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A B S T R A C T

Training machine learning interatomic potentials often requires optimizing a loss function composed of three
variables: potential energies, forces, and stress. The contribution of each variable to the total loss is typically
weighted using fixed coefficients. Identifying these coefficients usually relies on iterative or heuristic methods,
which may yield sub-optimal results. To address this issue, we propose an adaptive loss weighting algorithm
that automatically adjusts the loss weights of these variables during the training of potentials, dynamically
adapting to the characteristics of the training dataset. The comparative analysis of models trained with fixed
and adaptive loss weights demonstrates that the adaptive method not only achieves more balanced predictions
across the three variables but also improves overall prediction accuracy.
1. Introduction

Atomistic simulations employing empirical interatomic potentials
have been widely used in materials modeling. Although faster than
simulations using density functional theory (DFT), they often yield less
accurate results. A key limitation of traditional interatomic potentials
is their fixed functional forms and few fitting parameters. By contrast,
machine learning interatomic potentials (ML-IAPs) offer greater flex-
ibility by learning the energy surface shape from training datasets.
Therefore, if the training datasets cover sufficient physics of interests,
well-trained ML-IAPs can provide accuracy comparable to DFT. While
ML-IAPs generally have higher computational costs than traditional
interatomic potentials, they effectively balance accuracy and efficiency.
There have seen many successful examples of ML-IAPs developed for
various material systems [1–4].

ML-IAPs can be broadly split into two types. The first is descriptor-
ased ML-IAP, in which the descriptors (or fingerprints) are used to
escribe the environment of the atoms in a system. Various descrip-
ors have been proposed in the literature, such as Atom-Centered
ymmetry Functions (ACSF) [5], Smooth Overlap of Atomic Positions
(SOAP), Atomic Cluster Expansion (ACE) [6], and Moment Tensor Po-
tentials [7], among others. A comprehensive review of the descriptors
can be found in Musil et al.’s work [8]. Representative descriptor-
based ML-IAPs include: Behler and Parrinello Neural Network po-
tential [5,9], Gaussian approximation potential (GAP) [10], Spectral
eighbor Analysis Potential (SNAP) [11], Moment Tensor Potential
MTP) [7], Performant implementation of the atomic cluster expan-
ion (PACE) [12], and DeePMD [13] among others. The second type
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of ML-IAP is the end-to-end potential, which operate differently by
learning directly from the types and positions of atoms, without the
need for predefined descriptors. Representative ones include: Crystal
Graph Convolutional Neural Networks (CGCNN) [14,15], SchNet [16],
and MatErials Graph Network (MEGNet) [17] among others. Although
the end-to-end ML-IAPs leverage more recent and advanced feature
learning AI technology, there is currently no conclusive evidence to
suggest that end-to-end ML-IAPs outperform the descriptor-based ML-
IAP in terms of prediction accuracy. The study reported in this paper
are performed using ACSF.

The training of most ML-IAPs involves minimizing a loss function,
which measures the difference between the predicted outputs of the
potential and the actual target value obtained from Ab initio simula-
tions. Typically, a ML-IAP’s loss function comprises three components:
potential energy, atomic forces, and stress tensor, each weighted by a
prefactor (i.e. loss weight). Most of current ML-IAPs assign a predefined
loss weight to each component, which stays as a constant throughout
the training process [7,9,11,12]. Approaches like DeepMD modulate
these weights linearly during training, though the rationale and effec-
tiveness of this approach are not fully clear [13,18]. In this paper,
our study demonstrates that varying combinations of loss weights
significantly impact model performance, raising a key question: what
constitutes an effective combination of loss weights that balances en-
ergy, force, and stress predictions? Our hypothesis is that a universally
optimal set of loss weights for all ML-IAPs may not exist, as the optimal
weights are likely tied to the material system and the characteristics of
ttps://doi.org/10.1016/j.commatsci.2024.113155
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Fig. 1. Schematic of neural network interatomic potential where the potential energy, forces, and stresses are calculated using a feed-forward, descriptor-based neural network.
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individual training datasets. Instead, we propose a new method that
automatically adjusts the loss weights during the training of potentials.
This approach dynamically adapts to the characteristics of the training
dataset and optimizes ML-IAPs predictions.

