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ABSTRACT
Measuring spatial accessibility to healthcare resources and facilities

has long been an important problem in public health. For example,

during disease outbreaks, sharing spatial accessibility data such

as individual travel distances to health facilities is vital to policy

making and designing effective interventions. However, sharing

these data may raise privacy concerns, as information about indi-

vidual data contributors (e.g., health status and residential address)

may be disclosed. In this work, we investigate those unintended

information leakage in spatial accessibility analysis. Specifically,

we are interested in understanding whether sharing data for spatial

accessibility computations may disclose individual participation

(i.e., membership inference) and personal identifiable information

(i.e., address inference). Furthermore, we propose two provably

private algorithms that mitigate those privacy risks. The evaluation

is conducted with real population and healthcare facilities data

from Mecklenburg county, NC and Nashville, TN. Compared to

state-of-the-art privacy practices, our methods effectively reduce

the risks of membership and address disclosure, while providing

useful data for spatial accessibility analysis.

CCS CONCEPTS
• Security and privacy → Data anonymization and saniti-
zation; • Information systems → Geographic information
systems; • Applied computing→ Health informatics.
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1 INTRODUCTION
Spatial accessibility to resources and facilities has been of great

importance in public health [4, 10, 15, 17, 19, 28, 31]. For example,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGSPATIAL ’23, November 13–16, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0168-9/23/11. . . $15.00

https://doi.org/10.1145/3589132.3625656

understanding spatial access to healthy foods (e.g., grocery stores

that sell fresh fruits and vegetables) could help reduce the risk of

obesity and other chronic diseases and guide the development of

progressive intervention strategies [4, 15]. Similarly, enhancing spa-

tial accessibility of primary care may improve overall population

health and benefit disadvantaged populations, e.g., in hyperten-

sion awareness and control [10, 17, 32]. Recently, the COVID-19

pandemic has seen healthcare resources (e.g., hospital beds, venti-

lators, testing resources) overwhelmed in a number of countries.

Understanding the spatial accessibility for COVID-19 patients and

population at risk has been crucial for allocating healthcare re-

sources efficiently and effectively [13, 14, 22].

The two-step floating catchment area (2SFCA) method is widely

used to measure spatial accessibility [10, 19]. It defines a “catchment

area" for healthcare facilities such that individuals residing within

the catchment area have utilization. The catchment is based on

the travel distance
1
between the residential location and the facil-

ity location. Several variants of 2SFCA (such as E2SFCA [18] and

G2SFCA[31]) have been proposed to incorporate distance decay,

i.e., increasing travel distance would lead to less utilization.

However, sharing spatial accessibility data, e.g., travel distances

to healthcare facilities, may raise individual privacy concerns. To

our best knowledge, it has not been studied whether releasing those

travel distances would result in unintended information leakage.

One example of information leakage is membership leakage, where

an individual’s participation in a dataset can be inferred. In the

context of spatial accessibility, membership would disclose sensi-

tive information about the target individual, such as COVID-19

or diabetes diagnosis. Another example of information leakage is

personal identifiable information (PII), as defined by the HIPAA de-

identification standard. The disclosure of PII, such as name, ID, and

street address, may incur severe damages to the target individual

and the data publisher.

In this paper, we investigate unintended information leakage in

sharing spatial accessibility data and propose privacy-enhancing

methods to mitigate such leakage. The specific contributions of this

work are:

• We formulate two privacy risk measures to quantify privacy

risks associated with sharing spatial accessibility data. Intu-

itively, membership inference estimates a public individual’s

participation in the protected dataset; address inference esti-

mates the residential street address of an individual in the

protected dataset.

• We propose two private methods to release spatial accessi-

bility data at the individual level, for travel distance to the

1
catchment can also be defined by travel time; travel distance is adopted in this work
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nearest facility and travel distances to all facilities, respec-

tively. We prove that both methods satisfy metric privacy,

a generalized notion based on differential privacy; and re-

leasing only distance to the nearest facility offers significant

privacy savings.

• We conduct empirical evaluation with real population data

and healthcare facilities data from Mecklenburg county, NC

and Nashville, TN. We examine the feasibility of releasing

spatial accessibility data with regard to both accuracy and

privacy leakage; we further conduct a case study on spatial

accessibility for COVID-19. Results show that our methods

provide useful data for spatial accessibility analysis while

providing strong privacy protection.

The rest of the paper is organized as follows: Section 2 briefly

reviews recent literature most related to this work; Section 3 de-

scribes the problem setting, introduces travel distance-based spatial

accessibility analysis, and presents exploratory analysis on travel

distances in real datasets; Section 4 presents the definition of metric

privacy, the proposed privacy methods, and theoretical guarantees;

Section 5 presents two empirical privacy risk measures; Section 6

discusses empirical results; Section 7 concludes the paper with

several working directions for future research.

2 RELATED WORK
Location Privacy. Location privacy has been extensively studied

in literature, with a plethora of location data sharing methods to

enable location-based applications, such as crowd-sourcing [25, 30],

social networks [9, 16], and transportation [24, 26]. Recently, several

surveys and empirical studies [7, 8, 11, 23] have categorized and

analyzed existing methods. However, we do not consider this work

as developing location privacy methods. As discussed later in detail,

we adopt a practical assumption in which residential locations may

be publicly available, e.g., via voter registration data; the privacy

risks lie in the inference of individual participation in a protected

dataset and the inference of residential addresses for those in the

protected dataset. Interestingly, our work may be analogous to the

technique of trilateration [29] (or multilateration), which estimates

the target position by the distances between the target and a number

of reference points (e.g., receivers). However the travel distances in

our problem setting may be more challenging to model, as they are

constrained by physical road networks.

Differential Privacy. Differential privacy (DP) [5] has become

the state-of-the-art paradigm for privacy protection in statistical

databases. It assumes a trusted data curator is responsible for data

aggregation and guarantees that an adversary who observes the

output results is not able to decide whether a particular record is

included in the input database. While classic DP has been widely

adopted for sharing dataset-level statistics, recent studies employ

the local DP notion (LDP) in order to share individual-level data.

