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ABSTRACT

Measuring spatial accessibility to healthcare resources and facilities
has long been an important problem in public health. For example,
during disease outbreaks, sharing spatial accessibility data such
as individual travel distances to health facilities is vital to policy
making and designing effective interventions. However, sharing
these data may raise privacy concerns, as information about indi-
vidual data contributors (e.g., health status and residential address)
may be disclosed. In this work, we investigate those unintended
information leakage in spatial accessibility analysis. Specifically,
we are interested in understanding whether sharing data for spatial
accessibility computations may disclose individual participation
(i.e., membership inference) and personal identifiable information
(i.e., address inference). Furthermore, we propose two provably
private algorithms that mitigate those privacy risks. The evaluation
is conducted with real population and healthcare facilities data
from Mecklenburg county, NC and Nashville, TN. Compared to
state-of-the-art privacy practices, our methods effectively reduce
the risks of membership and address disclosure, while providing
useful data for spatial accessibility analysis.
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1 INTRODUCTION

Spatial accessibility to resources and facilities has been of great
importance in public health [4, 10, 15, 17, 19, 28, 31]. For example,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGSPATIAL °23, November 13-16, 2023, Hamburg, Germany

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0168-9/23/11...$15.00
https://doi.org/10.1145/3589132.3625656

Luca Bonomi
luca.bonomi@vumc.org
Vanderbilt University Medical Center
Nashville, TN, USA

understanding spatial access to healthy foods (e.g., grocery stores
that sell fresh fruits and vegetables) could help reduce the risk of
obesity and other chronic diseases and guide the development of
progressive intervention strategies [4, 15]. Similarly, enhancing spa-
tial accessibility of primary care may improve overall population
health and benefit disadvantaged populations, e.g., in hyperten-
sion awareness and control [10, 17, 32]. Recently, the COVID-19
pandemic has seen healthcare resources (e.g., hospital beds, venti-
lators, testing resources) overwhelmed in a number of countries.
Understanding the spatial accessibility for COVID-19 patients and
population at risk has been crucial for allocating healthcare re-
sources efficiently and effectively [13, 14, 22].

The two-step floating catchment area (2SFCA) method is widely
used to measure spatial accessibility [10, 19]. It defines a “catchment
area" for healthcare facilities such that individuals residing within
the catchment area have utilization. The catchment is based on
the travel distance! between the residential location and the facil-
ity location. Several variants of 2SFCA (such as E2SFCA [18] and
G2SFCA[31]) have been proposed to incorporate distance decay,
i.e., increasing travel distance would lead to less utilization.

However, sharing spatial accessibility data, e.g., travel distances
to healthcare facilities, may raise individual privacy concerns. To
our best knowledge, it has not been studied whether releasing those
travel distances would result in unintended information leakage.
One example of information leakage is membership leakage, where
an individual’s participation in a dataset can be inferred. In the
context of spatial accessibility, membership would disclose sensi-
tive information about the target individual, such as COVID-19
or diabetes diagnosis. Another example of information leakage is
personal identifiable information (PII), as defined by the HIPAA de-
identification standard. The disclosure of PII, such as name, ID, and
street address, may incur severe damages to the target individual
and the data publisher.

In this paper, we investigate unintended information leakage in
sharing spatial accessibility data and propose privacy-enhancing
methods to mitigate such leakage. The specific contributions of this
work are:

o We formulate two privacy risk measures to quantify privacy
risks associated with sharing spatial accessibility data. Intu-
itively, membership inference estimates a public individual’s
participation in the protected dataset; address inference esti-
mates the residential street address of an individual in the
protected dataset.

e We propose two private methods to release spatial accessi-
bility data at the individual level, for travel distance to the

!catchment can also be defined by travel time; travel distance is adopted in this work
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nearest facility and travel distances to all facilities, respec-
tively. We prove that both methods satisfy metric privacy,
a generalized notion based on differential privacy; and re-
leasing only distance to the nearest facility offers significant
privacy savings.

e We conduct empirical evaluation with real population data
and healthcare facilities data from Mecklenburg county, NC
and Nashville, TN. We examine the feasibility of releasing
spatial accessibility data with regard to both accuracy and
privacy leakage; we further conduct a case study on spatial
accessibility for COVID-19. Results show that our methods
provide useful data for spatial accessibility analysis while
providing strong privacy protection.

The rest of the paper is organized as follows: Section 2 briefly
reviews recent literature most related to this work; Section 3 de-
scribes the problem setting, introduces travel distance-based spatial
accessibility analysis, and presents exploratory analysis on travel
distances in real datasets; Section 4 presents the definition of metric
privacy, the proposed privacy methods, and theoretical guarantees;
Section 5 presents two empirical privacy risk measures; Section 6
discusses empirical results; Section 7 concludes the paper with
several working directions for future research.

