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Efficient spin-up of Earth System Models using

sequence acceleration

Samar Khatiwala

Marine and terrestrial biogeochemical models are key components of the Earth System Models (ESMs) used to
project future environmental changes. However, their slow adjustment time also hinders effective use of ESMs
because of the enormous computational resources required to integrate them to a pre-industrial equilibrium. Here,
a solution to this "spin-up" problem based on "sequence acceleration", is shown to accelerate equilibration of state-
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of-the-art marine biogeochemical models by over an order of magnitude. The technique can be applied in a "black
box" fashion to existing models. Even under the challenging spin-up protocols used for Intergovernmental Panel
on Climate Change (IPCC) simulations, this algorithm is 5 times faster. Preliminary results suggest that terrestrial
models can be similarly accelerated, enabling a quantification of major parametric uncertainties in ESMs, improved
estimates of metrics such as climate sensitivity, and higher model resolution than currently feasible.

INTRODUCTION

Earth System Models (ESMs) are the primary tools used for under-
standing the global climate system and predicting its future evolution
under anthropogenic forcing. However, these models are computa-
tionally very expensive, a problem especially acute for the Coupled
Model Intercomparison Project (CMIP) simulations that underpin
IPCC assessments of future climate change. Before such simulations
can be performed, ESMs must be “spun-up” to a preindustrial equi-
librium to accurately determine the impact of (past and future) hu-
man forcing on climate. Model drift can not only alias estimates of
climate change but also explain a substantial portion of differences
between models (1). An equilibrium state is also essential for assess-
ing models against observations and reduce biases.

Such “spin-up” runs require several thousand years of model inte-
gration to achieve an acceptably small drift (1-4). This is primarily
due to the slow adjustment timescale of the deep ocean (5-7), with
the terrestrial carbon cycle also contributing (4, 8, 9). Even on some
of the world’s most powerful supercomputers, a single spin-up
simulation typically takes at least several months of compute time,
with models that include components such as marine sediments
requiring considerably more. Besides the enormous cost in time and
resources, this has important scientific and policy implications as it
is prohibitively expensive to perform more than one such spin-up or
increase model resolution. A single spin-up implies that a single
model configuration is used for all CMIP runs, limiting our ability
to propagate the large parametric uncertainty inherent in all ESMs
into the future projection space. This limits the range of uncertainty
space that can be sampled by ESM projections used to support key
policy decisions addressing, for example, available carbon budgets
to limit warming to 2°C above preindustrial levels or adaptation to
future risks related to sea-level rise, changes in flood or storm inten-
sity, or threats to marine and terrestrial ecosystems. It also makes it
nearly impossible to systematically calibrate models against ob-
servations so as to reduce biases that can affect, e.g., the ocean bio-
logical pump’s response to warming and acidification, which, in turn,
can affect simulated climate sensitivity.

More generally, biogeochemical models are just as often run as
standalone models as within ESMs to investigate and inform policy
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on a wide variety of environmental problems. Ocean models are used
to conduct research in ocean acidification, fisheries and aquaculture,
biodiversity and conservation, and ocean-based solutions for carbon
dioxide removal. Similarly, terrestrial models are used for conserva-
tion, watershed and land management, forestry, and agriculture. All
of these applications require a quasi-equilibrium as a starting point.

A robust and efficient solution to this so-called “spin-up problem”
has long proved elusive. To obviate the need for long transient inte-
grations of the ocean model, methods such as matrix-free Newton-
Krylov have been developed to directly compute cyclostationary
solutions (10-14), although, thus far, these have only been success-
fully applied to simple geochemical models. For terrestrial models,
methods ranging from the semianalytical (15) to machine learning
(4) have been proposed. A different approach was taken by Khatiwala
(16), wherein intermediate solutions generated during a transient
integration of the model are combined to construct a new solution
that is closer to equilibrium. The underlying idea is not new: “se-
quence acceleration” has a long history in numerical computation,
Richardson extrapolation being a well-known example (17-19). In
(16), it was shown that this approach, specifically one of a class of such
methods known as Anderson Acceleration (AA) (20) developed
originally to solve electronic structure problems, could speed up
by 10 to 25 times the convergence to equilibrium of a wide variety of
ocean geochemical models. Notably, given the large number of dif-
ferent models currently in use within ESMs (21), the method is entirely
“black box” The models considered in that study were relatively simple,
however. Here, AA (see Materials and Methods) is applied to two
state-of-the-art ocean biogeochemical models, MITgcm-BLING
(Biogeochemistry with Light, Iron, Nutrients, and Gas) and NEMO-
PISCES (Pelagic Interactions Scheme for Carbon and Ecosystem
Studies) (see Materials and Methods), typical of those embedded
within ESMs to demonstrate that it can accelerate their spin-up by an
order of magnitude. While the current study focuses on the ocean,
preliminary results suggest that this approach can also be applied to
complex terrestrial models.