LDPmechanisms can be built on randomized response techniques [6,

12], which provide strong privacy protection (i.e., in input indis-

tinguishability) but may incur high utility loss. A generalized pri-

vacy notion, metric-based privacy [3], has been proposed to re-

lax the privacy guarantees and to improve data utility, whereas

the indistinguishability guarantee depends on the distance be-

tween input secrets (by a specific metric). It has been shown that

differential privacy is a special instance of metric privacy. Geo-

indistinguishability [1] is another application of metric privacy

in 2D space. In this work, we adopt the metric privacy notion to

protect the privacy of individual data contributors, while enable

accurate computation of spatial accessibility.

3 PRELIMINARIES
3.1 Overview
Our solution aims to enable the analysis of spatial accessibility by

public health researchers, with individually contributed travel dis-

tances. The proposed problem setting is presented in Figure 1. As

an example, a public health study is interested in analyzing the spa-

tial accessibility to healthcare resources for a specific cohort (e.g.,

COVID-19 or diabetic patients), in order to design effective inter-

ventions. Healthcare providers may share travel distances for those

patients in the cohort to support the analysis. In the next section, we

will discuss in detail how patient distance vectors are instrumental

in spatial accessibility computation. Essentially, a patient’s distance

vector contains the travel distance from the patient’s residential

location to every hospital considered by the study.

Figure 1: Problem Setting: private computation of spatial accessi-
bility scores, e.g., for COVID-19 or diabetes patients.

A proposed privacy mechanism will sanitize each patient’s dis-

tance vector and generate a perturbed vector; those perturbed vec-

tors are shared with public health researchers for spatial accessibil-

ity computation (i.e., using a two-step approach as described in the

next subsection). Note that we assume that a trusted data curator

(e.g., healthcare providers) or a trusted personal device is available

to run the proposed privacy protection mechanism. We will show

that our proposed privacy methods only involve additive noises,

which have low computational requirements.

We also consider a simplified setting for spatial accessibility,

which requires only each individual’s travel distance to the nearest

hospital, as in a recent large-scale study [32]. In that case, the

privacy mechanism generates a “noisy" shortest distance given a

patient’s distance vector, and public health researchers compute

aggregate statistics of the noisy shortest distances, e.g., mean and

standard deviation, as opposed to the two-step spatial accessibility.

3.2 Travel Distance-based Spatial Accessibility
In this section, we introduce a commonly used spatial accessibil-

ity measure, which is based on individuals’ distance vectors, i.e.,

travel distances between an individual residence and every hospital

considered in the study. Spatial accessibility captures the spatial

interactions between the amount of supplies (e.g., the number of

hospital beds, parks, healthy food stores) and demands along with

the distance between the locations of health resources and those of
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residential addresses. While spatial accessibility has been largely

studied at area level, recent research has increasingly adapted spa-

tial accessibility to individual-level analysis [2, 15, 17], to capture

the individual variations in spatial access.

The two-step floating catchment area (2SFCA) method is one of

the most widely used methods for measuring spatial accessibility to

healthcare resources [20, 31]. Particularly, the generalized 2SFCA

framework (G2SFCA) [31] accounts for distance decay, such that

an increase in distance would lead to less service utilization. The

G2SFCA method measures spatial accessibility in two steps and

generates a score for spatial accessibility. A higher score indicates

better accessibility.

In the first step, the G2SFCA method evaluates the catchment

area of each facility, estimates the overall demands in the catchment

area, and then generates the service-to-population ratio for each

facility. In the second step, for each individual, the G2SFCA method

identifies the facilities with the catchment area within which the

individual lives and sums up the service-to-population ratios of all

these facilities. A distance decay effect was assumed in both steps.

Specifically, for facility 𝑖 , let 𝑆𝑖 denote its capacity of supply (e.g.,

the number of hospital beds) and let 𝑑𝑘,𝑖 denote the spatial distance

between the residential address of individual 𝑘 and the location

of facility 𝑖 . We further define the catchment area by imposing a

threshold 𝜃 on the spatial distance. The service-to-population ratio

of facility 𝑖 is thus:

𝑅𝑖 =
𝑆𝑖∑

𝑘∈{𝑑𝑘,𝑖≤𝜃 } 1 · 𝑓 (𝑑𝑘,𝑖 )
. (1)

For individual 𝑘 , the spatial accessibility score is computed as:

𝑆𝐴𝑘 =
∑︁

𝑖∈{𝑑𝑘,𝑖≤𝜃 }
𝑅𝑖 · 𝑓 (𝑑𝑘,𝑖 ) . (2)

Note that in both equations above, 𝑓 is the distance decay function,

which can be defined as:

𝑓 (𝑑𝑘,𝑖 ) = 𝑑
−𝛽
𝑘,𝑖

(3)

where 𝛽 > 0.

As can be seen, an important prerequisite to computing the

spatial accessibility scores is every individual’s spatial distance to

each facility, i.e.,𝑑𝑘,𝑖 ’s. Let𝑛 denote the total number of facilities.We

simplify the notation in the following whenever only one individual

is concerned: each individual has a pre-computed distance vector

𝑥 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where each 𝑥𝑖 denotes the individual’s travel
distance to facility 𝑖 . In this study, all travel distances are computed

as shortest routes on real road networks.

3.3 Exploratory Studies on Travel Distances
We present two exploratory studies to illustrate potential informa-

tion leakage as a result of sharing travel distances. The following

studies are conducted with population and healthcare facility data

of Mecklenburg county, NC and Nashville, TN, the detail of which

can be found in the Experiments section.

