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Abstract—Effective disease surveillance systems require large-
scale epidemiological data to improve health outcomes and
quality of care for the general population. As data may be
limited within a single site, multi-site data (e.g., from a number
of local/regional health systems) need to be considered. Lever-
aging distributed data across multiple sites for epidemiological
analysis poses significant challenges. Due to the sensitive nature
of epidemiological data, it is imperative to design distributed
solutions that provide strong privacy protections. Current privacy
solutions often assume a central site, which is responsible for
aggregating the distributed data and applying privacy protection
before sharing the results (e.g., aggregation via secure primitives
and differential privacy for sharing aggregate results). However,
identifying such a central site may be difficult in practice and
relying on a central site may introduce potential vulnerabilities
(e.g., single point of failure). Furthermore, to support clinical
interventions and inform policy decisions in a timely manner,
epidemiological analysis need to reflect dynamic changes in the
data. Yet, existing distributed privacy-protecting approaches were
largely designed for static data (e.g., one-time data sharing)
and cannot fulfill dynamic data requirements. In this work,
we propose a privacy-protecting approach that supports the
sharing of dynamic epidemiological analysis and provides strong
privacy protection in a decentralized manner. We apply our
solution in continuous survival analysis using the Kaplan-Meier
estimation model while providing differential privacy protection.
Our evaluations on a real dataset containing COVID-19 cases
show that our method provides highly usable results.

Index Terms—Data Privacy, Survival Analysis, Distributed
Data

I. INTRODUCTION

A growing number of research initiatives are collecting
large epidemiological datasets to advance research and support
knowledge sharing [1], [2], [3]. While these efforts are vital
in enabling effective disease surveillance systems [4] (e.g.,
survival analysis), health data are often fragmented over mul-
tiple sites, and regulations and policies may limit the sharing
of patient-level records across sites. To leverage these dis-
tributed data, a variety of privacy-protecting approaches have
been recently proposed [5], [6]. Among them, the federated
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framework has emerged as a promising solution to addressing
data privacy concerns [7], [8]. In the federated paradigm,
institutions can jointly perform predictive analysis by sharing
intermediate aggregate statistics, while the original patient-
level data remain within the secure enclave of each local
site, thus allowing institutions to comply with regulations and
policies.

Several federated approaches have been proposed to perform
epidemiological analysis. As examples, recent studies by Dai
et al. [9] and Lu et al. [10] proposed to share intermediate
statistics among sites to learn a collaborative Cox proportional
hazards model. Despite promising results, these approaches
may not adequately address the privacy risks. In fact, recent
privacy studies have shown that the sharing of aggregate
information (e.g., models, summary statistics, parameters) may
lead to privacy breaches for individual data contributors (e.g.,
membership disclosure, attribute inference [11], [12], [13]). To
mitigate these privacy risks, other approaches have employed
a combination of privacy-enhancing techniques to protect both
intermediate statistics and final results. Among them, crypto-
graphic primitives (e.g., secure multiparty computation [14]
and homomorphic encryption [15]) are often used to pro-
tect intermediate steps during distributed computation. Recent
works have also proposed the use of differential privacy [16],
which provides provable privacy protection against member-
ship disclosure. In one relevant study, Froelicher et al. [17]
have leveraged cryptographic primitives and discussed the use
of differential privacy to provide strong privacy protection
for the final survival results. In another study by Spath et
al. [18], the intermediate statistics are first aggregated via
secure primitives, and then perturbed by a third party to satisfy
differential privacy.

While these approaches enable distributed survival analyses,
there are significant limitations for their application in practice.
Specifically, current differential privacy solutions [17], [18],
[19] rely on a central server to perturb original aggregate
results. However, it may be challenging to identify a trusted
central server, as local sites may have different data privacy
concerns. In worst-case scenarios, the server may fail to inject
adequate perturbation noise to achieve differential privacy
(e.g., single point of failure), thus potentially compromising
the privacy of the overall data. Furthermore, in epidemiological979-8-3503-2445-7/23/$31.00 ©2023 IEEE



studies, local data may change over time (e.g., new surge of
local cases), requiring a continuous integration of the updated
local data into collaborative analysis [20], [21]. However,
current approaches mainly focus on static data settings. One
simple solution is to apply existing methods repeatedly for
each data update, but it may introduce significant computa-
tional burdens and increased privacy leakage [16], [22]. While
incremental learning techniques have shown to be effective at
addressing the computation burdens by incrementally training
predictive models as data are updated [23], they do not
provide protection against privacy breaches caused by model
memorization of patient-level data [24].