2 RELATED WORK

Location Privacy. Location privacy has been extensively studied
in literature, with a plethora of location data sharing methods to
enable location-based applications, such as crowd-sourcing [25, 30],
social networks [9, 16], and transportation [24, 26]. Recently, several
surveys and empirical studies [7, 8, 11, 23] have categorized and
analyzed existing methods. However, we do not consider this work
as developing location privacy methods. As discussed later in detail,
we adopt a practical assumption in which residential locations may
be publicly available, e.g., via voter registration data; the privacy
risks lie in the inference of individual participation in a protected
dataset and the inference of residential addresses for those in the
protected dataset. Interestingly, our work may be analogous to the
technique of trilateration [29] (or multilateration), which estimates
the target position by the distances between the target and a number
of reference points (e.g., receivers). However the travel distances in
our problem setting may be more challenging to model, as they are
constrained by physical road networks.

Differential Privacy. Differential privacy (DP) [5] has become
the state-of-the-art paradigm for privacy protection in statistical
databases. It assumes a trusted data curator is responsible for data
aggregation and guarantees that an adversary who observes the
output results is not able to decide whether a particular record is
included in the input database. While classic DP has been widely
adopted for sharing dataset-level statistics, recent studies employ
the local DP notion (LDP) in order to share individual-level data.
LDP mechanisms can be built on randomized response techniques [6,
12], which provide strong privacy protection (i.e., in input indis-
tinguishability) but may incur high utility loss. A generalized pri-
vacy notion, metric-based privacy [3], has been proposed to re-
lax the privacy guarantees and to improve data utility, whereas
the indistinguishability guarantee depends on the distance be-
tween input secrets (by a specific metric). It has been shown that
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differential privacy is a special instance of metric privacy. Geo-
indistinguishability [1] is another application of metric privacy
in 2D space. In this work, we adopt the metric privacy notion to
protect the privacy of individual data contributors, while enable
accurate computation of spatial accessibility.

3 PRELIMINARIES
3.1 Overview

Our solution aims to enable the analysis of spatial accessibility by
public health researchers, with individually contributed travel dis-
tances. The proposed problem setting is presented in Figure 1. As
an example, a public health study is interested in analyzing the spa-
tial accessibility to healthcare resources for a specific cohort (e.g.,
COVID-19 or diabetic patients), in order to design effective inter-
ventions. Healthcare providers may share travel distances for those
patients in the cohort to support the analysis. In the next section, we
will discuss in detail how patient distance vectors are instrumental
in spatial accessibility computation. Essentially, a patient’s distance
vector contains the travel distance from the patient’s residential
location to every hospital considered by the study.
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Figure 1: Problem Setting: private computation of spatial accessi-
bility scores, e.g., for COVID-19 or diabetes patients.

A proposed privacy mechanism will sanitize each patient’s dis-
tance vector and generate a perturbed vector; those perturbed vec-
tors are shared with public health researchers for spatial accessibil-
ity computation (i.e., using a two-step approach as described in the
next subsection). Note that we assume that a trusted data curator
(e.g., healthcare providers) or a trusted personal device is available
to run the proposed privacy protection mechanism. We will show
that our proposed privacy methods only involve additive noises,
which have low computational requirements.

We also consider a simplified setting for spatial accessibility,
which requires only each individual’s travel distance to the nearest
hospital, as in a recent large-scale study [32]. In that case, the
privacy mechanism generates a “noisy" shortest distance given a
patient’s distance vector, and public health researchers compute
aggregate statistics of the noisy shortest distances, e.g., mean and
standard deviation, as opposed to the two-step spatial accessibility.

3.2 Travel Distance-based Spatial Accessibility

In this section, we introduce a commonly used spatial accessibil-
ity measure, which is based on individuals’ distance vectors, i.e.,
travel distances between an individual residence and every hospital
considered in the study. Spatial accessibility captures the spatial
interactions between the amount of supplies (e.g., the number of
hospital beds, parks, healthy food stores) and demands along with
the distance between the locations of health resources and those of
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residential addresses. While spatial accessibility has been largely
studied at area level, recent research has increasingly adapted spa-
tial accessibility to individual-level analysis [2, 15, 17], to capture
the individual variations in spatial access.

The two-step floating catchment area (2SFCA) method is one of
the most widely used methods for measuring spatial accessibility to
healthcare resources [20, 31]. Particularly, the generalized 2SFCA
framework (G2SFCA) [31] accounts for distance decay, such that
an increase in distance would lead to less service utilization. The
G2SFCA method measures spatial accessibility in two steps and
generates a score for spatial accessibility. A higher score indicates
better accessibility.

In the first step, the G2SFCA method evaluates the catchment
area of each facility, estimates the overall demands in the catchment
area, and then generates the service-to-population ratio for each
facility. In the second step, for each individual, the G2SFCA method
identifies the facilities with the catchment area within which the
individual lives and sums up the service-to-population ratios of all
these facilities. A distance decay effect was assumed in both steps.