RESULTS

Climatological forcing

To assess how well AA can accelerate the spin-up of seasonally forced
biogeochemical models, both MITgecm-BLING and NEMO-PISCES
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were forced with climatological, monthly-mean momentum, heat
and freshwater fluxes, and relevant biogeochemical fields (e.g., wind
speed and iron deposition). In both cases, the underlying physical
circulation model was first integrated for 5000 years to equilibrium.
The biogeochemical model was then switched on and spun-up to
equilibrium in two ways: (i) by conventional direct integration (DI)
for 5000 years, and (II) by applying AA. Identical initial conditions—
climatological fields for dissolved inorganic carbon (DIC), alkalinity,
oxygen, and nutrients, and uniform values for other tracers—were
used in both cases. In the following, the number of simulated years
required to reach equilibrium using AA is compared with that for
DI. Also compared are the final equilibrium solutions.

As a measure of model drift, Fig. 1 shows the norm of the residual
f (see Materials and Methods) for the principal tracers in BLING
and PISCES as a function of simulated years. Evidently, AA (which
was terminated after 500 iterations) can reduce drift considerably
faster than conventional time integration for all tracers. This is
especially so for tracers such as DIC, nutrients, and oxygen, which
have long turnover times in the ocean and contribute most to the
cost of spinning up biogeochemical models.

It is difficult to assess from the residual norm how close to equi-
librium a model is and whether to stop the spin-up. A more physical
measure of equilibrium for climate models is the magnitude of the net
annual air-sea flux of CO,, which, according to criteria established by
the Ocean Model Intercomparison Project [OMIP; (2)] in support of
CMIP, is recommended to be <0.01 PgC/year. Figure 2 shows this
quantity during spin-up. With direct time integration, the OMIP
criterion is reached in 3710 and 3975 years, respectively, for BLING
and PISCES. With AA, the corresponding times to reach equilibrium
are 310 and 340 years, a factor of ~12 faster.

To confirm that AA recovers the solution that would have been
obtained via DI, Fig. 3 compares the solutions computed by AA for
BLING and PISCES after 320 and 350 iterations, respectively, with
those using DI after 5000 years. Also shown for comparison are in-
termediate DI solutions at 1000, 2000, and 3000 years. For BLING,
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with the exception of alkalinity, the AA-computed tracer fields after
320 iterations are closer to the corresponding final (5000-year) DI field
than after 3000 years of DI. However, after 60 more AA iterations,
alkalinity approaches the same degree of similarity as the other
tracers (fig. S1). After 500 iterations, at which point AA was termi-
nated, the solution is more or less the same as the 5000-year DI one
(fig. S2). AA performs similarly on PISCES, where 350 iterations
yield a solution that is essentially identical to the equilibrium DI
solution.

Time-varying forcing
In IPCC CMIP simulations, the ocean physical and biogeochemical
models are often first spun-up with interannually varying forcing
fields taken from reanalyses or the ESM’s atmospheric model (2, 3).
While in practice there are substantial differences between different
groups in how the models are spun-up (1), typically, the forcing
fields span a few decades and are repeated multiple times until the
ocean model is in quasi-equilibrium. While AA has been success-
fully applied to problems with noise [e.g., (22)], the fluctuations
arising from a time-varying underlying circulation are quite large,
and even defining an equilibrium can be challenging. This is readily
seen in fig. S3, which displays the interannual variability (shaded
area) in the net annual air-sea CO; flux during the spin-up phase
of the UK Met Office UKESM1 model carried out for CMIP6. The
ocean model was driven by repeating 30 years of forcing from
UKESM1’s atmospheric model (3). A 30-year moving average (solid
line) filters out this variability, making it possible to define an
equilibrium (based on the OMIP criterion).

