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Distribution-free image monitoring with application to battery coating process

Tingnan Gonga , Di Liua, Heeseon Kimb, Seong-Hee Kima , Taeheung Kimb, Dongki Leeb, and Yao Xiea 

aH. Milton School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA; bLG Electronics, Seoul, 
South Korea 

ABSTRACT 
This article presents a distribution-free image monitoring procedure for a manufacturing process, 
where a series of images are converted into a vector of two feature values extracted from singular 
value decomposition. Traditional image-based monitoring methods often make specific assump-
tions about marginal distributions and spatio-temporal dependence structures, which are often vio-
lated in real-world scenarios such as battery coating processes. To overcome this issue, we propose 
a distribution-free image monitoring procedure that detects a shift in the mean matrix of monitored 
images. Our method involves performing singular value decomposition of each image matrix in two 
ways to obtain two values, which are then combined into a bivariate vector. The bivariate vectors 
are monitored using a distribution-free multivariate CUSUM procedure, for which we determine con-
trol limits analytically, enabling convenient and easy implementation of the monitoring procedure. 
We demonstrate the effectiveness of our proposed procedure, as measured by average run lengths, 
using various simulated data and a real-data example from a battery coating process.
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1. Introduction

The monitoring of streaming image data has emerged as a 
crucial aspect of quality control in modern manufacturing. 
Recent advancements in sensor technology have made it 
possible to obtain real-time and high-resolution image data, 
but the complexity of the data has created challenges in 
monitoring. Firstly, the high resolution of images results in 
a high-dimensional problem with a massive number of pix-
els. Secondly, pixels and image frames exhibit a complex 
spatio-temporal correlation. Thirdly, the image data may not 
follow a multivariate normal distribution. To address these 
challenges, we propose a novel distribution-free monitoring 
procedure for high-dimensional images, using low-rank 
models to account for the complex correlation structure in 
the data while being robust to non-normality.

Our study is motivated by a battery coating process that 
is prevalent in the battery manufacturing industry. In this 
process, the electrode slurry is uniformly sprayed onto a 
long foil within a specific area, as illustrated in Figure 1, 
during in-control production. The foil moves forward and 
perpendicular to the sensor’s movement, and thickness 
measurements are collected by the sensor at each trip from 
one side of the foil to the other. The sensor captures 
approximately 298 measurements during each trip, which 
occurs roughly every 7 seconds. Figure 2 presents a heatmap 
of the thickness measurements of the electrode slurry on 
two distinct sections of the foil: Figure 2(a) exhibits a uni-
form in-control pattern, whereas Figure 2(b) demonstrates 
missing spraying. These observations highlight the 

importance of monitoring the battery coating process to 
ensure the uniformity of the sprayed slurry, which is critical 
for the battery’s performance. Our research aims to address 
this need by proposing a novel monitoring procedure that is 
capable of detecting any anomalies in the coating process. 
The battery coating process presents all the challenges men-
tioned above that make the monitoring task difficult. Figure 3
illustrates the complex characteristics of the measurements in 
the battery coating process. Figure 3(a) depicts the auto-cor-
relation of the first measurements in the thickness measure-
ment vectors obtained at each sensor trip, while Figure 3(b)
shows cross-correlation among a few selected measurements. 
Furthermore, Figure 3(c) demonstrates the non-normality of 
the first measurements obtained at each sensor trip. The 
high-dimensionality issue is also present as each sensor trip 
collects a vector of 298 measurements, let alone an image 
consisting of a series of such vectors.

Different monitoring procedures can be used depending 
on the interpretation of image data. For the thickness meas-
urements in battery coating processes, one approach 
involves treating the measurements collected in each trip or 
over a specific part of the foil as a vectorized profile and 
applying advanced profile monitoring techniques. 
Alternatively, an image of the electrode slurry thickness over 
a fixed portion of the foil can be formed, and image moni-
toring procedures can be applied. In practical settings, the 
target mean matrix for an image is often rank-one. For 
example, every row of a target mean matrix is identical in 
the battery coating process or liquid crystal display screens.
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If one decides to convert images into vectorized data, pro-
file monitoring can be utilized, as discussed in Megahed et al. 
(2011). A profile refers to a functional relationship between 
explanatory variables and quality attributes of the variables. 
Expository discussions on applying statistical process control 
techniques to profile monitoring are available in Woodall 
et al. (2004), and Woodall (2007). However, most profile 
monitoring techniques, such as those reported by 
Kazemzadeh et al. (2009), Zhu and Lin (2009), and Colosimo 
and Pacella (2010), assume that measurements are not cross- 
correlated, consecutive profiles are not auto-correlated, and 
the measurements are normally distributed. Applying 
restricted profile monitoring techniques to image data can 
significantly increase the detection delay or the false alarm 
rate. For instance, Alwan (1992) and Mastrangelo et al. (1996) 
demonstrate that applying a procedure designed for tempor-
ally independent measurements to auto-correlated data can 
increase the false alarm rate. Noorossana et al. (2008) also 

