Computational Materials Science 244 (2024) 113155

journal homepage: www.elsevier.com/locate/commatsci

Contents lists available at ScienceDirect

Computational Materials Science

COMPUTATIONAL

/\

Full length article

Check for

Adaptive loss weighting for machine learning interatomic potentials iz

Daniel Ocampo ?, Daniela Posso ®, Reza Namakian %, Wei Gao »%*

aJ. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, United States
b Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, United States
¢ Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843, United States

ARTICLE INFO ABSTRACT

Dataset link: https://gao-group.github.io/atom
dnn/index.html

Keywords:

Machine learning
Interatomic potentials
Adaptive loss weighting
Loss function

Neural network

Training machine learning interatomic potentials often requires optimizing a loss function composed of three
variables: potential energies, forces, and stress. The contribution of each variable to the total loss is typically
weighted using fixed coefficients. Identifying these coefficients usually relies on iterative or heuristic methods,
which may yield sub-optimal results. To address this issue, we propose an adaptive loss weighting algorithm
that automatically adjusts the loss weights of these variables during the training of potentials, dynamically
adapting to the characteristics of the training dataset. The comparative analysis of models trained with fixed
and adaptive loss weights demonstrates that the adaptive method not only achieves more balanced predictions
across the three variables but also improves overall prediction accuracy.

1. Introduction

Atomistic simulations employing empirical interatomic potentials
have been widely used in materials modeling. Although faster than
simulations using density functional theory (DFT), they often yield less
accurate results. A key limitation of traditional interatomic potentials
is their fixed functional forms and few fitting parameters. By contrast,
machine learning interatomic potentials (ML-IAPs) offer greater flex-
ibility by learning the energy surface shape from training datasets.
Therefore, if the training datasets cover sufficient physics of interests,
well-trained ML-IAPs can provide accuracy comparable to DFT. While
ML-IAPs generally have higher computational costs than traditional
interatomic potentials, they effectively balance accuracy and efficiency.
There have seen many successful examples of ML-IAPs developed for
various material systems [1-4].

ML-IAPs can be broadly split into two types. The first is descriptor-
based ML-IAP, in which the descriptors (or fingerprints) are used to
describe the environment of the atoms in a system. Various descrip-
tors have been proposed in the literature, such as Atom-Centered
Symmetry Functions (ACSF) [5], Smooth Overlap of Atomic Positions
(SOAP), Atomic Cluster Expansion (ACE) [6], and Moment Tensor Po-
tentials [7], among others. A comprehensive review of the descriptors
can be found in Musil et al.’s work [8]. Representative descriptor-
based ML-IAPs include: Behler and Parrinello Neural Network po-
tential [5,9], Gaussian approximation potential (GAP) [10], Spectral
Neighbor Analysis Potential (SNAP) [11], Moment Tensor Potential
(MTP) [7], Performant implementation of the atomic cluster expan-
sion (PACE) [12], and DeePMD [13] among others. The second type

of ML-IAP is the end-to-end potential, which operate differently by
learning directly from the types and positions of atoms, without the
need for predefined descriptors. Representative ones include: Crystal
Graph Convolutional Neural Networks (CGCNN) [14,15], SchNet [16],
and MatErials Graph Network (MEGNet) [17] among others. Although
the end-to-end ML-IAPs leverage more recent and advanced feature
learning AI technology, there is currently no conclusive evidence to
suggest that end-to-end ML-IAPs outperform the descriptor-based ML-
IAP in terms of prediction accuracy. The study reported in this paper
are performed using ACSF.

The training of most ML-IAPs involves minimizing a loss function,
which measures the difference between the predicted outputs of the
potential and the actual target value obtained from Ab initio simula-
tions. Typically, a ML-IAP’s loss function comprises three components:
potential energy, atomic forces, and stress tensor, each weighted by a
prefactor (i.e. loss weight). Most of current ML-IAPs assign a predefined
loss weight to each component, which stays as a constant throughout
the training process [7,9,11,12]. Approaches like DeepMD modulate
these weights linearly during training, though the rationale and effec-
tiveness of this approach are not fully clear [13,18]. In this paper,
our study demonstrates that varying combinations of loss weights
significantly impact model performance, raising a key question: what
constitutes an effective combination of loss weights that balances en-
ergy, force, and stress predictions? Our hypothesis is that a universally
optimal set of loss weights for all ML-IAPs may not exist, as the optimal
weights are likely tied to the material system and the characteristics of

* Corresponding author at: J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, United States.