To assess whether AA offers any gain under such circumstances,
a second set of experiments was performed in which MITgem-BLING
was forced with a repeating cycle of 50-year-long, monthly-mean
reanalyzed fields from CORE II (23) (heat, momentum, and fresh-
water fluxes) and NCEP (24) (wind speed). As before, the physical
model was first integrated for 5000 years before switching on the
biogeochemistry and integrating the model for a further 5000 years.
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Fig. 1. Tracer drift during spin-up. Norm of the residual f as a function of simulated years for principal tracers in BLING (A to F) and PISCES (G to L) using direct time in-
tegration (blue) and AA (red). BLING tracers shown are DIC, alkalinity (ALK), dissolved oxygen (O,), inorganic nitrate (NOs), inorganic phosphate (PO,4), and iron (FET).
PISCES tracers shown are DIC, ALK, O,, calcium carbonate (CACO3), phytoplankton (PHY), and NOs.
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Fig. 2. Net annual air-sea flux of CO, during spin-up. Comparison of spin-up with DI and AA for (A) BLING and (B) PISCES. The black horizontal line is the OMIP criterion

for equilibrium, namely, a net CO, flux <0.01 PgC/year (2).
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Fig. 3. Comparison of solutions obtained by AA and DI. BLING (A to F) and PISCES (G to L) solutions obtained with (vertical axis) DI after 1000, 2000, and 3000 years and
AA compared with (horizontal axis) that computed by DI after 5000 years. BLING AA solution shown is after 320 iterations, and PISCES AA solution is after 350 iterations.
Plotted are the tracer fields for every model grid point. The diagonal line is the 1:1 relationship.

This solution is labeled “DI” in the following. A parallel calculation
with AA (not shown) struggled to make much progress in the pres-
ence of the large variability. Instead, to accelerate convergence, 200
iterations of AA were performed to first spin-up BLING by repeating
1 year of the interannually varying circulation and forcing, and then
using the AA solution as an initial condition to time-step the model
in the conventional way with the full time-dependent circulation/
forcing [labeled “AA (200) + DI”]. Sensitivity experiments (not shown)
did not find much advantage to a longer initial AA spin-up. It should
be emphasized that the AA step did not entail setting up a separate
configuration of the model or (re)spinning up the physical model,
both time consuming steps. An appropriate restart file is all that
is needed.

Figure 4 shows the impact of this initial adjustment provided
by AA on the net air-sea CO; flux, which reaches the OMIP con

Khatiwala, Sci. Adv. 10, eadn2839 (2024) 1 May 2024

vergence criterion in ~420 years compared with ~4050 years for
purely DI. Including the 200 years for AA, this is a speed-up factor
of 6.5 over conventional spin-up. However, as was found in the clima-
tologically forced experiments, the tracer fields may require a slightly
longer time to adjust, and after 600 years (800 years including AA),
they are essentially in equilibrium (Fig. 5). This is still a factor of
5 faster than conventional spin-up.

Spin-up of terrestrial biogeochemical models

Land carbon cycle models also suffer from long spin-up times (4, 8),
with those that include nitrogen dynamics taking many tens of
thousands of years to equilibrate (9, 25). Here, in a preliminary at-
tempt at addressing this problem, AA is applied to the Joint UK
Land Environment Simulator (JULES) v7.2, a state-of-the-art land
surface model with vertically resolved carbon and nitrogen cycling
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Fig. 4. Spin-up with interannual variability. Net annual air-sea flux of CO, in MITgcm-BLING driven by interannually varying circulation and forcing. The solid red and blue lines
are the 50-year moving average of the flux during spin-up with, respectively, purely DI and DI starting with an initial condition generated by 200 iterations of AA [AA (200) + DI].
The shaded areas are the corresponding minimum and maximum over a sliding 50-year moving window. The black horizontal line is the OMIP criterion for equilibrium (2).
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(25, 26) that is embedded in UKESM. As is typical of such models,
JULES is composed of independent vertical columns—one for each
land surface grid point—and is configured here for a high-latitude
region where low temperatures decrease reaction rates and increase
the equilibration time to make the spin-up problem even more
challenging. For instance, nitrogen and carbon stocks, the slowest-
evolving components in JULES still have a small drift after 10,000 years
of integration (Fig. 6). On the other hand, other biogeochemical and
physical variables reach steady state within a few years. Straight-
forward application of AA to the full model leads to stagnation due to
the mathematically stiff and highly nonlinear nature of the problem.
To contend with this, AA is applied only to the biogeochemical
variables and interleaved with short bursts of the freely running
model, smoothing out the nonlinearities and allowing the fast com-
ponents (both biogeochemical and physical) to adjust. With this
modification, the AA solution for nitrogen stock after ~1500 itera-
tions is in agreement with the DI solution after 10,000 years, a
speed-up factor of almost 7 (Fig. 6).