shows that the violation of the normality assumption can 
magnify the false alarm rate.

Recent developments in profile monitoring have addressed 
the issue of cross- and auto-correlation to some extent. Some 
methods, such as combining Principal Component Analysis 
(PCA) with linear regression (Niaki et al., 2015), or using 
wavelet-based distribution-free procedures (Lee et al., 2012; 
Wang et al., 2015) or sparse multi-channel functional PCA 
(Zhang et al., 2018), have tackled cross-correlation. In con-
trast, others, such as by Khedmati and Niaki (2016), Wang 
and Lai (2019), or a multivariate spatio-temporal autoregres-
sive model (Wang et al., 2021), have dealt with auto-correl-
ation. However, these methods have limitations on either the 
auto-correlation structure or the dimensionality. Zhang et al. 
(2020) tackle the high-dimensional profile through random 
projection and enhance computation efficiency by ensembling 
and fusing. However, it requires temporally independent pro-
files. Although much effort has been made, it is difficult to 
address cross- and auto-correlation, non-normality, and high 
dimension simultaneously.

In image monitoring, many techniques can handle cross- 
correlation but ignore auto-correlation, such as those reported 
by Wang and Tsung (2005), Megahed et al. (2012), and 
Amirkhani and Amiri (2020). Lu and Tsai (2005) propose a 
low-rank projection approach without discussing correlation, 
whereas Alaeddini et al. (2018) use novel feature extraction 
but impose data independence. Yan et al. (2014) model 
images with tensors, which is general but time-consuming. A 
recent spatio-temporal decomposition methodology, such as Figure 1. A machine performing battery coating.

Figure 2. Heatmaps of thickness measurements of the electrode slurry on two different portions of a foil.

Figure 3. Characteristics of battery coating data.
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Yan et al. (2017, 2018, 2022), can handle spatio-temporal cor-
relation and high-dimensionality, with focus on hot-spot 
detection in metal additive manufacturing. Colosimo and 
Grasso (2018) propose a weighted PCA for the same problem, 
but its specificity limits general application. Eslami et al. 
(2021) extend the wavelet-based methods of Koosha et al. 
(2017) to handle potential spatio-temporal correlation but still 
assume normality.

One currently thriving thread of literature employs 
machine learning or deep learning techniques to monitor 
high-dimensional data. Deep learning techniques such as 
Recurrent Neural Networks (Ebrahimzadeh et al., 2019), 
Long Short-Term Memory autoencoder (Atashgahi et al., 
2023), and Generative Adversarial Networks (Li et al., 2019) 
have been used to monitor data with complex spatio-tem-
poral dependence. Wu et al. (2020) and Gupta et al. (2022) 
introduce end-to-end adaptive methods for anomaly detec-
tion, focusing on data pre-processing and feature extraction 
with deep learning techniques. Recently, some studies have 
explored online training of neural networks to construct 
control charts and integrate them with conventional statis-
tical process control. Lee et al. (2023) perform online train-
ing of neural networks to build a CUSUM procedure, 
whereas Hushchyn et al. (2020) develop online neural net-
work classification and online neural network regression for 
monitoring. It is noteworthy that the aforementioned meth-
ods are originally developed for multivariate time series, but 
can be applied to image monitoring when images are vector-
ized. Garcia et al. (2022) consider multivariate time series 
but transform them into images to facilitate the training of 
deep learning models. Thus, if their method is used for 
image monitoring, it can handle images directly. However, 
their primary focus is comparing different encoding meth-
ods rather than monitoring signals or images with complex 
dynamics. Although these neural network-based monitoring 
methods have the potential to handle complex data, the 
computation time required for online training of neural net-
works, especially for high-dimensional data, is substantial.