E-mail address: wei.gao@tamu.edu (W. Gao).

https://doi.org/10.1016/j.commatsci.2024.113155

Received 26 March 2024; Received in revised form 24 May 2024; Accepted 3 June 2024

Available online 20 June 2024

0927-0256/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

https://www.elsevier.com/locate/commatsci
https://www.elsevier.com/locate/commatsci
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
mailto:wei.gao@tamu.edu
https://doi.org/10.1016/j.commatsci.2024.113155
https://doi.org/10.1016/j.commatsci.2024.113155
http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2024.113155&domain=pdf

D. Ocampo et al.

Computational Materials Science 244 (2024) 113155

descriptors @

(G11 Gi2 Gi3 Ga)

Atom 1

N

Atom 2 (G21 G2z Gaz Gaa) D

A
8
@A

Atom 3 (G31 G3z Gsz Gsg)

N7AW
SRR R

K
Prodie

e
S

AN
KRS /
N/

le 1 @

[VGy]

-

Ey, f1

8

E27.f2 E7U

E37f3

4 5 5
Gij = g(r1,72,73) => i = f (Zl GijWi, + bllc) —>yi=f (kzl YWi + bi) —> k= lzly?lWﬁ +0°
i= = =

Fig. 1. Schematic of neural network interatomic potential where the potential energy, forces, and stresses are calculated using a feed-forward, descriptor-based neural network.

individual training datasets. Instead, we propose a new method that
automatically adjusts the loss weights during the training of potentials.
This approach dynamically adapts to the characteristics of the training
dataset and optimizes ML-IAPs predictions.

The paper is structured as follows: first, we provide an overview of
ML-IAPs based on neural networks, including the formulation of loss
functions. Next, we introduce the principle and algorithm of adaptive
loss weighting. Then, the results from models using adaptive methods
are compared with those from models using fixed loss weights, in order
to demonstrate the advantage of the adaptive method. Finally, the
paper is concluded with a summary of main findings.

2. Computation methods

The adaptive loss weighting algorithm can be applied to a wide
range of ML-IAPs that require minimizing a loss function. In this
study, to demonstrate its applicability, we implemented it within the
framework of the Behler and Parrinello type of neural network poten-
tial [5,9] inside an open-source package AtomDNN [19] developed by
the authors.

2.1. Neural network potentials

In a descriptor-based neural network potential designed for a system
with N atoms, the Cartesian coordinates of each atom i are denoted as
r; = {rD,....r™}, which are transformed into a descriptor vector G;;
with M components, where j = 1, ..., M. While many descriptor types
can be integrated with neural networks, in this study, atom-centered
symmetry functions (ACSF) are utilized. The working principle of the
neural network potential can be explained in Fig. 1, where a scenario
with three atoms of the same chemical species is considered. These
atoms are represented by 4 component descriptors, which are fed to
the neural network as inputs. This network consists of two densely
connected layers, each containing 5 neurons, and concludes with a
linear concatenation layer. The network can be considered as a high
dimensional non-linear function mapping, parametrized with weight
matrices and bias vectors which are optimized during training. The
equations in the figure constitute a forward-pass through the network,
where W/lk, Wk2l and W]3 are the weight matrices of layers 1, 2 and, 3,
respectively, b}(, blz, and b are the corresponding biases, and f is the
activation function.

In this model, each atom of the same chemical species is processed
through an identical neural network, yielding a per-atom energy E,.
In systems comprising multiple chemical species, separate parallel net-
works are employed for each species. The total potential energy of the

system, &, is the sum of per-atom energies, which can be written in
terms of descriptors as

N N
&= ZE:‘ = ZEi(Gil’GIZ’ s G (€]
7 7

where i is the index for individual atom that is described by a feature
vector with M components. The atomic forces can be obtained from
the negative gradients of the total potential energy with respect to the
atomic positions, which can be expressed in terms of the derivatives of
descriptors using a chain rule

N M

o€ OE, 0G,,

fa=—2 = Xm,)
o, ,;mZ::l Gy Orjq

where r;, (¢ = 1,2,3) are the Cartesian coordinates of the jth atom.
The derivatives of descriptors, 9G;,/dr,, are fed to the network as
additional inputs (represented by VG,; in Fig. 1). The other deriva-
tive term, 0E,;/dG,,, is readily available from the back-propagation
algorithm used during the training process. In addition, for solid-state
materials, Cauchy stress tensor can be used for training ML-IAPs, which

can be written as

0E; 0G,,

1 N M
"""=722) oG, or.

i=1 m=1 jENB; m Ja

i 3

where V is the current volume and NB; represents the neighbor list of
atom i withing the cutoff distance r.. The derivation of Eq. (3) can be
found in Appendix.

2.2. Loss function of ML-IAPs

The loss function for training neural network potential as well as
many other types of ML-IAPs can be written as Eq. (4), which is
composed of three components: potential energy, forces, and stresses.

N 6
14 ~ 2 a A 2 a3 ~ 2
EzN];(Ei_Ei) +WZZ(fia_fia) +g;("j—%) G

where «a;, @y, and a3 are the weight coefficients to balance each com-
ponent towards the calculation of the total loss. The variables with hat
refer to the true values from DFT calculations, and the Voigt notation
is applied to stress components. Previous studies have indicated that
training of ML-IAP with both energy and force is beneficial as it inte-
grates data from potential energies and their gradients, leading to more
stable predictions and a reduction in the quantity of data structures
needed for effective training [20,21]. The loss term for stresses has also
been shown to be beneficial in promoting transferability of the ML-
IAP [22]. However, the specific impact of incorporating stress in the

D. Ocampo et al.

loss has not been thoroughly investigated. It is also noteworthy that
most prior studies have limited their focus to only the potential energy
and force components in training, which could lead to unsatisfactory
stress predictions, as our later computation results will show.