Specifically, for facility i, let S; denote its capacity of supply (e.g.,
the number of hospital beds) and let d. ; denote the spatial distance
between the residential address of individual k and the location
of facility i. We further define the catchment area by imposing a
threshold 6 on the spatial distance. The service-to-population ratio
of facility i is thus:

Ri= > 8
" Skefda<oy T fldrn)
For individual k, the spatial accessibility score is computed as:
SAk= D, Ri-fldks). @

ie{dy;<0}

Note that in both equations above, f is the distance decay function,
which can be defined as:

flde) =d? 3)

where f > 0.

As can be seen, an important prerequisite to computing the
spatial accessibility scores is every individual’s spatial distance to
each facility, i.e., di ;’s. Let n denote the total number of facilities. We
simplify the notation in the following whenever only one individual
is concerned: each individual has a pre-computed distance vector
x = {x1,X2,...,%n}, where each x; denotes the individual’s travel
distance to facility i. In this study, all travel distances are computed
as shortest routes on real road networks.

3.3 Exploratory Studies on Travel Distances

We present two exploratory studies to illustrate potential informa-
tion leakage as a result of sharing travel distances. The following
studies are conducted with population and healthcare facility data
of Mecklenburg county, NC and Nashville, TN, the detail of which
can be found in the Experiments section.

Distance to Nearest Hospital by Zip-code. Figure 2 plots the dis-
tribution of travel distances to the nearest hospital for individuals
in each zip-code. We observe in both datasets that: (1) it is rare that
two zip-codes have identical distributions; (2) some zip-codes have
larger probability masses over certain ranges than other zip-codes
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(e.g., 28278 and 37080 in high distance ranges). Those observations
indicate that travel distances to healthcare facilities may leak in-
formation about residential location, e.g., zip-code. For instance,
if a Nashville individual must travel more than 20000 meters to
reach the nearest hospital, it is very likely that the individual lives
in zip-code 37080.
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Figure 2: Spatial travel distance (in meters) to the nearest hospital
by zip-code.
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Figure 3: Zipcode inference by spatial distances to a number of
healthcare facilities.

Zip-code Inference with Known Travel Distances. In the fol-
lowing, we explore the information leakage associated with re-
leasing distance vectors. Specifically, we would like to answer this
question: if knowing an individual’s travel distances to k hospitals,
how likely to infer the zip-code in which the individual lives? To
conduct this study, we form a public, population dataset B and a
protected dataset D where D C B, to simulate a subset of individu-
als participating in a spatial accessibility study. Data sources and
characteristics are described in detail in the Experiments section.



SIGSPATIAL °23, November 13-16, 2023, Hamburg, Germany

We generate a probability distribution of travel distances to each
hospital in every zip-code using public data B. Given k, we ran-
domly select k hospitals (i.e., a query), and estimate the zip-code
for every individual in D with the most likely zip-code, which max-
imizes the joint probability of observing the travel distances to
selected hospitals. We run 50 queries for each k (except for k = 1%)
and report the accuracy results in Figure 3. The baseline accuracy
with random guessing is chod&s' It can be seen that knowing
the travel distance to one specific hospital leads to above 30% ac-
curacy for zip-code inference for both datasets. When increasing
the knowledge to two hospitals, the accuracy grows to around 60%.
It requires only distances to 4 hospitals for Mecklenburg and 5
hospitals for Nashville to reach above 80% accuracy.

Those results illustrate that sharing travel distances may leak
information about individuals in the spatial accessibility study. That
motivates us to develop provably private methods for sharing travel
distances (in Section 4) and empirical privacy risk measures with
powerful adversaries (in Section 5).

4 PRIVATE METHODS

In this section, we propose provably private algorithms to release
travel distances for spatial accessibility studies. Specifically, we fo-
cus on sharing two computations: the first is the distance vector, i.e.,
travel distances from the input location to all facilities considered,
which will be used to compute the spatial accessibility scores using
variations of the 2SFCA method; the second is an input location’s
distance to the nearest facility, which will be aggregated as in [32].
While the latter is based on the former, we will show that it can be
reported with significantly less privacy cost.

4.1 Metric Privacy

We first introduce the notion of metric privacy, which is adopted
by our proposed privacy algorithms. In fact, differential privacy [5]
has been widely adopted to protect individual records in statistical
databases. Provable privacy protection is achieved with randomized
mechanisms to provide a given level of indistinguishability between
neighboring databases. However, a more general privacy notion
is needed for sharing individual-level data, e.g., protecting input
secrets which belong to an arbitrary domain. In such scenarios,
it is meaningful to define a distance metric between secrets and
guarantee a level of indistinguishability proportional of the distance.
In [3], the authors extended the principle of differential privacy to
arbitrary metrics. Let X denote an arbitrary set of secrets with a
metric d .