DISCUSSION
This study presents a computational approach to accelerate the spin-
up of complex ocean and terrestrial biogeochemical models. The
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slow adjustment of the carbon cycle simulated by these models is the
primary reason for the prohibitive cost of integrating ESMs to equi-
librium, a precondition for their use to project climate change. The
method, based on a sequence acceleration scheme known as Anderson
Acceleration, has a negligible computational cost and is entirely
black box, making it readily applicable to the many different models
used in climate assessments (21). Here, it is shown to speed up the
convergence to equilibrium of two state-of-the-art marine biogeo-
chemical models by a factor of 12 compared with conventional DI
when driven by seasonal forcing. Even for the far more challenging
situation of interannually varying forcing, as is typical of the spin-up
protocol used in the IPCC CMIP, AA is five times faster. Preliminary
results strongly suggest that similar speed-ups are achievable on
complex land surface models and potentially also marine sediment
models, both of which can take even longer to equilibrate than the
ocean. When set against the 2 years that it can take to spin-up an
ESM, replicated by dozens of modeling groups around the world,
this is a substantial reduction in time, energy, and compute resources.

Additional reductions in spin-up time may be achieved by tun-
ing algorithm parameters, for example, by using machine learning-
based systems specifically designed for this purpose [e.g., (27)].
Algorithmic improvements may also be beneficial. This includes
nonstationary variations of AA that dynamically adjust algorithm
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for each of which there are four carbon and nitrogen pools representing decomposable and resistant plant material, microbial biomass, and a long-lived humified pool
(25, 26). The coupled biogeochemical-physical model has 24 variables with a total state vector of length ~1200. (A and B) Time series of, respectively, inorganic soil nitro-
gen (ninorg) for each soil layer and nitrogen stock (ns) for each soil layer and pool. Blue lines are for a conventional DI and red using AA (mmax = 15) run in blocks of 50
iterations interleaved with 10 years of the freely running model. ninorg reaches steady state relatively quickly, whereas ns is not fully in equilibrium even after 10,000 years.
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parameters (28) or exploiting particular features of the problem. For
instance, tracers such as carbon and nutrients evolve on much longer
timescales, especially in the deep ocean, than others that correspond
to upper ocean processes (e.g., phytoplankton). This can be accounted
for by splitting the problem into “slow” and “fast” components, with
the extrapolation coefficients computed based only on the slow com-
ponents but, to ensure tracer conservation, applied to both the slow
and fast ones.

The robust and scalable solution to the spin-up problem presented
here should enable more effective use of ESMs to address important
scientific and societally relevant problems. For example, it would allow
a quantification of major parametric uncertainties in ESMs, as well as
systematic calibration of biogeochemical parameters against observa-
tions, leading to a reduction in biases and errors in metrics such as
climate sensitivity (3). (In an ideal scenario, a few dozen iterations of AA
may yield sufficiently equilibrated model fields to reveal biases and allow
parameter tuning.) Moreover, while the experiments shown here were
carried out in relatively coarse resolution ocean models, the perfor-
mance of AA has been shown to depend more on the structure of the
underlying biogeochemical model and largely independent of resolution
(16) (although resolutions that permit eddies may remain a challenge
for AA). This opens up the possibility of spinning up higher-resolution
ocean models than has heretofore been feasible, with concomitant
benefits for simulating future changes in extreme weather and climate
events (29, 30). With planning for spinning up ESMs for the seventh
CMIP cycle in support of the next IPCC Assessment getting underway
at modeling centers around the world, this study is especially timely.