In previous studies, weight coefficients for ML-IAPs were typically
kept constant during training. For instance, in a recent study, a series
of ACE-based potentials were trained using various energy and force
weight combinations on a copper dataset. The findings suggested that
an 0.8 : 0.2 ratio of potential energy to force loss weight was optimal for
performance [23]. In anther study, the ACE-based potential was trained
by assigning varied loss weight coefficients to different subsets of the
training data, though the methodology for selecting these parameters
was not detailed [12]. Moreover, instead of fixed weight coefficients,
a different approach was taken in training a neural network potential
using DeepMD-kit. This method uses a monotonic decrease in the force
weight while increasing the energy weight during the training of a
dataset containing pure Silica zeolite structures [24]. However, the
effectiveness of this particular training strategy was not detailed.

2.3. Adaptive loss weighting

In this study, we propose to dynamically adjust loss weights during
the potential training process. This concept is inspired by the work
of Heydari et al. [25], who developed an adaptive loss weighting
algorithm for a convolutional neural network for image reconstruction
and synthetic data generation. Similar to their strategy, our method was
designed to manage multipart loss functions by dynamically altering
each loss weight. This is accomplished by continuously recalibrating the
loss weights based on the change in loss values from one epoch to the
next, ensuring a balanced optimization process without any single com-
ponent becoming overly dominant. The advantages of this approach
are twofold: it avoids the scenarios for certain loss components to
disproportionately impact the training process and eliminates the need
for manually determining the optimal fixed weight combination each
time the material system or dataset changes.

The proposed adaptive method is presented in Algorithm 1. To
illustrate the machinery of the algorithm, we first re-write Eq. (4) as

3
L, =Y alty, 5)
k=1

where 7|, ¢,, and ¢; are the loss components for potential energy,
forces, and stresses, respectively. The weight factor «; is calculated at
the ith epoch by

B-s,
i ek
a = 3—/71", (6)
Zm:le m
where
si=ti -)

represents the rate of change of k-th loss component, scaled by a
hyperparameter f. Eq. (6) adopts the classic Softmax function, and
therefore, the algorithm is referred to as Softadapt. This equation indi-
cates that a positive value of g places a higher weight on the component
with the most positive rate of change, which corresponds to the worst
performing component in terms of learning. On the other hand, a
negative value of § results in a higher relative weight for the term with
the most negative rate of change or the best performing component. A
zero value of f yields equal fixed weights for each loss component. The
magnitude of # determines how sensitive the loss weights respond to
the changes in individual loss components, with larger g values lead-
ing to more responsive adjustment. While the Softadapt method may
require adjusting the hyperparameter f, it offers greater convenience
compared to the iterative adjustment of the ratio among three loss
weights required in the fixed loss weight approach.

Computational Materials Science 244 (2024) 113155

Algorithm 1 Adaptive Loss Weighting for gradient descent based neu-
ral network training. The set of trainable variables of the model are
represented by 6. Note, batching is omitted here for simplicity pur-
poses. Normalization of s vector is considered as a default for reasons
previously mentioned.

Require: optimizer
Require: /oss_fn (loss function, which calculates the difference
between target y, value and prediction A(x, 6))
Require: n (update loss weights every n epochs)
Require: a,(co) (initial loss weights values)
Require: ¢ = 10~® for numerical stability
1: loss_weights « list() empty list to store average loss weights for n
epochs
. al(? «— (Z;(O)
for i = 1 in epochs do
lf{i) « loss_fn(y, h(x,0)) Compute loss for current loss weights
Iy < ag) Compute total loss using current loss weights
Perform back-propagation to update § parameters
if (epoch%n) == 0 then
epoch_loss_weights < list() empty list to store loss weights
for current epoch
9: end if
10: sg) - l,((i) - l,(:_l)/ ((ZZ':I [s]) + e)
11: a](:) “« exp(ﬂsii))/ ((Zf‘::l exp(Bs)) + e)
12: Append afj) to epoch_loss_weights
13: if [(epoch + 1)%n] == 0 then
14: loss_weights « Compute average of n entries in
epoch_loss_weights
15: end if
16: end for

NI KN

2.4. Benchmark data generation

Due to lack of accessible datasets comprising high-fidelity stress
data, we created a benchmark dataset using a two-dimensional MoTe,
as a model material. Monolayer MoTe, is one of the members inside the
2D transition metal dichalcogenide (TMD) materials, which have shown
great promise for many revolutionary applications in nanoelectronics,
optoelectronics, and photonics [26]. It exhibits two stable structural
phases: semiconducting 2H phase and metallic 1T’ [27]. The dataset
consists of a total of 3146 structures, evenly distributed between the 2H
and 1T’ phases of MoTe,. It includes initially relaxed unit cells of 2H
and 1T/, strained over a range of —10% to 10%, with increments of 2%
for a total of 242 initial structures. In addition, 12 perturbed structures
for each structure, with magnitudes of up to 1 A drawn from a Gaussian
distribution centered at the positions of each atom from the initial
structure. Perturbing the atomic coordinates of a relaxed structure
to generate additional training data has been shown to enhance the
description of the phase space near the minima of the potential energy
surface [28]. Structural defects and free surfaces were not included, as
the dataset was created specifically for benchmarking rather than for
training a general purpose interatomic potential.