Definition 4.1. [3] A mechanism K : X — P () satisfies d x-
privacy, if and only if Vx, x” € X

K(x)(Z) < e XK (x')(2) VZ e Fz (4)

where Z is a set of outcomes, ¥ is a o-algebra over Z, and P(Z)
is the set of probability measures over Z.

Intuitively, K(x)(Z) denotes the probability of mechanism K
reporting Z given input x. With this generalized definition, a private
mechanism K can be defined on any domain X and Z. The authors
of [3] argued that d y can be derived by scaling a standard metric by

Zfor k = 1, we run a query for each hospital in the dataset.
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a factor €. For example,dy =€ - dp where dp denotes the lp metric.
Furthermore, the authors showed that standard differential privacy
is a special case of Def. 4.1, where dy = € - dj, and d}, denotes the
Hamming distance between databases.

It is worth noting that geo-indistinguishability [1] is another
instance of metric privacy. Specifically, the authors [1] proposed
the Planar Laplace mechanism to randomize latitude and longitude
coordinates, which satisfies the requirement of Equation 4 with dx
being the standard 2D Euclidean distance. In our empirical evalua-
tion, we consider the Planar Laplace mechanism as an alternative
solution, in which an individual’s residential location is randomized
first and the distance vector is computed based on the perturbed
location.

4.2 Report Noisy Min Distance

Recall that for each individual, we can pre-compute a distance vec-
tor x = {x1,x2,...,xn} € R", where x; denotes the individual’s
travel distance to the i-th facility from home. Below, we present
a randomized mechanism in Algorithm 1 to report the individ-
ual’s distance to the nearest facility privately. Specifically, given
parameter €, each x; is perturbed with a random noise drawn from
Laplace distribution with 0 mean and 1/¢ scale; the facility index
corresponds to the noisy shortest distance is reported. This algo-
rithm has been inspired by the Report Noisy Max procedure for
histograms [5], which satisfies standard differential privacy. It is
important to note that the n noisy distances will not be released,
except for the “winning” noisy distance which can be released at
no extra privacy cost.

Algorithm 1 Report Noisy Min

Input: distance vector x = {x1,x2, ..., X}, privacy parameter €
fori=1---ndo
Xi < xj + Laplace(0,1/¢)
end for
imin ¢ argmin X;
i=1---n
Output: index of the noisy shortest distance ipin

The following theorem shows that our algorithm satisfies (e - dj)-
privacy on R", where d; denotes the L metric.

THEOREM 4.2. Report Noisy Min satisfies (€ - di)-privacy, where
dq denotes the Manhattan Distance (or L; metric) for input vectors.

ProoF. Let x = {x1,x2,...,xn} and x’ = {x{,xé, ..., x,} denote
any two input vectors and x,x” € R™. Let r; denote the random
noise added to the i-th distance, Vi. Fix any i € {1,...,n}, we will
bound the ratio of the probabilities that i is selected by Algorithm 1
with x and with x”. Let r_; denote a draw from [Laplace(0, 1/€)]*!
used for all the noisy distances, except for the i-th distance. We will
argue for each r_; independently. The notation Pr[i|e] denotes the
probability that the output of Algorithm 1 is i, conditioned on e.

We define r* = max : x; +r; <xj+rj,Vj# i. Having fixed r—;,
i will be the output é)f Algorithm 1 when input vector is x if and
only if r; < r*, ie., Pr[ilx,r—;] = Pr[r; < r*].

By definition of r*, we have:

xi+rt <xj+riVj#i (5)
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S xj+rt = (0 —xi) +xi 1" < (xf—x) +xj+r 0 (6)
_ 2 ’ 7
= (x; = xi) + (xj = X)) +x; +7j
< |fo—xi|+|x}—xj|+x;-+rj\7’j¢i
Hence, if ry < r* = |x] = xi| =[x} = x| Vj # i, we have x] +r; <

J

x} +rjVj # i. Furthermore, if r; < r* — d;(x,x"), we have

n
ri <r*—Z|x}—xj| <t = x =il = X - x| Vi # i (7)
=

Thus, if r; < r* —di(x,x”), Algorithm 1 will report the i-th dis-
tance when input vector is x” and the noise vector is (r;, r—;), i.e.,
Prlilx’,r—i] = Pr[r; < r* —dy(x,x")].

As ri ~ Laplace(0, 1/€), the following probabilities yield:

Prli|x, r—;i] Pr[r; < r¥] ®
Prli|x’/,r—;] = Pr[r; <r* —di(x,x")]
3 exp(e-r")
~exple- (r —di(x,x)))
=exp(e - di(x,x")).
m|

4.3 Distance Vector Laplace

To release the entire distance vector privately, we propose Algo-
rithm 2 that adds Laplace noise to each distance. We show in Theo-
rem 4.3 that the algorithm achieves (n - € - dj)-privacy on R”.