In this article, we propose a distribution-free procedure 
for effectively monitoring an image process with a rank-one 
target mean image. Although images can be monitored 
using profile monitoring with vectorized data, direct moni-
toring of image data is better for capturing spatial relation-
ships and providing interpretable visualizations. However, 
cross- and auto-correlations and the inherently high dimen-
sionality make image monitoring more challenging. Our 
approach is distribution-free in that it does not assume any 
specific marginal distributions or correlation structures. It 
also allows for high dimensionality of image data. The pro-
posed procedure utilizes Singular Value Decomposition 
(SVD) of the image data to reduce dimensionality and then 
captures any cross-correlation in bivariate vectors con-
structed from singular values through T2-type statistics. 
Additionally, possible auto-correlation is considered by 
incorporating an asymptotic variance constant, known to 
capture the variability of a stationary, but dependent, pro-
cess effectively. Moreover, the control limits are analytically 
determined based on a pre-specified performance metric, 

the in-control average run length (ARL0). The use of analyt-
ically determined control limits makes implementation easy 
and convenient, particularly in cases where only one sample 
path is available, or the monitoring needs to start immedi-
ately without sufficient in-control data or time for calibra-
tion. Some preliminary results of this article are included in 
the second author’s doctoral dissertation (Liu, 2022).

The rest of this article is organized as follows: Section 2
defines the problem and notation. Section 3 provides the 
proposed monitoring statistics and procedure. In Section 4, 
we present numerical comparisons between the proposed 
procedure and three baseline procedures. Section 5 illus-
trates the performance of our procedure in a real-world 
application involving the battery coating process, and con-
cluding remarks are given in Section 6.

2. Problem and background

In this section, we define the detection problem and provide 
a preliminary discussion on a relevant distribution-free 
monitoring procedure for multivariate time-series data.

2.1. Problem definition

Let Yn represent a w ⇥ p matrix representing the nth image 
matrix obtained from a monitored process. An image matrix 
Yn can comprise pixel values from each image. Or, it can 
represent measurements captured by a sensor over a specific 
region, such as thickness measurements on a piece of foil in 
a battery coating process. Image matrix Yn is modeled as 
Yn à má en, where m is a w ⇥ p deterministic matrix, and 
en is a w ⇥ p random noise matrix with zero mean. Each 
entry in en can have any general marginal distribution. The 
noise matrices may exhibit complex correlations, including 
cross-correlations among their entries and auto-correlations 
over time.

The monitoring problem can be formulated as the follow-
ing online hypothesis testing:

H0 : Yn à m0 á en, n à 1, 2, :::

H1 : Yn à
m0 á en, n à 1, 2, :::, s,
m1 á en, n à sá 1, sá 2, :::,

(
(1) 

where s is the change point for the mean of Yn, m0 is the 
in-control mean matrix of Yn, and m1 à m0 á D is the out- 
of-control mean matrix with a w ⇥ p non-zero shift matrix 
D: In practice, m0 is a known target matrix while m1 is an 
unknown matrix. Note that we consider only the mean shift, 
while the statistical properties of en remain unchanged, 
including cross- and auto-correlations. We have the follow-
ing assumptions on m0 :

Assumption 1. The in-control mean matrix m0 is a w⇥ p 
rank-one matrix. The SVD of m0 is m0 à k0u0v>0 , where k0 
is the only non-zero singular value of m0; and u0 and v0 are 
the corresponding left and right singular orthonormal vectors, 
respectively. 

Assumption 1 only constrains the rank of the in-control 
mean matrix m0 while the rank of the out-of-control mean 
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matrix m1 is unrestricted. This assumption on m0 is based 
on the fact that many manufacturing applications have a 
specific target mean pattern. A rank one matrix can repre-
sent a complex target mean pattern with non-stationary and 
non-cyclic oscillations as shown in Figure S.1 in 
Supplement S.1. 

2.2. Relevant work 

This section reviews a distribution-free CUSUM procedure 
for monitoring multivariate time-series data, which is used 
in the proposed procedure in Section 3. 

Let fzn : n à 1, 2, :::g be a multivariate time series follow-
ing a general marginal distribution with mean vector l and 
covariance matrix R:

Assumption 2. The covariance matrix R of zn is positive def-
inite. Moreover, when the mean of zn shifts from in-control 
mean l0 to out-of-control mean l1 at an unknown point, the 
covariance matrix R does not change.  