All DFT calculations for data generation were performed using the
plane-wave-based Vienna Ab-initio Simulation Package (VASP) [29,
30]. Projector augmented wave (PAW) pseudopotentials [31,32] were
used to represent ionic cores, and the electronic kinetic energy cutoff
for the plane-wave basis describing the valence electrons was set to 293
eV. The Perdew-Burke-Ernzerhof (PBE) with the generalized gradient
approximation (GGA) [33] was chosen for the exchange-correlation
functional. The k-point selection was adapted to the dimension of
each structure along the armchair and zigzag directions, keeping a
k-point resolved value of 0.02z x A" in both directions, following

D. Ocampo et al.

Table 1

Computational Materials Science 244 (2024) 113155

RMSE for models trained with different loss weights combinations. The contribution of potential energy (meV/atom), force (meV/A), and stress (MPa) are weighted by «;, a,, and

a3, respectively.

Model Fixed loss weights Training RMSE Testing RMSE

a a, a3 Energy Force Stress Energy Force Stress
1 1.0 0.00 0.00 2.37 1934.61 2832.32 19.28 2940.90 4890.23
2 0.90 0.10 0.00 1.98 15.87 489.98 2.30 24.28 520.72
3 0.90 0.05 0.05 272 21.39 22.02 2.29 28.42 34.10
4 0.05 0.90 0.05 7.61 16.00 30.17 6.12 21.39 37.20
5 0.05 0.05 0.90 7.79 42.69 15.48 7.42 48.43 23.43
6 0.33 0.33 0.33 3.58 20.23 18.11 5.41 25.50 22.44

the Monkhorst-Pack scheme [34] in VASPKIT [35]. As for the out-
of-plane direction, a vacuum layer of 25 A was used to separate the
periodic images in the out-of-plane direction, thereby single k-point
was maintained along this direction. The electronic energy and atomic
forces were converged to 10~4 meV and 1 meV/A, respectively, taking
an average of 62.7 s of wall-time per structure on a cluster with 48
cores.

3. Results and discussion

The neural network models in this study are designed with a spe-
cific architecture, consisting of two hidden layers, each containing
30 neurons. A hyperbolic tangent function serves as the activation
mechanism. The optimization is performed using the Adam optimizer,
set at a learning rate of 0.001. Training of these models continued until
negligible learning gains were observed. The dataset was divided into
70% training, 20% validation, and 10% testing.

3.1. Results of fixed loss weights

As discussed in Section 2.2, while various weighting schemes have
been used in the literature, a detailed study that simultaneously con-
siders potential energy, forces, and stresses in the loss function and
investigates their weightings’ impacts on the training performance
is still missing. To address this, we first conducted a sequence of
studies focusing on the effects of fixed loss weights. This involved
systematically varying these weights and analyzing their impact on the
performance of the trained model in terms of predictive capabilities in
comparison with DFT calculations. The results are shown in Table 1.

In model 1, where the loss function incorporates only potential
energy, the model’s predictions for the forces and stresses are notably
poor. Additionally, the testing error for energy (19.28 meV/atom) in
this model is an order of magnitude higher than that of other models
despite similar training error. This suggests that the model trained with
energy alone lacks generalization capabilities. In the case of model 2,
which is trained on both potential energy and atomic forces, we observe
good performance in predicting energy and forces (2.30 meV/atom
and 24.28 meV/A, respectively). This significant improvement can be
explained as follows. When the model is only trained with potential
energy, we have 3146 potential energy values that can be used for
training, each corresponding to a structure in the dataset. However,
by incorporating the information of atomic forces (the gradients of
potential energy), the number of training data points increases by
Z?:lélm 3N,, where N; is the number of atoms in ith structure. Therefore,
by adding force information, the neural network receives much richer
information about the physics of the material system, leading to more
accurate predictions. One previous study has also found that including
gradients benefits not only the accuracy of both energies and forces but
also improves the stability of training [36]. Moreover, stress prediction
from model 2 is improved compared to model 1, as stress is computed
using the gradient of potential energy, as indicated by Eq. (A.7).
However, the prediction still remains unsatisfactory compared to other
models listed in the Table. Apparently, the absence of stress data
during training notably deteriorates the model’s ability to predict stress
accurately. Although this was observed in this particular dataset, it is

likely applicable to others as well. Model 3, which is trained on all
three components delivers more balanced results across all metrics. The
comparison between models 2 and 3 emphasizes also the importance of
incorporating stress data in training ML-IAPs to more accurately predict
stresses, i.e., 520.72 versus 34.10 MPa testing RMSE, in addition to
energies and forces.