In this work, we propose a new privacy-protecting frame-
work for distributed Kaplan-Meier survival analysis, which
supports dynamic data updates and provides privacy control
to participating sites. To support privacy-protecting dynamic
updates, we develop an adaptive technique that allows each site
to control the privacy leakage in sharing longitudinal survival
statistics. Specifically, each site can bound the overall privacy
leakage by sharing only the most useful updates, which are
dynamically determined by each site. To achieve differential
privacy in a decentralized manner, we leverage distributed
noise generation and secret sharing techniques. Specifically,
our distributed noise generation approach decomposes the
overall noise needed to achieve differential privacy into small,
partial noises that will be injected in the statistics shared by
local sites. Additionally, perturbed local statistics are protected
and aggregated via a secret sharing protocol, eliminating the
need for a trusted central server. Overall, our solution provides
strong privacy protection while enabling accurate, continuous
survival analysis.

The rest of the paper is organized as follows: Section II
provides the preliminaries for this study as well as an overview
of the proposed solution; Section III presents the technical
details about proposed methods; Section IV describes the
experimentation methodology and discusses empirical results;
Section V discusses open challenges and considerations for
future research; Section VI concludes the paper.

II. OVERVIEW

We consider patient-level time-to-event data for epidemio-
logical analysis, which may comprise clinical, demographic,
and temporal information about specific clinical events (e.g.,
hospital discharge, survival status, time and type of diagnosis).
Data are distributed across multiple sites (e.g., hospitals),
where local changes may occur over time (e.g., newly enrolled
patients or a surge of cases). The overall goal is to perform
collaborative survival analysis and enable a broad and contin-
uous sharing of the overall results with external users (e.g.,
researchers, clinicians, policymakers).

A. Survival Analysis

We consider the Kaplan-Meier model [25] for survival anal-
ysis in epidemiological studies. The Kaplan-Meier model is a
non-parametric model that describes the survival probability
over time without requiring assumptions on the underlying

data distribution. Note that when properties of the data are
known (e.g., proportional relationship between the baseline
hazard and the hazard attributes), more sophisticated models
could be used (e.g., the Cox proportional hazards model [26]).
In our application setting, we do not make any assumption on
the prior data distribution. Therefore we adopt the Kaplan-
Meier model to compute survival probabilities.

In deploying the Kaplan-Meier model in a distributed set-
ting, the survival probability at any time i need to be computed
by aggregating the time-to-event data distributed across par-
ticipating sites throughout the study duration. Specifically, let
D(t) be a snapshot of the overall data at time t, which are
distributed across N sites, where Dj(t) denotes the local data
at the j-th site, for j = 1, . . . , N . Then, the survival probability
up to time-to-event i computed over the entire data D(t) can
be expressed as a ratio between the aggregated partial counts
of current events across sites, as follows:

st(i) = st(i− 1)
|D(t)| − u(i)− c(i− 1)

|D(t)| − u(i− 1)− c(i− 1)
= (1)

= st(i− 1)

∑N
j=1 |Dj(t)| − uj(i)− cj(i− 1)∑N

j=1 |Dj(t)| − uj(i− 1)− cj(i− 1)
(2)

where |Dj(t)| denotes the total number of events at time t at
the local site j, and uj(i) and cj(i) represent the uncensored
(i.e., individuals with the event of interest, such as diagnosis or
death) and censored events (e.g., individuals who fail to follow
up) up to time-to-event i at the local site j, respectively.

B. Privacy Model

Application Setting. We consider multiple sites that par-
ticipate in computing survival analysis collectively. Due to
privacy concerns, only aggregate statistics can be shared.
Below, we will discuss the privacy risk associated with the
shared statistics. In our solution, we assume a third party (e.g.,
cloud service provider) that assembles the survival probability
results by continuously aggregating the partial statistics shared
by local sites. The third party in our setting may host a web-
interface to enable external users to interact with the results.
We do not require the third party to be trusted, as it has only
access encrypted and privacy-enhanced results.

Adversary. We aim at protecting patient privacy against an
informed adversary who may learn information about partic-
ipating individuals from the shared statistics. Compared to
previous privacy studies in static settings [19], [11], here we
consider an adversary who may leverage changes in the shared
statistics over time as well as prior background knowledge
to infer the participation of a target individual in a specific
cohort of study (e.g., case group). The adversary’s background
knowledge may include information inadvertently disclosed
by individuals. As an example, recent studies have shown
that patients may disclose their participation and time of their
contribution to certain studies over online social networks [27],
[28]. Additionally, an adversary may have access to data from
other sites in the study, via data breaches or colluding parties.



