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A B S T R A C T

Inference in hidden Markov model has been challenging in terms of scalability due to dependencies in the
observation data. In this paper, we utilize the inherent memory decay in hidden Markov models, such that
the forward and backward probabilities can be carried out with subsequences, enabling efficient inference
over long sequences of observations. We formulate this forward filtering process in the setting of the random
dynamical system and there exist Lyapunov exponents in the i.i.d random matrices production. And the rate of
the memory decay is known as �2 −�1, the gap of the top two Lyapunov exponents almost surely. An efficient
and accurate algorithm is proposed to numerically estimate the gap after the soft-max parametrization. The
length of subsequences B given the controlled error � is B H log(�)∕(�2−�1). We theoretically prove the validity
of the algorithm and demonstrate the effectiveness with numerical examples. The method developed here can
be applied to widely used algorithms, such as mini-batch stochastic gradient method. Moreover, the continuity
of Lyapunov spectrum ensures the estimated B could be reused for the nearby parameter during the inference.

Hidden Markov model (HMM) and its variants have seen wide
applications in time series data analysis. It is assumed in the model
that the observation variable Y probabilistically depends on the latent
variables X with emission distribution p(yn|xn) at each time n. The
underlying probability of the discrete random variables X follows a
Markov chain with transition probability p(xn|xn−1) [1]. HMM is the
simplest dynamic Bayesian network and has proven a powerful model
in many applied fields including speech recognition [1–3], computa-
tional biology [4–6], machine translation [7,8], cryptanalysis [9] and
finance [10]. Model parameters and hidden variables are inferred for
prediction or classification tasks.

Traditionally, model parameters and hidden variables are esti-
mated iteratively for the HMMs through the celebrated Baum–Welch
algorithm [11]. For this maximum likelihood estimation, a forward–
backward procedure is used which computes the posterior marginals
of all hidden state variables given a sequence of observations. Later,
Bayesian algorithms are also developed through forward filtering back-
ward sampling algorithm and variational Bayes method which handles
conjugate emission models on the natural parameter space through
similar veins as the Baum–Welch algorithm.

In all the aforementioned approaches for inference in HMMs,
marginalization over hidden variables is involved. This step is the crux
of the computation burden. For long observation sequences, this step
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causes problems of scalability, computation error, and even numerical

stability in inference for HMMs [11–13]. Hence an important question

is: can one only use part of the data to approximate marginal likelihood

over hidden variables of the entire chain, so that stochastic algorithms

can be developed with controllable error?

To economize on computational cost at each iteration, we will take

advantage of the memory loss property for the filtered state probability.

The key idea is that successive blocks of sufficiently long subsequence

observations can be considered almost independent of each other. In

this paper, we make use of this memory loss property to approximate

the predictive distribution of hidden states p(xn|y1∶n) by only using

part of the observation sequence p(xn|yn−B+1∶n). This is achieved by

formulating p(xn|y1∶n−1) as a long sequence of heterogeneous matrices
(comprised of emission probabilities and the transition probability)

applied successively on an initial probability vector.

However, a critical question that needs to be answered is how

long should the subsequence be? Though previous theory exists to

quantify the length, the resulting lengths are often longer than the

entire sequence which is practically not useful. So one needs to evaluate

the rate of memory loss accurately and efficiently to control the length

of the subsequence. If we recall the process of calculating filtered state
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probability, it can be considered as independent and identically dis-
tributed random matrix production if we treat observations as random
events. It turns out there is a mathematical framework called random
dynamical system (RDS) and the long time behavior of random matrices
production is described in multiplicative ergodic theorem (MET), also
called Oseledets theorem [14]. Specially, there exists the Lyapunov
spectrum. Previous results showed the rate of memory loss is upper
bounded by the gap of the top two Lyapunov exponents, �2 − �1 and
is in fact realized almost surely [15,16]. In particular, the memory loss
property requires the Markov chain to be irreducible and aperiodic and
the emission distribution to be positive, such that the gap is strictly
negative [15–18]. In this work, we develop an algorithm to accurately
and efficiently calculate this gap and the length of subsequence for the
given error.

The paper is organized as follows. To make the presentation self
contained, in Section 1, we review the basic concepts on hidden Markov
models. In Section 2, we introduce the exponential forgetting of the
filtered state probability and review the connection of the forgetting
rate and the gap of Lyapunov exponents. In Section 3, we propose an
accurate and efficient algorithm to estimate the forgetting rate and it
also provides insight for justification of the gap being the forgetting
rate. In Section 4, we apply this algorithm to estimate the gradient of
log-likelihood function efficiently with the help of stochastic gradient
descent method. In Section 5, possible extensions to further speed up
the inference are proposed.

1. Introduction to HMM

Hidden Markov models (HMM) are a class of discrete-time stochas-
tic process {Xn, Yn, n e 0}: {Xn} is a latent discrete valued state
sequence generated by a Markov chain, with values taking in the
finite set {1, 2,& , K}; {Yn} is corresponding observations generated
from distributions determined by the latent states Xn. Here it assumes
Yn taking values in Rd , but it can easily extended to discrete states.
We can use the forward algorithm to compute the joint distribution
p(xn, y1∶n) by marginalizing over all other state sequences x1∶n−1. Yn is
conditionally independent of everything but Xn and Xn is conditionally
independent of everything but Xn−1, i.e, p(yn|x1∶n, y1∶n−1) = p(yn|xn)
and p(xn|xn−1, y1∶n−1) = p(xn|xn−1). The algorithm takes advantage of
the conditional independence rules of HMM to perform the calculation
recursively. Using Bayes’s rule, we have:

p(xn, y1∶n) =
1
xn−1

p(yn|xn)p(xn|xn−1)p(xn−1, y1∶n−1) (1)