Distance to Nearest Hospital by Zip-code. Figure 2 plots the dis-
tribution of travel distances to the nearest hospital for individuals

in each zip-code. We observe in both datasets that: (1) it is rare that

two zip-codes have identical distributions; (2) some zip-codes have

larger probability masses over certain ranges than other zip-codes

(e.g., 28278 and 37080 in high distance ranges). Those observations

indicate that travel distances to healthcare facilities may leak in-

formation about residential location, e.g., zip-code. For instance,

if a Nashville individual must travel more than 20000 meters to

reach the nearest hospital, it is very likely that the individual lives

in zip-code 37080.

(a) Charlotte - Mecklenburg

(b) Nashville

Figure 2: Spatial travel distance (in meters) to the nearest hospital
by zip-code.

(a) Charlotte - Mecklenburg (b) Nashville

Figure 3: Zipcode inference by spatial distances to a number of
healthcare facilities.

Zip-code Inference with Known Travel Distances. In the fol-

lowing, we explore the information leakage associated with re-

leasing distance vectors. Specifically, we would like to answer this

question: if knowing an individual’s travel distances to 𝑘 hospitals,
how likely to infer the zip-code in which the individual lives? To

conduct this study, we form a public, population dataset 𝐵 and a

protected dataset 𝐷 where 𝐷 ⊂ 𝐵, to simulate a subset of individu-

als participating in a spatial accessibility study. Data sources and

characteristics are described in detail in the Experiments section.
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We generate a probability distribution of travel distances to each

hospital in every zip-code using public data 𝐵. Given 𝑘 , we ran-

domly select 𝑘 hospitals (i.e., a query), and estimate the zip-code

for every individual in 𝐷 with the most likely zip-code, which max-

imizes the joint probability of observing the travel distances to

selected hospitals. We run 50 queries for each 𝑘 (except for 𝑘 = 1
2
)

and report the accuracy results in Figure 3. The baseline accuracy

with random guessing is
1

#𝑧𝑖𝑝−𝑐𝑜𝑑𝑒𝑠 . It can be seen that knowing

the travel distance to one specific hospital leads to above 30% ac-

curacy for zip-code inference for both datasets. When increasing

the knowledge to two hospitals, the accuracy grows to around 60%.

It requires only distances to 4 hospitals for Mecklenburg and 5

hospitals for Nashville to reach above 80% accuracy.

Those results illustrate that sharing travel distances may leak

information about individuals in the spatial accessibility study. That

motivates us to develop provably private methods for sharing travel

distances (in Section 4) and empirical privacy risk measures with

powerful adversaries (in Section 5).

4 PRIVATE METHODS
In this section, we propose provably private algorithms to release

travel distances for spatial accessibility studies. Specifically, we fo-

cus on sharing two computations: the first is the distance vector, i.e.,
travel distances from the input location to all facilities considered,

which will be used to compute the spatial accessibility scores using

variations of the 2SFCA method; the second is an input location’s

distance to the nearest facility, which will be aggregated as in [32].

While the latter is based on the former, we will show that it can be

reported with significantly less privacy cost.

4.1 Metric Privacy
We first introduce the notion of metric privacy, which is adopted

by our proposed privacy algorithms. In fact, differential privacy [5]

has been widely adopted to protect individual records in statistical

databases. Provable privacy protection is achieved with randomized

mechanisms to provide a given level of indistinguishability between

neighboring databases. However, a more general privacy notion

is needed for sharing individual-level data, e.g., protecting input

secrets which belong to an arbitrary domain. In such scenarios,

it is meaningful to define a distance metric between secrets and

guarantee a level of indistinguishability proportional of the distance.

In [3], the authors extended the principle of differential privacy to

arbitrary metrics. Let X denote an arbitrary set of secrets with a

metric 𝑑X .
Definition 4.1. [3] A mechanism 𝐾 : X → P(Z) satisfies 𝑑X-

privacy, if and only if ∀𝑥, 𝑥 ′ ∈ X

𝐾 (𝑥) (𝑍 ) ≤ 𝑒𝑑X (𝑥,𝑥
′ )𝐾 (𝑥 ′) (𝑍 ) ∀𝑍 ∈ FZ (4)

whereZ is a set of outcomes, FZ is a 𝜎-algebra overZ, and P(Z)
is the set of probability measures overZ.

Intuitively, 𝐾 (𝑥) (𝑍 ) denotes the probability of mechanism 𝐾

reporting𝑍 given input 𝑥 . With this generalized definition, a private

mechanism 𝐾 can be defined on any domain X andZ. The authors

of [3] argued that 𝑑X can be derived by scaling a standard metric by

2
for 𝑘 = 1, we run a query for each hospital in the dataset.

a factor 𝜖 . For example, 𝑑X = 𝜖 · 𝑑𝑝 where 𝑑𝑝 denotes the 𝑙𝑝 metric.

Furthermore, the authors showed that standard differential privacy

is a special case of Def. 4.1, where 𝑑X = 𝜖 · 𝑑ℎ and 𝑑ℎ denotes the

Hamming distance between databases.

It is worth noting that geo-indistinguishability [1] is another

instance of metric privacy. Specifically, the authors [1] proposed

the Planar Laplace mechanism to randomize latitude and longitude

coordinates, which satisfies the requirement of Equation 4 with 𝑑X
being the standard 2D Euclidean distance. In our empirical evalua-

tion, we consider the Planar Laplace mechanism as an alternative

solution, in which an individual’s residential location is randomized

first and the distance vector is computed based on the perturbed

location.

4.2 Report Noisy Min Distance
Recall that for each individual, we can pre-compute a distance vec-

tor 𝑥 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} ∈ R𝑛
, where 𝑥𝑖 denotes the individual’s

travel distance to the 𝑖-th facility from home. Below, we present

a randomized mechanism in Algorithm 1 to report the individ-

ual’s distance to the nearest facility privately. Specifically, given

parameter 𝜖 , each 𝑥𝑖 is perturbed with a random noise drawn from

Laplace distribution with 0 mean and 1/𝜖 scale; the facility index

corresponds to the noisy shortest distance is reported. This algo-

rithm has been inspired by the Report Noisy Max procedure for

histograms [5], which satisfies standard differential privacy. It is

important to note that the 𝑛 noisy distances will not be released,

except for the “winning" noisy distance which can be released at

no extra privacy cost.