Fig. 1: An illustrative example of our proposed framework. We define a binary decomposition of the study into intervals, which is shared
across sites. During the iteration of the protocol each site populates the statistics in local representation with the counts of the site-specific
time-to-events data. (1) As data may dynamically change, each site determines whether any count needs to be updated. For example, site
1 determines that local counts x1,1 and x1,2 need to be updated. (2) The original updated statistics are perturbed using a distributed noise
generation mechanism (i.e., noise γ). (3) Using a third party (not-necessarily trusted), for example a cloud service provider, the participating
sites aggregate the perturbed results via a secure secret aggregation protocol and estimate the overall time-to-event counts across all sites in
each interval. (4) The final results are shared (e.g., via a web portal), enabling external users to obtain updated statistics reflecting dynamic
changes in the data (e.g., survival function updated with records from new enrolled individuals). During the entire process, the original
patient-level data never leave the secure enclave of the local sites.

Under such adversarial assumptions, the attacker has a strong
background knowledge about the data. The attacker may infer
the presence of a target individual in a specific group in the
study by observing how data are updated over time.

Differential Privacy. In this work, we aim at developing a
distributed data sharing approach to support accurate epidemi-
ological studies while satisfying differential privacy. In brief,
differential privacy guarantees that an adversary, who observes
the output results, cannot determine whether any individual
record was included in the input. This privacy model builds
on the concept of indistinguishability, which ensures that any
pair of datasets D,D′ differing in at most a single record
(i.e., neighboring datasets) should produce similar outputs.
Formally, a randomized algorithm A satisfies (ϵ, δ)-differential
privacy if for any two neighboring databases D,D′ and any
subset S ∈ Range(A) the following holds:

Pr[A(D) ∈ S] ≤ eϵ Pr[A(D
′
) ∈ S] + δ. (3)

The privacy parameter ϵ > 0, also known as the privacy
budget, bounds the difference between output probabilities of
neighboring databases, thus determining the level of indistin-
guishability. The parameter δ ∈ [0, 1) accounts for the proba-
bility of a privacy breach. In practice, ϵ and δ parameters help
data curators control the information leakage and usability of
the shared data. As an example, smaller values of ϵ and δ lead

to stronger privacy protection but may reduce data usability. In
our setting, we consider the privacy setting with δ = 0, which
is also referred to as ϵ-DP or pure DP. A variety of mechanisms
have been proposed to achieve differential privacy [29]. In
this work, we focus on the Laplace mechanism, in which
the original data are perturbed with calibrated random noise
sampled from a Laplace distribution prior to sharing.

Compared to previous studies, our problem setting poses
novel privacy and usability challenges. First, the analytic tasks
considered in this work are computed continuously as data at
local sites are updated over time. From a differential privacy
perspective, these continuous updates increase the privacy risk
compared to the static setting, as an adversary may observe the
contribution of an individual in the data over multiple releases.
As a result, achieving privacy in this continuous data sharing
scenario may inflict high utility loss, as shown in previous
privacy studies over data streams [22], [30]. Second, in our
distributed problem setting, we do not assume a central entity
who collects the aggregate statistics and performs perturba-
tion (e.g., injection of Laplace noise) to achieve differential
privacy, as considered in previous studies [17], [18]. A simple
application of the standard differential privacy at each local
site may result in poor usability, as the data perturbation from
all sites are accumulated in the final results. Protecting data
from each site without a trusted aggregator requires a new



solution that can strike the right balance between privacy and
usability.

C. Protocol Overview

In this study, we propose to employ a binary tree structure
for aggregating continuously updated local time-to-event data
at multiple sites. Conceptually, the binary tree recursively
decomposes the overall time-to-events into intervals; counts of
time-to-events in those intervals can be perturbed to achieve
differential privacy. In our previous work [19], we showed
that input perturbation according to the binary tree can enable
accurate Kaplan-Meier survival analysis in a static, centralized
setting, and the noise magnitude grows only logarithmically
with the length of the survival study instead of linearly. The
noise grows linearly if applying Laplace mechanism to time-
to-events at each time. In this work, we propose to maintain
a binary tree at each site, and updates of the intervals will
take place dynamically, as local data change over time. By
incorporating the updated statistics from distributed intervals,
we can effectively estimate the survival probabilities at any
time. The main steps in our proposed protocol are summarized
below.

• Initialization. All sites agree on a binary tree decompo-
sition of the overall study and initialize the tree locally.
Given a study over a time range T , we construct intervals
of variable lengths that are placed at different heights of
the binary tree. Specifically, intervals at height i comprise
2i time units, for i = 0, . . . , log(T ). While the binary
decomposition is common across all the sites, each site
will populate tree intervals with counts of the local time-
to-events that fall in each interval.

