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ABSTRACT

Continuous manufacturing in pharmaceutical industries has shown great promise to achieve pro-
cess intensification. To better understand and justify such changes to the current status quo, a
technoeconomic analysis of a continuous production must be conducted to serve as a predictive
decision-making tool for manufacturers. This paper uses PharmaPy, a custom-made Python-
based library developed for pharmaceutical flowsheet analysis, to simulate an annual production
cycle for a given active pharmaceutical ingredient (API) of varying production volumes for a batch
crystallization system and a continuous mixed suspension, mixed product removal (MSMPR) crys-
tallizer. After each system is optimized, the generalized cost drivers, categorized as capital ex-
penses (CAPEX) or operational expenses (OPEX), are compared. Then, a technoeconomic and
sustainability cost analysis is done with the process mass intensity (PMI) as a green metric. The
results indicate that while the batch system does have an overall lower cost and better PMI metric
at smaller manufacturing scales in comparison with the continuous system, the latter system
showed more potential for scaling-up for larger production volumes.
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INTRODUCTION

As technology develops and industries advance into
the “Industry 4.0" era, the sector of chemical and phar-
maceutical manufacturing is no exception. As such, the
pharmaceutical industry has been working tirelessly to
discover and apply innovations to the field [1]. In particu-
lar, the concept of Quality-by-design (QbD), which was
first adopted by the FDA as a means to ensure quality in
the development, manufacturing, and regulation of drugs
[2], has been augmented by the Quality-by-Control
(QbC) framework, which employs real-time process ob-
servation and control [3]. The paradigm of QbC has no-
tably been applied to concept of continuous crystallizers
[3,4]. Continuous manufacturing has been accepted as a
promising technology to achieve process intensification
in pharmaceutical manufacturing [4,5]. Such methods are
important as it promises flexibility and efficiency for both
high volume products as well as personalized medicine

[4-6]. However, before the entire industry can adopt a
new method of production, technoeconomic cost anal-
yses of continuous production are necessary as a predic-
tive decision-making tool for manufacturers. This is be-
cause an intimate understanding of the cost drivers and
performance of continuous crystallizers is necessary for
manufacturers to adopt change in an already batch sys-
tem dominated industry [7]. But beyond the importance
of technoeconomic analyses in industry, the issue of sus-
tainable processes has also become more pressing. The
importance of coupling technoeconomic models with
sustainable metrics for a technoeconomic sustainability
analysis, not just chemical processes, but for process de-
sign in general has been noted [8]. Thus, the application
of sustainability metrics, either in forms of life cycle as-
sessment or simple quantitative standards is important
for chemical manufacturing [9].

In this paper, a preliminary investigation on the com-
parison of conventional batch crystallizers and mixed



suspension, mixed product removal (MSMPR) continuous
crystallizers is conducted. First, simulated models of the
annual performance of both types of systems are con-
structed using PharmaPy, a custom-made library for
pharmaceutical flowsheet analysis [10]. For both layouts,
the common active pharmaceutical ingredient (API) of
paracetamol (PCM), a common analgesic drug, has been
selected. Then, given three different fixed annual pro-
duction volumes, operational parameters, and desired
critical quality attributes (CQAs), each system is opti-
mized for both overall cost as well as sustainability, using
the process mass intensity (PMI) as a quantitative metric.
For each case, a derivative-free optimizer was used.