The paper is structured as follows: first, we provide an overview of
ML-IAPs based on neural networks, including the formulation of loss
functions. Next, we introduce the principle and algorithm of adaptive
loss weighting. Then, the results from models using adaptive methods
are compared with those from models using fixed loss weights, in order
to demonstrate the advantage of the adaptive method. Finally, the
paper is concluded with a summary of main findings.

2. Computation methods

The adaptive loss weighting algorithm can be applied to a wide
range of ML-IAPs that require minimizing a loss function. In this
study, to demonstrate its applicability, we implemented it within the
framework of the Behler and Parrinello type of neural network poten-
tial [5,9] inside an open-source package AtomDNN [19] developed by
the authors.

2.1. Neural network potentials

In a descriptor-based neural network potential designed for a system
with 𝑁 atoms, the Cartesian coordinates of each atom 𝑖 are denoted as
𝑖 = {𝑟(1),… , 𝑟(𝑁)}, which are transformed into a descriptor vector 𝑮𝑖𝑗
ith 𝑀 components, where 𝑗 = 1,… ,𝑀 . While many descriptor types
an be integrated with neural networks, in this study, atom-centered
ymmetry functions (ACSF) are utilized. The working principle of the
eural network potential can be explained in Fig. 1, where a scenario
ith three atoms of the same chemical species is considered. These
toms are represented by 4 component descriptors, which are fed to
he neural network as inputs. This network consists of two densely
onnected layers, each containing 5 neurons, and concludes with a
inear concatenation layer. The network can be considered as a high
imensional non-linear function mapping, parametrized with weight
atrices and bias vectors which are optimized during training. The
quations in the figure constitute a forward-pass through the network,
here 𝑊 1

𝑗𝑘, 𝑊
2
𝑘𝑙 and 𝑊 3

𝑙 are the weight matrices of layers 1, 2 and, 3,
espectively, 𝑏1𝑘, 𝑏

2
𝑙 , and 𝑏3 are the corresponding biases, and 𝑓 is the

ctivation function.
In this model, each atom of the same chemical species is processed

hrough an identical neural network, yielding a per-atom energy 𝐸𝑖.
n systems comprising multiple chemical species, separate parallel net-
orks are employed for each species. The total potential energy of the
 I

2 
ystem,  , is the sum of per-atom energies, which can be written in
erms of descriptors as

=
𝑁
∑

𝑖
𝐸𝑖 =

𝑁
∑

𝑖
𝐸𝑖(𝐺𝑖1, 𝐺𝑖2,… , 𝐺𝑖𝑀 ), (1)

where 𝑖 is the index for individual atom that is described by a feature
ector with 𝑀 components. The atomic forces can be obtained from
he negative gradients of the total potential energy with respect to the
tomic positions, which can be expressed in terms of the derivatives of
escriptors using a chain rule

𝑗𝛼 = − 𝜕
𝜕𝑟𝑗𝛼

= −
𝑁
∑

𝑖=1

𝑀
∑

𝑚=1

𝜕𝐸𝑖
𝜕𝐺𝑖𝑚

𝜕𝐺𝑖𝑚
𝜕𝑟𝑗𝛼

, (2)

where 𝑟𝑗𝛼(𝛼 = 1, 2, 3) are the Cartesian coordinates of the jth atom.
The derivatives of descriptors, 𝜕𝐺𝑖𝑚∕𝜕𝑟𝑗𝛼 , are fed to the network as
additional inputs (represented by ∇𝐺𝑖𝑗 in Fig. 1). The other deriva-
tive term, 𝜕𝐸𝑖∕𝜕𝐺𝑖𝑚, is readily available from the back-propagation
algorithm used during the training process. In addition, for solid-state
materials, Cauchy stress tensor can be used for training ML-IAPs, which
can be written as

