1000 (i.e., ∆t= 0.02) for other ODE solvers.

Algorithms x1 x2 Time (s)

ASK 2.5524e-08 1.3242e-08 0.0498
Euler 2.9415e-01 1.4698e-01 0.0008
RK4 9.3583e-09 1.3346e-08 0.0017
AB5 2.9335e-08 1.1873e-08 0.0019
AM4 1.6637e-09 6.4782e-10 0.5835

Table 2

Error and running time of the Kraichnan–Orszag model with T = 20. Here, n = 300,N = 5,x0 =
(1,2,−3), r= (0.2,0.2,0.2), γ = 0.15 for ASK and m= 3000 (i.e., ∆t= 1/150) for other ODE solvers.

Algorithms x1 x2 x3 Time (s)

ASK 3.0384e-08 2.3718e-08 8.4070e-08 2.1840
Euler 8.8547e-01 3.2547e-01 4.7061e+00 0.0082
RK4 2.1203e-07 1.6047e-07 6.7413e-07 0.0113
AB5 8.3518e-06 6.6129e-06 2.5169e-05 0.0231
AM4 4.8154e-07 3.8129e-07 1.4022e-06 2.5995

setting because we use the tensor product rule to construct the collocation points, and the
matrix size is (N + 1)d × (N + 1)d. Hence, ASK can be less efficient than conventional ODE
solvers for high-dimensional systems.

As an example, we present the accuracy and running time of different methods solving
the simple pendulum problem (see subsection 4.1.3) in Table 1. Here, the final time T = 20,
and we set n = 200,N = 7,x0 = (−π

4 ,
π
6), r = (π8 ,

π
12), γ = 0.2 in ASK. For conventional ODE

solvers, we set the number of time steps as m = 1000. It is clear that explicit schemes RK4
and AB5 dramatically outperform ASK in terms of computational time at the same accuracy
level. The Euler forward scheme is fast but not accurate because it is a first-order scheme.
AM4 is an implicit scheme that requires solving nonlinear systems in each step. Hence, it is 10
times slower than ASK and is much slower than explicit schemes. But it has higher accuracy
in this case.

Similarly, the comparison of different methods for the Kraichnan–Orszag model is pre-
sented in Table 2, where T = 20, n= 300,N = 5,x0 = (1,2,−3), r = (0.2,0.2,0.2), γ = 0.15 for
ASK and number of time steps m= 3000 for other ODE solvers. In this test, ASK has the best
accuracy, but it is much slower than the explicit schemes. The gap between the computational
time is larger than that in the simple pendulum problem. Also, the computation time of ASK
is only slightly shorter than that of AM4. This is because the Kraichnan–Orszag problem is
three-dimensional, and, as expected, ASK becomes less efficient.

However, in the comparisons above, the cost of evaluating f in the dynamical system is
extremely low. In the next comparison, we consider an evaluation of f as a function call, and
compare the accuracy of ASK and the explicit solvers against number of function calls. The
cosine model (d= 1), the simple pendulum (d= 2), and the Kraichnan–Orszag model (d= 3)
exemplify the comparison. The results are provided in Figure 12. Here, the error in the simple

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

8
/2

4
 t

o
 1

3
7
.1

1
0
.2

0
6
.2

1
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

THE ASK METHOD FOR DYNAMICAL SYSTEMS 1545

10
2

10
3

10
4

Number of function calls

10
-15

10
-10

10
-5

E
rr

o
r

(a) Cosine model

10
3

10
4

Number of function calls

10
-16

10
-12

10
-8

10
-4

10
0

E
rr

o
r

(b) Simple pendulum

10
3

10
4

10
5

Number of function calls

10
-11

10
-7

10
-3

E
rr

o
r

(c) Kraichnan-Orszag model

Figure 12. Comparison of computational efficiency: error against number of function calls. ◯, +, △,
◇, ◻ denote ASK, Euler, RK4, RK9, AB5, respectively.

pendulum case was computed by
√

e2
1
+e2

2

2 , where e1, e2 are the errors in x1, x2, respectively.

