L))

Check for
Updates

Atmosphere: Towards Practical Verified Kernels in
Rust

Xiangdong Chen" Zhaofeng Li* Lukas Mesicek Vikram Anton Burtsev
University of Utah University of Utah University of Utah Narayanan University of Utah
University of Utah
Abstract kernel rests on the proofs about physical and virtual mem-

Historically, development of formally-verified operating sys-
tems was a challenging, time-consuming undertaking that
relied on a narrow formal verification expertise and required
many person-years of effort. We argue, however, that the
balance of practicality is finally changing with development
of automated verification tools that leverage a unique com-
bination of the linear type system of Rust and automated
verification based on satisfiability modulo theories (SMT).
Our work leverages, Verus, a new SMT-based verifier for
Rust, for development of a minimal yet practical microker-
nel, Atmosphere. Atmosphere is designed as a full-featured
microkernel conceptually similar to the line of early L4 micro-
kernels. We develop all code in Rust and prove its functional
correctness, i.e., refinement of a high-level specification with
Verus. Our experience shows that Verus provides a collection
of practical features that significantly lower the burden of a
verification effort making it possible to reason about correct-
ness of the low-level systems code, e.g., low-level memory
and address space management, recursive data structures
like linked lists and page tables, etc. On average our code
has proof-to-code ratio of 7.5:1 which is significantly lower
than in prior approaches.

CCS Concepts: « Software and its engineering — Soft-
ware verification; Functionality.

1 Introduction

Despite decades of progress, reasoning about correctness
of operating system kernels remains a complex, time-
consuming undertaking. The kernel runs on bare-metal and
requires reasoning about everything from the low-level de-
tails of hardware execution environment to the system call
interface exposed to user applications. Correctness of the

“Both authors contributed equally to the paper

This work is licensed under a Creative Commons Attribution International
4.0 License.

KISV °23, October 23, 2023, Koblenz, Germany

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0411-6/23/10.
https://doi.org/10.1145/3625275.3625401

ory, low-level details of memory and resource management,
lifetimes of numerous kernel data structures, correctness of
synchronization in a parallel and concurrent environment,
implementation of recursive data structures that are opti-
mized to extract the last bits of performance and more.

Historically, verification of even a simple kernel required
tens of person-years to complete. For example, despite nu-
merous careful design decisions aimed to minimize verifica-
tion effort, e.g., avoiding memory management in the kernel
and big-lock synchronization, verification of the first for-
mally verified microkernel, seL4, took 20 person-years for a
system of 10KLOC [25].

To address complexity of verification effort, several
projects explored ideas of “push-button” verification that
attempted direct translation of the kernel code into a sat-
isfiability modulo theories (SMT) expression that was then
checked by an SMT solver [32, 42]. While achieving nearly
automated verification, such approaches required numer-
ous simplifying assumptions about the kernel interface and
kernel’s internal organization, pushing most of the typical
kernel functionality to unverified user libraries. Trying to
approach complexity of verification from a different angle,
several systems advocated for use of clean-slate program-
ming languages like Dafny [27] designed for a high degree
of proof automation [20, 21, 41]. Ironclad was the first sys-
tem to scale verification effort to the whole system from the
application layer down to the kernel assembly [21]. Yet nu-
merous algorithmic simplifications and managed runtime of
the Dafny language hindered performance of the system. For
example, Ironclad relied on a simple and inefficient stop-the-
world garbage collector from the Verve microkernel [41].

We argue, however, that the balance of practicality is fi-
nally changing with development of automated verification
tools that leverage a unique combination of the linear type
system of Rust [13, 24] and automated verification tools like
Verus designed to provide a high-degree of proof automation
similar to Dafny but in Rust [26]. Arguably, a combination
of Rust and Verus for the first time provides support for
practical, low-burden verification of low-level systems.

Rust is the first practical language that can enforce mem-
ory safety without garbage collection. In contrast to managed
languages Rust relies on a restrictive type system that con-
trols ownership of objects allocated on the heap [13]. Control

over aliases provides a way to statically reason about life-
times of objects and generate an explicit destructor at com-
pile time, hence ensuring temporal safety without garbage
collection. Historically, even the fastest safe languages like
Go and C# resulted in a 36-42% overhead compared to un-
safe C on high-performance system workloads like network
device drivers [12]. Rust, however, supports development of
safe code that stays within few percents of unsafe C imple-
mentations [12, 33].

Verus complements Rust with the Dafny-like automated
SMT-based reasoning [26]. Similar to Dafny, Verus provides
a high degree of automation and user-friendliness which al-
low system developers to work on formally-verified systems
directly in the language designed to build such systems and
arguably with minimal background in formal verification.
Verus uses one language for specifications, proofs and exe-
cutable code. Moreover, due to the lack of managed runtime,
verified Rust code can be compiled and executed on bare
metal.

Compared to Dafny, Verus further simplifies verification
effort. First, Verus uniquely leverages the linear type sys-
tem of Rust to lower complexity of reasoning about the
heap [26, 29]. Second, Verus provides an elegant way to
reason about a range of unsafe pointer constructs through
an idea of linear permissions [26]. To ensure practicality of
the otherwise linear language, Rust allows escape from the
ownership rules through its unsafe subset, e.g., to implement
doubly-linked lists, aliases, concurrent primitives, etc. His-
torically, reasoning about unsafe subset of Rust remained
challenging [22] thus limiting verification of Rust code to its
safe subset [3]. Linear permissions however provide a way to
reason about limited but powerful subset of unsafe constructs
that in practice support correctness proofs for typical kernel
data structures, e.g., linked lists, synchronization primitives,
and constructs that implement interior mutability.