𝜎𝛼𝛽 = 1
𝑉

𝑁
∑

𝑖=1

𝑀
∑

𝑚=1

∑

𝑗∈NB𝑖

𝜕𝐸𝑖
𝜕𝐺𝑖𝑚

𝜕𝐺𝑖𝑚
𝜕𝑟𝑗𝛼

𝑟𝑗𝛽 , (3)

where 𝑉 is the current volume and NB𝑖 represents the neighbor list of
atom 𝑖 withing the cutoff distance 𝑟𝑐 . The derivation of Eq. (3) can be
found in Appendix.

.2. Loss function of ML-IAPs

The loss function for training neural network potential as well as
any other types of ML-IAPs can be written as Eq. (4), which is
omposed of three components: potential energy, forces, and stresses.

=
𝛼1
𝑁

𝑁
∑

𝑖=1

(

𝐸̂𝑖 − 𝐸𝑖
)2 +

𝛼2
3𝑁

𝑁
∑

𝑖=1

3
∑

𝛼=0

(

𝑓𝑖𝛼 − 𝑓𝑖𝛼
)2 +

𝛼3
6

6
∑

𝑗=1

(

𝜎̂𝑗 − 𝜎𝑗
)2 , (4)

where 𝛼1, 𝛼2, and 𝛼3 are the weight coefficients to balance each com-
ponent towards the calculation of the total loss. The variables with hat
refer to the true values from DFT calculations, and the Voigt notation
is applied to stress components. Previous studies have indicated that
training of ML-IAP with both energy and force is beneficial as it inte-
grates data from potential energies and their gradients, leading to more
stable predictions and a reduction in the quantity of data structures
needed for effective training [20,21]. The loss term for stresses has also
een shown to be beneficial in promoting transferability of the ML-

AP [22]. However, the specific impact of incorporating stress in the
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loss has not been thoroughly investigated. It is also noteworthy that
most prior studies have limited their focus to only the potential energy
and force components in training, which could lead to unsatisfactory
stress predictions, as our later computation results will show.

In previous studies, weight coefficients for ML-IAPs were typically
kept constant during training. For instance, in a recent study, a series
of ACE-based potentials were trained using various energy and force
weight combinations on a copper dataset. The findings suggested that
an 0.8 ∶ 0.2 ratio of potential energy to force loss weight was optimal for
performance [23]. In anther study, the ACE-based potential was trained
by assigning varied loss weight coefficients to different subsets of the
training data, though the methodology for selecting these parameters
was not detailed [12]. Moreover, instead of fixed weight coefficients,
a different approach was taken in training a neural network potential
using DeepMD-kit. This method uses a monotonic decrease in the force
weight while increasing the energy weight during the training of a
dataset containing pure Silica zeolite structures [24]. However, the
effectiveness of this particular training strategy was not detailed.

2.3. Adaptive loss weighting

In this study, we propose to dynamically adjust loss weights during
the potential training process. This concept is inspired by the work
of Heydari et al. [25], who developed an adaptive loss weighting
algorithm for a convolutional neural network for image reconstruction
and synthetic data generation. Similar to their strategy, our method was
designed to manage multipart loss functions by dynamically altering
each loss weight. This is accomplished by continuously recalibrating the
loss weights based on the change in loss values from one epoch to the
next, ensuring a balanced optimization process without any single com-
ponent becoming overly dominant. The advantages of this approach
are twofold: it avoids the scenarios for certain loss components to
disproportionately impact the training process and eliminates the need
for manually determining the optimal fixed weight combination each
time the material system or dataset changes.