METHODOLOGY

Modeled Flowsheets

For this study, the analyses were conducted on the
crystallizer unit operation. For both batch and continuous
crystallizer layouts, the selected API for simulation was
paracetamol. The kinetic parameters for the API have
been adapted from Szilagyi et al. [11]. Additionally, an ar-
bitrary number of annual workdays were selected
wherein the system was set to produce three different
annual production volumes. For the batch cooling crys-
tallizer setup, a single unit is set as the default. However,
as part of the decision variables, up to three parallel units
are considered, thus allowing for the batch crystallizer to
be optimized for numbering-up as well as scaling-up. In
comparison, the continuous crystallizer setup is com-
prised of two chained MSMPR crystallizer units. The rea-
son for this setup is because while a single batch cooling
crystallizer has the flexibility to operate with a dynamic
cooling profile, each MSMPR unit can only be operated
under a static temperature value. Thus, by setting up two
MSMPR units, the optimizer can affect the process with
two different crystallizer dimensions, residence times,
and operating temperatures, which enable to manipulate
both throughput and critical quality attributes (CQAs),
thus allowing for sufficient control and complexity for
comparison with the batch process.

For the batch layout, the APl is produced in batch,
wherein the number of total batches are calculated from
the optimal cycle time, which factors in a static one-hour
ramp-down/cleanup time. However, for the continuous
crystallizer, API is produced continuously in a singular
campaign duration. This optimal campaign duration is
calculated by multiplying the residence time of the sec-
ondary MSMPR, 7.50,, by the optimal steady state hori-
zon multiplier, H,,. This determines the duration at which
the MSMPR system operates at steady state and contin-
uously produces API. Additionally, the optimal value for
Tcroz Was obtained from a preliminary optimization se-
quence prior. Like the batch system, the MSMPR system
also has a ramp-down/cleanup time, but it is only initiated

once after the campaign. However, the MSMPR also has
ramp-up time wherein it must reach steady state, which
was estimated for the temperature decision variables of
the MSMPR units.

Finally, for each setup, an inlet of feed slurry is de-
fined. This feed slurry serves to represent an input from
a reactor unit. However, as the focus of this work is to
analyze the performance of the crystallizer unit, the re-
actor unit has been omitted. Then, the output of each
crystallizer is run through a filtration process step. How-
ever, like the reactor, the filtration unit operation has
been omitted. A schematic summary of the two setups
can be seenin Figure 1.

a) b)
Batch MSMPR #1 MSMPR #2
Feed Slurry AP Qufput Feed Slury AP Cutput
1 — L

Figure 1. Schematic summary of the two different
crystallization unit operations, a) batch crystallization
and b) continuous crystallization.

Both crystallization configurations were simulated
using PharmaPy. As previously mentioned, PharmaPy is a
custom-made Python-based library for the analysis of
pharmaceutical flowsheets. Using this tool, the defined
unit operations can have operational parameters, such as
inlet flows, initial conditions, and pharmacokinetic param-
eters assigned to in an object-orient software structure
[10]. Then, once the unit operations are defined as such,
a simulation object of the flowsheet is created. This cou-
pled with a callback function, decision variables can be
set as inputs and PharmaPy operations as outputs allows
for an optimization framework to be established.

Optimization Formulation

For this study, the optimization problem is ex-
pressed as a non-linear constrained design problem
wherein the objective is to minimize either the total cost
of the manufacturing the API or the sustainability metric,
PMI. The proper definition can be seen in Equation (1)
[12].

minJ(x,y,z) (1)
s.t.;—f = fl(t,y, z,u(t)),
fi(ty,zu@®) =0, (2)

¥(t = 0) = yo,z(t = 0) = 2,
and



gi(xJ Y.z, u) = 0: Vie Ir (3)

Xip =X = Xyp

The equations in Equation (2), adapted from Casas-
Orozco et al. [12], correspond to the process model of a
differential-algebraic equation (DAE) system, with y €
{yl, s Vi ...,y“y} being the set of differential states and

z €{z,..,z, } being the set of algebraic states, and y,
and z, being their respective initial values. Additionally,
the model inputs are represented by the variables, u(t) €
{u,(0), ... u,, (0)}. The entirety of the DAE system is repre-
sented by the PharmaPy simulation. Finally, Equation (3)
shows the nonlinear constraints and decision variable
bounds for the problem.