Our work presents an early prototype that leverages Rust
and Verus for development of a minimal yet practical mi-
crokernel, Atmosphere. Specifically, we develop all code in
Rust and prove its functional correctness, i.e., refinement of a
high-level specification with Verus. Similar to prior work, we
carefully design the kernel to keep verification complexity
under control. Still, Verus allows us to implement typical ker-
nel data structures like linked lists, support verified memory
allocation, develop proofs about page tables, etc. Our ini-
tial experience shows that even through some compromises
are necessary, a combination of Verus and Rust significantly
reduces verification effort. On average our code has proof-
to-code ratio of 7.5:1 which is significantly lower than in
prior approaches [17, 25]. Moreover, Rust and Verus allow
us to reason about a microkernel with a feature-rich inter-
face that is conceptually similar to the line of classical L4
microkernels, i.e., without the capability interface [11].

10

2 Background

Early verification efforts were aimed at attaining the highest
A1 assurance rating defined by the “Orange Book” [2] but
remained largely unsuccessful due to limitations of existing
verification tools [14, 16, 23, 36]. SeL4 became the first system
to demonstrate a way to achieve verification of a practical
microkernel [25]. SeL4 adopted a unique design choice in
which the kernel does not perform any memory allocation
at all, but instead pushes all allocation decisions to user
processes (which remain unverified). This enabled proving
isolation between subsystems, but resulted in an unusual
system model which required user code to manage their
memory through a capability interface. Verification of seL4
involved 200,000 lines of proof code of the Isabelle/HOL
theorem prover for 8,700 lines of C and required 22 person-
years [25].

Hyperkernel used LLVM intermediate representation (IR)
generated from C which was then translated into a satisfia-
bility modulo theories (SMT) expression checked by the Z3
SMT solver [32]. Hyperkernel demonstrated high degree of
automation but at the cost of severe limitations in kernel
functionality. To support automated translation, Hyperker-
nel required all paths in the kernel to be finite, e.g., the system
call interface forced the process to provide a file descriptor
number for opening a file instead of choosing an available
one in the kernel.

Ironclad [21] addressed complexity of the verification ef-
fort through a combination of Dafny [27], Boogie interme-
diate verification language [4], and Z3 SMT solver [9]. De-
signed explicitly for verification, Dafny allowed reducing the
size of the proof without degrading expressiveness of imple-
mentation (3 person-years). Ironclad relied on a previously
verified microkernel, Verve [41], and mainly concentrated
on verifying cryptographic libraries, device drivers (trusted
platform module), and several applications [21]. Note that
verification of Verve addressed only safety but not functional
correctness of the kernel [41].

CertiKOS [18] and uC/OS-11 [40] were aimed at verification
of concurrent systems through the use of the Coq interactive
theorem prover [1]. CertiKOS developed a concurrent OS
kernel that supported fine-grained locking, interrupts and
threads. Verification of CertiKOS and pC/OS-II took 2 and
5.5 person-years, respectively but required nearly the same
proof-to-code ratio as seL4.

SeKVM utilized Coq to verify the core of the Linux KVM
hypervisor [30]. Specifically, SeKVM decomposed the hy-
pervisor into two separate layers and verified the privileged
core using Coq. The core was further split into layers built
on top of an abstract machine model, with each successively
simplifying the model for upper layers. The top-level speci-
fication was used to prove that any implementation of the
deprivileged upper layer can maintain the confidentiality
and integrity of the VM data. Even though SeKVM relied on

ClightGen [28] for translating the C implementation to Coq
it still required a large manual effort to address numerous un-
supported C idioms. Recently, Spoq improved on ClightGen
cutting the verification effort of SeKVM by 70% [31].

Finally, similar to ours, a recent project, verified NrOS [6],
uses Verus to verify an existing NrOS kernel [5] which is also
developed in Rust. NrOS verifies the code for page-table man-
agement and its core concurrency mechanism, node replica-
tion, yet using Dafny [19]. Compared to our work NrOS aims
at verification of a larger kernel that while being a microker-
nel implements a kernel-level file system. We choose a more
pragmatic path of verifying only a minimal microkernel that
we design from scratch to ensure that verification is feasible.
We plan to approach verification of user-level services like
device drivers, network stacks and file-systems separately.
Verus Verus is a new verification tool for Rust that sup-
ports semi-automated reasoning by using an SMT solver [26].
Verus attempts to replicate success of earlier verification
frameworks combining proofs and development in a single
language [1, 10, 27, 37]. Verus, however, is different in several
important ways. First, instead of relying on a verification-
centric language, Verus works by extending Rust, a language
which is already designed for safe development of low-level
systems. Second, Verus benefits from the Rust’s linear type
system to simplify proofs, support verification of pointer-
manipulating and concurrent Rust code, and implement effi-
cient SMT encoding. For instance, instead of having to reason
about the complex semantics of heap based mutation, Verus
can encode operations on any any mutable reference as a
sequence of transformations on immutable values, as Rust
guarantees such references will be linear.

To introduce the basic features of Verus, we describe a
partial specification for a page backed doubly linked list that
we use in Atmosphere to support management of dynamic
data structures like lists of endpoints, threads, processes,
etc., (Listing 1). At a high level, Verus allows one to write
executable code, specifications for modelling the behavior
of a system, and proofs that the executable code conforms
to the specified behavior. Executable code is written in Rust,
while specifications and proofs are written in a functional
extension of Rust which includes logical quantifiers like
forall and exists as well as key’WOl’dS like requires and ensures
(lines 31-39) to specify preconditions and postconditions of
functions. For example, the well_formed() function specifies
what conditions the list must satisfy to be in a valid state
(one such condition being every node pointer in the list
must have a corresponding owned page). Verus modifies the
Rust compiler to elide specifications and proofs (ghost code)
during compilation time. For instance the vap and seq types
are mathematical models of the underlying code, but are
ghost types thus do not incur any runtime overhead.