Algorithm 2 Distance Vector Laplace

Input: distance vector x = {x1,x2, ..., X}, privacy parameter €
fori=1---ndo
X;i < x;j + Laplace(0,1/¢)
end for
Output: noisy vector X = {%1,X2,...,%n}

THEOREM 4.3. Distance Vector Laplace satisfies (n- € - dq)-privacy,
where d; denotes the Manhattan Distance (or L1 metric) for input
vectors.

PRrOOF. Let x = {x1,%2,...,x,} and x’ = {x{,x’, ....xp} denote
any two input vectors and x, x” € R™. Let Pr[%|e] denote the prob-
ability of Algorithm 2 reporting x, conditioned on event e. We will
show for any output X = {X1, Xy, ..., Xn}, the ratio of probabilities
of Algorithm 2 reporting £ with x and with x” can be bounded.

Let {r;} and {r;} denote the noise vectors drawn for x and x’ re-
spectively. As noise added to each distance is independently drawn
from Laplace(0, 1/¢€), we have:

n

Prx|x] _ rl Prlri = xi = %] _ " exp(—e - |xi — %il) ©
Pr[x|x’] i Pr(r] = x| — %] - exp(—e - |x] — %i])
n
= [ Jexp(e- (1x} - 2l - Ixi - 2:1)
i=1

exp(n-€) - exp( ). (Ix] = &l - |xi = %i[))
i=1

exp(n-e)- exp(z |xlf —xi|) = exp(n-e-di(x,x"))

i=1

IA

]
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5 EMPIRICAL PRIVACY MEASURES

Beyond theoretical guarantees, it is important to understand the
level of practical privacy protection offered by our algorithms. In
practice, spatial accessibility is evaluated for a set of participants
who enrolled in a study; the distance vector or shortest distance
can be either reported by the participant or computed by a trusted
curator with the participant’s residential address. In this section,
we discuss two adversarial inferences that can be conducted by
observing the shortest distance or distance vector. Similar to [27],
we assume that study participants may be present in other publicly
available data (i.e., attacker’s background knowledge), such as voter
registrations and open source datasets. In the following, we denote
the set of study participants as D and the set of public individuals
as B (such as voters), where D C B.

Membership Inference. A common privacy leakage is member-
ship inference, in which an individual’s participation in D is dis-
closed. In spatial accessibility studies, an individual’s participation
may leak sensitive health information, such as hypertension [17],
COVID-19 [13], and diabetes [4]. As a result, membership inference
may present a severe privacy risk to study participants.

By observing the released computations (either shortest distance
or distance vector) for individuals in D, an informed adversary
may launch the following membership inference attack against a
target individual ¢ € B, in order to estimate whether ¢ participates
in D. Depending on the type of computation observed for D, the
adversary computes the distance vector x? (or distance to nearest
facility xfm.n) for the target individual using the real residential
address of t found in public data. The adversary then finds the
best match among individuals in D to ¢, i.e., with a distance vector
most similar to x? (or shortest distance most similar to xfm.n) 3
When there is a tie, one candidate is randomly chosen to be the best
match for ¢, and the dissimilarity score is recorded for the match.
Essentially, the match is recorded as (t, s, dissim(¢, s)), where ¢ € B,
s € D, and dissim(t, s) is computed for x* and x* (or x’tm.n and x3 . ).
The adversary repeats the same process for every target individual
in B, generating |B| matches along with dissimilarity scores, and
selects |D| matches with the lowest dissimilarities. To quantify
the success of membership inference, we report the percentage of
targets in the selected matches who actually participate in D.

Intuitively, the proposed membership inference may be more
successful if all individuals in B (thus D) have unique distance
vectors or shortest distances and are matched to themselves during
inference. As a counter example, assume one participant s € D lives
in an apartment building or shares a house with others. During
inference, multiple individuals in B having the same travel distances
as s could be matched to s with a dissimilarity score 0. The result
of the membership inference is less accurate due to those false
positives. While we cannot modify the geospatial distribution or
population density in residential areas, we hypothesize that one
effective solution to mitigate membership inference is to modify the
released computations for D, such that targets in B are not matched
to themselves during inference.

Address Inference. Residential addresses, such as street address
and city, are considered identifiers of individuals and should not

3When measuring the dissimilarity between two distance vectors, the adversary may
use Ly, Ly, or Dynamic Time Warping distances.
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be shared according to HIPAA’s Safe Harbor method. Therefore it
is important to understand the risk of address inference for study
participants in D, in order to protect their privacy.