In order to detect a shift in the mean of zn, Liu et al. 
(2022) propose to convert fzn : n à 1, 2, :::g to a univariate 
time-series by computing the T2-type statistics of each zn as 
Tn à Özn − l0Ü

>R−1Özn − l0Ü, and monitor fTn : n à
1, 2, :::g with a distribution-free CUSUM procedure pro-
posed by Kim et al. (2007). Let ⌫0 and rT represent the 
in-control mean and standard deviation of Tn. Then, the 
one-sided CUSUM statistic is computed as:

Sán à
0, if n à 0,
maxf0, Sán−1 á ÖTn − ⌫0 − KÜg, if n � 1,

⇢
(2) 

where K is set to K à krT for a pre-selected real-valued 
constant k.

Assumption 3. Define the standardized time series of the 
first n observations as

CnÖtÜ ⌘

Pbntc
ià1 Ti − nt⌫0

X
ÅÅÅ
n
p for t 2 0, 1â ä:

There exist finite real constants ⌫0 and X > 0 such that as 
n!1, the sequence of random functions fCnÖ�Ü : n à
1, 2, :::g converges in distribution to standard Brownian 
motion WÖ�Ü in the Skorohod space Dâ0, 1ä. Formally, 
CnÖ�Ü!

DWÖ�Ü, as n!1 where !D represents convergence in 
distribution.  

Assumption 3 is a Functional Central Limit Theorem 
(FCLT). The constant X2 is called the asymptotic variance 
parameter of process fTn : n à 1, 2, :::g and is defined as:

X2 ⌘ lim
N!1

N � Var 1
N
XN

nà1
Tn

 !

:

When auto-correlation is present, X2 is a better measure 
of process variability than a marginal variance. Techniques 
for estimating X2 in a distribution-free manner are discussed 
in Alexopoulos et al. (2007). A more comprehensive discus-
sion on the conditions under which a FCLT holds is 

available in Glynn and Iglehart (1985). Chapter 4.4 of Whitt 
(2011) states that, from a practical perspective, it is usually 
reasonable to assume that a FCLT is valid if X2 is finite. 

Under a FCLT, Kim et al. (2007) show that the CUSUM 
statistic asymptotically behaves like a drifted Brownian 
motion and that the in-control average run length (ARL0) 
for a given control limit H is approximated by:

X2

2K2 exp 2KÖH á 1:166XÜ
X2

 �
− 1 − 2KÖH á 1:166XÜ

X2

⇢ �

⇡ ARL0: (3)  

To determine the threshold H, one can solve (3) for H 
with a specified target ARL0. Once H is determined, the pro-
cedure raises an out-of-control alarm at the first point n⇤
where the statistic Sán exceeds the threshold H, that 
is, n⇤ à minfn : Sán � Hg:

Finally, we assume the following assumption holds: 

Assumption 4. When the mean of zn shifts from in-control 
mean l0 to out-of-control mean l1 at an unknown point, the 
variance parameter of process fTn : n à 1, 2, :::g, X2, remains 
unchanged. 

In this article, we convert the monitoring problem of a high- 
dimensional process fYn : n à 1, 2, :::g into that of a low- 
dimensional process fzn : n à 1, 2, :::g, which requires 
Assumptions 2, 3, and 4 on zn: It is important to note that 
although there are no specific assumptions made regarding Yn, 
it is necessary to ensure that the correlation structure of Yn 
meets certain conditions to guarantee that a zn derived from an 
in-control Yn conforms to Assumption 3 for the existence of 
the variance parameter X2: On the other hand, Assumptions 2
and 4 are similar to the usual assumption for mean-shift detec-
tion, where variance is assumed to remain unchanged when the 
mean shifts. We discuss the robustness of our proposed proced-
ure to the violation of these assumptions in Section 3.3 and val-
idate them for battery coating data in Section 5. 

3. Distribution-free image monitoring procedure 

In this section, we formulate two new statistics to monitor 
Yn, representing images, and propose our image monitoring 
procedure. Then, we provide a theoretical basis for the 
effectiveness of the monitoring procedure. 