The list itself is composed of a combination of a standard
doubly linked list of nodes (lines 14-15), a reverse singly
linked list of free nodes (line 18) (representing the capacity

11

1 struct Node<T> {

2 contents: T, next: Option<NodePtr<T>>, prev: Option<NodePtr<T>>
3

4 struct PageNode { prev: Option<PageNodePtr>, }

5

6 type PagePerm<T> = PageArena<Node<T>, PageNode>,

7 type NodePtr<T> = PageElementPtr<Node<T>>;

8 type PageNodePtr = PageMetadataPtr<PageNode>;

9

10 struct LinkedList<T> {

11 perms: Map<PagePPtr, PagePerm<T>>,

12 // Doubly linked list of elements

13 ptrs: Seq<NodePtr<T>>,

14 head: Option<NodePtr<T>>,

15 tail: Option<NodePtr<T>>,

16 // Reverse singly linked list of free nodes

17 free_ptrs: Seq<NodePtr<T>>,

18 free_tail: Option<NodePtr<T>>,

19 // Reverse singly linked list of backing pages

20 page_ptrs: Seq<PageNodePtr>,

21 page_tail: Option<PageNodePtr>,

22 3}

23

24 spec fn well_formed<T>(list: &LinkedList<T>) -> bool {
25 /o

26 && forall |i: nat| © <= i < list.ptrs.len() ==>

27 list.perms.domain().contains(list.ptrs[i].page_pptr())
28 3}

29

30 fn push_back<T>(list: &mut LinkedList<T>, v: T)

31 requires

32 well_formed(old(list)),

33 old(list).free_ptrs.len() > 0,

34 ensures

35 well_formed(list),

36 list.free_ptrs.len() == old(list).free_ptrs.len() - 1,
37 list.ptrs.len() == old(list).ptrs.len() + 1,

38 v == list.perms[list.ptrs.last().page_pptr()]

39 .value_at(list.ptrs.last().index()).contents

40 {

41 let ptr: NodePtr<T> = list.free_tail.unwrap();

42 let perm: &PagePerm<T> = list.perms[ptr.page_pptr()];
43 let node: &Node<T> = ptr.borrow(perm);

44 // Update free ptrs linked list and model sequence
45 list.free_tail = node.prev;

46 list.free_ptrs = list.free_ptrs.take(list.free_ptrs.len() - 1);
47 // Update contents of this ptr

48 ptr.put(perm, Node { contents: v, prev: list.tail, next: None });
49 // Update ptrs linked list and model sequence

50 if list.tail.is_none() {

51 list.head = Some(ptr);

52 }

53 list.tail = Some(ptr);

54 list.ptrs = list.ptrs.push(ptr);

55 }

Listing 1. Partial implementation of a resizable linked list.

of the linked list), and a reverse singly linked list of memory
pages that provide memory for the individual elements of
the list (lines 20-21). Each sublist is further modelled through
the ghost seq type: as an abstract sequence of raw pointers
which mirror the order of the list elements. This allows us to
model the linked list as a simple sequence of values, hiding
the inner complexity of the linked list from any other data
structures that need to reason about it.

As we will discuss in Section 4, the linked list leverages
linear ghost types [26] and the Pagearena abstraction to rea-
son about raw pointers in a way which is safe and memory
efficient. Because we model permissions as linear objects,
we can only read from a given raw pointer if we hold an im-
mitable reference to the corresponding permission (line 43),
and we can only write to it if we hold a mutable reference to
the corresponding permission (line 48). As such all accesses
of the raw pointer are checked by the borrow checker and
proven to be safe.

Unused virtual
address

T1

send(ep, va) recv(ep, va)

_ J

Thread
Control
Block

List of Ty's
endpoints

Atmosphere
microkernel

Thread
Control

Block
List of T,'s

Endpoint / endpoints

List of receivers

Figure 1. Architecture of Atmosphere. Thread T; invokes the send()
system call to pass a page to T, which is already waiting on the
endpoint inside the microkernel.

3 Architecture

Atmosphere is a full-featured microkernel conceptually sim-
ilar to the line of classical L4 microkernels before the intro-
duction of a capability interface in seL4 [11]. Similar to other
microkernels, Atmosphere pushes most kernel functionality
to user-space, e.g., device drivers, network stack, file systems,
etc. The microkernel supports a minimal set of mechanisms
to implement address spaces, memory management, inter-
rupt dispatch, inter-process communication, and threads of
execution that together with address spaces implement an
abstraction of a process. Each process has a page table and a
collection of schedulable threads. Atmosphere allows threads
to control layout of their virtual address space through a col-
lection of system calls that support mapping and unmapping
of pages as well as receiving pages from other threads via
communication endpoints. Atmosphere is a multiprocessor
system, but to simplify verification we rely on a big-lock
synchronization, i.e., all interrupts and system calls execute
in the microkernel under one global lock and with further
interrupts disabled.

Atmosphere implements a verified page allocator and de-
velops a novel scheme that allows allocation of fine-grained
objects somewhat similar to Slab in Linux, which allows the
kernel to implement dynamic data structures like linked lists.