In address inference, the goal of the adversary is to estimate
the street address of a target individual ¢ in D, upon observing the
released computations for D. For every public individual s € B, the
adversary computes the distance vector x° (or shortest distance
x} ;) using the real residential address of s. For a target individual
t € D, the adversary then finds the best match among all individuals
in B, based on the measure dissim(t, s) also used for membership
inference. The address of ¢ is then estimated with the residential
address of their best match. We adopt two quantitative measures to
assess the risk of address inference. The first reports the percentage
of participants in D whose street address is accurately inferred. The
second reports the inference error (in meters) between the target’s
address and the estimated address, averaged among all participants
in D.

Unlike membership inference, address inference may be success-
ful even if a target individual ¢ in D shares the same street address
with multiple individuals in B. In that case, t would be matched to
a fellow resident in B and the estimated street address would be
accurate . We hypothesise that modifying the released computa-
tions for participants in D will be a effective defense for address
inference, as a target may be matched to a public individual with a
different address during inference.

6 EXPERIMENTS

Data. The empirical evaluation adopts real population data of Meck-
lenburg county, NC and Nashville, TN. Voter registration data for
Mecklenburg county is obtained from the North Carolina State
Board of Elections, which contains the voter’s name, registration
status, street address, city, zip-code, along with other attributes.
Open-source address data for Nashville is obtained from OpenAd-
dresses [21], which contains distinct street addresses, zip-codes, and
latitude/longitude coordinates. During pre-processing, we discard
zip-codes with fewer than 1000 records in both datasets and further
discard zip-codes dedicated to university campuses in Mecklenburg
county (as individuals tend to use the same university address).
The remaining zip-codes include 31 for Mecklenburg county and
20 for Nashville. Those zip-codes and their estimated boundaries
are depicted in Figure 4. We randomly select 1000 records from
each zip-code to form the final processed data. Hospital listings are
obtained from the NC Division of Health Service Regulation and
the TN Department of Health. We retrieve 21 hospitals for Mecklen-
burg county (in Mecklenburg and surrounding NC counties) and
16 hospitals for Nashville (in Davidson and Williamson counties).
Hospital locations are highlighted in star in Figure 4.

Geocoding and Routing. Hospital addresses and individual resi-
dential addresses are geo-coded with Nominatim. Travel distances
in meters between individual address and each hospital are retrieved
using OSRM APIs in driving mode. Both Nominatim and OSRM are
based on OpenStreetMap data.

4Unit or apt. numbers are omitted in this study
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Approaches. Let the complete processed data denote the public
data B, which contains 1000 records from each zip-code in Mecklen-
burg county and Nashville. To simulate a small subset of individuals
participating in research studies, we form D by randomly sampling
20 individuals from each zip-code in each dataset. The following
approaches are applied to individuals in D to enhance the privacy
of spatial accessibility studies. Among them, we consider GeoInd
and Clutering as input perturbation approaches for perturbing
the residential locations, and Rounding and our methods as output
perturbation approaches for perturbing the distance vectors directly.

e Geolnd [1]: the Planar Laplace mechanism with parameter
€ is applied to the residential location of each individual in
D; the released distance vector and shortest distance of the
individual are computed according to the perturbed location.

o Clustering: we devise this approach to generalize individual
residential locations. We place residential locations in B into
clusters of at least size k. For each individual in D C B, we
perturb their residential location with the medoid of the cor-
responding cluster. The released distance vector and shortest
distance of the individual are computed according to the per-
turbed location. With this approach, the adversary may not
distinguish an individual from others in the same cluster.
For empirical evaluation, we adopt hierarchical clustering
with Euclidean distance, while other clustering methods and
distances may also be adopted.

e Rounding: a common privacy-enhancing practice is to reduce
the precision of released data. We apply rounding to the
distance vectors and shortest distances for individuals in D
such that only approximate information is preserved. For
example, the spatial distance will be reported as multiples
of a spacing parameter s, such as kilometers or miles. We
assume that the adversary performs the same rounding on
B in order to improve its inference success.

e Ours: we apply the proposed methods in Section 4 to indi-
viduals in D, denoted by RNM for releasing shortest distances
and DVLaplace for releasing distance vectors. Both methods
are associated with the privacy parameter e.

Note that we repeat each experiment below for 20 runs to report
average results and D is sampled independently for each run. We
assume an informed adversary who knows the zip-code of each
individual in D and thus can focus on the corresponding zip-code
in B during inference.

S

(a) Charlotte - Mecklenburg (b) Nashville

Figure 4: Studied Zip-codes and Hospitals (shown in red stars) in
Two Datasets.
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6.1 Distance to Nearest Facility