In the above equation, p(yn|xn) is referred to as the emission distribution
with emission parameters {�i}

K
i=1
. Meanwhile, p(xn|xn−1) represents the

transition probability of the Markov chain, which is denoted by the
transition matrix M . In most cases, we assume M is primitive, i.e, the
corresponding Markov chain is irreducible and aperiodic. We denote
the parameter of interest as � = {M,�}. If the emission distribution
is Gaussian distribution, then the emission parameters are the mean
� and the covariance �. Using the notation of vectors and matrix
operations, the joint distribution can be represented by a row vector
Ďn = p(xn, y1∶n|�), where its jth component is p(xn = j, y1∶n|�). The for-
ward algorithm can be computed using the following non-homogeneous
matrix product.

Ďn = Ď0MD1MD2 &MDn (2)

In this equation, Ď0 denotes the initial state distribution p(x0). The
matrix Dn is a diagonal matrix, where its jth entry is given by Djj (yn) =

p(yn|xn = j, �j ). This represents the emission distribution when the
current state is j. Moreover, if one considers the observation yn as
random events, then D(yn) are random matrices that are independently
sampled at each step. If one starts with invariant distribution of the

Markov chain initially, �, then these matrices are sampled in i.i.d
manner with probability density distribution

f (y) =
1
j

�jp(y|xn = j, �j ) (3)

If the initial distribution is not �, after couple time steps, the distri-
bution follows the invariant distribution and one can assume these
matrices are sampled in i.i.d manner anyway. Now it is turned into
a product of random matrices problem and these diagonal matrices
randomly rescale the columns of M . Ďn is called forward probability.

If we normalize the vector Ďn, it obtains the filtered state probability,
Ān = p(xn|y1∶n, �), which is not the invariant distribution of the Markov
chain,

Ān =
p(xn, y1∶n|�)
p(y1∶n|�) =

Ďn

Ďn ç 1
(4)

This process is called filtering. The normalization constant (Ďn ç1) gives
the total probability for observing the given sequence up to step n

irrespective of the final states, which is also called marginal likelihood
p(y1∶n|�). Not only this process ensures the numerical stability of ran-
dom matrices production, but also Ān provides the scaled probability
vector of being each state at step n. Note the probability vector Ān lives
in a simplex, SK−1, which is also called projective space in dynamical
system, or space of measure in probability theory. Instead, the joint
probability Ďn is in RK+.

Another joint probability column vector Āi = p(yi+1∶n|xi, �) is the
probability of observing all future events starting with a particular state
xi. It can be computed by the backward algorithm similarly and it is
called backward probability. We begin with Ān = 1, and it gives

Āi = MDi+1 &MDn1 (5)

It is again a product of random matrices. One can similarly renormalize
the backward probability vector for better numerical stability, Ā i =

Āi∕(Āi ç 1) such that Ā i ? p(yi+1∶n|xi, �). In fact, with forward and
backward probability, we can calculate the probability p(xi|y1∶n, �) ?

ĀT
i ċĀ i which is the Hadamard product of two vectors. In fact, the entry
for the highest entry of this probability vector can give rough idea
which latent state at step i lies.

2. Exponential forgetting

Heuristically, in this very long heterogeneous matrix multiplication
(2), one observes that the final vector is irrelative to the initial vector
and almost determined by the last several matrices multiplications, up
to a normalization constant. As a matter of fact, if one is not interested
in the precise value of the final vector, the subsequence of matrices with
length B are sufficient to approximate the vector. In more mathematical
precise writings: Start any two different initial state probability vector
Ď0 and Ď2

0
and after applying exactly the same sequence of matrices,

they generate two sequence of filtered state probability Ān and Ā2
n. The

distance of two sequence goes to 0 asymptotically almost surely, i.e,

lim
n³+@

‖Ān − Ā2
n‖ = 0 a.s. (6)

This phenomenon is called loss of memory of HMM.
Example: In Fig. 1, Markov chain has three state, emission distri-

bution is a one-dimensional Gaussian on each state and the parameter
� is

M =

⎡
⎢⎢⎣

0.005 0.99 0.005

0.01 0.03 0.96

0.95 0.005 0.045

⎤
⎥⎥⎦
, � = [0, 0.5,−0.5], � = [1, 1, 1]

Starting with every point in the simplex as initial conditions, we apply
these points by the same sequence of random matrices. One observes
that the triangle consisting all points starts to shrink along n and after
40 steps, the triangle is contained within a small circle with radius �.
As n goes to +@, it will synchronize into a random fixed point, since
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Fig. 1. (a) Starting with every point in the simplex, apply the same sequence of random matrices, and the triangle is contained within a small circle with radius � after 40 steps.
(b) Diagram of the projection from a point in the simplex S2 to R

2.

it is sequence dependent. That implies if one allows error of �, it may
only requires the last 40 matrices which is irrelevant with the initial
condition. So it significantly simplifies computational complexity.

If the diagonal matrices Di are homogeneous, it degenerates to the
corollary of Perron–Frobenius theorem for primitive matrices. Now nat-
ural questions to arise are: what are conditions for such phenomenon
and under these conditions, what are the rate of convergence. This rate
in fact answers the critical question that how long the length B should
be for a given �. More questions about the rate are how to estimate the
rate numerically or even analytically and does the rate continuously
depends on the parameter �.