3.1. Monitoring statistics 

We propose two monitoring statistics that utilize the SVD 
technique, building on Assumption 1, which assumes that the 
SVD representation of m0 is m0 à k0u0v>0 : The first statistic, 
denoted by kP

n , is constructed by projecting Yn along the dir-
ection of u0 and v0, and it is defined as kP

n à u>0 Ynv0 for n à
1, 2, :::: The second statistic, denoted by kR

n , is constructed by 
subtracting the in-control mean matrix m0 from Yn to obtain 
the residual matrix: Rn à Yn − m0 for n à 1, 2, :::, and then 
calculating the largest singular value of Rn: When the process 
is in control, Rn à en and the entries of Rn are random varia-
bles with mean 0. We define zn à âkP

n , kR
n ä
> and monitor the 
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bivariate time-series fzn : n à 1, 2, :::g using the distribution- 
free CUSUM procedure reviewed in Section 2.2. Algorithm 1
gives the steps of the Distribution-Free Image Monitoring 
(DFIM) procedure. 

During the setup phase before the implementation of the 
DFIM procedure, various parameters need to be estimated, 
including l0 (in-control mean of zn), R (covariance matrix 
of zn), ⌫0 (in-control mean of Tn), rT (in-control standard 
deviation of Tn), and X2 (in-control asymptotic variance 
constant of Tn). Algorithm 2 provides a detailed description 
of the estimation process in the setup phase. The combined 
proposed procedure of Algorithms 1 and 2 is summarized in 
a flowchart shown in Figure S.2 in Supplement S.2. 

Algorithm 1 Distribution-free Image Monitoring Procedure 
Input: From the target mean image, obtain m0, u0, and v0:
From in-control training data, obtain l0, R, ⌫0, rT, and X2:
Choose target ARL0 and k between 0.01 and 0.1. 

1: Set K à krT and calculate control limit H by solving 
the following equation:

X2

2K2 exp 2KÖH á 1:166XÜ
X2

 �
− 1 − 2KÖH á 1:166XÜ

X2

⇢ �

à ARL0:

(4)  
Set nà 1 and go to Step 2. 

2: Compute kP
n à u>0 Ynv0 and obtain the largest singular 

value kR
n of Rn à Yn − m0:

3: Set zn à kP
n , kR

n
⇥ ⇤> and compute Tn à Özn − l0Ü

>

R−1 Özn − l0Ü:
4: Compute CUSUM statistic Sán as in (2). 
5: Raise an out-of-control alarm if Sán � H: Otherwise, 

set n à ná 1 and go to Step 2.  

3.2. Theoretical analysis 

This subsection analyzes the in-control and out-of-control 
mean values of kP

n and kR
n : Then we discuss the validity of 

assumptions imposed on zn and investigate if any shift in 
the mean matrix from m0 to m1 is accurately reflected in 
the statistics zn and Tn. 

Algorithm 2 Setup Phase for Distribution-free Image 
Monitoring Procedure 
Input: In-control process fY0

n : n à 1, 2, :::, Ng and target 
mean m0 

1: Perform SVD on m0 : m0 à k0u0v>0 :
2: For n à 1, 2, :::, N, compute kP

n à u>0 Y0
nv0 and R0

n à
Y0

n − m0, and perform SVD on R0
n to obtain the larg-

est singular value kR
n : Define zn à kP

n , kR
n

⇥ ⇤>
:

3: Compute in-control sample mean vector denoted by 
l̂0 and sample covariance matrix denoted by Sz using 
z0

n for n à 1, 2, :::, N as follows:

�z à 1
N
XN

nà1
z0

n and Sz à
1

N − 1
XN

nà1
Öz0

n − �zÜÖz0
n − �zÜ>:

Estimate l0 and R by �z and Sz , respectively, and pass 
them to the DFIM procedure. 

4: For n à 1, 2, :::, N, compute T0
n  Öz0

n − �zÜ>
S−1

z Öz0
n − �zÜ:

5: Compute sample mean and standard deviation of Tn:

�T  1
N
XN

nà1
T0

n and sT  

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1

N − 1
XN

nà1
ÖT0

n − �TÜ2
vuut :

Estimate ⌫0 and rT by �T and sT and pass these values 
to the DFIM procedure. 

6: Estimate asymptotic variance parameter X2 of T0
n using 

the CvM estimator (Alexopoulos et al., 2007). The 
variance estimation algorithm is given in 
Supplement S.3. 