Atmosphere allows processes to communicate via end-
points. A sender thread can pass scalar data, references to
memory pages, and references to other endpoints. A receiver
thread must be waiting on the endpoint for the message
transfer to happen. If no receivers are waiting, the sender
gets enqueued on the endpoint until the first receiver arrives.
The endpoint supports the queue of senders and receivers.

The endpoints work as capabilites that allow connections
between processes (processes can exchange endpoints and
then establish regions of shared memory). Shared memory re-
gions provide support for efficient communication [7, 8, 15].
Endpoints also provide notification mechanism that allows

12

us to avoid polling on shared memory, i.e., a thread can wait
on an endpoint for notification from other threads.

System call interface Atmosphere provides support for
creating new processes and threads, allocating and mapping
pages of memory, creating and exchanging communication
endpoints. The microkernel however does not support load-
ing of new processes and instead delegates it to a user-space
protocol. Specifically, the parent process is allowed to share
an endpoint with the child (by passing it as an argument
to the system call that creates a new process). The kernel
creates a minimal address space for the child with a simple
statically-linked trampoline code — same for all new pro-
cesses in the system. The boot code uses the endpoint to
communicate with the rest of the system that allows it to
load the linker and the process binary from the file system.
Control over the process boot protocol allows us to imple-
ment traditional fork and exec primitives. To implement fork,
the child process communicates with the parent to first map
its address space and then copy it. Similarly the parent allows
the child to inherit its file descriptors in the file system.

Device drivers and interrupts Atmosphere implements
all device drivers as user-space processes. The microkernel
allows a user thread to register for an interrupt by trying to
receive a message from an interrupt endpoint. A low-level
interrupt handler unblocks all threads waiting on a specific
interrupt. A trusted boot loader creates the first process that
has access to all PCle regions and can share them with device
driver processes.

4 Verification

Specifications Atmosphere captures high-level behavior
of the system as a collection of high-level specifications for
the microkernel interface. This is similar to previous ap-
proaches [6, 32]. For example, the specification of a system
call that creates a new thread reflects that a new thread is
added to the list of threads of the same process and can access
the same address space. We then prove that the implemen-
tation of each system call is a refinement of its high-level
specification. That is, when a microkernel call is executed,
its effect to the whole system is equivalent to the change in
a high-level specification.

Internally, we structure specifications as the ones that
define well-formedness of the kernel state, i.e., all data struc-
tures and resources managed by the kernel are well-formed,
and the ones that capture functional behavior, i.e., updates
to the system’s state. For example, a well-formed pool of
physical pages is such that for each physical page it is either
mapped by one or more alive processes or stored in the free
pool. The kernel is structurally well-formed at all times if
and only if it maintains kernel structural integrity at boot
time and after each function call.

We capture functional behavior of the system using Floyd-
Hoare logic: as a collection of pre and post conditions on its

pub fn pop_scheduled_thread(&mut self)

-> (thread_ptr: ThreadPtr)

requires
old(self).wf_scheduler(),

ensures
self.threads[thread_ptr].state == running,
self.scheduler ==
old(self).scheduler.subrange(1, old(self).scheduler.len()),
self.wf_scheduler(),

O PN U W N e

Listing 2. Functional correctness specification

state. For example, Listing 2 illustrates a simplified specifi-
cation for the scheduler function, pop_scheduled_thread(), that
picks the next thread to run. The requires clause contains
preconditions that must hold before the invocation of the
function (in this case the scheduler must be in a well-formed
state). The postconditions in ensures clause describe how the
state of the system will change after the invocation. Specif-
ically, pop_scheduled_thread() contains three postconditions, in
which the first two define the functional correctness of
pop_scheduled_thread() as: (1) The state of the scheduler after
the invocation will be the same as equivalent to its previous
state with its oldest thread popped (FIFO scheduling). (2) The
popped thread is correctly marked as running. (3) Scheduler
remains well-formed in the new state.

We execute Atmosphere under a big lock with interrupts
disabled to sidestep complexity of reasoning about concur-
rency (previous work argues that big-lock insignificantly af-
fects performance of a microkernel system [34]). This allows
us to model each kernel invocation as an atomic transaction
on the kernel state. Atmosphere ensures kernel structural
integrity and functional correctness before and after each
system call (and each interrupt transition). Each kernel in-
vocation transitions the kernel from one well-formed state
to another and adheres to the high-level specification which
captures the effect of the system call.

Overall, this allows us to proof high-level properties of
the kernel. For example, we define and prove Atmosphere
kernel memory correctness specifications as: (1) The kernel
memory pages and user-mapped pages are disjoint. (2) The
kernel components do not overlap. (3) The whole system has
no memory leaks.

Raw pointers and memory management The true power
of Verus comes from its support for reasoning about raw
pointers and objects allocated on the heap via a combina-
tion of permissioned pointers, i.e., Prtr<7>, and a linear ghost
permission type pointsTo<t> [26]. Specifically, to read from
a raw pointer one requires an immutable reference to the
permission corresponding to that pointer (writing requires a
mutable reference to the permission). Hence, accesses to raw
pointers follow the normal ownership model in Rust. This
proves that accesses are safe, linearized, and that pointer
provenance is upheld.

However, Verus makes a critical simplifying design
choice - it trusts the memory allocator to create objects
behind permissioned pointers — something we would like

13

to avoid. While it’s possible to verify the allocator, the er-
gonomics of the proof relies on the abstraction of permission
pointers resulting in the chicken-and-egg problem.