Algorithm 1 Report Noisy Min

Input: distance vector 𝑥 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, privacy parameter 𝜖

for 𝑖 = 1 · · ·𝑛 do
𝑥𝑖 ← 𝑥𝑖 + 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (0, 1/𝜖)

end for
𝑖𝑚𝑖𝑛 ← argmin

𝑖=1· · ·𝑛
𝑥𝑖

Output: index of the noisy shortest distance 𝑖𝑚𝑖𝑛

The following theorem shows that our algorithm satisfies (𝜖 ·𝑑1)-
privacy on R𝑛

, where 𝑑1 denotes the 𝐿1 metric.

Theorem 4.2. Report Noisy Min satisfies (𝜖 · 𝑑1)-privacy, where
𝑑1 denotes the Manhattan Distance (or 𝐿1 metric) for input vectors.

Proof. Let 𝑥 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} and 𝑥 ′ = {𝑥 ′
1
, 𝑥 ′

2
, . . . , 𝑥 ′𝑛} denote

any two input vectors and 𝑥, 𝑥 ′ ∈ R𝑛
. Let 𝑟𝑖 denote the random

noise added to the 𝑖-th distance, ∀𝑖 . Fix any 𝑖 ∈ {1, . . . , 𝑛}, we will
bound the ratio of the probabilities that 𝑖 is selected by Algorithm 1

with 𝑥 andwith 𝑥 ′. Let 𝑟−𝑖 denote a draw from [𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (0, 1/𝜖)]𝑛−1
used for all the noisy distances, except for the 𝑖-th distance. We will

argue for each 𝑟−𝑖 independently. The notation Pr[𝑖 |𝑒] denotes the
probability that the output of Algorithm 1 is 𝑖 , conditioned on 𝑒 .

We define 𝑟∗ = max

𝑟𝑖
: 𝑥𝑖 + 𝑟𝑖 < 𝑥 𝑗 + 𝑟 𝑗 , ∀𝑗 ≠ 𝑖 . Having fixed 𝑟−𝑖 ,

𝑖 will be the output of Algorithm 1 when input vector is 𝑥 if and

only if 𝑟𝑖 ≤ 𝑟∗, i.e., Pr[𝑖 |𝑥, 𝑟−𝑖 ] = Pr[𝑟𝑖 ≤ 𝑟∗].
By definition of 𝑟∗, we have:

𝑥𝑖 + 𝑟∗ < 𝑥 𝑗 + 𝑟 𝑗 ∀𝑗 ≠ 𝑖 (5)
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⇒ 𝑥 ′𝑖 + 𝑟
∗ = (𝑥 ′𝑖 − 𝑥𝑖 ) + 𝑥𝑖 + 𝑟

∗ < (𝑥 ′𝑖 − 𝑥𝑖 ) + 𝑥 𝑗 + 𝑟 𝑗 (6)

= (𝑥 ′𝑖 − 𝑥𝑖 ) + (𝑥 𝑗 − 𝑥
′
𝑗 ) + 𝑥

′
𝑗 + 𝑟 𝑗

≤ |𝑥 ′𝑖 − 𝑥𝑖 | + |𝑥
′
𝑗 − 𝑥 𝑗 | + 𝑥

′
𝑗 + 𝑟 𝑗 ∀𝑗 ≠ 𝑖

Hence, if 𝑟𝑖 < 𝑟
∗ − |𝑥 ′

𝑖
− 𝑥𝑖 | − |𝑥 ′𝑗 − 𝑥 𝑗 | ∀𝑗 ≠ 𝑖 , we have 𝑥

′
𝑖
+ 𝑟𝑖 <

𝑥 ′
𝑗
+ 𝑟 𝑗 ∀𝑗 ≠ 𝑖 . Furthermore, if 𝑟𝑖 < 𝑟

∗ − 𝑑1 (𝑥, 𝑥 ′), we have

𝑟𝑖 < 𝑟
∗ −

𝑛∑︁
𝑗=1

|𝑥 ′𝑗 − 𝑥 𝑗 | ≤ 𝑟
∗ − |𝑥 ′𝑖 − 𝑥𝑖 | − |𝑥

′
𝑗 − 𝑥 𝑗 | ∀𝑗 ≠ 𝑖 . (7)

Thus, if 𝑟𝑖 < 𝑟∗ − 𝑑1 (𝑥, 𝑥 ′), Algorithm 1 will report the 𝑖-th dis-

tance when input vector is 𝑥 ′ and the noise vector is (𝑟𝑖 , 𝑟−𝑖 ), i.e.,
Pr[𝑖 |𝑥 ′, 𝑟−𝑖 ] ≥ Pr[𝑟𝑖 < 𝑟∗ − 𝑑1 (𝑥, 𝑥 ′)].

As 𝑟𝑖 ∼ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (0, 1/𝜖), the following probabilities yield:

Pr[𝑖 |𝑥, 𝑟−𝑖 ]
Pr[𝑖 |𝑥 ′, 𝑟−𝑖 ]

≤ Pr[𝑟𝑖 ≤ 𝑟∗]
Pr[𝑟𝑖 < 𝑟∗ − 𝑑1 (𝑥, 𝑥 ′)]

(8)

=
𝑒𝑥𝑝 (𝜖 · 𝑟∗)

𝑒𝑥𝑝 (𝜖 · (𝑟∗ − 𝑑1 (𝑥, 𝑥 ′)))
= 𝑒𝑥𝑝 (𝜖 · 𝑑1 (𝑥, 𝑥 ′)) .

□

4.3 Distance Vector Laplace
To release the entire distance vector privately, we propose Algo-

rithm 2 that adds Laplace noise to each distance. We show in Theo-

rem 4.3 that the algorithm achieves (𝑛 · 𝜖 · 𝑑1)-privacy on R𝑛
.