Models 3 to 5 were each trained with distinct weight combinations,
specifically designed to prioritize one of three variables: potential
energy, force, or stress. The results showed that the weight coefficient
for one variable improves its corresponding result but at the cost of
reducing accuracy in the other one or two variables. Specifically, model
3, which prioritized potential energy, exhibited the lowest testing loss
for potential energy (2.29 meV/atom) but did so by sacrificing stress
prediction accuracy (34.10 MPa). Model 4, focusing on force, achieved
the lowest force testing loss (21.39 meV/A), but compromising energy
and stress accuracy. Similarly, model 5 achieved the best results for
stress (23.43 MPa) at the expense of potential energy and force accu-
racy. This observed trade-off pattern suggests that previously reported
approaches, which favor the forces during potential training (such as
a : a, =1 : 10) [37], or completely overlook the energy term and
focus exclusively on forces [38], might not be universally applicable
across different datasets or material systems. Additionally, model 6,
which distributed weights evenly across all three variables, managed
to achieve satisfactory test results for force (25.50 meV/f\) and stress
(22.44 MPa), yet it did not accurately predict the potential energy
(5.41 meV/atom), more than twice that of model 3. Therefore, this
fixed weight approach could require extensive experimentation with
loss weight combinations, specific to the material dataset, in order to
attain a balanced performance among all three variables. This suggests
the potential benefits of employing automated methods to streamline
the training process.

3.2. Results using adaptive loss weights

As discussed in the previous section, achieving optimal results for
potential energy, force, and stress simultaneously may require itera-
tively adjusting the loss weight ratios based on material and dataset
characteristics. By contrast, we propose the Softadapt method to dy-
namically balance each term’s contribution to the loss function. In this
section, the results of models trained using Softadapt are compared
with those trained using fixed weights. For a fair comparison, all neural
network models implementing the adaptive algorithm were configured
with the same architecture and activation function to their fixed weight
counterparts.

The results of models trained with Softadapt algorithm are pre-
sented in Table 2. The hyperparameter § controls how sensitively the
weights respond to rate changes in loss components, with higher g val-
ues causing more rapid adjustments in loss weights during training. For
the benchmark data, the optimal performance of Softadapt algorithm is
achieved when p is around the order of 1.0, offering a better and more
balanced testing errors across energy, force, and stress compared to the
fixed loss weight models. When # is too low, the weight adjustments
do not adequately keep up with loss rate changes. Conversely, when
p is set too high, it leads to significant fluctuations in loss weights,

D. Ocampo et al.

Table 2
RMSE for models trained using Softadapt algorithm with different g values. Units for
potential energy, force, and stress are meV/atom, meV/A, and MPa, respectively.

Model Softadapt Training RMSE Testing RMSE

p Energy Force Stress Energy Force Stress
1 0.01 4.58 26.51 25.67 4.03 32.52 29.70
2 0.1 3.47 21.20 19.42 4.15 27.27 27.08
3 1.0 3.07 18.32 14.55 2.74 23.85 23.54
4 2.0 2.80 17.90 15.24 2.57 25.70 24.62

7)23.43
37.20
Stress 1

2020-0-020-0-0-0-0-0-0-0-0-0-0-0-0-¢. |
0.0.0.90.0.0.9.9.9.9.0.0.9.0.0.0.0.0.4|
B 2 3. 54

7/)48.43

R SRS
e e e e e e e e e e e e tete%e %

RRRRRRRRRRRRRRRRRRK

7.42
M2 & rxes w5 oriont
Energy 529 XX Fixed #3 (prioritize energy)
' [Fixed #4 (prioritize force)
2.74 Z77] Fixed #5 (prioritize stress)

Fig. 2. RMSE comparison between the model trained using Softadpt algorithm and
three models trained with fixed loss weights, each prioritizing potential energy, force,
and stress. The RMSE values are taken from Tables 1 and 2. Units for potential energy,
force, and stress are meV/atom, meV/A, and MPa, respectively.

resulting in unstable training and increased errors. The comparison
between models trained using Softadapt algorithm with f = 1 and
those trained using fixed weights is illustrated in Fig. 2. Notably, for
each term of potential energy, force, and stress, the Softadapt method
achieves an accuracy level equivalent to that of the corresponding fixed
model where that specific term is prioritized.

The results in Table 2 were trained using equal initial weights
among potential energy, force, and stress, each equal to 0.33. It is
important to note that the final results are not sensitive to the selection
of the initial weights, due to the nature of adaptive algorithm. To
examine the influence of adaptive algorithm on the changing of loss
weights, we monitored the variation of loss weights throughout the
training process. In this analysis, we intentionally varied the initial loss
weights across three configurations: (0.9, 0.05, 0.05), (0.05, 0.9, 0.05),
and (0.05, 0.05, 0.9). As shown in Fig. 3, despite starting with very
different initial loss weights, the algorithm adjusts the contribution of
each, converging to an optimum combination. Interestingly, for this
particular dataset, noticeable adjustment in loss weights mainly occur
within the first 1500 epochs.