Similarly, the error for the Kraichnan–Orszag model is
√

e2
1
+e2

2
+e2

3

3 . In this test, ASK starts
with a small N and keeps increasing it by 2 as in the convergence study in subsection 4.1.
For conventional ODE solvers, we start with a large time step and then keep reducing it by
half. Figure 12(a) indicates that ASK is superior to all conventional solvers even RK9 for the
cosine model (d = 1). For the simple pendulum (d = 2), RK9 is the most efficient method,
while ASK outperforms RK4 and AB5 when number of function calls is beyond 2000. For
the Kraichnan–Orszag model (d = 3), ASK is less efficient than high-order explicit schemes
and can only outperform the Euler forward method. These phenomena are consistent with
the discussion at the beginning of this subsection. Of note, we do not include conventional
implicit solvers in this comparison, as they are slower than the explicit solvers with the similar
accuracy level for the examples we consider in this work.

We note that the comparison of error against number of function calls still cannot fully
reflect the efficiency of the algorithms. It seems to be straightforward that the total com-
putational time of evaluating f is the time of evaluating f once multiplied by the number of
function calls. However, this is not necessarily true in modern computing tools. For exam-
ple, in MATLAB and Python, built-in vectorization or tensorization approaches are used to
accelerate the computing. In other words, evaluating f at different collocation points x can
be vectorized and achieved with one function call instead of using a for-loop to evaluate f at
each collocation point one by one. Even though the computational time for this vectorized
function call is longer than evaluating f at one collocation point, it can be much shorter than
using a for-loop. Consequently, ASK is more efficient than conventional ODE solvers when
evaluating f is costly. To demonstrate this advantage, we artificially slow down the evaluation
of f in the above three tests and compare the error against computational time in different
methods. Specifically, for the cosine model and the simple pendulum, we replace sine and
cosine functions with their corresponding Taylor expansions up to x1000 (i.e., 500 terms in
the expansion); for the Kraichnan–Orszag model, we evaluate f 1000 times in the code before
outputting its value. In this way, the computational time for evaluating f increases signifi-
cantly. We repeat the same tests as in the study of error against number of function calls.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

8
/2

4
 t

o
 1

3
7
.1

1
0
.2

0
6
.2

1
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1546 BIAN LI, YIAN MA, J. NATHAN KUTZ, AND XIU YANG

10-2 100 102

Time (s)

10-15

10-10

10-5

E
rr

o
r

(a) Cosine model

10-1 100 101

Time (s)

10-16

10-12

10-8

10-4

100

E
rr

o
r

(b) Simple pendulum

100 101

Time (s)

10-10

10-6

10-2

E
rr

o
r

(c) Kraichnan-Orszag model

Figure 13. Comparison of computational efficiency: error against running time. Symbols ◯, +, △, ◇,
◻ denote ASK, Euler, RK4, RK9, AB5, respectively. The time of evaluating f is artificially increased the code.

The results of error against computational time are presented in Figure 13. It is observed
that ASK outperforms all explicit solvers (even RK9) in the selected error and time ranges.
The advantage of ASK over the conventional solvers becomes less significant as the dimension
increases, which is consistent with the discussion on the complexity. Comparing the results in
Figure 13 and the results in Tables 1 and 2, we can see the impact of the cost of evaluating f on
the efficiency of different approaches, as we are solving the same two- and three-dimensional
problems. These comparisons indicate that ASK can be more efficient than conventional ODE
solvers when evaluating f is costly because of the built-in parallel mechanism for evaluating f

at multiple x.

4.3. Reusing eigenpairs and Koopman modes. It is typically necessary to solve an ODE
with different initial values in studying the property of its dynamics numerically, such as
sensitivity analysis, perturbation analysis, UQ, etc. In this case, another advantage of ASK
in computation is that it can potentially reuse computed eigenpairs and Koopman modes to
facilitate solving the same ODE with different initial values, specifically, if (3.1) is obtained
via ASK based on initial value x0. Then, for another initial value x1 lying in a sufficiently
small neighborhood of x0 (e.g., an open ball centered at x0), it is possible to directly write

down the solution as
∑N

j=0 c̃jϕ
N
j (x1)e

λ̃jt. Here, the only additional computation is evaluating

ϕN
j (x1) for each j, which is accomplished by Lagrange interpolation since we computed values

of ϕN at the collocation points via eigendecomposition. Specifically, the jth column of matrix
V consists of the values of ϕN

j at the collocation points (see subsection 3.2). The applicability
of this idea relies on the property of the dynamical system, and more comprehensive study is
needed to decide on the radius of the neighborhood for desired accuracy at time t.