In order to leverage the abstraction of linear permissioned
pointers, we introduce several mechanisms that support rea-
soning about raw pointers but without requiring trust in
the memory allocator. First, we develop a simple verified
memory allocator that can allocate memory in the units of
pages, (i.e., 4096 bytes in our system). The allocator tracks
page state with a static array and hence does not depend
on permission pointers. We then change Verus to allow con-
struction of only one permission pointer type — a pointer to
an untyped page of bytes, Pptr<[us; 40961>, which can only be
created from a page of memory obtained from the allocator.
In other words, instead of trusting a generic allocator, we
first allocate a page from a simple page allocator and then
retype it into a permission pointer to that page. Finally, to
support allocation of smaller objects, we develop an abstrac-
tion of an arena that allows us to split a page into a collection
of smaller objects.

Therefore, to allocate an object of type 1 (the object must
be smaller than a page), we allocate a ghost data structure,
pageArena, Which splits a 4 KiB page into an array of values.
A pagearena is created from an untyped page (Pptr<[us; 40961>)
and its corresponding permission. Once created, fat point-
ers to typed elements (PageElementPtr<r>) can then be derived
from the arena. In order to access an element, both the fat
pointer and the underlying ghost arena (immutable borrow
for reads, mutable borrow for writes) are required. Access
to typed elements is thus linearized in a manner similar to
permissioned pointers in Verus.

Since a ghost PageArena instance represents the permission
to access all elements in the page, deallocation is made pos-
sible by converting the ghost arena back to an untyped page
permission (PointsTo<[us; 40961>). Without the ghost arena, all
previously-allocated elements become permanently inacces-
sible and the page can thus be reused. This is in contrast to
splitting an untyped page into individual permissions, where
deallocation of a page would require tracking all permissions
to typed values in the page.

For each pagearena<t, M1>, we further provide a way to in-
clude optional metadata (1) for each page. This metadata is
included after the typed elements and can be used to link
multiple page arenas together to construct resizeable con-
tainers like linked lists.

To bootstrap the verified memory allocator, we extend
Verus to support the creation of pptr<fus; 40961>s from physi-
cal pages passed by the boot manager. We enforce type safety
with a transparent wrapper type, BootPage, that follows Rust’s
new type idiom [38] and acts as a token that represents a
unique physical page. The wrapper has a single, private field
that contains the physical address of the page. Since the wrap-
per type does not have a public constructor method, the Rust
type system guarantees that there is no way to construct it

1 fn grow<T>(list: &mut LinkedList<T>, page: PagePPtr, perm: PagePerm<T>)
2 requires

3 well_formed(old(list)),

4 page.id() == perm.page_base(),

5 ensures

6 well_formed(list),

7 list.free_ptrs.len() == old(list).free_ptrs.len()

8 + PagePerm: :<T>::capacity(),

9 list.page_ptrs.len() == old(list).page_ptrs.len() + 1,
10 {

11 let offset = list.free_ptrs.len();

12 // Generate pointers for each element in the page,

13 // and add them to the free pointers list

14 let mut idx: usize = 0;

15 // Inductively show all new free pointers are valid and unique
16 while idx < PagePerm::<T>::capacity();

17 invariant

18 idx <= PagePerm::<T>::capacity(),

19 list.free_ptrs.len() == offset + idx,

20 forall |k: nat| 0 <= k < idx ==>

21 (list.free_ptrs[offset + k].page_ptr() == page 8&&
22 list.free_ptrs[offset + kl.index() == k),

23 /7 ...

24 {

25 // Extend the free pointers list and model sequence
26 let ptr = NodePtr::<T>::new(page, idx);

27 ptr.put(perm, Node {

28 contents: undefined(), prev: list.free_tail, next: None
29 N

30 list.free_tail = Some(ptr);

31 list.free_ptrs = list.free_ptrs.push(ptr);

32 idx += 1;

33 }

34 // Using the metadata type, store and extend the list
35 // of pages owned by this data structure

36 let page_node = PageNodePtr::new(page);

37 page_node.put(perm, PageNode { prev: list.page_tail });
38 list.page_tail = Some(page_node);

39 list.page_ptrs = list.page_ptrs.push(page_node);

40 // Take ownership of the page permission

41 list.perms.insert(page, perm);

42 3}

Listing 3. Example use of PageArena for growing the linked list.

in safe Rust. The #Lrepr(transparent)] attribute further provides
ABI stability by ensuring that the wrapper has the same data
layout as the enclosed raw pointer, so the Bootpage tokens may
be handed off by the boot manager to the microkernel.

Dynamic data structures A combination of page arenas
and the ability to store metadata for each page allows us
to construct complex dynamic data structures such as page
backed linked lists (Listing 1). Crucially, using the pagearena
abstraction, we can grow the linked list using our verified
page allocator in a way which is memory efficient (as it gives
us the ability to allocate many smaller objects from each
pages). In the grow() function (Listing 3) we take a single page,
split it into a large number of pointers to smaller node objects
and append these pointers to the free list (lines 16-33). In
doing so we grow the capacity of the linked list. We also
use the metadata object to store a list of pages owned by the
linked list (lines 36-39), which is used for deallocation.

Field-level mutation At the moment, Verus does not sup-
port returning mutable references from functions and sup-
port for mutable references in function arguments is limited
to special cases. To allow mutation of the value, permis-
sioned pointers in Verus expose setters. This comes with the
downside of not being able to modify specific fields of a data
structure without copying the entire structure — an overhead
prohibitive for a microkernel.

14

To support efficient field-level mutation, we implement a
procedural macro that generates getters and setters for each
field in a data structure, as well as the corresponding trusted
specifications that update the abstract state. The generic
nature of the procedural macro facilitates the auditing of
generated specifications for all structures it’s applied to.

