


over aliases provides a way to statically reason about life-
times of objects and generate an explicit destructor at com-
pile time, hence ensuring temporal safety without garbage
collection. Historically, even the fastest safe languages like
Go and C# resulted in a 36-42% overhead compared to un-
safe C on high-performance system workloads like network
device drivers [12]. Rust, however, supports development of
safe code that stays within few percents of unsafe C imple-
mentations [12, 33].
Verus complements Rust with the Dafny-like automated

SMT-based reasoning [26]. Similar to Dafny, Verus provides
a high degree of automation and user-friendliness which al-
low system developers to work on formally-veri�ed systems
directly in the language designed to build such systems and
arguably with minimal background in formal veri�cation.
Verus uses one language for speci�cations, proofs and exe-
cutable code. Moreover, due to the lack of managed runtime,
veri�ed Rust code can be compiled and executed on bare
metal.
Compared to Dafny, Verus further simpli�es veri�cation

e�ort. First, Verus uniquely leverages the linear type sys-
tem of Rust to lower complexity of reasoning about the
heap [26, 29]. Second, Verus provides an elegant way to
reason about a range of unsafe pointer constructs through
an idea of linear permissions [26]. To ensure practicality of
the otherwise linear language, Rust allows escape from the
ownership rules through its unsafe subset, e.g., to implement
doubly-linked lists, aliases, concurrent primitives, etc. His-
torically, reasoning about unsafe subset of Rust remained
challenging [22] thus limiting veri�cation of Rust code to its
safe subset [3]. Linear permissions however provide a way to
reason about limited but powerful subset of unsafe constructs
that in practice support correctness proofs for typical kernel
data structures, e.g., linked lists, synchronization primitives,
and constructs that implement interior mutability.

Our work presents an early prototype that leverages Rust
and Verus for development of a minimal yet practical mi-
crokernel, Atmosphere. Speci�cally, we develop all code in
Rust and prove its functional correctness, i.e., re�nement of a
high-level speci�cation with Verus. Similar to prior work, we
carefully design the kernel to keep veri�cation complexity
under control. Still, Verus allows us to implement typical ker-
nel data structures like linked lists, support veri�ed memory
allocation, develop proofs about page tables, etc. Our ini-
tial experience shows that even through some compromises
are necessary, a combination of Verus and Rust signi�cantly
reduces veri�cation e�ort. On average our code has proof-
to-code ratio of 7.5:1 which is signi�cantly lower than in
prior approaches [17, 25]. Moreover, Rust and Verus allow
us to reason about a microkernel with a feature-rich inter-
face that is conceptually similar to the line of classical L4
microkernels, i.e., without the capability interface [11].

2 Background

Early veri�cation e�orts were aimed at attaining the highest
A1 assurance rating de�ned by the “Orange Book” [2] but
remained largely unsuccessful due to limitations of existing
veri�cation tools [14, 16, 23, 36]. SeL4 became the �rst system
to demonstrate a way to achieve veri�cation of a practical
microkernel [25]. SeL4 adopted a unique design choice in
which the kernel does not perform any memory allocation
at all, but instead pushes all allocation decisions to user
processes (which remain unveri�ed). This enabled proving
isolation between subsystems, but resulted in an unusual
system model which required user code to manage their
memory through a capability interface. Veri�cation of seL4
involved 200,000 lines of proof code of the Isabelle/HOL
theorem prover for 8,700 lines of C and required 22 person-
years [25].

Hyperkernel used LLVM intermediate representation (IR)
generated from C which was then translated into a satis�a-
bility modulo theories (SMT) expression checked by the Z3
SMT solver [32]. Hyperkernel demonstrated high degree of
automation but at the cost of severe limitations in kernel
functionality. To support automated translation, Hyperker-
nel required all paths in the kernel to be �nite, e.g., the system
call interface forced the process to provide a �le descriptor
number for opening a �le instead of choosing an available
one in the kernel.
Ironclad [21] addressed complexity of the veri�cation ef-

fort through a combination of Dafny [27], Boogie interme-
diate veri�cation language [4], and Z3 SMT solver [9]. De-
signed explicitly for veri�cation, Dafny allowed reducing the
size of the proof without degrading expressiveness of imple-
mentation (3 person-years). Ironclad relied on a previously
veri�ed microkernel, Verve [41], and mainly concentrated
on verifying cryptographic libraries, device drivers (trusted
platform module), and several applications [21]. Note that
veri�cation of Verve addressed only safety but not functional
correctness of the kernel [41].