Even though a systematic study is beyond the scope of this paper, we present an illustrative
example to show the potential of applying ASK to solve an ODE with different initial values
efficiently. Here, ASK solves a dynamical system with random initial values for UQ study.
Our goal is to compute the mean and the standard deviation of the solution at time T . The
cosine model is used here for demonstration, where the cosine function is replaced with its
Taylor expansion as in subsection 4.2. Here, Monte Carlo (MC) simulation is leveraged to
estimate the mean and standard deviation of the solution at T = 1, as MC is a state-of-the-art
sampling-based UQ method. The initial value is set as x0 =

π
4 θ, where θ ∼ U [0.75,1.25] is a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

8
/2

4
 t

o
 1

3
7
.1

1
0
.2

0
6
.2

1
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

THE ASK METHOD FOR DYNAMICAL SYSTEMS 1547

Table 3

Relative errors of estimating mean and standard deviation with random initial values using 5000 Monte
Carlo simulations. The relative error is computed by dividing the absolute error by the reference.

Algorithms Error of mean Error of standard deviation Average time (s)

ASK 6.1403e-03 ± 4.5974e-03 7.4006e-03 ± 5.5312e-03 0.0031
RK4 6.1403e-03 ± 4.5977e-03 7.4014e-03 ± 5.5306e-03 1.0555

uniform random variable, and we generate 5000 samples of θ denoted as θ(1), θ(2), . . . , θ(5000).
ASK first solves a deterministic ODE with x0 = π

4 using parameters N = 8, r = 0.2, after
which Lagrange interpolation is applied to evaluate ϕN

j (0 ≤ j ≤ N) at all the samples of

the initial values, i.e., π
4 θ

(i) (0 ≤ i ≤ 5000), to directly construct the solutions. Then we use
the empirical mean and standard deviation of these 5000 solutions to estimate the mean and
standard deviation of the ODE. Particularly, RK4 serves as a prototypical example of explicit
solvers and sets ∆t= 0.1 to solve 5000 initial value problems to obtain samples of the solution.
Subsequently, the empirical mean and standard deviation are computed for estimation. We
repeat these tests for 1000 sets of independent samples of θ and present the results in Table 3.
It shows that the accuracy of ASK and RK4 is similar for this problem, but the time for solving
5000 initial value problems (i.e., the average time in the table) indicates that ASK is much
more efficient. Of note, the RK4 implemented here is a vectorized version solving all initial
value problems simultaneously, which is much faster than a for-loop of 5000 iterations. The
error of RK4 for solving each initial value problem is at the level of 10−6, which is sufficiently
small for estimating statistics in this case because the statistical error is at the level of 10−3.
Also, for demonstration purposes, this example does not activate the adaptivity step in ASK,
so we only perform eigendecomposition and solve the linear system once. A more systematic
study and delicate algorithm design will be included in our future work.

5. Conclusion and discussion. The ASK method uses the spectral-collocation (i.e., pseu-
dospectral) method in the state space instead of in time to solve nonlinear autonomous dy-
namical systems. It discretizes the generator of the Koopman operator and employs the
eigendecomposition to obtain approximation of the eigenfunctions and eigenvalues to con-
struct solutions. Therefore, like the spectral method, ASK is an expansion-based method to
solve ODE systems in which the basis functions in the expansion are approximated eigen-
functions of the Koopman operator. In each numerical example presented in this work, ASK
exhibits exponential convergence as the conventional spectral method. Therefore, it is suitable
for the circumstances where high-accuracy solutions are desired and f is expensive to evaluate.
Different from existing ODE solvers that obtain solutions on mesh grids, ASK does not need a
time mesh and can evaluate the solution at any time. Hence, the resolution of the time mesh
which impacts the solutions of conventional ODE solvers like Runge–Kutta methods does not
influence ASK.

In the ASK algorithm, adaptively updating the eigenfunction approximation in the neigh-
borhood of the solution is necessary because it is challenging to obtain very accurate approx-
imation of the eigenfunctions, eigenvalues, and Koopman modes using the initial condition
only, especially for highly nonlinear systems. When no information (e.g., range of states,
regularity of the eigenfunctions) of the system is available a priori, the adaptivity criterion

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

8
/2

4
 t

o
 1

3
7
.1

1
0
.2

0
6
.2

1
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1548 BIAN LI, YIAN MA, J. NATHAN KUTZ, AND XIU YANG

serves as a updating step based on “posterior error estimates.” Furthermore, tunable pa-
rameters r and γ affect the accuracy, as they are related to eigenfunction approximation and
the adaptivity criterion. Numerical analysis based on the spectrum theorem as well as the
spectral method is required to systematically understand the convergence and the impact of
all parameters on the performance of ASK, which will be included in our future work.