The proposed adaptive method is presented in Algorithm 1. To
illustrate the machinery of the algorithm, we first re-write Eq. (4) as

𝑖 =
3
∑

𝑘=1
𝛼𝑖𝑘𝓁𝑘, (5)

where 𝓁1, 𝓁2, and 𝓁3 are the loss components for potential energy,
forces, and stresses, respectively. The weight factor 𝛼𝑘 is calculated at
the 𝑖th epoch by

𝛼𝑖𝑘 = 𝑒𝛽⋅𝑠
𝑖
𝑘

∑3
𝑚=1 𝑒

𝛽⋅𝑠𝑖𝑚
, (6)

here
𝑖
𝑘 = 𝓁𝑖

𝑘 − 𝓁𝑖−1
𝑘 (7)

epresents the rate of change of 𝑘-th loss component, scaled by a
yperparameter 𝛽. Eq. (6) adopts the classic Softmax function, and
herefore, the algorithm is referred to as Softadapt. This equation indi-
ates that a positive value of 𝛽 places a higher weight on the component
ith the most positive rate of change, which corresponds to the worst
erforming component in terms of learning. On the other hand, a
egative value of 𝛽 results in a higher relative weight for the term with
he most negative rate of change or the best performing component. A
ero value of 𝛽 yields equal fixed weights for each loss component. The
agnitude of 𝛽 determines how sensitive the loss weights respond to
he changes in individual loss components, with larger 𝛽 values lead-
ng to more responsive adjustment. While the Softadapt method may
equire adjusting the hyperparameter 𝛽, it offers greater convenience
ompared to the iterative adjustment of the ratio among three loss

eights required in the fixed loss weight approach.

3 
Algorithm 1 Adaptive Loss Weighting for gradient descent based neu-
ral network training. The set of trainable variables of the model are
represented by 𝜃. Note, batching is omitted here for simplicity pur-
poses. Normalization of s vector is considered as a default for reasons
previously mentioned.
Require: 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟
Require: 𝑙𝑜𝑠𝑠_𝑓𝑛 (loss function, which calculates the difference

between target 𝑦𝑘 value and prediction ℎ(𝑥, 𝜃))
Require: 𝑛 (update loss weights every 𝑛 epochs)
Require: 𝛼(0)𝑘 (initial loss weights values)
Require: 𝜖 = 10−8 for numerical stability
1: 𝑙𝑜𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← 𝑙𝑖𝑠𝑡() empty list to store average loss weights for 𝑛
epochs

2: 𝛼(𝑖)𝑘 ← 𝛼(0)𝑘
3: for 𝑖 = 1 in 𝑒𝑝𝑜𝑐ℎ𝑠 do
4: 𝑙(𝑖)𝑘 ← 𝑙𝑜𝑠𝑠_𝑓𝑛(y, ℎ(x,𝜽)) Compute loss for current loss weights
5: 𝑙𝑇 ← 𝛼(𝑖)𝑘 Compute total loss using current loss weights
6: Perform back-propagation to update 𝜃 parameters
7: if (𝑒𝑝𝑜𝑐ℎ%𝑛) == 0 then
8: 𝑒𝑝𝑜𝑐ℎ_𝑙𝑜𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← 𝑙𝑖𝑠𝑡() empty list to store loss weights
for current epoch

9: end if
10: 𝑠(𝑖)𝑘 ← 𝑙(𝑖)𝑘 − 𝑙(𝑖−1)𝑘 ∕

(

(
∑𝑀

𝑚=1 |𝑠|) + 𝜖
)

11: 𝛼(𝑖)𝑘 ← exp(𝛽𝑠(𝑖)𝑘 )∕
(

(
∑𝑀

𝑚=1 exp(𝛽𝑠
(𝑖)
𝑚 )) + 𝜖

)

12: Append 𝛼(𝑖)𝑘 to 𝑒𝑝𝑜𝑐ℎ_𝑙𝑜𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡𝑠
13: if [(𝑒𝑝𝑜𝑐ℎ + 1)%𝑛] == 0 then
14: 𝑙𝑜𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← Compute average of 𝑛 entries in

𝑒𝑝𝑜𝑐ℎ_𝑙𝑜𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡𝑠
15: end if
16: end for