Algorithm 2 Distance Vector Laplace

Input: distance vector 𝑥 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, privacy parameter 𝜖

for 𝑖 = 1 · · ·𝑛 do
𝑥𝑖 ← 𝑥𝑖 + 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (0, 1/𝜖)

end for
Output: noisy vector 𝑥 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}

Theorem 4.3. Distance Vector Laplace satisfies (𝑛 ·𝜖 ·𝑑1)-privacy,
where 𝑑1 denotes the Manhattan Distance (or 𝐿1 metric) for input

vectors.

Proof. Let 𝑥 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} and 𝑥 ′ = {𝑥 ′
1
, 𝑥 ′

2
, . . . , 𝑥 ′𝑛} denote

any two input vectors and 𝑥, 𝑥 ′ ∈ R𝑛
. Let Pr[𝑥 |𝑒] denote the prob-

ability of Algorithm 2 reporting 𝑥 , conditioned on event 𝑒 . We will

show for any output 𝑥 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, the ratio of probabilities

of Algorithm 2 reporting 𝑥 with 𝑥 and with 𝑥 ′ can be bounded.

Let {𝑟𝑖 } and {𝑟 ′𝑖 } denote the noise vectors drawn for 𝑥 and 𝑥 ′ re-
spectively. As noise added to each distance is independently drawn

from 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (0, 1/𝜖), we have:

Pr[𝑥 |𝑥]
Pr[𝑥 |𝑥 ′] =

𝑛∏
𝑖=1

Pr[𝑟𝑖 = 𝑥𝑖 − 𝑥𝑖 ]
Pr[𝑟 ′

𝑖
= 𝑥 ′

𝑖
− 𝑥𝑖 ]

=

𝑛∏
𝑖=1

𝑒𝑥𝑝 (−𝜖 · |𝑥𝑖 − 𝑥𝑖 |)
𝑒𝑥𝑝 (−𝜖 · |𝑥 ′

𝑖
− 𝑥𝑖 |)

(9)

=

𝑛∏
𝑖=1

𝑒𝑥𝑝 (𝜖 · ( |𝑥 ′𝑖 − 𝑥𝑖 | − |𝑥𝑖 − 𝑥𝑖 |))

= 𝑒𝑥𝑝 (𝑛 · 𝜖) · 𝑒𝑥𝑝 (
𝑛∑︁
𝑖=1

( |𝑥 ′𝑖 − 𝑥𝑖 | − |𝑥𝑖 − 𝑥𝑖 |))

≤ 𝑒𝑥𝑝 (𝑛 · 𝜖) · 𝑒𝑥𝑝 (
𝑛∑︁
𝑖=1

|𝑥 ′𝑖 − 𝑥𝑖 |) = 𝑒𝑥𝑝 (𝑛 · 𝜖 · 𝑑1 (𝑥, 𝑥
′))

□

5 EMPIRICAL PRIVACY MEASURES
Beyond theoretical guarantees, it is important to understand the

level of practical privacy protection offered by our algorithms. In

practice, spatial accessibility is evaluated for a set of participants

who enrolled in a study; the distance vector or shortest distance

can be either reported by the participant or computed by a trusted

curator with the participant’s residential address. In this section,

we discuss two adversarial inferences that can be conducted by

observing the shortest distance or distance vector. Similar to [27],

we assume that study participants may be present in other publicly

available data (i.e., attacker’s background knowledge), such as voter

registrations and open source datasets. In the following, we denote

the set of study participants as 𝐷 and the set of public individuals

as 𝐵 (such as voters), where 𝐷 ⊂ 𝐵.
Membership Inference. A common privacy leakage is member-

ship inference, in which an individual’s participation in 𝐷 is dis-

closed. In spatial accessibility studies, an individual’s participation

may leak sensitive health information, such as hypertension [17],

COVID-19 [13], and diabetes [4]. As a result, membership inference

may present a severe privacy risk to study participants.

By observing the released computations (either shortest distance

or distance vector) for individuals in 𝐷 , an informed adversary

may launch the following membership inference attack against a

target individual 𝑡 ∈ 𝐵, in order to estimate whether 𝑡 participates

in 𝐷 . Depending on the type of computation observed for 𝐷 , the

adversary computes the distance vector 𝑥𝑡 (or distance to nearest

facility 𝑥𝑡
𝑚𝑖𝑛

) for the target individual using the real residential

address of 𝑡 found in public data. The adversary then finds the

best match among individuals in 𝐷 to 𝑡 , i.e., with a distance vector

most similar to 𝑥𝑡 (or shortest distance most similar to 𝑥𝑡
𝑚𝑖𝑛

)
3
.

When there is a tie, one candidate is randomly chosen to be the best

match for 𝑡 , and the dissimilarity score is recorded for the match.

Essentially, the match is recorded as (𝑡, 𝑠, dissim(𝑡, 𝑠)), where 𝑡 ∈ 𝐵,
𝑠 ∈ 𝐷 , and dissim(𝑡, 𝑠) is computed for 𝑥𝑡 and 𝑥𝑠 (or 𝑥𝑡

𝑚𝑖𝑛
and 𝑥𝑠

𝑚𝑖𝑛
).

The adversary repeats the same process for every target individual

in 𝐵, generating |𝐵 | matches along with dissimilarity scores, and

selects |𝐷 | matches with the lowest dissimilarities. To quantify

the success of membership inference, we report the percentage of

targets in the selected matches who actually participate in 𝐷 .

Intuitively, the proposed membership inference may be more

successful if all individuals in 𝐵 (thus 𝐷) have unique distance

vectors or shortest distances and are matched to themselves during

inference. As a counter example, assume one participant 𝑠 ∈ 𝐷 lives

in an apartment building or shares a house with others. During

inference, multiple individuals in 𝐵 having the same travel distances

as 𝑠 could be matched to 𝑠 with a dissimilarity score 0. The result

of the membership inference is less accurate due to those false

positives. While we cannot modify the geospatial distribution or

population density in residential areas, we hypothesize that one

effective solution to mitigate membership inference is to modify the

released computations for 𝐷 , such that targets in 𝐵 are not matched

to themselves during inference.