In fact, the sufficient conditions for this phenomenon are given in
Le Gland et al. [17,18],

Theorem 2.1. If Markov transition matrix is primitive and the emission
distribution p(yn|xn) is strictly positive, then for any Ď0,Ď

2
0
* SK−1, there

exists a strictly negative −c

lim sup
n³+@

1

n
log ‖Ān − Ā2

n‖ d −c, almost surely (7)

The theorem implies the filtered state probability forget almost
surely their initial conditions exponentially fast and the rate is at least c.
So the phenomenon of loss of memory of HMM is also called exponential
forgetting of prediction filter. The techniques they used are Hilbert metric
and Birkhoff contraction coefficient �(M), which are extensively ap-
plied in non-negative matrix theory [19,20]. Definitions of both terms
are included in Appendix A and it also showed that �(M) < 1 for
positive matrix M which is a sub-class of primitive matrix. It is a bit
surprising that eigenvalues of each matrix in the heterogeneous matrix
production have little to do with this asymptotic behavior. In particular,
one can construct a matrix sequence that spectrum radius of each is
uniformly less 1, but the product does not even converge to 0. It is
because the spectral radius does not process sub-multiplicity property,
on the other hand, this Birkhoff contraction coefficient does. Moreover,
�(M) = 0 if and only if each row of M is a scalar multiple of the
first row, which is also called weak ergodicity. At last, this coefficient
is invariant with rescaling rows and columns of matrix. From these
three properties, one immediately concludes when M is positive, the
heterogeneous matrix production in (2) has the weak ergodicity and the
exponential forgetting of the prediction filter follows with convergence
rate log �(M). To further relax the positive matrix to primitive matrix,
the approach is rather technical.

On the other hand, the long time behavior of random matrices pro-
duction is well studied in multiplicative ergodic theorem (MET) through
Lyapunov exponent. It is the heart of a field called Random Dynamical
System (RDS) [14]. Lyapunov exponent is like the generalization of
logarithm of absolute value of eigenvalues in the terms of random

matrices production. Atar et al. [15] and Collet et al. [16] gave the
exact convergence rate by Lyapunov exponents,

Theorem 2.2.

lim sup
n³+@

1

n
log ‖Ān − Ā2

n‖ = �2 − �1, almost surely (8)

So the convergence rate is upper bounded by the gap between
the first two Lyapunov exponents of the products of random matrices
in (2) and in fact realized for almost all realizations. Furthermore,
they showed this gap is strictly negative when the transition matrix is
primitive and the emission distribution is positive. Then it recovered
Le Gland’s results. There is a nice connection between two results:
Peres [21] proved the gap of the first two Lyapunov exponents, �2−�1 in
i.i.d random matrices production is upper bounded by log �(M). So for
positive matrices, these two results connect with each other naturally.

Random dynamical system, as an extension of the theory of non-
autonomous dynamical system, has different setup from stochastic
process and is somewhat inaccessible to a nonspecialist. Here we will
present this theory in the setting of product of random matrices intu-
itively. The rigorous definition is included in Appendix B.

We will describe an i.i.d RDS for the sake of convenience and
one can extend easily to independent but not identical RDS. Results
presented in this paper can be extended to ergodic case. The state
space is RK+ and the family of matrices � is all the possible diag-
onal matrices D. We would like to study the dynamics of Ďn in (2).
Although Ďn itself has probability meaning, here we are merely treating
it as K dimensional random variable. Initially, starting from an initial
condition Ď0, a diagonal matrix D1 = D(y1) is chosen according to the
probability density distribution f (y) in (3). Then the system moves to
the state Ď1 = Ď0MD1 in step 1. Again, independently of previous maps,
another matrix D2 = D(y2) is chosen according to the same probability
density function and the system moves to the state Ď2 = Ď1MD2.
The procedure repeats. The random variable Ďn is now constructed by
means of multiplication of independent random matrices.

The asymptotic limit of the rate of growth for the product of
independent random matrices, limn³+@

1

n
log

‖Ďn‖
‖Ď0‖ , is as been studied

started at the beginning of the 60’s. It has great relevance for devel-
opment of the ergodic theory of dynamical system. Furstenberg and
Kesten [22,23] showed

Theorem 2.3.

�1 = lim
n³+@

1

n
log

‖Ďn‖
‖Ď0‖ , almost surely (9)

this limit �1 exists almost surely, moreover, it is a nonrandom quantity and
independent of the choice of metric.
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It is considered as the extension of strong law of large number
to i.i.d random matrices [24]. This limit is called maximum Lyapunov
exponent. It is rather surprising result since the order of sequence seems
not much important even for non-commutative matrix multiplication.
However, the Furstenberg–Kesten theorem neglects the finer structure
given by the lower growth rates, other than the maximum Lyapunov
exponent. Later Oseledets [25] showed there exists Lyapunov spectrum
�, like eigenvalue spectrum, from the multiplicative ergodic theorem
(MET). Similarly Lyapunov spectrum does not depend on the choice of
sequence almost surely and thus it is a global property for this random
matrix multiplication. For a given initial vector, such set of sequences
that gives different asymptotic limit of growth rate has zero measure.
Analog with eigenvector, it also has Lyapunov vector which describes
characteristic expanding and contracting directions, but it depends
on the particular ergodic sequence. The statement of the theorem is
included in Appendix B.

The filtered state probability Ān is projected onto the simplex SK−1

in (4) and the dynamics of it will be an induced RDS. There is a nice
theorem connecting Lyapunov spectrum of both RDS. [14]

Theorem 2.4. Lyapunov spectrum of the induced RDS is that of the
corresponding RDS subtracts the maximum Lyapunov exponent, i.e, �2 =

� − �1.