• Local Updates. Each party j maintains the updated
event counts in the local binary decomposition. As local
data may change (e.g., adding new patients), each site
applies our proposed differentially private algorithm to
adaptively determine which intervals need to be updated
and shared. Those intervals are also perturbed with fresh
random noise γj generated according to our distributed
noise generation mechanism. Then, using a homomorphic
secret sharing protocol, the updated noisy counts are
shared and aggregated across sites. As an example shown
in Figure 1, site 1 determines that x1,1 and x1,2 need to
be updated. The original counts are perturbed with noise
(x̂1,1 = x1,1+ γ1 and x̂1,2 = x1,2+ γ1), and then shared
via a secret sharing protocol.

• Aggregation and Survival Probability Estimation. The
partial shares are aggregated from each site to obtain the
updated counts in the overall data. With the distributed
noise generation mechanism, the aggregate counts in each
interval satisfies differential privacy. These counts are
used to estimate the Kaplan-Meier survival probability in
Equation (2). Continuing with the example in Figure 1,
the total number of time-to-events for the first 6 time
units, can be estimated via the perturbed counts of two

intervals and aggregated via secure sum among all the
sites as: Dec(

∑3
j=1 Enc(x̂j,1))+Dec(

∑3
j=1 Enc(x̂j,2)).

Finally, the overall differentially private survival results
are shared with external users.

III. METHODS

In this section, we present the proposed methods to support
continuous survival analysis in distributed epidemiological
applications while satisfying differential privacy.

A. Private Continuous Data Updates

In epidemiological applications, local data at each site may
change throughout the study duration. As an example, new
patients may contribute data to the study when there is a surge
of infections. Therefore, participating sites may need to update
the shared statistics to reflect those changes in the data. A naive
differential privacy solution would require sites to perturb local
statistics at every update, which may lead to overly-perturbed
results when data updates are frequent.

To this end, we propose to apply the Sparse Vector Tech-
nique (SVT) for reporting local updates with better utility.
Traditionally, the SVT method has been applied to improve
the usability of differential privacy in sparse data streams [31],
[30], [32], in which the total number of released statistics
is controlled while bounding the overall privacy loss. In this
work, we employ the SVT method in a distributed setting
to control the privacy loss at each site while enabling the
sharing of useful data updates. The SVT method is described
in Algorithm 1. Each site j at time t runs the SVT procedure
on the local binary decomposition to determine whether the
event count xj,i(t − 1) for the i-th interval released at time
t−1 needs to be updated. To determine whether a count needs
to be updated, we compare the updated count at time t with
the one at time t − 1 and the algorithm shares the updated
count if they are sufficiently different. Here, we use a threshold
Tj to decide whether the new count differs significantly from
the previous one. In practice, each site could have different
values and strategies for selecting Tj (e.g., depending on the
size of the intervals). As a rule of thumb, larger values of Tj

may reduce the number of shared updates, reducing the overall
privacy risk but potentially diminishing the utility of the shared
data. We set Tj = 11 for all j, following the privacy guidelines
in previous studies on binning and thresholding [33], [34].

In addition, Algorithm 1 enables each site to control the total
privacy leakage by limiting the number of shared updates (i.e.,
parameter c). As a result, our algorithm determines the most
useful data updates by comparing the current statistics with
those that have been previously released. Only updates that are
sufficiently different from the previous release are shared with
the addition of random noise γj to achieve overall differential
privacy (the choice of which will be discussed in the next
subsection).

B. Private Distributed Analysis

In the absence of a trusted central server, each site may
directly perturb local statistics with the Laplace mechanism



Algorithm 1 SVT for dynamically updating the interval count
xj,i(t) at site j. The variable ∆ denotes the sensitivity of the
query, which is 1 for count queries.