2.4. Benchmark data generation

Due to lack of accessible datasets comprising high-fidelity stress
data, we created a benchmark dataset using a two-dimensional MoTe2
as a model material. Monolayer MoTe2 is one of the members inside the
2D transition metal dichalcogenide (TMD) materials, which have shown
great promise for many revolutionary applications in nanoelectronics,
optoelectronics, and photonics [26]. It exhibits two stable structural
phases: semiconducting 2H phase and metallic 1T′ [27]. The dataset
consists of a total of 3146 structures, evenly distributed between the 2H
and 1T′ phases of MoTe2. It includes initially relaxed unit cells of 2H
and 1T′, strained over a range of −10% to 10%, with increments of 2%
for a total of 242 initial structures. In addition, 12 perturbed structures
for each structure, with magnitudes of up to 1 Å drawn from a Gaussian
distribution centered at the positions of each atom from the initial
structure. Perturbing the atomic coordinates of a relaxed structure
to generate additional training data has been shown to enhance the
description of the phase space near the minima of the potential energy
surface [28]. Structural defects and free surfaces were not included, as
the dataset was created specifically for benchmarking rather than for
training a general purpose interatomic potential.

All DFT calculations for data generation were performed using the
plane-wave-based Vienna Ab-initio Simulation Package (VASP) [29,
30]. Projector augmented wave (PAW) pseudopotentials [31,32] were
used to represent ionic cores, and the electronic kinetic energy cutoff
for the plane-wave basis describing the valence electrons was set to 293
eV. The Perdew–Burke–Ernzerhof (PBE) with the generalized gradient
approximation (GGA) [33] was chosen for the exchange–correlation
functional. The k-point selection was adapted to the dimension of
each structure along the armchair and zigzag directions, keeping a

−1
k-point resolved value of 0.02𝜋 × Å in both directions, following
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Table 1
RMSE for models trained with different loss weights combinations. The contribution of potential energy (meV/atom), force (meV/Å), and stress (MPa) are weighted by 𝛼1, 𝛼2, and
3, respectively.
Model Fixed loss weights Training RMSE Testing RMSE

𝛼1 𝛼2 𝛼3 Energy Force Stress Energy Force Stress

1 1.0 0.00 0.00 2.37 1934.61 2832.32 19.28 2940.90 4890.23
2 0.90 0.10 0.00 1.98 15.87 489.98 2.30 24.28 520.72
3 0.90 0.05 0.05 2.72 21.39 22.02 2.29 28.42 34.10
4 0.05 0.90 0.05 7.61 16.00 30.17 6.12 21.39 37.20
5 0.05 0.05 0.90 7.79 42.69 15.48 7.42 48.43 23.43
6 0.33 0.33 0.33 3.58 20.23 18.11 5.41 25.50 22.44
f
a
w
t
(
(
f
l
a
t
t

3

p
t
c
n
s
w
n
w
c

s
w
u
t
a
b
f
d

the Monkhorst–Pack scheme [34] in VASPKIT [35]. As for the out-
of-plane direction, a vacuum layer of 25 Å was used to separate the
periodic images in the out-of-plane direction, thereby single k-point
was maintained along this direction. The electronic energy and atomic
forces were converged to 10−4 meV and 1 meV/Å, respectively, taking
an average of 62.7 s of wall-time per structure on a cluster with 48
cores.

3. Results and discussion

The neural network models in this study are designed with a spe-
cific architecture, consisting of two hidden layers, each containing
30 neurons. A hyperbolic tangent function serves as the activation
mechanism. The optimization is performed using the Adam optimizer,
set at a learning rate of 0.001. Training of these models continued until
negligible learning gains were observed. The dataset was divided into
70% training, 20% validation, and 10% testing.