For this study, the decision variables are dependent
on the type of crystallizer that is being simulated. Conse-
quently, the lower and upper bounds represented in
Equation (3) vary by the system. Thus, the decision vari-
ables that are considered as well as their bounds are
listed in Table 1.

Table 1: Description of decision variables considered in
the optimization problem along with their bounds.

Variable System Description Bounds
Ver Batch Cryst. Volume 0.1 ~ 7.5 [m?]
ter Batch Cycle Time 10 ~ 720 [min]
Ncg Batch No. of parallel 1 ~ 3 [lines]

process lines
Cryst. ith
Teni Batch Temp. Point 273 ~ 330 [K]

Verows Veroz ~ Cont. Cryst. Volume 0.1 ~7.5[m3]

Tero1r Tcroz  Cont. Cryst. Temp. 273 ~ 330 [K]
H,, Cont. ~ Steadystate 1~ 100,000

multiplier

constraint is an operational constraint to make sure that
the temperature profile for the batch and the tempera-
tures in the consecutive MSMPRs are monotonically de-
creasing. Finally, the fifth and final constraint are imple-
mented to make sure that the total calculated time for
manufacturing does not exceed the allotted annual work-
days. This is in place because while the total time for the
batch system is divided into distinct batches, the contin-
uous system simply has a single campaign to continu-
ously create API. These constraints are summarized in
Table 2. In addition, Table 2 also lists the weights for
each constraint. These weights were then applied to a
penalty function for the constraints to ensure that the op-
timal solution wasn't trivial or impractical.

Table 2: Description of the constraints considered in the
optimization problem and their respective weights.

Variable Description Weight Constraint

Mean Crystal -

g1 Size w, = 102 40 [um] < L
Production

gZ Vﬂlume Wz = 103 Pthrgst < PVacmnI

ga Overall Yield wy = 10% 0.9% 02 < Yocruar
Decreasing

Ga Temp. w, = 10° 1 =T;

Js Total Time w, = 10* 260 [days] > t,pea:

Finally, the function g;(x,y,z u) represent the non-
linear constraints that are being applied to the problem.
These constraints are representative of CQAs or stand-
ards that would be an important metric for determining
the success of the system. The first constraint is that the
API produced in a system must be at least a certain di-
ameter. This an important CQA for a crystallization unit
as the mean size of the crystals, and to an extent the
crystal size distribution (CSD) can determine the flowa-
bility and filterability of the API produced [13]. This then
has large implications for how easily the API is handled,
or even how effective the drug is. The second constraint
is the production volume. This is simply to ensure that the
optimal results always at least produce enough API prod-
uct to meet the fixed annual production volume. The third
constraint is the yield constraint, which is in place to
make sure that the optimal results would produce a cer-
tain percentage of the theoretical maximum yield, thus
ensuring a certain level of efficiency. The fourth

For this simulation, the defined optimization prob-
lem was then solved with the adaptive Nelder-Mead al-
gorithm included in the SciPy library. Thus, to translate
the problem to an unconstrainted optimization problem
for the derivative-free Nelder-Mead algorithm, the non-
linear constraints were reformulated into an augmented
objective function. It should be noted that given the non-
convexity of the problem and due to the challenges of
employing a gradient-based method in a simulation-opti-
mization approach to the problem, a derivative-free algo-
rithm was preferred. Furthermore, to improve optimizer
performance, the objective function and constraint val-
ues were normalized. Thus, the objective function was
transformed to Equation (4) and the constraints were
transformed to Equations (5).

J(x.y.2)—Jmin(x.y.2) 2
Jnorm(x,y, 2) = |22 Lnin 220 @

i€ [1'4]' 1 _Qi.mr‘gst

gnorm,i = it t ' (5}
i= 5' Jitarget 1
gi
where J...(x,¥,2) is the overall lowest function
evaluation the optimizer found and g, :q,4.: is the con-
straint value for g;. Thus, the final augmented and nor-

malized objective function is shown in Equation (6).

nfnjnorm(xx J’-Z) + Z:‘E[l.s][max(or w; - gnorm,i)]z (6}



Cost Calculation

As previously mentioned, one of the objective func-
tions used to evaluate the simulation is the overall cost of
the system. The cost of the system can be broken down
into two categories, capital expense (CAPEX) and opera-
tional expense (OPEX).