Specifically, when the condition in Theorem 2.1 is fulfilled, then
maximum Lyapunov exponent of the induced RDS, �2

1
= 0 with multi-

plicity 1 and the next one is �2
2
= �2 − �1 which is what we desire to

estimate.
In the framework of RDS, the exponential forgetting property de-

fined above is equivalent with synchronization by noise. Synchronization
is the phenomenon when trajectories of random dynamical systems
subjected to the same randomness, but starting from different initial
vectors converge in time to a single (random) solution almost surely,
like in Eq. (6). So these trajectories are not independent. Synchroniza-
tion has been widely discovered as a relevant property in modeling of
external noises. In neurosciences, one observes this synchronization by
common noise as a reliable response of one single neural oscillator on
a repeatedly applied external pre-recorded input, which may be seen as
a dynamical system driven by the same noise path but different initial
conditions [26,27].

However, we note not every RDS processes this property. Specifi-
cally, Newman [28] showed the necessary and sufficient conditions for
stable synchronization in continuous state RDS. Crudely speaking, in
order to see synchronization, one needs two ingredients: local contrac-
tion (negative maximum Lyapunov exponents) so that nearby points
approach each other; along with a global irreducibility condition. In
discrete state RDS, conditions for synchronization are discussed as
well [29]. In HMM, the global irreducibility holds since the transition
matrix M is primitive and the local contraction is guaranteed by this
gap �2 − �1. It recovers the results previously obtained. Much intuitive
picture will be presented in the next section. So the 2-norm of difference
for two nearby trajectories has the following behavior,

‖Ān − Ā2
n‖ d C exp

(
(�2 − �1)n

)
‖Ď0 − Ď2

0
‖ (10)

where C is some constant. If one would like to have the error within
the radius of �, then the length of the subsequence should be B H
ln(�)

�2−�1
. However, from the previous literature [15,17,18], the explicit

analytical estimate of the gap �2 − �1 for a given parameter is either
too loose or still difficult to find. So the numerical algorithm of efficient
estimation is on demand.

3. Algorithm

In fact, one could sample two sequences of Ā and Ā2 with the
same matrices sequence and monitor the maximum length needed to
achieve � error. However, it suffers numerical instability and lack of

robustness, such that some rare cases could deviate the estimate. Or
one use QR decomposition directly to find the Lyapunov spectrum
for (2) which takes about O(K3) order of multiplications per each
iteration. But what needed is merely the second largest one instead
of the whole spectrum. Then it is possible to have a more efficient
algorithm and may provide some new insight that why this gap governs
the exponential forgetting rate. In realistic scenario, one may possibly
access the forward probability Ďn or the filtered state probability Ān, or
at least some portion of them. We would like to take advantage of these
information without redoing this time-consuming filtering process.

If Ā = [a1, a2,& , aK ], define a projection � from simplex SK−1 to
RK−1 as the log ratio relative to the last component. The projection is
illustrated for the example in Fig. 1.

� ∶ Ā =
[
a1, a2,& , aK

]
³ Đ =

[
log(

a1
aK

)

⏟⏞⏟⏞⏟
r1

, log(
a2
aK

)

⏟⏞⏟⏞⏟
r2

,& , log(
aK−1

aK
)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
rK−1

, 0
]
(11)

Denote rK = 0 as convention, such that Đ is embedded in RK . Since
M is primitive, aK cannot be 0 except for at most K initial steps. In
the mean time, Ā will be in the interior of the simplex. Such projection
from compact space to non-constraint space, illustrated in Fig. 1, is
relatively common in numerical optimization which is called soft-max
parametrization. It directly implies the constraint condition

1
i ai = 1

and ai > 0. The inverse of the projection, �−1 is

�−1 ∶ Đ =
[
r1, r2,& , rK−1, 0

]
³

Ā =
[ exp(r1)1

i exp(ri)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

a1

,
exp(r2)1
i exp(ri)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
a2

,& ,
exp(rK )1
i exp(ri)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
aK

]
(12)

The index of the summation is from 1 to K. This projection naturally
defines an induced RDS for the dynamics of Đ. Furthermore,

Theorem 3.1. If the coordinate transformation is bijective, and both its
derivative and inverse exist, then the Lyapunov spectrum remains invariant
under such a transformation.

Then the projection preserves the Lyapunov spectrum. It also means
the synchronization with the variable Đ implies the synchronization
with Ā and vice versa. Heuristically understanding, �2

1
= 0 is due to

the constraint condition and after the parametrization, the condition
is inherited in the last component rK = 0. If we only study the
dynamics for the first K − 1 unconstrained coordinates, it removes this
particular Lyapunov exponent of the induced RDS but keeps the rest of
the spectrum the same. Now the maximum Lyapunov exponent is the
desired difference �2 − �1.

In addition, the dynamics of Đ has the following nice property. The
random map GĂ for Đ has the form as

Đn+1 = GĂn
(Đn) = Ăn + F (Đn) (13)

It is composed with random translation Ă and deterministic map F (Đ).
Each component of the map F is explicitly given as

Fi(Đ) = ln
( 1K

j=1 exp(rj )Mji

1K
j=1 exp(rj )MjK

)
, 1 d i d K − 1 (14)

If we denote ċi as the ith column of the transition matrix M and
exp(Đ) as component-wise exponent, Eq. (14) can be rewritten by inner
product form

Fi(Đ) = ln
( exp(Đ) çċi

exp(Đ) çċK

)
, 1 d i d K − 1 (15)

The random translation is similarly defined as the log ratio of diagonal
of D relative to the last component, Ăn =[
ln

p(yn|xn=1)
p(yn|xn=K)

,& , ln
p(yn|xn=K−1)

p(yn|xn=K)

]
. Since the emission distribution is posi-

tive, the log ratio is well defined. The random map is the translation of
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the deterministic smooth map F by the i.i.d random variable Ăn and F is
solely dependent on the transition matrixM . It is even more interesting
to notice the Jacobian of this random map is independent with Ă, it
is J (Đ) = ∇F (Đ) since the random translation will not affect the local
contraction or expansion.