Finally, we want to discuss the accuracy and efficiency of the trained
potential. The RMSE of energy and force from our adaptive model is
within a similar range compared to previous studies. For example, Zuo
et al. [39] trained neural network potentials for six different metal
elements, and their RMSE for energy and force ranged from 1.24~11.27
meV/atom and 50~200 meV/A, respectively, although they did not
report the RMSE of stress. In a separate study [40], Rosenbrock et al.
compared GAP and MTP models trained on Ag-Pd alloy, with RMSE
values ranging from 10~25 meV/atom for energy, 220~240 meV/A
for force, and 1300~2034 MPa for stress. Our RMSE values are lower,
particularly for stress, which is two orders of magnitude lower. This
difference may be attributed to the different complexity of the material

Computational Materials Science 244 (2024) 113155

system and the training dataset. In terms of efficiency, tested using a
1 ps MD simulation of a unit cell MoTe,, our trained potential yields
0.001 s/(MD step-atom), whereas DFT takes 3.9 s/(MD step-atom) for
comparison.

4. Summary

We proposed an adaptive loss weighting method to dynamically
adjust the contribution of potential energy, force, and stress, based on
their corresponding loss values during the training of machine learning
interatomic potentials. Leveraging a benchmark dataset, we conducted
a comparative analysis between models trained with fixed and adaptive
loss weights. The key findings are summarized as follows.

« Stress data proves critical for the accurate prediction of stress
values when training machine learning potentials.

* Models employing fixed loss weights yield imbalanced predic-
tions for potential energy, force, and stress, as they enhance the
accuracy of a prioritized variable at the expense of others.

» Models utilizing the adaptive algorithm demonstrate an ability to
balance the contributions of the three variables, thereby yielding
more balanced and accurate predictions.

CRediT authorship contribution statement

Daniel Ocampo: Methodology, Software, Investigation, Writing —
original draft, Writing — review & editing. Daniela Posso: Software,
Investigation. Reza Namakian: Investigation, Writing — review & edit-
ing. Wei Gao: Conceptualization, Methodology, Software, Investiga-
tion, Writing — original draft, Writing — review & editing, Supervision,
Funding acquisition.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Wei Gao reports financial support was provided by National Science
Foundation Division of Civil Mechanical and Manufacturing Innova-
tion. If there are other authors, they declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

The data and code reported in this paper are available on Github:
https://gao-group.github.io/atomdnn/index.html.

Acknowledgments

W.G. gratefully acknowledges financial support of this work by the
National Science Foundation, United States through Grant no. CMMI-
2308163 and CMMI-2305529. The authors acknowledge the Texas
Advanced Computing Center (TACC) at the University of Texas at
Austin and Texas A&M High Performance Research Computing for
providing HPC resources that have contributed to the research results
reported within this paper.

https://gao-group.github.io/atomdnn/index.html

D. Ocampo et al.

Computational Materials Science 244 (2024) 113155

—— Energy —=—- Force === Stress
1.0 1.0
- (b) e (c)
0.81 : 0.81 =
1 L]
06 | 0.61 =
i .

Loss weights

1500 0

0 500
Epoch

1000

500

1000
Epoch

1500 0 500 1000

Epoch

1500

Fig. 3. Variation of loss weights during training using the Softadapt algorithm, with different initial weight ratios among potential energy, force and stress: (a) 0.9:0.05:0.05, (b)

0.05:0.9:0.05 and (c) 0.05:0.05:0.9.

Appendix. Cauchy stress derivation in ML-IAP

The first Piola—Kirchhoff (PK) stress tensor can be calculated as the
work conjugate of deformation gradient tensor

1 o0&
Vo 0F,;°

wp = (A1)

where 1} is the volume of the reference configuration, and F,; is the
deformation gradient tensor. Similar to the atomic force calculation,
the potential energy can be written as the sum of per-atom potential
energies, so the stress can be written as

N M

)

0 =1 m=1

OE, 0G,,
G,y 0F,,

(A.2)

The fingerprint G,,, is determined by the coordinates of the atoms inside
the neighbor list of atom i. Therefore, using the chain rule, we have

ZZ

JENB; y=1 1

0G,,, Orjy
JF,, /,

(A.3)

where atom j is inside the neighbor list of atom i (represented by NB;).
By definition, the deformation gradient maps the atom position from
the reference configuration to the current configuration

3
= D FyRyp
=l

where R;; is the coordinates of atom j in the reference configuration.
Then, the stress in Eq. (A.2) can be written as

A4

1 OE, 0G,,
= i (A.5)
Cauchy stress can be further calculated by
3
Oy = det(F)™' Y Py, (A.6)
=1

Substitute Eq. (A.5) into Eq. (A.6), and then apply Eq. (A.4) and V =
V, det(F), which is the volume in current configuration, we can get

zzz”“w

i=1 m=1 jENB;

(A7)

after replacing y with .
References

[1] AP. Barték, J. Kermode, N. Bernstein, G. Csdnyi, Machine learning a
general-purpose interatomic potential for silicon, Phys. Rev. X 8 (4) (2018)
041048.