Regarding the computational complexity, as indicated in subsection 4.2, ASK is more ef-
ficient than conventional ODE solvers when it is costly to evaluate f . This advantage benefits
from the vectorization of evaluating function f in modern computing tools. Namely, ASK
has the potential to outperform conventional solvers when evaluating costly function f can be
parallelized. Nevertheless, ASK’s efficiency decreases (compared with conventional solvers like
Runge–Kutta), as the system dimension increases since the tensor product rule is applied to
construct high-dimensional collocation points. A possible way of improving the efficiency is to
leverage the sparse grid methods to construct collocation points, which has shown its success
in solving PDEs with the spectral method [29, 30]. Following this idea, we demonstrate that,
combined with the sparse grid method, ASK can solve linear and nonlinear PDEs accurately
and efficiently [16]. In this work, the sparse grid–based ASK manages to solve ODE systems
(semidiscrete PDEs) with dimension up to 100. It is shown to outperform RK4 in efficiency.
Also, applying an anisotropic setting, e.g., a different number of Gauss–Lobatto points, dif-
ferent radius, and different γ in each direction, can potentially enhance the computational
efficiency. Moreover, we provide an illustrative example on reusing computed eigenpairs of
the Koopman operator to solve the same ODE with new initial values. The advantage of ASK
over conventional solvers demonstrates its potential in the numerical study of the systems
sensitivity, stability, uncertainty propagation, etc.

Furthermore, there are interesting relations between our work and the recent works on
constructing the Koopman operator’s eigenfunction in an appropriate space, such as [9,
7]. ASK approximates eigenfunctions with orthogonal polynomials, whereas the authors
use radial basis functions for the approximation in reproducing kernel Hilbert space in [7].
As an analogue, both spectral methods and radial basis methods are active topics in the
study of numerical PDEs. Also, in [9], the author uses orthogonal basis and the spectral
Galerkin approach in a data-driven setting to construct eigenfunctions. As a connection, the
pseudospectral method can be considered as a Galerkin projection with a special measure.
Both theoretical and numerical developments of the ASK method can benefit from these
related studies.

Finally, since ASK is based on the Koopman operator, the spectra structure of the operator
is critical in designing the algorithm, such as setting parameters. For instance, as pointed out
in [7], the signal will be spectrally similar to the signal generated by a noisy source in the
data-driven setting if there is a nonempty continuous spectrum. Hence, it will be difficult
to distinguish the true discrete spectral components. Also, the magnitude of the discrete
spectral components carried by the signal may rapidly decay with increasing frequency. For
ASK, similar problems may lead to inaccurate approximation to the solution with a linear
combination of eigenfunctions (because the continuous spectrum is associated with an integral
based on an appropriate measure) or numerical issues when N is large (because the magnitude
of eigenvalues may decay rapidly), which requires further investigation.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

8
/2

4
 t

o
 1

3
7
.1

1
0
.2

0
6
.2

1
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

THE ASK METHOD FOR DYNAMICAL SYSTEMS 1549

Appendix A. An example of the observable.

As an example, we consider the following nonlinear dynamical system [3, 18]:

dx1
dt

= αx1,

dx2
dt

= β(x2 − x21).

Here, α and β are the inherent parameters of the system. For such a system, appropriate
observables lead to a closed-form solution. In particular, let y := (x1, x2, x

2
1)

> be a three-
dimensional observable. Then the system can be converted to the following linear system:

dy

dt
=





α 0 0
0 β −β
0 0 2α



y.

For simplicity, assume that x1(0) = x2(0) = 1. Then we have the closed-form solution

y=





1
0
0



 eαt +
−2α

β − 2α





0
1
0



 eβt +





0
β

β−2α

1



 e2αt =





eαt

−2α
β−2αe

βt + β
β−2αe

2αt

e2αt



 .

Equivalently,

x1 = eαt, x2 =
−2α

β − 2α
eβt +

β

β − 2α
e2αt.