The (K − 1)-by-(K − 1) Jacobian matrix J (Đ) can be explicitly
expressed as follows,

Jij (Đ) =
exp(Đj )Mji

exp(Đ) çċi

−
exp(Đj )MjK

exp(Đ) çċK

, 1 d i, j d K − 1 (16)

Then we will have the corollary following by Theorems 2.4 and 3.1

Corollary 3.2.

�2 − �1 = lim sup
n³+@

1

n
log ‖J (Đn)J (Đn−1)ď J (Đ1)‖ (17)

Now the maximum Lyapunov exponent �2 − �1 is approximated
by the finite time Lyapunov exponent [10,29]. Instead of using QR
decomposition, the maximum Lyapunov exponent can be estimated
by averaging finite time approximations which is much faster and
easier to implement. One can start with a unit test vector, apply these
Jacobian matrices sequentially and renormalize the vector at each
step. Averaging all these renormalization constants along the timeline
will give the approximation of maximum Lyapunov exponent. It is
not a concern that all vectors are alignment along the direction of
maximal expansion because we are not interested in finer structure of
the spectrum. The order of multiplication needed is O(K2) per each
iteration which is faster than QR decomposition. More importantly, if
one already has partial data set of the filtered state probability, they can
be projected to Đ and estimate the Lyapunov exponent directly without
further information on observed sequences.

The maximum Lyapunov exponent for this induced random map
�2 − �1 characterizes the rate of separation of infinitesimally close
trajectories in RK−1. If two vectors Đ2 and Đ are close enough, one could
use their difference to approximate the 2-norm of the difference of Ā2

and Ā, ‖Ā2 − Ā‖2 d 1

4
‖Đ2 − Đ‖2. Then the rate of separation for Ā in

fact is upper bounded by the gap �2 − �1, which is the estimation of
exponential forgetting rate. This algorithm provides some new insight
for the analytical justification for the gap.

We apply this algorithm to approximate the gap of Lyapunov expo-
nent in the previous example. In Fig. 2, the estimated gap is �max =

−0.1944 with data of 10000 and the length B needed for � = 10−15

is about 178. On the other hand, one starts with two different initial
conditions Ď0 and Ď2

0
and applies the same sequences of random matri-

ces to obtain Ā and Ā2 after normalization. We plot 1

n
log ‖Ān − Ā2

n‖2
along n for ten independent sequences and they roughly converge
to the theoretical limit −0.1944. However, as n increases, ‖Ān − Ā2

n‖2
reaches the machine epsilon and becomes numerically unstable, such
that some sequences are cut off beyond n = 150. So we are not able
to visualize the strong convergence directly. If we average 500 sample
sequences, then we can clearly visualize the convergence in mean. With
the uniform integrability, convergence in mean is granted by the strong
convergence.

Right now, it seems one needs to estimate the gap for each param-
eter �. One related result is if matrices are nonsingular and maximum
Lyapunov exponents are simple, then it depends continuously on the
probability [21]. Bocker and Viana [30] showed Lyapunov spectrum
depend continuously on matrices and probability for 2-dimensional
case, as far as all probabilities are positive. Moreover, a few of Avila’s
deepest results with Eskin and Viana [31], extend the statement to
arbitrary dimension. The book [32] gives a nice introduction on this
most recent approach. The direct consequence for this result is it
does not need to estimate the gap every time and it is safe to reuse
the previous estimation for couple steps in parameter inference. The
pseudocode of estimating the length B is given in Algorithm 1.

Algorithm 1 Estimate the length B

1: a ± 0, initialize Ď0 and e,
2: for i = 0, 1,& , Niter,Do
3: Ďi+1 ± ĎiMDi+1, Di+1 is given in (2),
4: Āi+1 ± Ďi+1∕(Ďi+1 ç 1), update Đi+1 according to (11),
5: e ± J (Đi+1)e, a ± a + log ‖e‖, e ± e∕‖e‖.
6: end for
7: � ± a∕Niter, B ± log(�)∕�.

4. Applications

4.1. Statistical inference

Traditionally, EM, variational inference or MCMC are used to per-
form inference over �. These algorithms have found widespread use in
statistics and machine learning [11,12]. However, it is a computational
challenge in terms of scalability and numerical stability, to marginalize
all hidden state variables given a long sequence of observations. There
are many other gradient based algorithms to obtain the maximum like-
lihood estimator (MLE) or maximum a posteriori (MAP), for instance,
stochastic gradient descent method. We must be able to efficiently
estimate the gradient of the log-likelihood function or log-posterior
function, ln p(�|y1∶n). The likelihood function p(y1∶n|�) is written as
p(y1∶n|�) = 1

j p(xn = j, y1∶n|�) = Ďn1 = ĎiĀi for 0 d i d n.
With the prior function p(�), the gradient is written as

) ln p(�|y1∶n)
)�i

=
) ln p(y1∶n|�)

)�i
+

) ln p(�)

)�i

=

n1
j=1

Ďj−1
)MDj

)�i
Āj

Ďj−1MDjĀj
+

) ln p(�)

)�i

=

n1
j=1

Āj−1
)MDj

)�i
Āj

Āj−1MDjĀj

+
) ln p(�)

)�i
(18)

The complexity of matrix multiplication needed to calculate one
component of the gradient is O(n) and the space needed is also O(n). So
it is prohibitively expensive to compute directly in space and time when
n is very large. Moreover, this direct computation is not numerically
stable since the numerator and denominator are usually extremely
small in such massive matrix multiplication. In fact, there are various
algorithms to reduce the complexity, including the following mini-
batch gradient descent method, which employs noisy estimates of the
gradient based on minibatch of data [33–35].