CertiKOS [18] and `C/OS-II [40]were aimed at veri�cation
of concurrent systems through the use of the Coq interactive
theorem prover [1]. CertiKOS developed a concurrent OS
kernel that supported �ne-grained locking, interrupts and
threads. Veri�cation of CertiKOS and `C/OS-II took 2 and
5.5 person-years, respectively but required nearly the same
proof-to-code ratio as seL4.

SeKVM utilized Coq to verify the core of the Linux KVM
hypervisor [30]. Speci�cally, SeKVM decomposed the hy-
pervisor into two separate layers and veri�ed the privileged
core using Coq. The core was further split into layers built
on top of an abstract machine model, with each successively
simplifying the model for upper layers. The top-level speci-
�cation was used to prove that any implementation of the
deprivileged upper layer can maintain the con�dentiality
and integrity of the VM data. Even though SeKVM relied on
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ClightGen [28] for translating the C implementation to Coq
it still required a large manual e�ort to address numerous un-
supported C idioms. Recently, Spoq improved on ClightGen
cutting the veri�cation e�ort of SeKVM by 70% [31].

Finally, similar to ours, a recent project, veri�ed NrOS [6],
uses Verus to verify an existing NrOS kernel [5] which is also
developed in Rust. NrOS veri�es the code for page-table man-
agement and its core concurrency mechanism, node replica-
tion, yet using Dafny [19]. Compared to our work NrOS aims
at veri�cation of a larger kernel that while being a microker-
nel implements a kernel-level �le system. We choose a more
pragmatic path of verifying only a minimal microkernel that
we design from scratch to ensure that veri�cation is feasible.
We plan to approach veri�cation of user-level services like
device drivers, network stacks and �le-systems separately.

Verus Verus is a new veri�cation tool for Rust that sup-
ports semi-automated reasoning by using an SMT solver [26].
Verus attempts to replicate success of earlier veri�cation
frameworks combining proofs and development in a single
language [1, 10, 27, 37]. Verus, however, is di�erent in several
important ways. First, instead of relying on a veri�cation-
centric language, Verus works by extending Rust, a language
which is already designed for safe development of low-level
systems. Second, Verus bene�ts from the Rust’s linear type
system to simplify proofs, support veri�cation of pointer-
manipulating and concurrent Rust code, and implement e�-
cient SMT encoding. For instance, instead of having to reason
about the complex semantics of heap based mutation, Verus
can encode operations on any any mutable reference as a
sequence of transformations on immutable values, as Rust
guarantees such references will be linear.
To introduce the basic features of Verus, we describe a

partial speci�cation for a page backed doubly linked list that
we use in Atmosphere to support management of dynamic
data structures like lists of endpoints, threads, processes,
etc., (Listing 1). At a high level, Verus allows one to write
executable code, speci�cations for modelling the behavior
of a system, and proofs that the executable code conforms
to the speci�ed behavior. Executable code is written in Rust,
while speci�cations and proofs are written in a functional
extension of Rust which includes logical quanti�ers like
forall and exists as well as keywords like requires and ensures

(lines 31-39) to specify preconditions and postconditions of
functions. For example, the well_formed() function speci�es
what conditions the list must satisfy to be in a valid state
(one such condition being every node pointer in the list
must have a corresponding owned page). Verus modi�es the
Rust compiler to elide speci�cations and proofs (ghost code)
during compilation time. For instance the Map and Seq types
are mathematical models of the underlying code, but are
ghost types thus do not incur any runtime overhead.

The list itself is composed of a combination of a standard
doubly linked list of nodes (lines 14-15), a reverse singly
linked list of free nodes (line 18) (representing the capacity

1 struct Node<T> {

2 contents: T, next: Option<NodePtr<T>>, prev: Option<NodePtr<T>>

3 }

4 struct PageNode { prev: Option<PageNodePtr>, }

5
6 type PagePerm<T> = PageArena<Node<T>, PageNode>,

7 type NodePtr<T> = PageElementPtr<Node<T>>;

8 type PageNodePtr = PageMetadataPtr<PageNode>;

9
10 struct LinkedList<T> {

11 perms: Map<PagePPtr, PagePerm<T>>,

12 // Doubly linked list of elements

13 ptrs: Seq<NodePtr<T>>,

14 head: Option<NodePtr<T>>,

15 tail: Option<NodePtr<T>>,

16 // Reverse singly linked list of free nodes

17 free_ptrs: Seq<NodePtr<T>>,

18 free_tail: Option<NodePtr<T>>,

19 // Reverse singly linked list of backing pages

20 page_ptrs: Seq<PageNodePtr>,

21 page_tail: Option<PageNodePtr>,

22 }

23
24 spec fn well_formed<T>(list: &LinkedList<T>) -> bool {

25 // ...