Input xj,i(t) Current count, xj,i(t−1) Previous count, #update
Number of updates shared

Output x̂j,i(t) Perturbed count
1: procedure SVT(xj,i)
2: ν ← Lap

(
∆
ϵ1

)
3: ρ← Lap

(
2c∆
ϵ2

)
4: γj ← G1(N, 1/ϵ3)− G2(N, 1/ϵ3)
5: qt ← ∥xj,i(t)− xj,i(t− 1)∥
6: if qt + ρ ≥ Tj + ν then
7: if #update ≥ c then
8: Abort
9: else

10: x̂j,i(t)← xj,i(t) + γj
11: #update ← #update + 1
12: end if
13: end if
14: end procedure

to achieve differential privacy. However, this simple solution
may lead to poor usability, as multiple noises from partici-
pating sites are combined in the final results. Intuitively, the
final noise magnitude grows with the number of participating
sites. To improve data usability, we propose a new solution
for distributed noise generation. The idea is that the noise
required to achieve differential privacy globally can be derived
by combining “small” noises generated locally at each site.
In other words, each site can inject a partial noise in the
shared statistics and once the partially perturbed results are
aggregated across sites, the final results satisfy differential
privacy. Distributed noise generation relies on the observation
that the Laplace distribution enjoys infinite divisibility [35], in
which a Laplace random variable can be obtained by summing
independent and identically distributed (i.i.d.) gamma random
variables [36]. In our protocol, noise generation is distributed
across N sites, where each site j perturbs the current local
statistics with γj = G1(N,λ) − G2(N,λ) prior to sharing,
where G1(N,λ) and G2(N,λ) are two i.i.d. exponential ran-
dom variables with parameter 1/λ = ϵ. When shared counts
by N sites are aggregated, the perturbed estimate of the global
statistics satisfies ϵ-differential privacy.

Because the partial noise alone may not suffice to achieve
differential privacy for the shared local updates from each site,
we need to add an additional layer of protection. To this end,
we will leverage secure aggregation described below to protect
the partially perturbed local counts shared by participating
sites. As a result, differential privacy can be achieved in a
distributed setting without a trusted aggregator.

C. Secure Aggregation

To aggregate the partially perturbed statistics from local
sites, we propose to leverage secure aggregation techniques to
compute the summation of the private counts x̂i =

∑
j x̂j,i.

Because some sites may be compromised or not following the
protocol correctly, it is important to provide robust privacy
protection to local sites. To this end, we adopt the homomor-

phic secret shares summation protocol proposed by Ranbaduge
et al. [37] in our problem setting. Below, we summarize the
main steps of the secure aggregation protocol with a running
example for the sum of counts for the time-to-events associated
with x̂i =

∑N
j=1 x̂j,i across all sites.

1) Each site j creates a private and public key pair
(skj , pkj). The public keys are shared among all sites.
The local perturbed count is decomposed into N shares
x̂j,i =

∑N
k=1 x̂

k
j,i. The local site encrypts each of

the N − 1 shares with the public key of the other
sites Enc(x̂k

j,i, pkk), while it keeps its own share (e.g.,
encrypting value 0 for its own share).

2) These shares are collected by a third party (e.g., cloud
service provider), which performs a summation on the
encrypted partial shares ηki =

∑
j ̸=k Enc(x̂k

j,i, pkk) +
Enc(0, pkk), and sends the encrypted partial sums to
the corresponding site, i.e., site k will receive ηki .

3) Each site k decrypts the partial shares received (using its
private key) and adds the share that was set aside in step
(1), ski = Dec(ηki , skk) + x̂k

k,i. The partial sums of the
k-th shares from each site ski are shared with the third
party, which aggregates them, computing the overall
aggregated count x̂i =

∑N
k=1 s

k
i =

∑N
k=1

∑N
j=1 x̂

k
j,i =∑N

j=1 x̂j,i =
∑N

j=1(xj,i + γj).
Then, the final statistics are obtained by combining the

shares. In this protocol, local statistics are aggregated without
requiring a trusted third party. Furthermore, with the homo-
morphic secret sharing technique, data security is guaranteed
even in the worst-case scenario. Specifically, based on the
results in [37], neither the third party nor a set of (N -2) sites
would be able to reconstruct the partially perturbed counts of
the non-colluding sites.

D. Overall Privacy Protection

In the privacy analysis, we break down the overall solution
in two parts: (1) privacy analysis of Algorithm 1 and (2)
privacy protection for the statistics aggregated from all sites.

Algorithm 1, which determines whether to update the local
counts by comparing them with a threshold, satisfies (ϵ1+ϵ2)-
differential privacy. The privacy guarantee follows the proof
of the original SVT approach in [32]. The protection for the
aggregated statistics (2) is achieved by securely combining
the noisy local statistics returned by Algorithm 1 via secure
aggregation.

Theorem 1. Let x̂i(t) =
∑N

j=1 x̂j,i(t) be the aggregate sum
of the perturbed counts of each site j. If x̂j,i is computed using
Algorithm 1, then x̂i(t) = xi(t) + Lap(1/ϵ3).