First, instead of summing over all index j from 1 to n, uniformly
sample a subset of summand S with cardinality s at each step and use
the following estimator for the direction of the full gradient. Here we
assume the prior distribution p(�) as uniform for the sake of simplicity,

) ln p̃(�|y1∶n)
)�i

=
n

s

1
j*S

Āj−1
)MDj

)�i
Āj

Āj−1MDjĀj

(19)

Then we expect E( ) ln p̃(�|y1∶n)
)�i

) =
) ln p(�|y1∶n)

)�i
. This is typically referred to

mini-batch gradient descent based techniques and it is very effective in
the case of large-scale problems.

Second, instead of computing normalized forward and backward
probability Āj and Āj recursively, we introduce a buffer of length B

on left and right ends of the subsequence of random matrices and both
vectors are estimated by this much shorter subsequence,

Ď̃LB = Ď0MDj−B &MDj−1, Ā̃j−1 = Ď̃LB∕(Ď̃LB ç 1) (20)

Ā̃RB = MDj+1 &MDj+B1, Ā̃j = Ā̃RB∕(̃ĀRB ç 1) (21)

The reason to use the same buffer length for forward and backward
probability is that Lyapunov spectrums for forward algorithm and
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Fig. 2. (a) We use Algorithm 1 to estimate the gap of Lyapunov exponent with the observation sequence with length of 10000. (b) We sample 10 independent sequences for
1

n
log ‖Ān − Ā2

n‖2 and compare with the theoretical limit (black line). (c) We average 500 independent sample sequences and compare with the theoretical limit (black line).

backward algorithm are exactly the same. Therefore, the gap of the top
two Lyapunov exponents are the same and the buffer of length is the
same.

Theorem 4.1. Let � be an invertible ergodic measure-preserving transfor-
mation of a probability space (
,P), where P = QZ is the Bernoulli measure.
Let A ∶ 
 ³ M(d,R) satisfy + log ‖A±1

! ‖dP < @. Let Pn(!) be the induced
linear cocycle, Pn(!) = A(�(n−1)!)&A(!). Then the Lyapunov spectrums
of these two linear cocycles

� ∶= lim
n³+@

1

n
log ‖ēPn(!)‖, �2 ∶= lim

n³+@

1

n
log ‖Pn(!)Ĕ‖ (22)

are equal P-a.s.

The proof is straight forward. The left multiplication and the right
multiplication will not change the Lyapunov spectrum but the sub-
spaces Ui(!) will be different for two cocycles.

So the gradient (19) is approximated as

) ln p̃(�|y1∶n)
)�i

=
n

s

1
j*S

Ā̃j−1
)MDj

)�i
Ā̃j

Ā̃j−1MDj Ā̃j

(23)

Note that (23), the matrix multiplication required is O(2Bs) after using
the buffer and the space needed is O(s). When 2Bs ≪ n, this results
in significant computational speedups over the full batch inference
algorithm. This techniques is exactly due to the memory decaying
property and the buffer length B is calculated in Algorithm 1. In order
to be consistent with this technique, we can uniformly sample the
subset of summand in the domain [B + 1, n−B − 1]. Moreover, one can
enforce no overlap among the sampled subsequences. In pseudocode,
the algorithm is presented in Algorithm 2.

This memory decay property not only can be taken advantage of in
mini-batched gradient descent based inference on MLE or MAP, but also
be used in stochastic gradient-MCMC [33,35,36], stochastic variational
inference [34], stochastic EM and online learning [13]. There are many

Algorithm 2 Mini-batched based inference for HMM

1: initialize the parameter � = {M,�} and learning rate �

2: for i = 0, 1,& , Niter,Do
3: Periodically estimate the buffer length B according to Algorithm
1

4: i.i.d sample s integers in the subset [B+1, n−B−1] with uniform
distribution.

5: Calculate ) ln p̃(�|y1∶n)
)�

according to (23).

6: d =
) ln p̃(�|y1∶n)

)�
∕‖ ) ln p̃(�|y1∶n)

)�
‖

7: � ± � + �d

8: end for

more algorithms could be built based on this fundamental property
in HMM. No matter what mini-batched based algorithm is used, it is
important to estimate the buffer length efficiently and accurately.

4.2. Synthetic example

In order to demonstrate the algorithm, we sampled a long obser-
vation sequence with length L = 107 and the parameter given in
example 1. We assume we know all parameters except �1 and �2. In
the algorithm, we use the same left and right buffer length B = 200 and
sample size s = 100. The learning rate � starts with 0.05 and decays with
the rate of 0.95 along the steps to prevent oscillations. After 25 steps,
the algorithm will restart with the latest parameter, until the difference
of parameter from the previous restart is within the threshold, which
in this case is 0.02. From Fig. 3, the parameter reaches the desire MLE
(0.03, 0.48) after 8 starts from the initial guess (0.8,−0.8). Note from the
contour plot of the log-likelihood function, there is a region around
(0.5, 0) which is the flip of the mean, is very flat and our algorithm
is able to escape it due to the stochastic nature. Another remark is
the matrix multiplication needed is about 8 ∗ 106 which is less than
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Fig. 3. Apply the Algorithm 2 to Example 1. The background is the contour plot of the log-likelihood function. In the left figure, �1 and �2 are unknown, the algorithm converges
to (0.03, 0.48) starting from (0.8,−0.8). In the right figure, �1 and �1 are unknown, the algorithm converges to (0.01, 0.94) starting from (−0.4, 1.4).

the length observation sequence L = 107. It implies the algorithm has
reached MLE even before the filtering procedure is finished in single
iteration in EM or gradient descent algorithms. So it significantly speed
up the inference procedure.