26 && forall |i: nat| 0 <= i < list.ptrs.len() ==>

27 list.perms.domain().contains(list.ptrs[i].page_pptr())

28 }

29
30 fn push_back<T>(list: &mut LinkedList<T>, v: T)

31 requires

32 well_formed(old(list)),

33 old(list).free_ptrs.len() > 0,

34 ensures

35 well_formed(list),

36 list.free_ptrs.len() == old(list).free_ptrs.len() - 1,

37 list.ptrs.len() == old(list).ptrs.len() + 1,

38 v == list.perms[list.ptrs.last().page_pptr()]

39 .value_at(list.ptrs.last().index()).contents

40 {

41 let ptr: NodePtr<T> = list.free_tail.unwrap();

42 let perm: &PagePerm<T> = list.perms[ptr.page_pptr()];

43 let node: &Node<T> = ptr.borrow(perm);

44 // Update free ptrs linked list and model sequence

45 list.free_tail = node.prev;

46 list.free_ptrs = list.free_ptrs.take(list.free_ptrs.len() - 1);

47 // Update contents of this ptr

48 ptr.put(perm, Node { contents: v, prev: list.tail, next: None });

49 // Update ptrs linked list and model sequence

50 if list.tail.is_none() {

51 list.head = Some(ptr);

52 }

53 list.tail = Some(ptr);

54 list.ptrs = list.ptrs.push(ptr);

55 }

Listing 1. Partial implementation of a resizable linked list.

of the linked list), and a reverse singly linked list of memory
pages that provide memory for the individual elements of
the list (lines 20-21). Each sublist is further modelled through
the ghost Seq type: as an abstract sequence of raw pointers
which mirror the order of the list elements. This allows us to
model the linked list as a simple sequence of values, hiding
the inner complexity of the linked list from any other data
structures that need to reason about it.
As we will discuss in Section 4, the linked list leverages

linear ghost types [26] and the PageArena abstraction to rea-
son about raw pointers in a way which is safe and memory
e�cient. Because we model permissions as linear objects,
we can only read from a given raw pointer if we hold an im-
mitable reference to the corresponding permission (line 43),
and we can only write to it if we hold a mutable reference to
the corresponding permission (line 48). As such all accesses
of the raw pointer are checked by the borrow checker and
proven to be safe.
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1 pub fn pop_scheduled_thread(&mut self)

2 -> (thread_ptr: ThreadPtr)

3 requires

4 old(self).wf_scheduler(),

5 ensures

6 self.threads[thread_ptr].state == running,

7 self.scheduler ==

8 old(self).scheduler.subrange(1, old(self).scheduler.len()),

9 self.wf_scheduler(),

Listing 2. Functional correctness speci�cation

state. For example, Listing 2 illustrates a simpli�ed speci�-
cation for the scheduler function, pop_scheduled_thread(), that
picks the next thread to run. The requires clause contains
preconditions that must hold before the invocation of the
function (in this case the scheduler must be in a well-formed
state). The postconditions in ensures clause describe how the
state of the system will change after the invocation. Specif-
ically, pop_scheduled_thread() contains three postconditions, in
which the �rst two de�ne the functional correctness of
pop_scheduled_thread() as: (1) The state of the scheduler after
the invocation will be the same as equivalent to its previous
state with its oldest thread popped (FIFO scheduling). (2) The
popped thread is correctly marked as running. (3) Scheduler
remains well-formed in the new state.

We execute Atmosphere under a big lock with interrupts
disabled to sidestep complexity of reasoning about concur-
rency (previous work argues that big-lock insigni�cantly af-
fects performance of a microkernel system [34]). This allows
us to model each kernel invocation as an atomic transaction
on the kernel state. Atmosphere ensures kernel structural
integrity and functional correctness before and after each
system call (and each interrupt transition). Each kernel in-
vocation transitions the kernel from one well-formed state
to another and adheres to the high-level speci�cation which
captures the e�ect of the system call.
Overall, this allows us to proof high-level properties of

the kernel. For example, we de�ne and prove Atmosphere
kernel memory correctness speci�cations as: (1) The kernel
memory pages and user-mapped pages are disjoint. (2) The
kernel components do not overlap. (3) The whole system has
no memory leaks.