CAPEX Calculation

CAPEX involves all the terms that are related to the
purchase of equipment. However, while the volume of the
crystallizers as a decision variable are not discrete val-
ues, in reality, equipment are usually made and sold at
discrete capacities. Thus, to account for this, a cost-ca-
pacity correlation equation is from Diab et a/. [6] is used:

Co = £Ca ()" (7)

Wherein, the C; is the cost of the equipment and S;
is the capacity of the given equipment. Next, f are equip-
ment-dependent coefficients to account for indirect
costs that may be involved for certain equipment. Finally,
n is a value is the cost exponent to represent the expo-
nential increase in cost of equipment as capacity in-
creases. The index of 4 in Equation (7) represent existing
equipment while the index of B refer to the equipment
selected for the simulation. The specific values for base
equipment values in Equation (7) are based on the Chem-
ical Engineering Plant Cost Indices (CEPCIs) [14]. How-
ever, for this study, the values are identical as the ones
used by Diab et al. [6].

Furthermore, to provide a more realistic estimation
for the technoeconomic cost model, rather than taking
the flat equipment cost, a battery limit installed cost
(BLIC) is calculated. Thus, the additional indirect costs
associated with installing the equipment are considered.
To calculate the BLIC, the Chilton method is employed
[6]. In summary, the BLIC is a factor of the total physical
plant cost (TPPC), which is the sum of the installed equip-
ment cost (IEC) and the process piping and instrumenta-
tion (PPI) cost. The PPl is a percentage of the |IEC while
the IEC is a factor of the previously calculated equipment
cost. The exact coefficients and factors for these calcu-
lations are the same as the ones used by Diab et a/. [6].

Finally, once the BLIC was calculated, rather than
apply the flat equipment cost, an equivalent uniform an-
nual cost (EUAC) was calculated. This is to reflect the
fact that while it is not unheard of for a company to out-
right purchase all the required equipment for a new
setup, it is more customary for the annual equipment cost
of a production line to be expressed as an annuity [15].
The calculation can be seen in Equation (8). An interest
rate, i,,:, Of 5% and a project timeline, t,; of 20 years is
taken from literature [6].

EUAC = BLIC (eelitiza ™) (8)

(L +irgee) PL—1

In addition to the equipment cost, the CAPEX for this
simulation also takes into consideration for the working
capital (WC) and the contingency costs (CC) of the plant.
The WC and CC are set to be 3.5% of the annual material
costs and 20% of the total BLIC, respectively. These val-
ues can be found in literature [16].

Summary of the total CAPEX calculation is summa-
rized in Equation (9).

CAPEX, .t = EUAC + WC + CC 9)

OPEX Calculation

As opposed to CAPEX, which represented expenses
that are investments that need to be made prior to es-
tablishing a setup, OPEX represents all expenses that are
incurred during the hours of plant operation. The major
cost drivers here are the cost of the materials that serve
as inputs for the pharmaceutical process and the cost in-
volved with dealing with the waste material of a process.
The material cost, C,,qteriar, €@N be straightforwardly cal-
culated as the product of the total mass of each chemical
species m; and their respective cost per mass, C,. Finally,
the waste cost, C,,..:., €an be calculated as a certain per-
centage of the total cost of solvents, C,.1,, involved in the
process. The exact percentage, while it may vary on a
plant-by-plant basis, was set as 35%. The summary of
these calculations as well as the final total OPEX calcula-
tion can be seen in Equations (10-12).