In our recent work, we leveraged Algorithm 2, which demonstrated
its efficacy in larger systems in [33]. We subsequently employ two
synthetic examples presented in [33] as our second and third examples.
Comprehensive details of these examples can be found in Appendix C.
To optimize the performance of our Algorithm 2, it is important to
estimate the buffer parameter B, especially when explicit values are
not readily available in their paper. As suggested in [33], the buffer B
is set as

B =
1

�2 − �1
log

(
10−3

2

)
(24)

where 10−3 is the error tolerance and 2 is the maximum initial error
for the probability vectors.

For the second example, characterized as the diagonally dominant
(DD) model, the Markov chain that exhibits heavily self-transitions
and has identifiable emissions. Through our algorithm, we estimate �

to be approximately −0.0157, which subsequently results in B being
approximately 485. Conversely, the third example, termed the reversed
cycle (RC), encapsulates strong transitions between two cycles over
three states, each operating in the opposing direction. We estimate �

to be approximately −0.0619, which subsequently results in B being
approximately 123.

5. Extension and conclusion

Although traditionally the EM algorithm has monotonic conver-
gence, ensures parameters constraints implicitly and generally easier
to be implemented, the convergence of EM can be very slow in terms
of time for each iteration and total iteration steps. Our method can
significantly reduce the time for each iteration since we only utilize
part of the data by harnessing the memory loss property, but the steps
needed is still comparable with EM algorithm. In fact, one could extend
our idea to efficiently estimate the Hessian matrix such that much faster
quadratic convergence can be achieved with second-order method.
Moreover, one can calculate observed fisher information which is the
negative Hessian matrix of the log-likelihood evaluated at MLE. It will
give curvature information at MLE and help to decide which MLE
may be better without calculating the likelihood explicitly. Another
natural extension of our method is to discrete state Kalman filter, which
is continuous time version of HMM. Similar exponential forgetting
property and the rate being the gap of top two Lyapunov exponents
are discussed in [15] for the Wonham filter, but the proof is harder and
evolves different techniques, in particular, the naive time discretization
may be challenging since one needs to justify the change order of the

limit. Further extension to continuous state Kalman filter is not feasible
at this stage because our method is based on finite dimension random
matrix theory. Last but not the least, it is tempering in realistic scenario
to use the same buffer length for the left and right subsequences. The
numerical simulation indicates the gap of Lyapunov exponents for both
forward and backward probabilities for this particular example are
close and one would speculate the gaps are the same. To formulate
this problem more explicitly, it is equivalent to find the connection of
Lyapunov spectrum for i.i.d random matrix production and for their
transpose. One result is the Birkhoff contraction coefficient for the
matrix is the same as its transpose. So if the Markov transition matrix
is positive matrix, then both gaps are bounded by log �(M). But the
explicit connection still remains as an open question.

In the era of big data, data analysis methods in machine learning
and statistics, such as hidden Markov models, play a central role in
industry and science. The growth of the web and improvements in
data collection technology in science have lead to a rapid increase in
the magnitude and complexity of these analysis tasks. This growth is
driving the need for the scalable algorithms that can handle the ‘‘Big
Data’’. However, we do not need that the whole massive data, instead
small portion of data could serve as good as the original. One successful
examples are mini-batched based algorithms. Despite the simple chain-
based dependence structure, apply such algorithms in HMM are not
obvious, since subsequences are not mutually independent. However,
with the data set being abundant, we are able to harness the expo-
nential memory decay in filtered state probability and appropriately
choose the length of the subchain with the controlled error, to design
mini-batched based algorithms. We proposed an efficient algorithm to
accurately calculate the gap of the top two Lyapunov exponents, which
helps to estimate the length of the subchain. We also prove the validity
of the algorithm theoretically and verified it by numerical simulations.
In the example, we also proposed the mini-batched gradient descent
algorithm for MLE of log-likelihood function and it significantly reduces
the computation cost.
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Appendix A. Birkhoff contraction coefficient

We will introduce Hilbert metric and Birkhoff contraction coef-
ficient on positive matrices, especially on positive stochastic matri-
ces [19,20].

Let x and y be positive vectors in Rn, the Hilbert metric is defined
as d(x, y) = ln

maxi xi∕yi
minj xj∕yj

. But Hilbert metric is not a metric in Rn since

one could check when x = cy for some constant c, d(x, y) = 0. Actually,
for each positive probability vector in the interior of the simplex SK−1,
d determines a metric on them.

The advantage of Hilbert metric for the positive stochastic matrix
M is one can show for two different positive probability row vector, x
and y, the distance between x and y underM monotonically decreases,
d(xM, yM) < d(x, y). This is not guaranteed for other metrics due to the
possible non-normal behavior of the matrix. The Birkhoff contraction
coefficient �(M) is defined as the supreme of the contraction ratio
under the matrix M ,

�(M) = sup
d(xM, yM)

d(x, y)
(25)

This coefficient indicates how much x and y are drawn together at
least after multiplying by M . Actually, there is an explicit formula for
computing �(M) in terms of the entries of M . Define �(M) as

�(M) = min
p,q,r,s

MpqMrs

MrqMps

(26)

The term
MpqMrs

MrqMps
is cross ratios of all 2 × 2 sub matrices ofM and �(M)

is the minimum amount of them. If there is a row with both zero and
positive elements, �(M) = 0. The formula for �(M) is

�(M) =
1 −

√
�(M)

1 +
√
�(M)

(27)

As expected, for positive stochastic matrix M , �(M) < 1.