Raw pointers and memory management The true power
of Verus comes from its support for reasoning about raw
pointers and objects allocated on the heap via a combina-
tion of permissioned pointers, i.e., PPtr<T>, and a linear ghost
permission type PointsTo<T> [26]. Speci�cally, to read from
a raw pointer one requires an immutable reference to the
permission corresponding to that pointer (writing requires a
mutable reference to the permission). Hence, accesses to raw
pointers follow the normal ownership model in Rust. This
proves that accesses are safe, linearized, and that pointer
provenance is upheld.
However, Verus makes a critical simplifying design

choice – it trusts the memory allocator to create objects
behind permissioned pointers – something we would like

to avoid. While it’s possible to verify the allocator, the er-
gonomics of the proof relies on the abstraction of permission
pointers resulting in the chicken-and-egg problem.

In order to leverage the abstraction of linear permissioned
pointers, we introduce several mechanisms that support rea-
soning about raw pointers but without requiring trust in
the memory allocator. First, we develop a simple veri�ed
memory allocator that can allocate memory in the units of
pages, (i.e., 4096 bytes in our system). The allocator tracks
page state with a static array and hence does not depend
on permission pointers. We then change Verus to allow con-
struction of only one permission pointer type – a pointer to
an untyped page of bytes, PPtr<[u8; 4096]>, which can only be
created from a page of memory obtained from the allocator.
In other words, instead of trusting a generic allocator, we
�rst allocate a page from a simple page allocator and then
retype it into a permission pointer to that page. Finally, to
support allocation of smaller objects, we develop an abstrac-
tion of an arena that allows us to split a page into a collection
of smaller objects.

Therefore, to allocate an object of type T (the object must
be smaller than a page), we allocate a ghost data structure,
PageArena, which splits a 4 KiB page into an array of values.
A PageArena is created from an untyped page (PPtr<[u8; 4096]>)
and its corresponding permission. Once created, fat point-
ers to typed elements (PageElementPtr<T>) can then be derived
from the arena. In order to access an element, both the fat
pointer and the underlying ghost arena (immutable borrow
for reads, mutable borrow for writes) are required. Access
to typed elements is thus linearized in a manner similar to
permissioned pointers in Verus.

Since a ghost PageArena instance represents the permission
to access all elements in the page, deallocation is made pos-
sible by converting the ghost arena back to an untyped page
permission (PointsTo<[u8; 4096]>). Without the ghost arena, all
previously-allocated elements become permanently inacces-
sible and the page can thus be reused. This is in contrast to
splitting an untyped page into individual permissions, where
deallocation of a page would require tracking all permissions
to typed values in the page.
For each PageArena<T, MT>, we further provide a way to in-

clude optional metadata (MT) for each page. This metadata is
included after the typed elements and can be used to link
multiple page arenas together to construct resizeable con-
tainers like linked lists.
To bootstrap the veri�ed memory allocator, we extend

Verus to support the creation of PPtr<[u8; 4096]>s from physi-
cal pages passed by the boot manager. We enforce type safety
with a transparent wrapper type, BootPage, that follows Rust’s
new type idiom [38] and acts as a token that represents a
unique physical page. The wrapper has a single, private �eld
that contains the physical address of the page. Since thewrap-
per type does not have a public constructor method, the Rust
type system guarantees that there is no way to construct it
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1 fn grow<T>(list: &mut LinkedList<T>, page: PagePPtr, perm: PagePerm<T>)

2 requires

3 well_formed(old(list)),

4 page.id() == perm.page_base(),

5 ensures

6 well_formed(list),

7 list.free_ptrs.len() == old(list).free_ptrs.len()

8 + PagePerm::<T>::capacity(),

9 list.page_ptrs.len() == old(list).page_ptrs.len() + 1,

10 {

11 let offset = list.free_ptrs.len();

12 // Generate pointers for each element in the page,

13 // and add them to the free pointers list

14 let mut idx: usize = 0;

15 // Inductively show all new free pointers are valid and unique

16 while idx < PagePerm::<T>::capacity();

17 invariant

18 idx <= PagePerm::<T>::capacity(),

19 list.free_ptrs.len() == offset + idx,

20 forall |k: nat| 0 <= k < idx ==>

21 (list.free_ptrs[offset + k].page_ptr() == page &&

22 list.free_ptrs[offset + k].index() == k),

23 // ...