Proof. x̂i(t) is obtained by summing up all the estimates from
the N sites: x̂i(t) =

∑N
j=1 x̂j,i(t) =

∑N
j=1(xj,i(t) + γj) =∑N

j=1 xj,i(t) +
∑N

j=1(G1(N,λ)− G2(N,λ)). Then, applying
the result in [35], we have that

∑N
j=1(G1(N,λ)−G2(N,λ)) =

Lap(λ), and therefore x̂i(t) = xi(t) + Lap(1/ϵ3).

Therefore, the overall proposed solution satisfies (ϵ1+ ϵ2+
ϵ3)-differential privacy.



Discussion. In our protocol, the original patient-level data are
kept within the secure enclave of each site and only partial
statistics are shared over time to reflect dynamic changes
in local data. Compared to existing federated solutions for
epidemiological studies, our method allows sites to control
the overall privacy leakage over continuous updated releases.
Furthermore, the perturbation for achieving differential privacy
is fully decentralized with perturbed partial statistics that are
aggregated via a secure protocol, thus the overall computa-
tion can be performed without the need for a trusted third
party. Moreover, our protocol can be adapted to safeguard
privacy in the event of multiple parties failing to perturb
the local updates or leave the protocol. In fact, to ensure
differential privacy in final results even when M < N − 2
parties among N fail to participate in the protocol, we can
change the amount of partial noise injected by each site to
G1(N − M,λ) − G2(N − M,λ) [36], [38], [37]. Overall,
our approach provides participating sites with strong privacy
control over the shared data while preserving the usefulness
of the final survival results.

IV. RESULTS

In this section, we describe our evaluation methodology
and present empirical results. We aim at simulating a disease
surveillance setting, in which the Kaplan-Meier survival model
is applied to estimate the probability of discharge for patients
hospitalized with COVID-19 for different age groups. Our
simulations consider dynamic data changes over the duration
of the study (e.g., when new patients are hospitalized) and the
overall data are distributed across multiple sites.

Data. We use an epidemiological dataset for the COVID-19
outbreak [39], [40] collected from January 2020 to June 2020.
While the dataset contains more than 2 million records, many
of them have incomplete values. As a pre-processing step,
we drop records with missing values for county, age, and
gender, resulting in more than 550,000 records. Age may be
represented as a range of values for some records, in those
cases we replace the range with its mean. We further address
the missing admission time values for conducting Kaplan-
Meier analysis, by following the steps described in Nemati et
al. [41], [42]. The obtained dataset results in roughly 186,000
patient records, divided into four cohorts according to their
age: cohort 0 (0 ≤age≤ 35) with 60,160 patients, cohort 1
(35 <age≤ 46) with 17,711 patients, cohort 2 (47 <age≤ 60)
with 65,739 patients, and cohort 3 (age > 60) with 42,786
patients. The time-to-event in this dataset represents the patient
length-of-stay in days. We vary the number of participating
sites from 2 to 8. The default number of sites is 3, unless
specified otherwise.

General Usability Measures. To evaluate the usability of the
Kaplan-Meir survival curves, we report the difference between
the restricted mean survival time (RMST) between the curves
generated by our distributed privacy-protecting method and
those obtained with a centralized non-private approach (i.e.,

(a) Average RMST difference between survival curves over all
releases.

(b) MAE for the estimated number of records over all releases.

(c) Detailed MAE for the estimated number of records at each weekly
data release with different approaches and ϵ values.

(d) Overall number of shared records during each weekly data release
obtained in a non-private central setting.

Fig. 2: Usability of privacy-protecting survival curves with
different frequencies of data releases and values of the privacy
parameter. Results have been obtained with the overall data
distributed across three sites.



all data reside within a single site and no perturbation is per-
formed) [43]. Lower values of RMST difference indicate that
the computed curves are closer to the originals. Additionally,
we report the mean absolute error (MAE) on the estimated
number of reported cases during the duration of the study.

Approaches. In our evaluations, we consider two distributed
privacy-protecting approaches. First, we consider a baseline
solution named Distributed Differential Privacy (DISTDP), in
which each site perturbs the local data to satisfy differential
privacy and shares it with a (untrusted) central site. The central
site collects and aggregates the sanitized data from each site,
and then shares the overall data with external users. To protect
the local data, each site relies on the differentially private
solution that we have previously developed [19]. As demon-
strated in the original paper, our prior approach uses input
perturbation and binary decomposition strategies, which sig-
nificantly improve the usability of survival analyses compared
to traditional output perturbation approaches (e.g., Laplace
mechanism). Second, we consider the technique developed in
this work, named Homomorphic Secret Sharing Differential
Privacy (HSSDP), in which differential privacy is achieved in a
distributed fashion and data are aggregated via a homomorphic
secret shares protocol. Specifically, in this approach the overall
noise required to achieve differential privacy is generated in a
distributed fashion, enabling each site to introduce a smaller
amount of noise locally while achieving full differential pri-
vacy protection once all the data are aggregated. Both solutions
satisfy ϵ-differential privacy, where ϵ controls the level of
privacy protection. Their results are compared with respect
to a non-private centralized approach (i.e., single central site
and survival statistics are shared without privacy protection).