Appendix B. An example of pseudocode. We demonstrate a pseudocode (in MATLAB)
of solving dx

dt = cos2(x), which summarizes the steps presented in subsections 3.1–3.3. The
MATLAB code generating Chebyshev–Gauss–Lobatto points and the associated differentia-
tion matrix can be found in [31].

f = @(x) cos(x).^2; % Function f

x0 = pi/4; % Initial condition

r = 0.1; % Radius of the neighborhood (tunable)

N = 4; % Number of collocation points (N+1 in total)

T = 5; % Final time

% Generate collocation points and the differentiation matrix

% on [x0-r, x0+r]

[quad_pnt, diff_mat] = cheb(N, x0-r, x0+r);

% Compute eigenpairs of the Koopman operator

K = diag(f(quad_pnt))*diff_mat;

[eig_vec, eig_val] = eig(K, ’vector’);

% Compute coefficients (Koopman modes)

coef = eig_vec\quad_pnt;

% Construct solutions at time T

sol = real(eig_vec(N/2+1,:).*coef’*exp(eig_val*T));

When the adaptive update in ASK is activated (see subsection 3.4), we only need to repeat
this pseudocode (as a subroutine) with an updated initial condition x0 and final time T .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

8
/2

4
 t

o
 1

3
7
.1

1
0
.2

0
6
.2

1
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1550 BIAN LI, YIAN MA, J. NATHAN KUTZ, AND XIU YANG

Acknowledgments. We thank Professor Yue Yu, Hong Qian, and Yeonjoing Shin for
fruitful discussions on the spectral method and properties of the Koopman operator.

REFERENCES

[1] T. Askham and J. N. Kutz, Variable projection methods for an optimized dynamic mode decomposition,
SIAM J. Appl. Dyn. Syst., 17 (2018), pp. 380–416.

[2] I. M. Bomze, Lotka-Volterra equation and replicator dynamics: A two-dimensional classification, Biol.
Cybern., 48 (1983), pp. 201–211.

[3] S. L. Brunton, B. W. Brunton, J. L. Proctor, and J. N. Kutz, Koopman invariant subspaces
and finite linear representations of nonlinear dynamical systems for control , PLoS One, 11 (2016),
e0150171.

[4] S. L. Brunton, M. Budǐsić, E. Kaiser, and J. N. Kutz, Modern Koopman Theory for Dynamical
Systems, preprint, arXiv:2102.12086, 2021.

[5] M. Budǐsić and I. Mezić, An approximate parametrization of the ergodic partition using time averaged
observables, in Proceedings of the 48th IEEE Conference on Decision and Control (CDC) held jointly
with 28th Chinese Control Conference, IEEE, New York, 2009, pp. 3162–3168.

[6] M. Budǐsić, R. Mohr, and I. Mezić, Applied Koopmanism, Chaos, 22 (2012), 047510.
[7] S. Das and D. Giannakis, Koopman spectra in reproducing kernel Hilbert spaces, Appl. Comput. Har-

mon. Anal., 49 (2020), pp. 573–607.
[8] B. Fornberg, A Practical Guide to Pseudospectral Methods, Vol. 1, Cambridge University Press, Cam-

bridge, 1998.
[9] D. Giannakis, Data-driven spectral decomposition and forecasting of ergodic dynamical systems, Appl.

Comput. Harmon. Anal., 47 (2019), pp. 338–396.
[10] J. S. Hesthaven, S. Gottlieb, and D. Gottlieb, Spectral Methods for Time-Dependent Problems,

Vol. 21, Cambridge University Press, Cambridge, 2007.
[11] G. Karniadakis and S. Sherwin, Spectral/hp Element Methods for Computational Fluid Dynamics,

Oxford University Press, Oxford, 2005.
[12] B. O. Koopman, Hamiltonian systems and transformation in Hilbert space, Proc. Natl. Acad. Sci. USA,

17, (1931), 315.
[13] M. Korda, M. Putinar, and I. Mezić, Data-driven spectral analysis of the Koopman operator , Appl.

Comput. Harmon. Anal., 48 (2020), pp. 599–629.
[14] J. N. Kutz, S. L. Brunton, B. W. Brunton, and J. L. Proctor, Dynamic Mode Decomposition:

Data-Driven Modeling of Complex Systems, SIAM, Philadelphia, 2016.
[15] J. N. Kutz, X. Fu, and S. L. Brunton, Multiresolution dynamic mode decomposition, SIAM J. Appl.