We first examine the feasibility of privately releasing an individ-
ual’s travel distance to the nearest healthcare facility. Results of
Mecklenburg are discussed below and results of Nashville can be
found in Appendix. In Figure 5, we report the MAE (mean absolute
error) of the noisy shortest distances for individuals in D, with
respect to their real shortest distances. We observe that stronger
privacy levels (i.e., lower €, higher s and k) incur higher accuracy
loss for each method. Rounding incurs a predictable MAE around
s/2 with s being the spacing parameter. Both RMN and GeoInd incur
low MAEs (< 1m) with € = 1 or 2, as those randomized mecha-
nisms introduce little noise to the input distances or coordinates.
For high privacy settings, with € = 0.001 or 0.01, GeoInd incurs
higher MAEs than RMN, which indicates a higher impact on accuracy
for perturbing input locations. Lastly, increasing k for Clustering
steadily increases the MAE from 50m (k = 2) to 860m (k = 100),
and the amount of errors may depend on the density and spatial
distribution of the population.
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Figure 5: MAE (in meters) for Releasing Shortest Distances - Meck-
lenburg

Figure 6 reports the results of membership inference and address
inference, using the shortest distances released by each privacy
method for individuals in D. In addition, the baseline risk for each
inference is included, denoted by Random, in which the adversary
randomly pick individuals without considering the released shortest
distances. Specifically, the baseline membership inference risk is
2% which is the ratio between |D| and |B|; however, the baseline
address re-identification risk and address inference error depend on
the density and spatial distribution of the population, e.g., number
of individuals in the same household and number of units per
acre. Increasing the privacy levels (i.e., lower ¢, higher s and k)
will lead to lower membership inference risks, lower address re-
identification risks, and higher address inference errors. GeoInd
with € = 1 or 2 is seen to inflict highest membership inference and
address re-identification risks (i.e., 62% and 97% respectively) and
lowest address inference errors, as the perturbed location is likely
to be truthful. Rounding the shortest distance to integers, i.e., s = 1,
also incurs high privacy risks, i.e., 56% membership inference and
92% address re-identification.

To lower the empirical privacy risks < 10% in membership infer-
ence and address re-identification, we would need to adopt larger
spacing s > 1000 for Rounding, e < 0.01 for RMN, e = 0.001 for
GeolInd, and k > 25 for Clustering. An important observation is
that input perturbation approaches lead to lower address inference
errors than output perturbation. Specifically, the address inference
errors for GeoInd with e = 0.001 and Clustering with k = 100
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are 1494 meters and 354 meters, compared to 2707 meters (RMN
with € = 0.001) and 2484 meters (Rounding with s = 1609). We
consider the empirical privacy protection provided by GeoInd and
Clustering weaker than that of RMN and Rounding in strong pri-
vacy settings. With € < 0.01, our method RMN outperforms GeoInd
in both accuracy (i.e., MAE) and privacy.
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Figure 6: Privacy Evaluation for Releasing Shortest Distances -
Mecklenburg

6.2 Distance Vector

In the following experiments, we examine the feasibility of pub-
lishing distance vectors for individuals in D using various privacy
methods. Similarly, we report the accuracy and empirical privacy for
Mecklenburg dataset in Figure 7 and Figure 8. Results of Nashville
dataset can be found in Appendix.

The MAE for distance vectors is defined as Q ,and averaged
among all individuals in D. As it reflects the expected accuracy loss
for each distance in the vector, results of Rounding, GeoInd, and
Clustering in Figure 7 are similar to those of Figure 5. Our method
DVLaplace incurs higher error than RMN, because DVLaplace per-
turbs each distance with parameter ¢/n in order to guarantee € - d -
privacy for vectors. That illustrates the privacy saving (and accuracy
gain) achieved by RMN to report only the shortest distance.
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Figure 8: Privacy Evaluation for Releasing Distance Vectors - Meck-
lenburg

From Figure 8, it can be seen that releasing distance vectors,
as opposed to releasing only shortest distances, does not signifi-
cantly increase the empirical privacy risks for input perturbation
approaches, i.e., GeoInd and Clustering. In those approaches, the
released distance vector is calculated according to a perturbed loca-
tion; therefore, the success of empirical privacy attacks is bounded
by the privacy guarantees of location perturbation mechanisms.
On the other hand, output perturbation via Rounding sees a sig-
nificant privacy risk increase. Specifically, Rounding with s = 1609
incurs ~2% membership inference risk and address re-identification

Fan and Bonomi

Table 1: MAE for SA Scores. *
in address inference error for both datasets.

: parameter values that incur > 100m

DVLaplace Rounding
€ Mecklenburg | Nashville s Mecklenburg | Nashville
0.01* 0.598 2.256 1000* 0.534 2.290
0.05* 0.321 1.147 500 0.192 1.413
0.1* 0.083 0.341 100 0.015 0.023
1 0.006 0.005 50 0.009 0.008

risk and 2848 meters address inference error when releasing only
shortest distances (in Figure 6), and 23% membership inference
risk and 51% address re-identification risk and 140 meters address
inference error when releasing distance vectors (in Figure 8). Our
approach DVLaplace does not incur higher privacy risks for re-
leasing distance vectors, especially in strong privacy settings (i.e.,
€ = 0.001), as it applies more stringent perturbation to each dis-
tance value. However, in weaker privacy settings, e.g., € > 0.01,
the perturbed distance vectors may retain information about real
data, e.g., via the dependence within a given vector. Specifically, we
observer lower address inference errors with e > 0.01, e.g., 2136
meters for releasing shortest distances (in Figure 6) vs. 696 meters
for releasing distance vectors (in Figure 8) with € = 0.01. Nonethe-
less, DVLaplace provides stronger privacy protection than GeoInd
under the same e. While Clustering with k > 25 provides good
privacy protection, the method incurs a considerable overhead for
computing clusters over the large population dataset B.