Cmaterial = ZE Cim:' (10]
Cwaste =035 ZE Csoiv,:' (11]
OPEXtotaI = Cmatsriai + Cwaste (12)

Thus, the objective function when calculating for minimal
costs can be seen in Equation (13).

nlin]t:ost(x: Y, Z) = CAPEXtatai + OPEXtotal (1 3]

Sustainability Calculation

In the previous section, the method of calculating
the cost of a crystallization unit operation has been out-
lined. However, while cost is an important metric for a
technoeconomic model, sustainability, or “green pro-
cessing”, is an ever-growing concern for the future of the
sustainable pharmaceutical industry [17]. Thus, optimiz-
ing the manufacturing system in regard to a sustainability
metric in addition to the cost is a necessary perspective
to take. Over time, many different metrics for sustainabil-
ity have emerged. Notably, the E factor, seen in Equation
(14), has often been used in studies as a metric for effi-
ciency of pharmaceutical manufacturing [17].

E factor — total mass of waste from a process [kg] (14]

total mass of product [kg]



However, as the E factor serves as a ratio of the API
produced and the waste material produced from the en-
tire process, the E factor can be a misleading metric as it
only represents the waste material, thus not guarantee-
ing the efficiency or lack thereof in regard to the other
materials involved in the process [18]. Thus, as a correc-
tion, the process mass intensity (PMI) metric has been
introduced. The PMI, shown in Equation (15), serves a ra-
tio of the total API produced with the mass of all chemical
species that was involved in the process [18].

total mass from a process [kg]

PMI = (15)

total mass of product [kg]

Thus, with PMI as a secondary objective function,
the manufacturing system can also be investigated re-
garding sustainability as well as minimized costs.

RESULTS AND DISCUSSION

With the optimization problem defined in the previ-
ous section as well as the layout of the batch and contin-
uous crystallization manufacturing units, we can then
compare the differences in performance and cost for the
systems. For both batch and continuous systems, the
simulation was optimized for minimal total cost, which
was the sum of the CAPEX and OPEX, and for minimal PMI
The results of the optimization for both systems with the
two different objective functions and at three different
target annual production volumes can be seen in Figure

2. Additionally, it is important to note that the CAPEX and
OPEX have been graphed separately on different axes.
This is because while the technoeconomic cost model
was created to provide a holistic view of the unit opera-
tions, the inclusion of CAPEX is not always relevant for
some industries, for example where the equipment is al-
ready in place. Also, the numerical values of the simula-
tions, optimal decision variables as well as some addi-
tional performance metrics for the batch system and the
continuous system can be seen in Table 3 and Table 4,
respectively.

When first observing the results of the simulation, it
is important to note that from Figure 2, we can observe
that the overall OPEX for the continuous system, regard-
less of annual production volume, is higher than that for
the batch system. This is a logical outcome as one of the
drawbacks of MSMPR crystallizers is that a constant feed
of slurry needs to be input. However, it should also be
noted that the CAPEX values for continuous systems are
always lower than their batch counterparts across the
board. This is even with the consideration that a single
production line of continuous crystallization requires two
MSMPR units in cascade. This is reflective of the result
that, due to the higher throughput of the continuous sys-
tems, a smaller crystallizer unit is sufficient to meet the
annual production targets. However, this result comes
with the caveat that the inclusion of CAPEX may not be
significant for manufacturers who are not looking to cre-
ate a new manufacturing line from scratch, thus making
the difference in CAPEX irrelevant.
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Figure 2: Annual CAPEX and OPEX comparison for different annual production volumes between batch and
continuous crystallization units. In addition, the differing values on whether the optimizer prioritized minimal cost
or minimal PMI have been presented next to each other.
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Table 3: Numerical results of the batch crystallization setup simulation