Address Inference. Residential addresses, such as street address

and city, are considered identifiers of individuals and should not

3
When measuring the dissimilarity between two distance vectors, the adversary may

use 𝐿1 , 𝐿2 , or Dynamic Time Warping distances.
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be shared according to HIPAA’s Safe Harbor method. Therefore it

is important to understand the risk of address inference for study

participants in 𝐷 , in order to protect their privacy.

In address inference, the goal of the adversary is to estimate

the street address of a target individual 𝑡 in 𝐷 , upon observing the

released computations for 𝐷 . For every public individual 𝑠 ∈ 𝐵, the
adversary computes the distance vector 𝑥𝑠 (or shortest distance

𝑥𝑠
𝑚𝑖𝑛

) using the real residential address of 𝑠 . For a target individual

𝑡 ∈ 𝐷 , the adversary then finds the best match among all individuals

in 𝐵, based on the measure dissim(𝑡, 𝑠) also used for membership

inference. The address of 𝑡 is then estimated with the residential

address of their best match. We adopt two quantitative measures to

assess the risk of address inference. The first reports the percentage

of participants in 𝐷 whose street address is accurately inferred. The

second reports the inference error (in meters) between the target’s

address and the estimated address, averaged among all participants

in 𝐷 .

Unlike membership inference, address inference may be success-

ful even if a target individual 𝑡 in 𝐷 shares the same street address

with multiple individuals in 𝐵. In that case, 𝑡 would be matched to

a fellow resident in 𝐵 and the estimated street address would be

accurate
4
. We hypothesise that modifying the released computa-

tions for participants in 𝐷 will be a effective defense for address

inference, as a target may be matched to a public individual with a

different address during inference.

6 EXPERIMENTS

Data. The empirical evaluation adopts real population data of Meck-

lenburg county, NC and Nashville, TN. Voter registration data for

Mecklenburg county is obtained from the North Carolina State

Board of Elections, which contains the voter’s name, registration

status, street address, city, zip-code, along with other attributes.

Open-source address data for Nashville is obtained from OpenAd-

dresses [21], which contains distinct street addresses, zip-codes, and

latitude/longitude coordinates. During pre-processing, we discard

zip-codes with fewer than 1000 records in both datasets and further

discard zip-codes dedicated to university campuses in Mecklenburg

county (as individuals tend to use the same university address).

The remaining zip-codes include 31 for Mecklenburg county and

20 for Nashville. Those zip-codes and their estimated boundaries

are depicted in Figure 4. We randomly select 1000 records from

each zip-code to form the final processed data. Hospital listings are

obtained from the NC Division of Health Service Regulation and

the TN Department of Health. We retrieve 21 hospitals for Mecklen-

burg county (in Mecklenburg and surrounding NC counties) and

16 hospitals for Nashville (in Davidson and Williamson counties).

Hospital locations are highlighted in star in Figure 4.

Geocoding and Routing. Hospital addresses and individual resi-

dential addresses are geo-coded with Nominatim. Travel distances

inmeters between individual address and each hospital are retrieved

using OSRM APIs in driving mode. Both Nominatim and OSRM are

based on OpenStreetMap data.

4
Unit or apt. numbers are omitted in this study

Approaches. Let the complete processed data denote the public

data 𝐵, which contains 1000 records from each zip-code in Mecklen-

burg county and Nashville. To simulate a small subset of individuals

participating in research studies, we form 𝐷 by randomly sampling

20 individuals from each zip-code in each dataset. The following

approaches are applied to individuals in 𝐷 to enhance the privacy

of spatial accessibility studies. Among them, we consider GeoInd
and Clutering as input perturbation approaches for perturbing

the residential locations, and Rounding and our methods as output
perturbation approaches for perturbing the distance vectors directly.

• GeoInd [1]: the Planar Laplace mechanism with parameter

𝜖 is applied to the residential location of each individual in

𝐷 ; the released distance vector and shortest distance of the

individual are computed according to the perturbed location.

• Clustering: we devise this approach to generalize individual

residential locations. We place residential locations in 𝐵 into

clusters of at least size 𝑘 . For each individual in 𝐷 ⊂ 𝐵, we
perturb their residential location with the medoid of the cor-

responding cluster. The released distance vector and shortest

distance of the individual are computed according to the per-

turbed location. With this approach, the adversary may not

distinguish an individual from others in the same cluster.

For empirical evaluation, we adopt hierarchical clustering

with Euclidean distance, while other clustering methods and

distances may also be adopted.

• Rounding: a common privacy-enhancing practice is to reduce

the precision of released data. We apply rounding to the

distance vectors and shortest distances for individuals in 𝐷

such that only approximate information is preserved. For

example, the spatial distance will be reported as multiples

of a spacing parameter 𝑠 , such as kilometers or miles. We

assume that the adversary performs the same rounding on

𝐵 in order to improve its inference success.

• Ours: we apply the proposed methods in Section 4 to indi-

viduals in 𝐷 , denoted by RNM for releasing shortest distances

and DVLaplace for releasing distance vectors. Both methods

are associated with the privacy parameter 𝜖 .

Note that we repeat each experiment below for 20 runs to report

average results and 𝐷 is sampled independently for each run. We

assume an informed adversary who knows the zip-code of each

individual in 𝐷 and thus can focus on the corresponding zip-code

in 𝐵 during inference.

(a) Charlotte - Mecklenburg (b) Nashville

Figure 4: Studied Zip-codes and Hospitals (shown in red stars) in
Two Datasets.