3.1. Results of fixed loss weights

As discussed in Section 2.2, while various weighting schemes have
een used in the literature, a detailed study that simultaneously con-
iders potential energy, forces, and stresses in the loss function and
nvestigates their weightings’ impacts on the training performance
s still missing. To address this, we first conducted a sequence of
tudies focusing on the effects of fixed loss weights. This involved
ystematically varying these weights and analyzing their impact on the
erformance of the trained model in terms of predictive capabilities in
omparison with DFT calculations. The results are shown in Table 1.
In model 1, where the loss function incorporates only potential

nergy, the model’s predictions for the forces and stresses are notably
oor. Additionally, the testing error for energy (19.28 meV/atom) in
his model is an order of magnitude higher than that of other models
espite similar training error. This suggests that the model trained with
nergy alone lacks generalization capabilities. In the case of model 2,
hich is trained on both potential energy and atomic forces, we observe
ood performance in predicting energy and forces (2.30 meV/atom
nd 24.28 meV/Å, respectively). This significant improvement can be
xplained as follows. When the model is only trained with potential
nergy, we have 3146 potential energy values that can be used for
raining, each corresponding to a structure in the dataset. However,
y incorporating the information of atomic forces (the gradients of
otential energy), the number of training data points increases by
3146
𝑖=1 3𝑁𝑖, where 𝑁𝑖 is the number of atoms in 𝑖th structure. Therefore,
y adding force information, the neural network receives much richer
nformation about the physics of the material system, leading to more
ccurate predictions. One previous study has also found that including
radients benefits not only the accuracy of both energies and forces but
lso improves the stability of training [36]. Moreover, stress prediction
rom model 2 is improved compared to model 1, as stress is computed
sing the gradient of potential energy, as indicated by Eq. (A.7).
However, the prediction still remains unsatisfactory compared to other
models listed in the Table. Apparently, the absence of stress data
during training notably deteriorates the model’s ability to predict stress

accurately. Although this was observed in this particular dataset, it is 𝛽

4 
likely applicable to others as well. Model 3, which is trained on all
three components delivers more balanced results across all metrics. The
comparison between models 2 and 3 emphasizes also the importance of
incorporating stress data in training ML-IAPs to more accurately predict
stresses, i.e., 520.72 versus 34.10 MPa testing RMSE, in addition to
energies and forces.

Models 3 to 5 were each trained with distinct weight combinations,
specifically designed to prioritize one of three variables: potential
energy, force, or stress. The results showed that the weight coefficient
for one variable improves its corresponding result but at the cost of
reducing accuracy in the other one or two variables. Specifically, model
3, which prioritized potential energy, exhibited the lowest testing loss
for potential energy (2.29 meV/atom) but did so by sacrificing stress
prediction accuracy (34.10 MPa). Model 4, focusing on force, achieved
the lowest force testing loss (21.39 meV/Å), but compromising energy
and stress accuracy. Similarly, model 5 achieved the best results for
stress (23.43 MPa) at the expense of potential energy and force accu-
racy. This observed trade-off pattern suggests that previously reported
approaches, which favor the forces during potential training (such as
𝛼1 ∶ 𝛼2 = 1 ∶ 10) [37], or completely overlook the energy term and
ocus exclusively on forces [38], might not be universally applicable
cross different datasets or material systems. Additionally, model 6,
hich distributed weights evenly across all three variables, managed
o achieve satisfactory test results for force (25.50 meV/Å) and stress
22.44 MPa), yet it did not accurately predict the potential energy
5.41 meV/atom), more than twice that of model 3. Therefore, this
ixed weight approach could require extensive experimentation with
oss weight combinations, specific to the material dataset, in order to
ttain a balanced performance among all three variables. This suggests
he potential benefits of employing automated methods to streamline
he training process.