2M kg /yr 1.5M kg /yr TMkg/yr
Cost Obj. PMI Obj. Cost Obj. PMI Obj. Cost Obj. PMI Obj.
Material $23,550,782.88 $27,304,372.89 $17,622,765.28 $18,270,689.49 $11,768,420.85 $12,151,357.09
Waste $5,119,692.16 $5,935,683.09 $3,831,003.57 $3,971,855.47 $2,558,330.75 $2,641,577.05
EUAC $230,485.79 $237,646.32 $212,143.30 $214,036.03 $190,490.66 $195,239.96
we $824,277.40 $955,653.05 $616,796.78 $639,474.13 $411,894.73 $425,297.50
ce $574,472.47 $592,319.69 $528,754.88 $533,472.40 $474,786.93 $486,624.30
Total $30,299,710.70 $35,025,675.04 $22,811,463.81 $23,629,527.52 $15,403,923.91 $15,900,095.91
APl Made 1999977.11 kg 2328427.96 kg 1500006.076 1556340.47 kg 999996.73 kg 1034675.34 kg
Solvent Used 7313845.94 kg 8479547.28 kg 5472862.24 kg 5674079.24 kg 3654758.21 kg 3773681.50 kg
APl Used 2974363.67 kg 3448426.11 kg 2225680.27 kg 2307510.34 kg 1486301.48 kg 1534664.70 kg
Total Time 260.26 days 260.08 days 260.09 days 260.00 days 260.02 days 260.02 days
Throughput 320.187 kg/h 373.024 kg/h 240.304 kg/h 249.409 kg/h 160.246 kg/h 165.798 kg/h
Availability 68.85% 65.65% 73.21% 73.33% 78.59% 78.50%
Cost/Kg $15.15 kg $15.04 [kg $15.21 /kg $15.18 /kg $15.40 /kg $15.37 /kg
PMI 5.144164E+00 5.122758E+00 5.132341E+00 5.128434E+00 5.141077E+00 5.130446E+00
Cost Change 15.597% 3.586% 3.221%
PMI Change -0.416% -0.076% -0.207%
Optimal Decision Variables
Ver 5.893 m* 6.201 m? 5.132 m? 5.209 m? 4.289 m? 4.469 m?
tex 19510.616 s 17362.060 s 23279.987 s 22704.940 s 30030.870s 30336.715 s
Ner 2 lines 2 lines 2 lines 2 lines 2 lines 2 lines
y 306.69 K 295.87 K 297.02K 300.98K 294.70K 305.84 K
Texs 292.24K 295.87 K 296.19K 300.95K 290.49 K 298.39 K
Ters 273.13K 273.14K 273.15K 273.15K 273.15K 273.15K
Table 4: Numerical results of the continuous crystallization setup simulation.
2M kg /yr 1.5M kg /yr TMkg/yr
Cost Obj. PMI Obj. Cost Obj. PMI Ob;j. Cost Obj. PMI Obj.
Material $ 26,259,268.76 $ 26,505,728.06 $19,627,749.43 $ 20,080,882.20 $13,092,875.99 $13,144,073.54
Waste $5,872,371.26 $5,927,758.35 $4,390,333.75 $ 4,491,690.05 $2,928,844.40 $2,940,464.34
EUAC $142,092.38 $142,770.88 $126,473.28 $126,473.28 $119,259.38 $118,712.96
wc $919,074.41 $927,700.48 $686,971.23 $702,830.88 $ 458,250.66 $ 460,042.57
cc $354,157.04 $ 355,848.15 $315,227.32 $315,227.32 $297,247.11 $295,885.18
Total $ 33,546,963.84 $ 33,859,805.92 $ 25,146,755.02 $ 25,717,103.73 $ 16,896,477.54 $ 16,959,178.60
APl Made 2000003.58 kg 2020834.54 kg 1500045.79 kg 1534693.85 kg 1001400.91 kg 1006269.14 kg
Solvent Used 8389101.80 kg 8468226.21 kg 6271905.36 kg 6416700.08 kg 4184063.43 kg 4200663.35 kg
APl Used 3160355.06 kg 3189758.55 kg 2361312.90 kg 2415827.35 kg 1574916.38 kg 1580915.61 kg
Total Time 210.29 days 258.41 days 226.41 days 231.63 days 163.70 days 174.56 days
Throughput 396.285 kg/h 325.840 kg/h 276.058 kg/h 276.062 kg/h 254.888 kg/h 240.195 kg/h
Availability 99.93% 99.94% 99.93% 99.93% 99.91% 99.91%
Cost/Kg $16.77 kg $16.76 kg $16.76 kg $16.76 kg $16.87 /kg $16.85 fkg
PMI 5.774718E+00 5.768896E+00 5.755303E+00 5.755237E+00 5.750923E+00 5.745559E+00
Cost Change 0.933% 2.268% 0.371%
PMI Change -0.101% -0.001% -0.093%
Optimal Decision Variables