In the future, it’s expected that Verus will add support
for returning mutable references by adopting prophecy vari-
ables [39].

Page memory allocator Atmosphere implements page
memory allocator with two data structures: 1) a fixed size
array that tracks the state of every page, and 2) a fixed size
queue that implements a single-linked list of free pages. A
trusted boot manager enumerates all available memory in
the system and creates the initial list for the page alloca-
tor. We use the page allocator to allocate coarse-grained
data structures like threads, processes, endpoint, pages for
the page table, and to allocate page arenas for dynamically
growing linked lists. A page in Atmosphere is in one of the
three states: free, allocated to use inside the kernel, i.e., pro-
vide memory for one of the kernel data structures, or mapped
by user processes as part of the process address space. A
mapped page contains a reference counter that tracks the
number of times the page is mapped (we allow pages to be
mapped multiple times inside the process and share pages
across processes).

Paging Atmosphere contains a verified subsystem to sup-
port four-level paging. For simplification, we model an ad-
dress space as a tree where each present entry in a paging
structure points to a paging structure in the next level, or
a 4 KiB data page. We ensure that it is impossible for an
entry to point to a paging structure of the wrong level or is
not well-formed. Furthermore, it should not be possible to
interpret a data page as a paging structure or vice versa.

To achieve these goals, Atmosphere implements paging
using strongly-typed tables for each level of the paging struc-
ture, with linearity enforced using permissioned pointers.
Each paging structure is modeled as a generic data struc-
ture PagingLevel<g, T> containing 4096 entries (e) with each
present entry pointing at a target (7). The allowed types of
£ and T are constrained by bounds on traits which provide
common methods that indicate entry presence as well as
perform lookup and mutation. For each present entry, the
paging structures also contain ghost state to keep track of
the permission corresponding to the target.

Translation lookaside buffer (TLB) Atmosphere uses
tagged TLB to implement specifications and verification of
the code responsible for flushing the TLB in a multi-processor
system. CPU running in tagged TLB mode uses the first 12
bits of the cr3 as a process context identifier (PCID) to iden-
tify different address spaces and completely ignores the cr3
address bits (lower bits) while performing a TLB lookup.
We specify the expected behavior of the virtual to physical

Name [Language | SpecLang. [Proof-to-Code Ratio
seL4 C+Asm Isabelle/HOL 20:1 [25]
CertiKOS C+Asm Coq 14.9:1 [17]
SeKVM C+Asm Coq 6.9:1 [30]
Ironclad Dafny Dafny 4.8:1 [21]
NrOS Rust Verus (Rust eDSL) 10:1 [6]
Atmosphere Rust Verus (Rust eDSL) 7.5:1

Figure 2. Proof effort for existing verification projects.

memory translation mechanism as a map containing corre-
spondence between the virtual and physical addresses for
each PCID. For each CPU’s TLB, we model it as a similar map
between the virtual and physical addresses for each PCID.

Interrupts and context switch Unlike a typical kernel, At-
mosphere does not save execution state of the thread on a
kernel stack during the context switch. Instead, all kernel
functions (interrupt handlers and system calls) run to com-
pletion and if the context switch is required a small trusted
helper saves the user-state of the thread (i.e., it’s trap frame)
in the thread data structure. In Atmosphere, each CPU has
one kernel stack for all threads (note, each CPU maintains
another stack for processing non-maskable inter-processor
interrupts that we use for TLB invalidation). This design
choice allows us to simplify the proof. When the kernel func-
tion returns, the kernel is in a well-formed state, and the
kernel stack pointer is restored to the original position.

5 Implementation

Build environment The Atmosphere microkernel consists
of both verified and non-verified components built using a
trusted compilation environment, e.g., Atmosphere relies on
a trusted boot manager to initialize the system. Compilation
of the microkernel is done in two passes. The build system
first invokes the Verus toolchain on the verified components.
Then a regular Rust toolchain is used to compile the entire
kernel with ghost code erased. We use the same Rust version
that the Verus toolchain is based on to minimize potential
differences in code generated by the two toolchains.

Stack size analysis Verus cannot guarantee the absence of
stack overflows since it does not model the hardware and
relies on Rust to correctly abstract details of the machine
executing the code. To ensure that micorkernel has sufficient
stack space, we statically compute the maximum stack size
that may be used by the microkernel on all possible execution
paths. During compilation, Rust summarizes the stack sizes
of individual functions. We rely on the LLVM bitcode and
extract the call graph of the microkernel using an LLVM IR
pass. Based on the call graph, we attempt to derive the upper
bounds of stack usage for all entry points (e.g., the main
function, system calls, and interrupt handlers). The binary
is rejected if the upper bound cannot be found, which can
occur in the presence of cycles in the call graph. The boot
loader then allocates sufficiently big microkernel stacks on
each CPU.

15

6 Evaluation

We carry development of Atmosphere on one of the Cloud-
Lab [35] c220g5 servers which are configured with two Intel
Xeon Silver 4114 10-core CPUs running at 2.20 GHz, 192 GB
RAM. Those machines run 64-bit Ubuntu 20.04 Linux with a
5.4.0 kernel. Verus takes approximately 20 seconds to reason
about verified parts of the kernel. Individual functions take 4
seconds at most when the runtime checks are turned on (this
is inline with recent work [6]). With runtime checks turned
off, Verus takes roughly 30 minutes to finish the proof and
spends upto 850 seconds at most on a function. Therefore, we
believe that there is room for improvement both the Verus
verification toolchain and in how we structure our proofs.