.2. Results using adaptive loss weights

As discussed in the previous section, achieving optimal results for
otential energy, force, and stress simultaneously may require itera-
ively adjusting the loss weight ratios based on material and dataset
haracteristics. By contrast, we propose the Softadapt method to dy-
amically balance each term’s contribution to the loss function. In this
ection, the results of models trained using Softadapt are compared
ith those trained using fixed weights. For a fair comparison, all neural
etwork models implementing the adaptive algorithm were configured
ith the same architecture and activation function to their fixed weight
ounterparts.
The results of models trained with Softadapt algorithm are pre-

ented in Table 2. The hyperparameter 𝛽 controls how sensitively the
eights respond to rate changes in loss components, with higher 𝛽 val-
es causing more rapid adjustments in loss weights during training. For
he benchmark data, the optimal performance of Softadapt algorithm is
chieved when 𝛽 is around the order of 1.0, offering a better and more
alanced testing errors across energy, force, and stress compared to the
ixed loss weight models. When 𝛽 is too low, the weight adjustments
o not adequately keep up with loss rate changes. Conversely, when

is set too high, it leads to significant fluctuations in loss weights,
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Table 2
RMSE for models trained using Softadapt algorithm with different 𝛽 values. Units for
potential energy, force, and stress are meV/atom, meV/Å, and MPa, respectively.
Model Softadapt Training RMSE Testing RMSE

𝛽 Energy Force Stress Energy Force Stress

1 0.01 4.58 26.51 25.67 4.03 32.52 29.70
2 0.1 3.47 21.20 19.42 4.15 27.27 27.08
3 1.0 3.07 18.32 14.55 2.74 23.85 23.54
4 2.0 2.80 17.90 15.24 2.57 25.70 24.62

Fig. 2. RMSE comparison between the model trained using Softadpt algorithm and
three models trained with fixed loss weights, each prioritizing potential energy, force,
and stress. The RMSE values are taken from Tables 1 and 2. Units for potential energy,
force, and stress are meV/atom, meV/Å, and MPa, respectively.

resulting in unstable training and increased errors. The comparison
between models trained using Softadapt algorithm with 𝛽 = 1 and
those trained using fixed weights is illustrated in Fig. 2. Notably, for
each term of potential energy, force, and stress, the Softadapt method
achieves an accuracy level equivalent to that of the corresponding fixed
model where that specific term is prioritized.

The results in Table 2 were trained using equal initial weights
among potential energy, force, and stress, each equal to 0.33. It is
important to note that the final results are not sensitive to the selection
of the initial weights, due to the nature of adaptive algorithm. To
examine the influence of adaptive algorithm on the changing of loss
weights, we monitored the variation of loss weights throughout the
training process. In this analysis, we intentionally varied the initial loss
weights across three configurations: (0.9, 0.05, 0.05), (0.05, 0.9, 0.05),
and (0.05, 0.05, 0.9). As shown in Fig. 3, despite starting with very
different initial loss weights, the algorithm adjusts the contribution of
each, converging to an optimum combination. Interestingly, for this
particular dataset, noticeable adjustment in loss weights mainly occur
within the first 1500 epochs.

Finally, we want to discuss the accuracy and efficiency of the trained
potential. The RMSE of energy and force from our adaptive model is
within a similar range compared to previous studies. For example, Zuo
et al. [39] trained neural network potentials for six different metal
elements, and their RMSE for energy and force ranged from 1.24∼11.27
meV/atom and 50∼200 meV/Å, respectively, although they did not
report the RMSE of stress. In a separate study [40], Rosenbrock et al.
compared GAP and MTP models trained on Ag-Pd alloy, with RMSE
values ranging from 10∼25 meV/atom for energy, 220∼240 meV/Å
for force, and 1300∼2034 MPa for stress. Our RMSE values are lower,
particularly for stress, which is two orders of magnitude lower. This

difference may be attributed to the different complexity of the material

5 
system and the training dataset. In terms of efficiency, tested using a
1 ps MD simulation of a unit cell MoTe2, our trained potential yields
0.001 s/(MD step⋅atom), whereas DFT takes 3.9 s/(MD step⋅atom) for
comparison.