Vcros 2.020 m? 1.653 m? 1.396 m? 1.531 m? 1.288 m? 1.213 m?
Vexos 4,123 m? 3.833m? 3.068 m? 3.332m? 2.752 m* 2.821m?
T cros 273.00K 273.00K 273.00K 273.00K 273.00K 273.00 K
T croz 273.00K 273.00K 273.00K 273.00K 273.00K 273.00 K

9078.73 11156.65 9774.24 8940.25 7065.28 7534.09
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In addition to this observation, we can see from Table 3
and Table 4 that despite the differences in CAPEX, the
overall cost for the batch system is lower than their con-
tinuous counterparts. However, that comparison does
not provide a full view of the comparison. An important
aspect of continuous crystallization is the efficiency in
terms of throughput and availability. This is observed in
the simulation results in Table 4. The results show that
for all annual production volumes, the continuous system
resulted in a more consistent throughput rate while Table
3 indicates that the batch system has a steeper drop in
throughput. This is also reflected in the fact that for all
three annual production volumes, the batch system
needed to use all 260 days for all cases, even though the
batch cases have already optimized for 2 parallel lines.

Additionally, we can see that for the continuous sys-
tem, the overall optimized crystallizer volume is lower
than for the batch scenario. In conjunction with this, we
can see that the total availability, which is the percentage
of time in which the system is actually running and not
ramping up, ramping down or cleaning, the continuous
system predictably has a higher percentage. With all
these observations, we can see that the MSMPR setup,
while for the selected parameters may have an overall
higher cost, shows a better potential for scaling up and
provides a more agile manufacturing alternative.

Finally, the previously made observations can also
be seen when considering the PMI. From the same tables,
we when we see the results for optimizing for PMI rather
than cost, we can compare the sustainable nature of both
setups. As expected, the continuous system has a higher
PMI value due to the necessity for a continuous input of
slurry. However, when comparisons with cost in mind, we
can see that while optimizing for PMI decreases the re-
sultant PMI by less than 1%, the cost in continuous sys-
tems increases less significantly than the batch systems.
Thus, while the significance of decreasing PMI would be
different on a case-by-case basis, we can observe that
the continuous system has a lower cost necessary forim-
proving the overall sustainability of the process.

CONCLUSION

This study was an example to show the capabilities
of the technoeconomic cost model simulation to serve as
a decision-making tool for manufacturers. By employing
a simulation-optimization strategy with the annual pro-
duction of paracetamol as a generic representative API
and applying CAPEX and OPEX calculations that have
been standardized in literature, a good first simulation re-
sult was achieved. Furthermore, with the simulation,
other than directly comparing cost, the potential capabil-
ities of continuous production methods in the pharma-
ceutical industry could be explored. While the overall
costs of continuous systems may higher than the existing

batch production setup, the potential for continuous sys-
tems to scale up and maintain efficiency in both availa-
bility and throughput shows promise. Furthermore, in the
light of sustainability for pharmaceutical processes, we
could see that the trade-off in cost for improving PMI
metrics would be much less than that for batch pro-
cesses, thus additionally showing how continuous sys-
tems could be more easily adapted to be more sustaina-
ble and embody the idea of “green chemistry”.
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