Appendix B. Random dynamical system

In this section, we review some important definitions and concepts
in random dynamical system (RDS) in terms of this HMM problem. This
material can be found in standard textbooks [14]. It is presented for the
convenience of the readers.

Random dynamical system defines on the metric dynamical system(

,ô ,P, �

)
. 
 is the set of all possible one sided infinitely long

sequence of invertible matrices, and ô is the �-algebra of 
.


 = {! ∶ (A1A2 &)|Ai * R
d×d}

The probability measure for given first k values is

P(A1A2 &Ak) = f (A1)f (A2)&f (Ak)d�1d�2 &d�k

where f (ç) is the probability density function given in (3). It is clear
that the random variable at each time step are i.i.d. The � is a left shift
operator on !,

�(A1A2 &) = (A2A3 &)

The state space is Rd equipped with �-algebra ð, and the mapping
�(n, !) defined on the state space is �(n, !) = A(�(n − 1)!)ċA(�(n −

2)!)ďċA(!), where A is the matrix valued function and A(!) takes

the first matrix in the sequence. In particular, �(n, !) = AnAn−1 ďA1.
It is the product of i.i.d random matrices. This mapping has cocycle
property, i.e, it satisfies �(0, !) = id for all ! * 
. and �(s + n, !) =

�(s, �(n)!)ċ�(n, !) for all n, s * Z, ! * 
.

A skew product of � and �(ç, !) is a measurable transformation S(n):

 × Rd

³ 
 × Rd , defined by

S(n) ∶ (!, v) ³
(
�(n)!, �(n, !)v

)

This RDS induces a Markov process on Rd and assume this Markov
process has an invariant measure �. There is a simple one-to-one cor-
respondence between invariant measure of RDS and induced Markov
process: A product measure � = P × � is S-invariant, moreover, if � is
ergodic, then � is ergodic.

The multiplicative ergodic theorem states as follows,

Theorem B.1. Let � be an ergodic measure preserving transformation
of (
,P), Let A ∶ 
 ³ Md×d (R) be a matrix-valued function with
+ log ‖A(!)‖dP(!) < @. Then there exist @ > �1 > �2 & �k e −@;
m1,& , mk * N satisfying m1 + ď + mk = d and a measurable family of
subspaces F1(!), F2(!),& , Fk(!) such that

1. filtration: Rd = F1 ⊃ F2(!) ⊃ &Fk−1(!) ⊃ Fk = {0}.
2. dimension: dim Fi(!) = mi +ď + mk; for a.e. !.
3. equivariance: A(!)Fi(!) ⊃ Fi(�(!)) for a.e. !.
4. growth: If v * Fi(!)∖Fi+1(!), then

1

n
log ‖�(n, !)v‖ ³ �i for a.e. !.

The Lyapunov spectrum � of RDS is defined as 1

n
log ‖�(n, !)v‖. The

multiplicative ergodic theorem states for almost all ! and each non-
zero vector Đ, the Lyapunov spectrum � exists, depends on v up to k

different values but independent of the choice of the metric.

Appendix C. Details on synthetic examples 2 and 3

The second example, diagonally dominant (DD) consists of a Markov
chain that heavily self-transitions. Most subchains in a minibatch thus
contain redundant information with observations generated from the
same latent state. Although transitions are rarely observed, the emission
means are set to be distinct so that this example is likelihood-dominated
and highly identifiable. The transition matrix and emission parameters
used for this experiment were:

ADD =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

.999 .001 0 0 0 0 0 0

0 .999 .001 0 0 0 0 0

0 0 .999 .001 0 0 0 0

0 0 0 .999 .001 0 0 0

0 0 0 0 .999 .001 0 0

0 0 0 0 0 .999 .001 0

0 0 0 0 0 0 .999 .001

.001 0 0 0 0 0 0 .999

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

ąDD = {(0, 20); (20, 0); (−30,−30); (30,−30); (−20, 0); (0,−20);

(30, 30); (−30, 30); }

and �DD = I for all states.

The third example we consider contains two reversed cycles (RC):
the Markov chain strongly transitions from states 1 ³ 2 ³ 3 ³ 1 and
5 ³ 7 ³ 6 ³ 5 with a small probability of transiting between cycles
via bridge states 4 and 8. The emission means for the two cycles are
very similar but occur in reverse order with respect to the transitions.
The emission variance is larger, making states 1 and 5, 2 and 6, 3 and 7

indiscernible by themselves. Transition information in observing long
enough dynamics is thus crucial to identify between states 1, 2, 3 and
5, 6, 7.
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The transition matrix and emission parameters were:

ARC =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

.01 0 .85 0 0 0 0 1

.99 .01 0 0 0 0 0 0

0 .99 0 0 0 0 0 0

0 0 .15 0 0 0 0 0

0 0 0 1 .01 0 .85 0

0 0 0 0 .99 .01 0 0

0 0 0 0 0 .99 0 0

0 0 0 0 0 0 .15 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

ą = {(−50, 0); (30,−30); (30, 30); (−100,−10); (40,−40); (−65, 0);

(40, 40); (100, 10)} ,

and �RC = 20 ∗ I for all states.
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