Atmosphere has a proof-to-code ratio of 7.5:1 which is a
significant improvement compared to the existing formally
verified microkernels SeL4 [25] and CertiKOS [17], which
have proof-to-code ratio of 19:1 and 20:1, respectively (Fig-
ure 2).

7 Conclusions

Our early experience with Atmosphere demonstrates that
a combination of a linear type system, a practical language
designed for development of low-level systems, and an au-
tomated reasoning tool, Verus, takes a huge step towards
enabling low-burden verification of kernel code. While we
had to be conscious of the internal organization of the sys-
tem to make sure that verification is possible, in most cases
Verus provides a way to move forward without significant
limitations on the kernel code and with an excellent degree
of proof automation.

Acknowledgments

We would like to thank KISV’23 reviewers for various in-
sights helping us to improve this work. This research is
supported in part by the National Science Foundation under
Grant Numbers 2313411, 1837127 and 2341138, and Amazon.

References

[1] The Coq proof assistant. https://coq.inria.fr/.
[2] Department of Defense Trusted Computer System Evaluation Criteria,
pages 1-129. Palgrave Macmillan UK, London, 1985.
[3] Marek Baranowski, Shaobo He, and Zvonimir Rakamaric. Verifying
rust programs with smack. In Shuvendu K. Lahiri and Chao Wang,
editors, Proceedings of the 16th International Symposium on Automated
Technology for Verification and Analysis (ATVA), volume 11138 of Lec-
ture Notes in Computer Science, pages 528-535. Springer, 2018.
Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and
K. Rustan M. Leino. Boogie: A modular reusable verifier for object-
oriented programs. In Frank S. de Boer, Marcello M. Bonsangue,
Susanne Graf, and Willem-Paul de Roever, editors, Formal Methods
for Components and Objects: 4th International Symposium, FMCO 2005,
pages 364-387, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.
Ankit Bhardwaj, Chinmay Kulkarni, Reto Achermann, Irina Calciu,
Sanidhya Kashyap, Ryan Stutsman, Amy Tai, and Gerd Zellweger.
Nros: Effective replication and sharing in an operating system. In 15th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI °21, pages 295-312. USENIX Association, July 2021.

[4

[l

[5

—

(6]

(10]

[11

—

(12]

(13]
(14]

(15]

(16]

(17]

(18]

(19]

[20

[t

[21]

Matthias Brun, Reto Achermann, Tej Chajed, Jon Howell, Gerd Zell-
weger, and Andrea Lattuada. Beyond Isolation: OS Verification as a
Foundation for Correct Applications. In Proceedings of the 19th Work-
shop on Hot Topics in Operating Systems, HOTOS ’23, page 158165,
2023.

Anton Burtsev, Kiran Srinivasan, Prashanth Radhakrishnan, Lak-
shmi N Bairavasundaram, Kaladhar Voruganti, and Garth R Goodson.
Fido: Fast inter-virtual-machine communication for enterprise appli-
ances. In Proceedings of the 2009 USENIX Annual Technical Conference
(USENIX ATC’09), pages 313-326, 2009.

W. de Bruijn and H. Bos. Beltway buffers: Avoiding the os traffic jam.
In IEEE INFOCOM 2008 - The 27th Conference on Computer Communi-
cations, pages 136-140, 2008.

Leonardo de Moura and Nikolaj Bjerner. Z3: An efficient SMT solver. In
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), volume 4963 of Lecture Notes in
Computer Science, pages 337-340. Springer, 2008.

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn,
and Jakob von Raumer. The lean theorem prover (system description).
In Amy P. Felty and Aart Middeldorp, editors, Automated Deduction -
CADE-25, pages 378-388, Cham, 2015. Springer International Publish-
ing.

Kevin Elphinstone and Gernot Heiser. From L3 to SeL4 What Have We
Learnt in 20 Years of L4 Microkernels? In Proceedings of the 24th ACM
Symposium on Operating Systems Principles, SOSP "13, pages 133-150,
2013.

Paul Emmerich, Simon Ellmann, Fabian Bonk, Alex Egger, Esat Garcia
Sanchez-Torija, Thomas Giinzel, Sebastian Di Luzio, Alexandru Obada,
Maximilian Stadlmeier, Sebastian Voit, et al. The Case for Writing Net-
work Drivers in High-Level Programming Languages. In Proceedings
of the 2019 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), pages 1-13. IEEE, 2019.

Mozilla Foundation. The Rust programming language. https://doc.
rust-lang.org/book/.

L. J. Fraim. Scomp: A solution to the multilevel security problem.
Computer, 16(7):26-34, July 1983.

K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and
M. Williamson. Safe hardware access with the Xen virtual machine
monitor. In 1st Workshop on Operating System and Architectural Support
for the on demand IT InfraStructure, OASIS 2004.

B. D. Gold, R. R. Linde, and P. F. Cudney. Kvm/370 in retrospect. In
1984 IEEE Symposium on Security and Privacy, pages 13-23, 1984.

L. Gu, A. Vaynberg, B. Ford, Z. Shao, and D. Costanzo. CertiKOS:
a certified kernel for secure cloud computing. In Proceedings of the
Second Asia-Pacific Workshop on Systems, APSys ’11, page 3, 2011.
Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung
Kim, Vilhelm Sjéberg, and David Costanzo. CertiKOS: An extensible
architecture for building certified concurrent OS kernels. In 12th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI 16, pages 653-669, Savannah, GA, November 2016. USENIX
Association.