6.3 COVID-19 SA Scores

To evaluate the usefulness of the released distance vectors, we con-
duct a case study on spatial accessibility for COVID-19 patients.
The case study simulates individual spatial accessibility scores for
available hospital beds during the COVID-19 pandemic, using the
G2SFCA method with § = 10000 meters and = 1. Mean abso-
lute error (MAE) is measured between real SA scores and privacy-
enhanced SA scores, i.e., computed with perturbed distance vectors,
among all individuals.

In the early months of the COVID-19 pandemic, 9730 cases were
reported by the Mecklenburg County Health Department on June
28th 2020 and and 4427 cases were reported the Metro Nashville
Public Health Department on May 26th 2020. With the published
case counts by zip-code, we simulate COVID-19 patients by ran-
domly sampling the target number of individuals in each zip-code
and report the average results over 5 samples in Table 1. Note that
GeoInd and Clustering are not included due to weaker empirical
privacy protection and lower computational efficiency/usability, re-
spectively. As privacy protection is relaxed, the MAE for SA scores
is reduced, showing the improved usefulness for perturbed distance
vectors. Linking the usefulness results to the privacy evaluation,
we highlighted three € settings of DVLaplace and one s setting of
Rounding, in which an adversary’s inference error on individual
residential address is more than 100 meters on average. With sim-
ilar usefulness results, DVLaplace is more private than Rounding
in theoretical guarantees and empirical protection.

We visualize the real and privacy-enhanced SA scores by zip-
code in Figure 9 and Figure 10. Zip-codes are classified into 5
quantiles based on SA scores, where higher SA scores indicate
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better access to health resources. Despite providing similar MAE er-
rors, we observe that DVLaplace outperforms Rounding in preserv-
ing global SA patterns. For instance, in Figure 9, DVLaplace only
mistakes zip-codes for adjacent color-codes/quantiles and misses
one zip-code in the bottom 20% (color gray); Rounding places zip-
codes in quantiles further from ground truth (e.g., from green to
brown) and misses two zip-codes in the bottom 20% (color gray).
In Figure 10, DVLaplace correctly classifies all zip-codes in the bot-
tom 40% whereas Rounding makes several mistakes for the least
resourced zip-codes, overestimating the spatial accessibility for
zip-codes in north and west of Nashville. We hypothesize that
DVLaplace preserves global patterns better because the aggrega-
tion tends to cancel out positive and negative perturbation noises,
whereas Rounding introduces one-sided noise in distance values
which may be propagated in aggregate analysis.
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(c) Rounding with s = 1000

Figure 9: Spatial Accessibility Scores by Zip-Code - Mecklenburg:
gray represents lowest SA scores and brown represents highest.
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Figure 10: Spatial Accessibility Scores by Zip-Code - Nashville: gray
represents lowest SA scores and brown represents highest.

7 CONCLUSION

Our work takes a first step to enable private spatial accessibility
studies by providing provable privacy protection to participants.
Specifically, we have presented two empirical privacy risk measures
to quantify the information leakage by sharing travel distances,
which are essential in spatial accessibility analysis. To mitigate the
privacy risks, we have proposed two privacy methods to report the
shortest distance and distance vector at the individual level, and
have analyzed their privacy guarantees in metric-based privacy. We
have presented the empirical results obtained with real population
and healthcare facilities data from two populous metro areas, which
illustrate the usefulness and empirical privacy protection offered
by our methods.

As for future work, we consider the following directions. Firstly,
it is possible to develop secure aggregation protocols for computing
spatial accessibility, i.e., to compute service-to-population ratios.
It would be interesting to understand whether those intermediate
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results incur any information leakage and to develop hybrid ap-
proaches that leverage both secure aggregation and metric privacy.
Secondly, in this study, travel distances are estimated in the driving
mode; future work may consider multiple transportation modes,
e.g., walking and public transport, to estimate privacy risks and
spatial accessibility scores. Lastly, it would be important to examine
privacy risks in differential neighborhoods, e.g., at zip-code level,
and the utility loss introduced by privacy methods in those neigh-
borhoods. Our empirical results show that privacy methods may
change the distribution of spatial accessibility scores. A large-scale
study would be beneficial for an in-depth examination.
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A ADDITIONAL RESULTS A.2 Distance Vectors
A.1 Distance to Nearest Facility
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Nashville
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