MATERIALS AND METHODS
Anderson acceleration
A numerical model can be written as a function g that takes in an
initial condition x(0) at time ¢ = 0 and returns the solution x(T) at
time ¢ = T, where T is the forcing period. Here, x is a vector represen-
tation of all the prognostic tracer fields of the biogeochemical model,
possibly at more than one time level if a multilevel time-stepping
scheme (e.g., Adams-Bashforth) is used, as is common in many ocean
models. The conventional approach of integrating a model until its
transients die out can be mathematically regarded as just a fixed point
iteration of g

Given x;,

fork=0,1,... until convergence

X1 = 8(Xe)

Previous attempts at addressing the slow convergence of this it-
eration have involved recasting the problem as a nonlinear system
of equations, f(x) = g(x) — x = 0 (10-12). Because the residual f is
implicitly defined via the model time-stepper code and its Jacobian
is dense, matrix-free Newton-Krylov is the only practical way to
solve this system (31). However, this approach has proved difficult
in practice to apply to anything but the simplest biogeochemical
models (16). Instead, Khatiwala (16) proposed applying a sequence
acceleration or extrapolation method to transform the slowly con-
verging sequence {X;} generated by the fixed point iteration into one
that converges faster (17-19). Specifically, Khatiwala (16) explored
the application of AA (20), one of a class of such methods originally
developed in the context of the nonlinear integral equations that
arise in electronic structure problems (32, 33). AA still remains the
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solver of choice in most modern computational chemistry codes,
while also finding new applications to optimization problems and
the solution of partial differential equations (33-37).

Anderson’s approach (20, 38) is based on taking a linear combi-
nation of several previous iterates such that, were g linear, the re-
sidual f is minimized (33, 39). This gives the following iteration

My
— (k)
Xi+1 = Z (xj g(xk—mk+j)
j=0

Here, my + 1 is the number of previous iterates, and the «; values
minimize the norm of the weighted residual f of those iterates:

2

My
L ®)
minimize Z o f(xk_mk +j)
j=0 2

subject to the normalization er:ko (x](.k) = 1. The latter is particularly

important in the context of biogeochemical models where tracer
conservation is paramount. By construction, AA preserves this
property. Crucially, in the context of the spin-up problem, AA is
completely black box in that, to evaluate g, it only requires the
facility to run the model with a given initial condition and return
the result. Furthermore, it has negligible overhead relative to the
expense of the model. Its main costs are storage of the iterates and
the solution of a (small) least-squares problem for the a; values.
In practical implementations of AA, the above iteration is usually
combined with “damping,” and the constrained least-squares prob-
lem is formulated as an unconstrained one (32, 39) [see (16) for
additional details on the implementation, which is based on (40) but
extensively modified to make it suitable for the spin-up problem].
In the experiments shown here, AA was used without damping,
and the maximum number of previous iterates stored, #yax, Was
set to 50.

Ocean biogeochemical models

AA is applied here to BLING and PISCES, two widely used, state-
of-the-art marine biogeochemical models. BLING is an intermediate
complexity model that, since its original development (41), has under-
gone a number of revisions to add nitrogen cycling and improved
particle export dynamics (42, 43). In addition to the large number of
scientific studies using it, BLING is used in GFDL-CM4 (44), one of
the climate models participating in CMIP6, and B-SOSE, the Bio-
geochemical Southern Ocean State Estimate (45). The version used
here is as implemented by Verdy and Mazloft (45) in the MITgcm
ocean circulation model (46) and features eight prognostic tracers.
PISCES version 2 is a more complex model with 24 tracers (47, 48).
It is also extensively used and embedded in multiple ESMs partici-
pating in CMIPG6, e.g., CNRM-ESM2.1, VRESM-1-0, IPSL-CM6A,
IPSL-CM5A2-INCA, and BSC EC-Earth3 (21). PISCES is embed-
ded in the NEMO ocean circulation (49) and sea ice (50) model,
version 4.2.0 of which is used here.

In this study, MITgcm is configured with a horizontal resolution
of 2.8° and 15 vertical levels (51, 52), and NEMO is configured with
anominal 2° horizontal resolution and 31 levels (the “ORCA2” grid).
The total size of the spin-up problem (number of “wet” grid points
X number of tracers = length of x) is 436,600 and 10,333,248, re-
spectively.
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