Hide Your Distance: Privacy Risks and Protection in Spatial Accessibility Analysis SIGSPATIAL ’23, November 13–16, 2023, Hamburg, Germany

6.1 Distance to Nearest Facility
We first examine the feasibility of privately releasing an individ-

ual’s travel distance to the nearest healthcare facility. Results of

Mecklenburg are discussed below and results of Nashville can be

found in Appendix. In Figure 5, we report the MAE (mean absolute

error) of the noisy shortest distances for individuals in 𝐷 , with

respect to their real shortest distances. We observe that stronger

privacy levels (i.e., lower 𝜖 , higher 𝑠 and 𝑘) incur higher accuracy

loss for each method. Rounding incurs a predictable MAE around

𝑠/2 with 𝑠 being the spacing parameter. Both RMN and GeoInd incur
low MAEs (< 1m) with 𝜖 = 1 or 2, as those randomized mecha-

nisms introduce little noise to the input distances or coordinates.

For high privacy settings, with 𝜖 = 0.001 or 0.01, GeoInd incurs

higher MAEs than RMN, which indicates a higher impact on accuracy

for perturbing input locations. Lastly, increasing 𝑘 for Clustering
steadily increases the MAE from 50m (𝑘 = 2) to 860m (𝑘 = 100),

and the amount of errors may depend on the density and spatial

distribution of the population.

Figure 5: MAE (in meters) for Releasing Shortest Distances - Meck-
lenburg

Figure 6 reports the results of membership inference and address

inference, using the shortest distances released by each privacy

method for individuals in 𝐷 . In addition, the baseline risk for each

inference is included, denoted by Random, in which the adversary

randomly pick individuals without considering the released shortest

distances. Specifically, the baseline membership inference risk is

2% which is the ratio between |𝐷 | and |𝐵 |; however, the baseline
address re-identification risk and address inference error depend on

the density and spatial distribution of the population, e.g., number

of individuals in the same household and number of units per

acre. Increasing the privacy levels (i.e., lower 𝜖 , higher 𝑠 and 𝑘)

will lead to lower membership inference risks, lower address re-

identification risks, and higher address inference errors. GeoInd
with 𝜖 = 1 or 2 is seen to inflict highest membership inference and

address re-identification risks (i.e., 62% and 97% respectively) and

lowest address inference errors, as the perturbed location is likely

to be truthful. Rounding the shortest distance to integers, i.e., 𝑠 = 1,

also incurs high privacy risks, i.e., 56% membership inference and

92% address re-identification.

To lower the empirical privacy risks ≤ 10% in membership infer-

ence and address re-identification, we would need to adopt larger

spacing 𝑠 ≥ 1000 for Rounding, 𝜖 ≤ 0.01 for RMN, 𝜖 = 0.001 for

GeoInd, and 𝑘 ≥ 25 for Clustering. An important observation is

that input perturbation approaches lead to lower address inference

errors than output perturbation. Specifically, the address inference

errors for GeoInd with 𝜖 = 0.001 and Clustering with 𝑘 = 100

are 1494 meters and 354 meters, compared to 2707 meters (RMN
with 𝜖 = 0.001) and 2484 meters (Rounding with 𝑠 = 1609). We

consider the empirical privacy protection provided by GeoInd and

Clustering weaker than that of RMN and Rounding in strong pri-

vacy settings. With 𝜖 ≤ 0.01, our method RMN outperforms GeoInd
in both accuracy (i.e., MAE) and privacy.

(a) Membership Inference Rate

(b) Address Inference Rate

(c) Address Inference Error (in meters)

Figure 6: Privacy Evaluation for Releasing Shortest Distances -
Mecklenburg

6.2 Distance Vector
In the following experiments, we examine the feasibility of pub-

lishing distance vectors for individuals in 𝐷 using various privacy

methods. Similarly, we report the accuracy and empirical privacy for

Mecklenburg dataset in Figure 7 and Figure 8. Results of Nashville

dataset can be found in Appendix.

TheMAE for distance vectors is defined as
𝐿1 (𝑥,𝑥 ′ )

𝑛 , and averaged

among all individuals in 𝐷 . As it reflects the expected accuracy loss

for each distance in the vector, results of Rounding, GeoInd, and
Clustering in Figure 7 are similar to those of Figure 5. Our method

DVLaplace incurs higher error than RMN, because DVLaplace per-
turbs each distance with parameter 𝜖/𝑛 in order to guarantee 𝜖 ·𝑑1-
privacy for vectors. That illustrates the privacy saving (and accuracy

gain) achieved by RMN to report only the shortest distance.
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Figure 7: MAE (in meters) for Releasing Distance Vectors - Meck-
lenburg

(a) Membership Inference Rate

(b) Address Inference Rate

(c) Address Inference Error (in meters)

Figure 8: Privacy Evaluation for Releasing Distance Vectors - Meck-
lenburg

From Figure 8, it can be seen that releasing distance vectors,

as opposed to releasing only shortest distances, does not signifi-

cantly increase the empirical privacy risks for input perturbation

approaches, i.e., GeoInd and Clustering. In those approaches, the

released distance vector is calculated according to a perturbed loca-

tion; therefore, the success of empirical privacy attacks is bounded

by the privacy guarantees of location perturbation mechanisms.

On the other hand, output perturbation via Rounding sees a sig-

nificant privacy risk increase. Specifically, Rounding with 𝑠 = 1609

incurs ∼2% membership inference risk and address re-identification

Table 1: MAE for SA Scores. *: parameter values that incur > 100𝑚

in address inference error for both datasets.
DVLaplace Rounding

𝜖 Mecklenburg Nashville 𝑠 Mecklenburg Nashville

0.01∗ 0.598 2.256 1000
∗

0.534 2.290

0.05∗ 0.321 1.147 500 0.192 1.413

0.1∗ 0.083 0.341 100 0.015 0.023

1 0.006 0.005 50 0.009 0.008

risk and 2848 meters address inference error when releasing only

shortest distances (in Figure 6), and 23% membership inference

risk and 51% address re-identification risk and 140 meters address

inference error when releasing distance vectors (in Figure 8). Our

approach DVLaplace does not incur higher privacy risks for re-

leasing distance vectors, especially in strong privacy settings (i.e.,

𝜖 = 0.001), as it applies more stringent perturbation to each dis-

tance value. However, in weaker privacy settings, e.g., 𝜖 ≥ 0.01,

the perturbed distance vectors may retain information about real

data, e.g., via the dependence within a given vector. Specifically, we

observer lower address inference errors with 𝜖 ≥ 0.01, e.g., 2136

meters for releasing shortest distances (in Figure 6) vs. 696 meters

for releasing distance vectors (in Figure 8) with 𝜖 = 0.01. Nonethe-

less, DVLaplace provides stronger privacy protection than GeoInd
under the same 𝜖 . While Clustering with 𝑘 ≥ 25 provides good

privacy protection, the method incurs a considerable overhead for

computing clusters over the large population dataset 𝐵.