[2] P. Rowe, G. Csanyi, D. Alfe, A. Michaelides, Development of a machine learning
potential for graphene, Phys. Rev. B 97 (5) (2018) 054303.

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

M. Wen, E.B. Tadmor, Hybrid neural network potential for multilayer graphene,
Phys. Rev. B 100 (19) (2019) 195419.

A.C. Jain, D. Marchand, A. Glensk, M. Ceriotti, W. Curtin, Machine learning for
metallurgy III: A neural network potential for Al-Mg-Si, Phys. Rev. Mater. 5 (5)
(2021) 053805.

J. Behler, M. Parrinello, Generalized neural-network representation of high-
dimensional potential-energy surfaces, Phys. Rev. Lett. 98 (14) (2007)
146401.

R. Drautz, Atomic cluster expansion for accurate and transferable interatomic
potentials, Phys. Rev. B 99 (1) (2019) 014104.

A.V. Shapeev, Moment tensor potentials: A class of systematically improvable
interatomic potentials, Multiscale Model. Simul. 14 (3) (2016) 1153-1173.

F. Musil, A. Grisafi, A.P. Barték, C. Ortner, G. Csanyi, M. Ceriotti, Physics-
inspired structural representations for molecules and materials, Chem. Rev. 121
(16) (2021) 9759-9815.

J. Behler, Atom-centered symmetry functions for constructing high-dimensional
neural network potentials, J. Chem. Phys. 134 (7) (2011) 074106.

A.P. Barték, M.C. Payne, R. Kondor, G. Csdnyi, Gaussian approximation poten-
tials: The accuracy of quantum mechanics, without the electrons, Phys. Rev. Lett.
104 (13) (2010) 136403.

A.P. Thompson, L.P. Swiler, C.R. Trott, S.M. Foiles, G.J. Tucker, Spectral neighbor
analysis method for automated generation of quantum-accurate interatomic
potentials, J. Comput. Phys. 285 (2015) 316-330.

Y. Lysogorskiy, C.v.d. Oord, A. Bochkarev, S. Menon, M. Rinaldi, T. Hammer-
schmidt, M. Mrovec, A. Thompson, G. Csanyi, C. Ortner, et al., Performant
implementation of the atomic cluster expansion (PACE) and application to copper
and silicon, npj Comput. Mater. 7 (1) (2021) 97.

H. Wang, L. Zhang, J. Han, E. Weinan, DeePMD-kit: A deep learning package
for many-body potential energy representation and molecular dynamics, Comput.
Phys. Comm. 228 (2018) 178-184.

T. Xie, J.C. Grossman, Crystal graph convolutional neural networks for an
accurate and interpretable prediction of material properties, Phys. Rev. Lett. 120
(14) (2018) 145301.

C.W. Park, C. Wolverton, Developing an improved crystal graph convolutional
neural network framework for accelerated materials discovery, Phys. Rev. Mater.
4 (6) (2020) 063801.

K.T. Schiitt, H.E. Sauceda, P.-J. Kindermans, A. Tkatchenko, K.-R. Miiller, Schnet—
a deep learning architecture for molecules and materials, J. Chem. Phys. 148 (24)
(2018) 241722.

C. Chen, W. Ye, Y. Zuo, C. Zheng, S.P. Ong, Graph networks as a universal
machine learning framework for molecules and crystals, Chem. Mater. 31 (9)
(2019) 3564-3572.

J. Zeng, D. Zhang, D. Lu, P. Mo, Z. Li, Y. Chen, M. Rynik, L. Huang, Z. Li, S. Shi,
et al., DeePMD-kit v2: A software package for deep potential models, J. Chem.
Phys. 159 (5) (2023).

W. Gao, D. Ocampo, D. Posso, Atomdnn, 2021, https://gao-group.github.io/
atomdnn/index.html.

A. Pukrittayakamee, M. Malshe, M. Hagan, L. Raff, R. Narulkar, S. Bukkapat-
num, R. Komanduri, Simultaneous fitting of a potential-energy surface and its
corresponding force fields using feedforward neural networks, J. Chem. Phys.
130 (13) (2009).

A.M. Cooper, J. Kastner, A. Urban, N. Artrith, Efficient training of ANN potentials
by including atomic forces via taylor expansion and application to water and a
transition-metal oxide, npj Comput. Mater. 6 (1) (2020) 54.

H. Yanxon, Developments of Machine Learning Potentials for Atomistic
Simulations (Ph.D. thesis), University of Nevada, Las Vegas, 2020.