A. Impact of the Number of Data Releases

We vary the number of data releases to simulate different
frequency in data updates. Specifically, we consider survival
statistics that are updated: every other day (2 days), weekly
(7 days), bi-weekly (14 days), and monthly (31 days) over
a period of 6 months. Figure 2a and Figure 2b show that
our proposed solution achieves lower RMST difference and
MAE compared to DISTDP. We observe that for frequent
updates, the usability tends to slightly decrease (i.e., higher
RMST and MAE). Relaxing the privacy protection (i.e., larger
values of ϵ), can help reduce the utility loss. Given a fixed
differential privacy guarantee (i.e., fixed values of ϵ over the
entire length of the study), more frequent updates may lead
to larger perturbation for each update. Figure 2c illustrates the
detailed MAE for each data release for both methods, with two
different values of the privacy parameter. The results show that
larger values of the privacy parameter (i.e., weaker protection)
help reduce the error, leading to higher accuracy. We observe
that our proposed approach may have a larger error than the
baseline in the earlier data releases when data size is small (see
Figure 2d). In later releases, the error for our approach quickly
stabilizes, achieving significantly smaller error values than the
baseline (i.e., 10x smaller error). Overall, these results show

TABLE I: Log-rank test results with different values of privacy
parameters and weekly data releases.

Test Statistics
Cohorts

0 1 2 3

HSSDP

ϵ=4.0 8.10* 6.82* 0.01 0.18
ϵ=8.0 1.01 1.73 5.13e−7 1.29
ϵ=16.0 0.22 2.22 0.17 0.46
ϵ=32.0 0.51 1.03 0.81 1.34

DISTDP

ϵ=4.0 192.80* 423.87* 574.48* 247.72*

ϵ=8.0 313.29* 394.14* 141.87* 93.50*

ϵ=16.0 110.40* 84.66* 75.56* 21.33*

ϵ=32.0 55.70* 12.70* 68.37* 42.56*

* p-value≤ 0.05

TABLE II: Log-rank test results with different values of privacy
parameters with bi-weekly data releases.

Test Statistics
Cohorts

0 1 2 3

HSSDP

ϵ=4.0 1.15 5.35* 2.15e−4 0.49
ϵ=8.0 0.58 1.00 0.32 1.38
ϵ=16.0 0.50 0.64 0.60 0.83
ϵ=32.0 1.14 1.44 1.20 1.21

DISTDP

ϵ=4.0 13.03* 211.44* 283.18* 239.32*

ϵ=8.0 141.49* 8.38* 101.58* 90.22*

ϵ=16.0 53.08* 86.52* 87.76* 44.34*

ϵ=32.0 7.43* 1.10 11.56* 18.71*

* p-value≤ 0.05

that our proposed approach outperforms the baseline when
data updates are frequent and the adaptive updates may be
fine-tuned by considering information about the data size.

B. Test Statistics for Kaplan-Meier Survival Curves

Table I and Table II report the log-rank test statistics for the
final survival curves computed with different values of the pri-
vacy parameter against the non-private survival curves. Higher
test statistics indicate higher dissimilarity with the ground
truth. These results show that our proposed privacy solution
significantly outperforms the baseline approach, enabling the
computation of highly useful survival curves for each cohort.
We observe that as privacy is relaxed (i.e., larger values of ϵ),
the performance of both privacy-protecting methods tend to
improve. Also, less frequent releases can improve the accuracy
of the privacy methods. Example survival curves obtained with
non-private data and two privacy approaches are presented in
Figure 3. Overall, we observe that our proposed method is able
produce survival results that resemble the non-private results
in most settings.

C. Varying the Number of Data Updates

In Figure 4, we report the results obtained with HSSDP
when we bound the total number of updates allowed by a
local site (i.e., c in Algorithm 1). We express this value as
a fraction over the study duration. As an example, we have
at most 21 possible weekly updates for a period of roughly
6 months. As the number of maximum updates decreases,



Fig. 3: Example of the final survival curves obtained with bi-weekly releases and privacy parameter ϵ = 16.0. From left to
right the discharge curves computed: in a centralized non-private setting, using our privacy-protecting distributed approach
(HSSDP), and using the aggregation of differentially private results from each site (DISTDP).