4. Summary

We proposed an adaptive loss weighting method to dynamically
adjust the contribution of potential energy, force, and stress, based on
their corresponding loss values during the training of machine learning
interatomic potentials. Leveraging a benchmark dataset, we conducted
a comparative analysis between models trained with fixed and adaptive
loss weights. The key findings are summarized as follows.

• Stress data proves critical for the accurate prediction of stress
values when training machine learning potentials.

• Models employing fixed loss weights yield imbalanced predic-
tions for potential energy, force, and stress, as they enhance the
accuracy of a prioritized variable at the expense of others.

• Models utilizing the adaptive algorithm demonstrate an ability to
balance the contributions of the three variables, thereby yielding
more balanced and accurate predictions.
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Fig. 3. Variation of loss weights during training using the Softadapt algorithm, with different initial weight ratios among potential energy, force and stress: (a) 0.9:0.05:0.05, (b)
0.05:0.9:0.05 and (c) 0.05:0.05:0.9.
Appendix. Cauchy stress derivation in ML-IAP

The first Piola–Kirchhoff (PK) stress tensor can be calculated as the
work conjugate of deformation gradient tensor

𝑃𝛼𝛽 = 1
𝑉0

𝜕
𝜕𝐹𝛼𝛽

, (A.1)

where 𝑉0 is the volume of the reference configuration, and 𝐹𝛼𝛽 is the
deformation gradient tensor. Similar to the atomic force calculation,
the potential energy can be written as the sum of per-atom potential
energies, so the stress can be written as

𝑃𝛼𝛽 = 1
𝑉0

𝑁
∑

𝑖=1

𝑀
∑

𝑚=1

𝜕𝐸𝑖
𝜕𝐺𝑖𝑚

𝜕𝐺𝑖𝑚
𝜕𝐹𝛼𝛽

. (A.2)

The fingerprint 𝐺𝑖𝑚 is determined by the coordinates of the atoms inside
the neighbor list of atom 𝑖. Therefore, using the chain rule, we have

𝜕𝐺𝑖𝑚
𝜕𝐹𝛼𝛽

=
∑

𝑗∈NB𝑖

3
∑

𝛾=1

𝜕𝐺𝑖𝑚
𝜕𝑟𝑗𝛾

𝜕𝑟𝑗𝛾
𝜕𝐹𝛼𝛽

, (A.3)

where atom 𝑗 is inside the neighbor list of atom 𝑖 (represented by NB𝑖).
By definition, the deformation gradient maps the atom position from
the reference configuration to the current configuration

𝑟𝑗𝛾 =
3
∑

𝛽=1
𝐹𝛾𝛽𝑅𝑗𝛽 , (A.4)

where 𝑅𝑗𝛽 is the coordinates of atom 𝑗 in the reference configuration.
Then, the stress in Eq. (A.2) can be written as

𝛼𝛽 = 1
𝑉0

𝑁
∑

𝑖=1

𝑀
∑

𝑚=1

∑

𝑗∈NB𝑖

𝜕𝐸𝑖
𝜕𝐺𝑖𝑚

𝜕𝐺𝑖𝑚
𝜕𝑟𝑗𝛼

𝑅𝑗𝛽 . (A.5)

Cauchy stress can be further calculated by

𝜎𝛼𝛾 = det(𝑭 )−1
3
∑

𝛽=1
𝑃𝛼𝛽𝐹𝛾𝛽 . (A.6)

Substitute Eq. (A.5) into Eq. (A.6), and then apply Eq. (A.4) and 𝑉 =
0 det(𝑭 ), which is the volume in current configuration, we can get

𝛼𝛽 = 1
𝑉

𝑁
∑

𝑖=1

𝑀
∑

𝑚=1

∑

𝑗∈NB𝑖

𝜕𝐸𝑖
𝜕𝐺𝑖𝑚

𝜕𝐺𝑖𝑚
𝜕𝑟𝑗𝛼

𝑟𝑗𝛽 (A.7)

after replacing 𝛾 with 𝛽.
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