A. Bochkarev, Y. Lysogorskiy, S. Menon, M. Qamar, M. Mrovec, R. Drautz,
Efficient parametrization of the atomic cluster expansion, Phys. Rev. Mater. 6
(1) (2022) 013804.

http://refhub.elsevier.com/S0927-0256(24)00376-8/sb1
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb1
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb1
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb1
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb1
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb2
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb2
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb2
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb3
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb3
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb3
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb4
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb4
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb4
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb4
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb4
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb5
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb5
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb5
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb5
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb5
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb6
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb6
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb6
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb7
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb7
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb7
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb8
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb8
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb8
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb8
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb8
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb9
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb9
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb9
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb10
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb10
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb10
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb10
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb10
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb11
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb11
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb11
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb11
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb11
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb12
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb12
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb12
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb12
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb12
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb12
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb12
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb13
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb13
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb13
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb13
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb13
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb14
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb14
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb14
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb14
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb14
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb15
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb15
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb15
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb15
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb15
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb16
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb16
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb16
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb16
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb16
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb17
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb17
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb17
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb17
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb17
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb18
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb18
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb18
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb18
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb18
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
https://gao-group.github.io/atomdnn/index.html
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb20
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb20
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb20
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb20
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb20
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb20
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb20
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb21
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb21
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb21
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb21
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb21
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb22
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb22
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb22
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb23
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb23
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb23
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb23
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb23

D. Ocampo et al.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

T.G. Sours, A.R. Kulkarni, Predicting structural properties of pure silica zeo-
lites using deep neural network potentials, J. Phys. Chem. C 127 (3) (2023)
1455-1463.

A.A. Heydari, C.A. Thompson, A. Mehmood, Softadapt: Techniques for adaptive
loss weighting of neural networks with multi-part loss functions, 2019, arXiv
preprint arXiv:1912.12355.

M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The chemistry of
two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem.
5 (4) (2013) 263-275.

A. Ghasemi, W. Gao, Atomistic mechanism of stress modulated phase transition
in monolayer MoTe2, Extreme Mech. Lett. 40 (2020) 100946.

J. Gibson, A. Hire, R.G. Hennig, Data-augmentation for graph neural network
learning of the relaxed energies of unrelaxed structures, npj Comput. Mater. 8
(1) (2022) 211.

G. Kresse, J. Furthmiiller, Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set, Phys. Rev. B 54 (16) (1996) 11169.
G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev.
B 47 (1) (1993) 558.

G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector
augmented-wave method, Phys. Rev. b 59 (3) (1999) 1758.

P.E. Blochl, Projector augmented-wave method, Phys. Rev. B 50 (24) (1994)
17953.

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Computational Materials Science 244 (2024) 113155

J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made
simple, Phys. Rev. Lett. 77 (18) (1996) 3865.

H.J. Monkhorst, J.D. Pack, Special points for brillouin-zone integrations, Phys.
Rev. B 13 (12) (1976) 5188.

V. Wang, N. Xu, J.-C. Liu, G. Tang, W.-T. Geng, VASPKIT: A user-friendly
interface facilitating high-throughput computing and analysis using VASP code,
Comput. Phys. Comm. 267 (2021) 108033.

A.S. Christensen, O.A. Von Lilienfeld, On the role of gradients for machine
learning of molecular energies and forces, Mach. Learn.: Sci. Technol. 1 (4)
(2020) 045018.

A. Singraber, T. Morawietz, J. Behler, C. Dellago, Parallel multistream training
of high-dimensional neural network potentials, J. Chem. Theory Comput. 15 (5)
(2019) 3075-3092.

S. Chmiela, H.E. Sauceda, K.-R. Miiller, A. Tkatchenko, Towards exact molecular
dynamics simulations with machine-learned force fields, Nat. Commun. 9 (1)
(2018) 3887.

Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csanyi, A.V. Shapeev,
A.P. Thompson, M.A. Wood, et al., Performance and cost assessment of machine
learning interatomic potentials, J. Phys. Chem. A 124 (4) (2020) 731-745.
C.W. Rosenbrock, K. Gubaev, A.V. Shapeev, L.B. Péartay, N. Bernstein, G. Csanyi,
G.L. Hart, Machine-learned interatomic potentials for alloys and alloy phase
diagrams, npj Comput. Mater. 7 (1) (2021) 24.

http://refhub.elsevier.com/S0927-0256(24)00376-8/sb24
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb24
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb24
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb24
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb24
http://arxiv.org/abs/1912.12355
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb26
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb26
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb26
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb26
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb26
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb27
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb27
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb27
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb28
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb28
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb28
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb28
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb28
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb29
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb29
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb29
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb30
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb30
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb30
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb31
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb31
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb31
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb32
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb32
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb32
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb33
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb33
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb33
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb34
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb34
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb34
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb35
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb35
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb35
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb35
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb35
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb36
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb36
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb36
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb36
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb36
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb37
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb37
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb37
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb37
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb37
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb38
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb38
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb38
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb38
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb38
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb39
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb39
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb39
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb39
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb39
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb40
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb40
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb40
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb40
http://refhub.elsevier.com/S0927-0256(24)00376-8/sb40

	Adaptive loss weighting for machine learning interatomic potentials
	Introduction
	Computation Methods
	Neural Network Potentials
	Loss Function of ML-IAPs
	Adaptive Loss Weighting
	Benchmark Data Generation

	Results and Discussion
	Results of Fixed Loss Weights
	Results using Adaptive Loss Weights

	Summary
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix. Cauchy Stress Derivation in ML-IAP
	References