6.3 COVID-19 SA Scores
To evaluate the usefulness of the released distance vectors, we con-

duct a case study on spatial accessibility for COVID-19 patients.

The case study simulates individual spatial accessibility scores for

available hospital beds during the COVID-19 pandemic, using the

G2SFCA method with 𝜃 = 10000 meters and 𝛽 = 1. Mean abso-

lute error (MAE) is measured between real SA scores and privacy-

enhanced SA scores, i.e., computed with perturbed distance vectors,

among all individuals.

In the early months of the COVID-19 pandemic, 9730 cases were

reported by the Mecklenburg County Health Department on June

28th 2020 and and 4427 cases were reported the Metro Nashville

Public Health Department on May 26th 2020. With the published

case counts by zip-code, we simulate COVID-19 patients by ran-

domly sampling the target number of individuals in each zip-code

and report the average results over 5 samples in Table 1. Note that

GeoInd and Clustering are not included due to weaker empirical

privacy protection and lower computational efficiency/usability, re-

spectively. As privacy protection is relaxed, the MAE for SA scores

is reduced, showing the improved usefulness for perturbed distance

vectors. Linking the usefulness results to the privacy evaluation,

we highlighted three 𝜖 settings of DVLaplace and one 𝑠 setting of

Rounding, in which an adversary’s inference error on individual

residential address is more than 100 meters on average. With sim-

ilar usefulness results, DVLaplace is more private than Rounding
in theoretical guarantees and empirical protection.

We visualize the real and privacy-enhanced SA scores by zip-

code in Figure 9 and Figure 10. Zip-codes are classified into 5

quantiles based on SA scores, where higher SA scores indicate
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better access to health resources. Despite providing similar MAE er-

rors, we observe that DVLaplace outperforms Rounding in preserv-

ing global SA patterns. For instance, in Figure 9, DVLaplace only
mistakes zip-codes for adjacent color-codes/quantiles and misses

one zip-code in the bottom 20% (color gray); Rounding places zip-
codes in quantiles further from ground truth (e.g., from green to

brown) and misses two zip-codes in the bottom 20% (color gray).

In Figure 10, DVLaplace correctly classifies all zip-codes in the bot-

tom 40% whereas Rounding makes several mistakes for the least

resourced zip-codes, overestimating the spatial accessibility for

zip-codes in north and west of Nashville. We hypothesize that

DVLaplace preserves global patterns better because the aggrega-

tion tends to cancel out positive and negative perturbation noises,

whereas Rounding introduces one-sided noise in distance values

which may be propagated in aggregate analysis.

(a) Real

(b) DVLaplace with 𝜖 = 0.01

(c) Rounding with 𝑠 = 1000

Figure 9: Spatial Accessibility Scores by Zip-Code - Mecklenburg:
gray represents lowest SA scores and brown represents highest.

(a) Real

(b) DVLaplace with 𝜖 = 0.01

(c) Rounding with 𝑠 = 1000

Figure 10: Spatial Accessibility Scores by Zip-Code - Nashville: gray
represents lowest SA scores and brown represents highest.

7 CONCLUSION
Our work takes a first step to enable private spatial accessibility

studies by providing provable privacy protection to participants.

Specifically, we have presented two empirical privacy risk measures

to quantify the information leakage by sharing travel distances,

which are essential in spatial accessibility analysis. To mitigate the

privacy risks, we have proposed two privacy methods to report the

shortest distance and distance vector at the individual level, and

have analyzed their privacy guarantees in metric-based privacy. We

have presented the empirical results obtained with real population

and healthcare facilities data from two populous metro areas, which

illustrate the usefulness and empirical privacy protection offered

by our methods.

As for future work, we consider the following directions. Firstly,

it is possible to develop secure aggregation protocols for computing

spatial accessibility, i.e., to compute service-to-population ratios.

It would be interesting to understand whether those intermediate
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results incur any information leakage and to develop hybrid ap-

proaches that leverage both secure aggregation and metric privacy.

Secondly, in this study, travel distances are estimated in the driving

mode; future work may consider multiple transportation modes,

e.g., walking and public transport, to estimate privacy risks and

spatial accessibility scores. Lastly, it would be important to examine

privacy risks in differential neighborhoods, e.g., at zip-code level,

and the utility loss introduced by privacy methods in those neigh-

borhoods. Our empirical results show that privacy methods may

change the distribution of spatial accessibility scores. A large-scale

study would be beneficial for an in-depth examination.
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A ADDITIONAL RESULTS
A.1 Distance to Nearest Facility

Figure 11: MAE (in meters) for Releasing Shortest Distances -
Nashville

(a) Membership Inference Rate

(b) Address Inference Rate

(c) Address Inference Error (in meters)

Figure 12: Privacy Evaluation for Releasing Shortest Distances -
Nashville

A.2 Distance Vectors

Figure 13: MAE (in meters) for Releasing Distance Vectors -
Nashville

(a) Membership Inference Rate

(b) Address Inference Rate

(c) Address Inference Error (in meters)

Figure 14: Privacy Evaluation for Releasing Distance Vectors -
Nashville
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