(a) Average RMST difference between the survival curves.

(b) MAE for the estimated number of records.

Fig. 4: Usability of privacy-protecting survival curves obtained
with our proposed method (HSSDP) with different maximum
numbers of allowed data updates and values of the privacy
parameter. We varied the fraction of maximum allowed up-
dates from 20% to 100% of the possible weekly and bi-weekly
updates of local sites.

each site may share local data less frequently with other sites.
Overall, we observe that the utility may not monotonically
increase with more frequent updates. On one hand, a larger
fraction of allowed updates enables sites to share more up-to-
date statistics. On the other hand, increasing the number of
updates may lead to higher perturbation noise to each update.
As an example, Figure 4b shows that a good privacy-usability
trade-off is achieved when the maximum number of allowed

updates is 60%-80% of the overall periods (e.g., 12-16 weekly
updates among 21 weeks). In practice, it may be challenging
to find the best value for the maximum number of allowed
updates, as the data dynamic may vary greatly across site.

D. Scalability

We evaluate the impact of the number of parties on the
usability and scalability of our proposed approach. Figure 5
shows that our proposed approach is less sensitive to changes
in the number of parties. Specifically, we observe that the
distributed noise generation mechanism used in our HSSDP
solution significantly improves the utility. This is because in
HSSDP the required noise is distributed to multiple sites,
while in DISTDP each site perturbs their data with the full
noise, thus introducing a larger perturbation in the overall
data, especially when the number of parties grows. Lastly, we
notice in Figure 6 that despite the improvement in usability
and privacy protection, HSSDP may inflict some run time
overheads. While the secret sharing technique provides a
safeguard against colluding malicious parties in the protocol,
the running time increases with the number of parties in our
HSSDP approach. For DISTDP, the running time is insensitive
to the number of sites, as the overall data aggregation does not
rely on communication rounds between parties.

V. DISCUSSION AND FUTURE WORK

In this work, we focused on survival analysis for COVID-19
cases where our evaluations have been conducted on horizon-
tally partitioned data. However, in some settings, epidemiolog-
ical studies may be conducted on vertically distributed data,
where covariates of the same patient are stored at different
sites (e.g., genetic markers in one site and clinical data in
another). Extending our proposed technique to those settings
poses new challenges. Among them, it is not straight-forward
to adapt the differential privacy model to address the privacy
risks associated with data of the same patient across multiple



(a) Average RMST difference between the survival curves.

(b) MAE of the estimated number of records.

Fig. 5: Impact of the number of parties on the usability of
the proposed approach. Results have been obtained with bi-
weekly data released and privacy parameter ϵ = 8.0.

Fig. 6: Average running time of the HSSDP protocol during
each data update.

sites. As a future work, we plan to investigate the applicability
of generalized differential privacy models to provide provable
privacy guarantees while improving usability [44].

In our proposed solution, we leverage cryptographic tech-
niques to enable local sites to collectively compute accurate
differential privacy results without relying on a trusted server.
However, a strong adversarial model may inflict significant
overheads due to the complexity of cryptographic primitives,
as shown in run time results. One possible future research
direction is to investigate more practical adversarial models.
As an example, it may be helpful to consider realistic col-
laborative research settings where most participating sites will
faithfully follow the protocol. Under such adversarial models,
new privacy approaches could be designed to provide more
usable privacy protection.

In recent years, we have witnessed a significant adoption
of machine learning technology in health applications. As an
example, emerging deep learning models for epidemiological
studies can provide superior predictive performance compared
to well established approaches [45], [46], including Kaplan-
Meier and the Cox models. While there are benefits in the use
of machine learning techniques, there have also been increased
privacy concerns (e.g., membership disclosure of individuals
in the training set) due to model memorization [47]. This work
studied the privacy implications for Kaplan-Meier survival
analysis. Despite the simplicity of the model, our results
show that it is challenging to find the right balance between
privacy and usability in practice. Overall, our findings provide
important insights for future privacy research on advanced
machine learning based survival models that could facilitate
large-scale epidemiological applications.

VI. CONCLUSION

Effective disease surveillance systems rely on data that ac-
curately reflect the evolving situation at each local site. In this
work, we have proposed a new distributed privacy-protecting
solution that facilitates the integration of such dynamic data
from local sites to support collaborative epidemiological stud-
ies (i.e., Kaplan-Meier survival analysis). Compared to ex-
isting work, our solution enables continuous survival analysis
and provides strong privacy control to participating sites while
preserving data usability.
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