Dyn. Syst., 15 (2016), pp. 713–735.
[16] B. Li, Y. Yu, and X. Yang, The Sparse-Grid-Based Adaptive Spectral Koopman Method , preprint,

arXiv:2206.09955, 2022.
[17] E. N. Lorenz, Deterministic nonperiodic flow , J. Atmos. Sci., 20 (1963), pp. 130–141.
[18] B. Lusch, J. N. Kutz, and S. L. Brunton, Deep learning for universal linear embeddings of nonlinear

dynamics, Nat. Commun., 9 (2018), pp. 1–10.
[19] I. Mezić, Spectral properties of dynamical systems, model reduction and decompositions, Nonlinear Dy-

nam., 41 (2005), pp. 309–325.
[20] I. Mezić, Spectrum of the Koopman operator, spectral expansions in functional spaces, and state-space

geometry , J. Nonlinear Sci., 30 (2020), pp. 2091–2145.
[21] H. Nakao and I. Mezić, Spectral analysis of the Koopman operator for partial differential equations,

Chaos, 30 (2020), 113131.
[22] J. Nathan Kutz, J. L. Proctor, and S. L. Brunton, Applied Koopman theory for partial differential

equations and data-driven modeling of spatio-temporal systems, Complexity, 2018 (2018), 6010634.
[23] S. A. Orszag and L. Bissonnette, Dynamical properties of truncated Wiener-Hermite expansions,

Phys. Fluids, 10 (1967), pp. 2603–2613.
[24] J. Page and R. R. Kerswell, Koopman analysis of Burgers equation, Phys. Rev. Fluids, 3 (2018),

071901.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

8
/2

4
 t

o
 1

3
7
.1

1
0
.2

0
6
.2

1
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

THE ASK METHOD FOR DYNAMICAL SYSTEMS 1551

[25] J. L. Proctor, S. L. Brunton, and J. N. Kutz, Dynamic mode decomposition with control , SIAM J.
Appl. Dyn. Syst., 15 (2016), pp. 142–161.

[26] C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. S. Henningson, Spectral analysis of
nonlinear flows, J. Fluid Mech., 641 (2009), pp. 115–127.

[27] P. J. Schmid, Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech., 656
(2010), pp. 5–28.

[28] J. Shen and T. Tang, Spectral and High-Order Methods with Applications, Science Press, Beijing, 2006.
[29] J. Shen and H. Yu, Efficient spectral sparse grid methods and applications to high-dimensional elliptic

problems, SIAM J. Sci. Comput., 32 (2010), pp. 3228–3250.
[30] J. Shen and H. Yu, Efficient spectral sparse grid methods and applications to high-dimensional elliptic

equations II. Unbounded domains, SIAM J. Sci. Comput., 34 (2012), pp. A1141–A1164.
[31] L. N. Trefethen, Spectral Methods in MATLAB , SIAM, Philadelphia, 2000.
[32] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz, On dynamic mode

decomposition: Theory and applications, J. Comput. Dyn., 1 (2014), pp. 391–421.
[33] J. H. Verner, Explicit Runge-Kutta methods with estimates of the local truncation error , SIAM J. Numer.

Anal., 15 (1978), pp. 772–790.
[34] M. Vidyasagar, Nonlinear Systems Analysis, SIAM, Philadelphia, 2002.
[35] M. O. Williams, M. S. Hemati, S. T. Dawson, I. G. Kevrekidis, and C. W. Rowley, Extending

data-driven Koopman analysis to actuated systems, IFAC-PapersOnLine, 49 (2016), pp. 704–709.
[36] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, A data-driven approximation of the Koopman

operator: Extending dynamic mode decomposition, J. Nonlinear Sci., 25 (2015), pp. 1307–1346.
[37] D. Wilson and J. Moehlis, Isostable reduction with applications to time-dependent partial differential

equations, Phys. Rev. E, 94 (2016), 012211.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/1

8
/2

4
 t

o
 1

3
7
.1

1
0
.2

0
6
.2

1
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

	Introduction
	Background
	Koopman operator
	Infinitesimal generator

	ASK method
	Finite-dimensional approximation
	Eigendecomposition
	Constructing the solution
	Adaptivity
	Properties of the algorithm
	Algorithm summary

	Numerical results
	Solving ODEs with ASK
	Cosine model
	Lotka–Volterra model
	Simple pendulum
	Limit cycle
	Kraichnan–Orszag model
	Lorenz attractor

	Computational complexity
	Reusing eigenpairs and Koopman modes

	Conclusion and discussion
	Acknowledgments
	References
	Appendix A. An example of the observable.
	Appendix B. An example of pseudocode.