24 {

25 // Extend the free pointers list and model sequence

26 let ptr = NodePtr::<T>::new(page, idx);

27 ptr.put(perm, Node {

28 contents: undefined(), prev: list.free_tail, next: None

29 });

30 list.free_tail = Some(ptr);

31 list.free_ptrs = list.free_ptrs.push(ptr);

32 idx += 1;

33 }

34 // Using the metadata type, store and extend the list

35 // of pages owned by this data structure

36 let page_node = PageNodePtr::new(page);

37 page_node.put(perm, PageNode { prev: list.page_tail });

38 list.page_tail = Some(page_node);

39 list.page_ptrs = list.page_ptrs.push(page_node);

40 // Take ownership of the page permission

41 list.perms.insert(page, perm);

42 }

Listing 3. Example use of PageArena for growing the linked list.

in safe Rust. The #[repr(transparent)] attribute further provides
ABI stability by ensuring that the wrapper has the same data
layout as the enclosed raw pointer, so the BootPage tokens may
be handed o� by the boot manager to the microkernel.

Dynamic data structures A combination of page arenas
and the ability to store metadata for each page allows us
to construct complex dynamic data structures such as page
backed linked lists (Listing 1). Crucially, using the PageArena

abstraction, we can grow the linked list using our veri�ed
page allocator in a way which is memory e�cient (as it gives
us the ability to allocate many smaller objects from each
pages). In the grow() function (Listing 3) we take a single page,
split it into a large number of pointers to smaller node objects
and append these pointers to the free list (lines 16-33). In
doing so we grow the capacity of the linked list. We also
use the metadata object to store a list of pages owned by the
linked list (lines 36-39), which is used for deallocation.

Field-level mutation At the moment, Verus does not sup-
port returning mutable references from functions and sup-
port for mutable references in function arguments is limited
to special cases. To allow mutation of the value, permis-
sioned pointers in Verus expose setters. This comes with the
downside of not being able to modify speci�c �elds of a data
structure without copying the entire structure – an overhead
prohibitive for a microkernel.

To support e�cient �eld-level mutation, we implement a
procedural macro that generates getters and setters for each
�eld in a data structure, as well as the corresponding trusted
speci�cations that update the abstract state. The generic
nature of the procedural macro facilitates the auditing of
generated speci�cations for all structures it’s applied to.
In the future, it’s expected that Verus will add support

for returning mutable references by adopting prophecy vari-
ables [39].

Page memory allocator Atmosphere implements page
memory allocator with two data structures: 1) a �xed size
array that tracks the state of every page, and 2) a �xed size
queue that implements a single-linked list of free pages. A
trusted boot manager enumerates all available memory in
the system and creates the initial list for the page alloca-
tor. We use the page allocator to allocate coarse-grained
data structures like threads, processes, endpoint, pages for
the page table, and to allocate page arenas for dynamically
growing linked lists. A page in Atmosphere is in one of the
three states: free, allocated to use inside the kernel, i.e., pro-
vide memory for one of the kernel data structures, or mapped

by user processes as part of the process address space. A
mapped page contains a reference counter that tracks the
number of times the page is mapped (we allow pages to be
mapped multiple times inside the process and share pages
across processes).

Paging Atmosphere contains a veri�ed subsystem to sup-
port four-level paging. For simpli�cation, we model an ad-
dress space as a tree where each present entry in a paging
structure points to a paging structure in the next level, or
a 4 KiB data page. We ensure that it is impossible for an
entry to point to a paging structure of the wrong level or is
not well-formed. Furthermore, it should not be possible to
interpret a data page as a paging structure or vice versa.
To achieve these goals, Atmosphere implements paging

using strongly-typed tables for each level of the paging struc-
ture, with linearity enforced using permissioned pointers.
Each paging structure is modeled as a generic data struc-
ture PagingLevel<E, T> containing 4096 entries (E) with each
present entry pointing at a target (T). The allowed types of
E and T are constrained by bounds on traits which provide
common methods that indicate entry presence as well as
perform lookup and mutation. For each present entry, the
paging structures also contain ghost state to keep track of
the permission corresponding to the target.