Travis Hance, Yi Zhou, Andrea Lattuada, Reto Achermann, Alex Con-
way, Ryan Stutsman, Gerd Zellweger, Chris Hawblitzel, Jon Howell,
and Bryan Parno. Sharding the state machine: Automated modular
reasoning for complex concurrent systems. In 17th USENIX Sympo-
sium on Operating Systems Design and Implementation, OSDI ’23, pages
911-929, Boston, MA, July 2023. USENIX Association.

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan
Parno, Michael L. Roberts, Srinath Setty, and Brian Zill. Ironfleet:
Proving practical distributed systems correct. In Proceedings of the
25th Symposium on Operating Systems Principles, SOSP ’15, page 1-17,
New York, NY, USA, 2015. Association for Computing Machinery.
Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan
Parno, Danfeng Zhang, and Brian Zill. Ironclad apps: End-to-End

16

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

security via automated Full-System verification. In 11th USENIX Sym-
posium on Operating Systems Design and Implementation, OSDI *14,
pages 165-181, Broomfield, CO, October 2014. USENIX Association.
Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
Rustbelt: Securing the foundations of the rust programming language.
volume 2, New York, NY, USA, December 2017. Association for Com-
puting Machinery.

P.A. Karger, M.E. Zurko, D.W. Bonin, A H. Mason, and C.E. Kahn. A
retrospective on the vax vmm security kernel. IEEE Transactions on
Software Engineering, 17(11):1147-1165, 1991.

Steve Klabnik and Carol Nichols. The Rust Programming Language.
No Starch Press, 2019.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. Sel4: Formal verification of an os kernel. In Proceedings
of the 22nd Symposium on Operating Systems Principles, SOSP ’09,
page 207-220, New York, NY, USA, 2009. Association for Computing
Machinery.

Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha
Subasinghe, Yi Zhou, Jon Howell, Bryan Parno, and Chris Hawblitzel.
Verus: Verifying Rust Programs using Linear Ghost Types. Proceedings
of the ACM on Programming Languages, 7(OOPSLA1):85:286-85:315,
April 2023.

Rustan Leino. Dafny: An automatic program verifier for functional
correctness. In 16th International Conference, LPAR-16, Dakar, Senegal,
pages 348-370. Springer Berlin Heidelberg, April 2010.

Xavier Leroy. The compcert c verified compiler: Documentation and
user’s manual. September 2014.

Jialin Li, Andrea Lattuada, Yi Zhou, Jonathan Cameron, Jon Howell,
Bryan Parno, and Chris Hawblitzel. Linear types for large-scale sys-
tems verification. Proceedings of the ACM on Programming Languages,
6(O0PSLA1):1-28, April 2022.

Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John Zhuang Hui.
Formally Verified Memory Protection for a Commodity Multiprocessor
Hypervisor. In 30th USENIX Security Symposium (USENIX Security 21),
pages 3953-3970, August 2021.

Xupeng Li, Xuheng Li, Wei Qiang, Ronghui Gu, and Jason Nieh.
Spoq: Scaling Machine-Checkable systems verification in coq. In 17th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI ’23, pages 851-869, Boston, MA, July 2023. USENIX Association.
Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson,
James Bornholt, Emina Torlak, and Xi Wang. Hyperkernel: Push-
button verification of an os kernel. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles, SOSP *17, page 252-269, New
York, NY, USA, 2017. Association for Computing Machinery.

Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Rat-
nasamy, and Scott Shenker. NetBricks: Taking the V out of NFV. In
12th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI "16, pages 203-216, Savannah, GA, November 2016.
Sean Peters, Adrian Danis, Kevin Elphinstone, and Gernot Heiser. For
a Microkernel, a Big Lock Is Fine. In Proceedings of the 6th Asia-Pacific
Workshop on Systems, APSys 15, New York, NY, USA, 2015. Association
for Computing Machinery.

Robert Ricci, Eric Eide, and The CloudLab Team. Introducing Cloud-
Lab: Scientific infrastructure for advancing cloud architectures and
applications. USENIX ;login:, 39(6), December 2014.

W. R. Schockley, T. F. Tao, and M. F. Thompson. An overview of the
gemsos class al technology and application experience. In Proceedings
of the 11th National Computer Security Conference, pages 238-245,
October 1988.

Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine
Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Four-
net, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoue,

and Santiago Zanella-Béguelin. Dependent types and multi-monadic
effects in fx. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 16, page
256-270, New York, NY, USA, 2016. Association for Computing Ma-
chinery.

The Rust Project. New Type Idiom. https://doc.rust-lang.org/
rust-by-example/generics/new_types.html, 2023.

The Verus Contributors. Returning mutable references. https://
github.com/verus-lang/verus/discussions/35, 2023.

Fengwei Xu, Ming Fu, Xinyu Feng, Xiaoran Zhang, Hui Zhang, and
Zhaohui Li. A practical verification framework for preemptive os
kernels. In Swarat Chaudhuri and Azadeh Farzan, editors, Computer
Aided Verification, pages 59-79, Cham, 2016. Springer International
Publishing.

17

[41]

[42]

Jean Yang and Chris Hawblitzel. Safe to the last instruction: Automated
verification of a type-safe operating system. In Proceedings of the
31st ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 10, pages 99-110, New York, NY, USA, 2010.
Arseniy Zaostrovnykh, Solal Pirelli, Rishabh Iyer, Matteo Rizzo, Luis
Pedrosa, Katerina Argyraki, and George Candea. Verifying Software
Network Functions with No Verification Expertise. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles, SOSP 19,
page 275-290, New York, NY, USA, 2019. Association for Computing
Machinery.

	Abstract
	1 Introduction
	2 Background
	3 Architecture
	4 Verification
	5 Implementation
	6 Evaluation
	7 Conclusions
	Acknowledgments
	References