Translation lookaside bu�er (TLB) Atmosphere uses
tagged TLB to implement speci�cations and veri�cation of
the code responsible for �ushing the TLB in amulti-processor
system. CPU running in tagged TLB mode uses the �rst 12
bits of the cr3 as a process context identi�er (PCID) to iden-
tify di�erent address spaces and completely ignores the cr3

address bits (lower bits) while performing a TLB lookup.
We specify the expected behavior of the virtual to physical
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Name Language Spec Lang. Proof-to-Code Ratio

seL4 C+Asm Isabelle/HOL 20:1 [25]
CertiKOS C+Asm Coq 14.9:1 [17]
SeKVM C+Asm Coq 6.9:1 [30]
Ironclad Dafny Dafny 4.8:1 [21]
NrOS Rust Verus (Rust eDSL) 10:1 [6]

Atmosphere Rust Verus (Rust eDSL) 7.5:1

Figure 2. Proof e�ort for existing veri�cation projects.

memory translation mechanism as a map containing corre-
spondence between the virtual and physical addresses for
each PCID. For each CPU’s TLB, we model it as a similar map
between the virtual and physical addresses for each PCID.

Interrupts and context switch Unlike a typical kernel, At-
mosphere does not save execution state of the thread on a
kernel stack during the context switch. Instead, all kernel
functions (interrupt handlers and system calls) run to com-
pletion and if the context switch is required a small trusted
helper saves the user-state of the thread (i.e., it’s trap frame)
in the thread data structure. In Atmosphere, each CPU has
one kernel stack for all threads (note, each CPU maintains
another stack for processing non-maskable inter-processor
interrupts that we use for TLB invalidation). This design
choice allows us to simplify the proof. When the kernel func-
tion returns, the kernel is in a well-formed state, and the
kernel stack pointer is restored to the original position.

5 Implementation

Build environment The Atmosphere microkernel consists
of both veri�ed and non-veri�ed components built using a
trusted compilation environment, e.g., Atmosphere relies on
a trusted boot manager to initialize the system. Compilation
of the microkernel is done in two passes. The build system
�rst invokes the Verus toolchain on the veri�ed components.
Then a regular Rust toolchain is used to compile the entire
kernel with ghost code erased. We use the same Rust version
that the Verus toolchain is based on to minimize potential
di�erences in code generated by the two toolchains.

Stack size analysis Verus cannot guarantee the absence of
stack over�ows since it does not model the hardware and
relies on Rust to correctly abstract details of the machine
executing the code. To ensure that micorkernel has su�cient
stack space, we statically compute the maximum stack size
that may be used by themicrokernel on all possible execution
paths. During compilation, Rust summarizes the stack sizes
of individual functions. We rely on the LLVM bitcode and
extract the call graph of the microkernel using an LLVM IR
pass. Based on the call graph, we attempt to derive the upper
bounds of stack usage for all entry points (e.g., the main
function, system calls, and interrupt handlers). The binary
is rejected if the upper bound cannot be found, which can
occur in the presence of cycles in the call graph. The boot
loader then allocates su�ciently big microkernel stacks on
each CPU.

6 Evaluation

We carry development of Atmosphere on one of the Cloud-
Lab [35] c220g5 servers which are con�gured with two Intel
Xeon Silver 4114 10-core CPUs running at 2.20 GHz, 192 GB
RAM. Those machines run 64-bit Ubuntu 20.04 Linux with a
5.4.0 kernel. Verus takes approximately 20 seconds to reason
about veri�ed parts of the kernel. Individual functions take 4
seconds at most when the runtime checks are turned on (this
is inline with recent work [6]). With runtime checks turned
o�, Verus takes roughly 30 minutes to �nish the proof and
spends upto 850 seconds at most on a function. Therefore, we
believe that there is room for improvement both the Verus
veri�cation toolchain and in how we structure our proofs.

Atmosphere has a proof-to-code ratio of 7.5:1 which is a
signi�cant improvement compared to the existing formally
veri�ed microkernels SeL4 [25] and CertiKOS [17], which
have proof-to-code ratio of 19:1 and 20:1, respectively (Fig-
ure 2).

7 Conclusions

Our early experience with Atmosphere demonstrates that
a combination of a linear type system, a practical language
designed for development of low-level systems, and an au-
tomated reasoning tool, Verus, takes a huge step towards
enabling low-burden veri�cation of kernel code. While we
had to be conscious of the internal organization of the sys-
tem to make sure that veri�cation is possible, in most cases
Verus provides a way to move forward without signi�cant
limitations on the kernel code and with an excellent degree
of proof automation.
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