3.2.1. Mean of kP
n 

Let E0â�ä and E1â�ä represent expectation under in-control 
and out-of-control conditions, respectively. Then the in-con-
trol and out-of-control mean values of kP

n are as follows:
E0 kP

n
⇥ ⇤

à E0 u>0 Ynv0
⇥ ⇤

à u>0 E0 Ynâ äv0 à u>0 m0v0 à k0,
E1 kP

n
⇥ ⇤

à E1 u>0 Ynv0
⇥ ⇤

à u>0 E1 Ynâ äv0 à u>0 m1v0 à k0 á u>0 Dv0:

The difference in in-control and out-of-control mean val-
ues of kP

n is

E1 kP
n

⇥ ⇤
− E0 kP

n
⇥ ⇤

à u>0 Dv0: (5)  

It is important to note that the difference in (5) may be 
zero even for a non-zero mean shift D in the image process, 
resulting in the failure to capture the shift. Therefore, any 
image monitoring procedure that relies solely on kP

n could 
fail to detect a shift in the process. 

3.2.2. Mean of kR
n 

The analysis of the mean value of kR
n is complex because it 

is the largest singular value of a matrix, Rn, with random 
variables as entries. To gain a better understanding of kR

n , 
we consider a special case where all entries of Rn are 
assumed to be independent and identically distributed 
(i.i.d.). In the in-control condition, Rn becomes a random 
matrix with each entry having expectation 0, while the 
entries in Rn exhibit different expectations in the out-of- 
control condition. Then, the following lemmas are applicable 
to random matrices: 

Lemma 1 (Yin et al., 1988). Suppose C is a w⇥ p matrix 
whose entries are i.i.d. random variables having mean zero, 
variance r2, a finite fourth moment, and w=p! c as 
p!1. Then the largest singular value of 1ÅÅpp C converges a.s. 
to r 1á

ÅÅ
c
p� �

as p!1:

Lemma 2 (Bryce and Silverstein, 2020). Suppose D is a 
w⇥ p random matrix in the following form: D à Bá C, 
where B is a deterministic matrix with the largest singular 
value denoted as g and C is a random matrix satisfying the 
conditions in Lemma 1. Represent the SVD of B as 
B à UKV> à UG>, where G à VK. Define ~C à EâC>Cä=w, 
R⇤ à G>~CG, Ĉ à EâCC>ä=p, and R⇤⇤ à U>ĈU. Also, define 
w, a deterministic term depending on the variances of the 
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entries of C, as

w à 1
2

ÅÅ
c
p

c3wp R⇤â ä11 á
1ÅÅ
c
p

c
R⇤⇤â ä11

 !

, 

where c à limp!1
w
p , c à limp!1

gÅÅÅÅwpp , and âR⇤ä11 and âR⇤⇤ä11 
are the (1,1)th entries of R⇤ and R⇤⇤, respectively. Finally, 
define Z, a random centered fluctuation term with mean 0, 
as follows:

Z à 1
c

1
ÅÅÅÅÅÅwpp G>C>U

 �

11
:

Then the largest singular value of  D, denoted by k, can be rep-
resented as a sum of four terms: k à gá wá Z á e, where g 
and w are deterministic terms, Z is a random term that depends 
on random matrix C, and e! 0 in probability as p!1:

When a monitored process fYn : n à 1, 2, :::g is in con-
trol, Rn can be represented as a random matrix and kR

n 
becomes the largest singular value of the random matrix. 
Then, assuming i.i.d. entries of the random matrix, Lemma 1
implies that for large p, E0âkR

n ä ⇡ r
ÅÅÅÅ
w
p
á ÅÅÅpp

� �
: In contrast, 

when the monitored process is out of control and the mean 
matrix shifts to m1, a residual matrix is Rn à m1 − m0 á
en à Dá en, which can be viewed as a random perturbation 
of a low-rank matrix D: Denote the largest singular value of 
D as kL. When en has i.i.d. entries with variance 
r2,Eâe>n enä=w and Eâene>n ä=p become diagonal matrices, with 
all diagonal entries being r2: Then in Lemma 2, we have c à
kL, âR⇤ä11 à r2k2

L, âR⇤⇤ä11 à r2, and for large p

E1 kR
n

⇥ ⇤
⇡ kL á

r2Öwá pÜ
2kL

:

The difference between the in-control and out-of-control 
mean values of kR

n is

E1 kR
n

⇥ ⇤
− E0 kR

n
⇥ ⇤

⇡ kL á
r2Öwá pÜ

2kL
− r

ÅÅÅÅ
w
p
á ÅÅÅpp

� �

� r
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2Öwá pÜ

p
− r

ÅÅÅÅ
w
p
á ÅÅÅpp

� �

à rÖ
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2Öwá pÜ

p
− ÅÅÅÅ

w
p − ÅÅÅpp Ü,

(6) 

where the inequality holds due to aá b � 2
ÅÅÅÅÅ
ab
p

for a, b � 0 
with the equality holding when a à b, i.e., kL à r

ÅÅÅÅÅÅÅ
wáp

2

q
:

The lower bound in (6) is always non-negative since
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2Öwá pÜ

p
�

ÅÅÅÅ
w
p
á ÅÅÅpp () 2Öwá pÜ � wá pá 2 ÅÅÅÅÅÅwpp

() wá p − 2 ÅÅÅÅÅÅwpp � 0
() Ö

ÅÅÅÅ
w
p − ÅÅÅpp Ü2 � 0:

When w 6à p, the lower bound is strictly positive. Thus, 
when p is large, w 6à p, and kL 6à r

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Öwá pÜ=2

p
, a non-zero 

shift D in the image process is reflected into kR
n :

We have explored the expectations of kR
n in both the in- 

control and out-of-control conditions and expect the results 
to hold when auto-correlations exist, as the results are derived 
from marginal analysis. However, it is unclear whether the 
results will hold when spatial independence is lost. Spatial 
independence is the minimum requirement for conducting 
theoretical analysis in the field of random matrix theory and 

extending the results to cases with spatial correlation in the 
random matrix is challenging. Therefore, we conduct experi-
ments in Section 4.2 to numerically verify the results in (6).

3.2.3. Theoretical comparison
From the previous derivations, we have E1âkP

nä − E0âkP
nä à

u>0 Dv0 and E1âkR
n ä − E0âkR

n ä* rÖ
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2Öwá pÜ

p
− ÅÅÅÅ

w
p − ÅÅÅpp Ü

where the first equation holds for general Rn while the second 
approximation is derived under the assumption of i.i.d. noise 
entries with variance r2 in en: We consider two cases to show 
the advantages and disadvantages of each statistic.

Case 1: Consider a shift matrix D such that D à kLudv>d , 
where u>0 ud à 0: Using (5), we can see that the difference in 
the in-control and out-of-control mean values of kP

n is 
u>0 Dv0 à kLu>0 udv>d v0 à 0: This result suggests that any shift 
D has no effect on the mean of kP

n: The same conclusion 
holds for any shift D such that v>0 vd à 0: On the other 
hand, the mean value of kR

n is impacted by the shift D as 
shown in (6), assuming that the equality does not hold (i.e., 
kL 6à r

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Öwá pÜ=2

p
. Thus, if we want to capture a shift in 

the monitored process, kR
n is a better statistic for this case.  

Case 2: Consider a case where ud à u0 and vd à v0: In this 
case, the difference in the in-control and out-of-control 
means of kP

n can be further simplified to kL because u0 and 
v0 are unit vectors. Suppose that

r2Öwá pÜ
2kL

− r
ÅÅÅÅ
w
p
á ÅÅÅpp

� �
< 0 or kL >

rÖwá pÜ
2

ÅÅÅÅ
w
p
á ÅÅÅpp

� � :

Then, from (6), we can see that the mean difference of 
kR

n is smaller than kL. In this case, kP
n is a better statistic 

because it exhibits a larger shift in the mean, making it 
more responsive to the shift D:

Case 1 demonstrates that kP
n alone may fail to capture a 

shift, highlighting the need to incorporate another statistic 
to ensure robust mean shift detection. Case 2 shows that kP

n 
can be more effective at capturing a shift than kR

n , although 
our analysis in Section 3.2.2 shows kR

n consistently captures 
a shift. To take advantage of both singular values, we com-
bine the two into a bivariate vector zn and monitor the vec-
tors. Although one can monitor kP

n and kR
n individually with 

two CUSUM charts, the two charts become correlated and 
make it challenging to set control limits that ensure the 
overall ARL0 matches the target. 

Further, for en with general spatial correlations, we calcu-
late the difference between the in-control and out-of-control 
means of Tn statistics because the final monitoring statistics 
for the DFIM procedure is Tn. When the monitored process 
is in control, E0 Tnâ ä à E trÖR−1Özn − l0ÜÖzn − l0Ü

>Ü
h i

à 2:
Let Cov1ÖznÜ represent the covariance matrix of zn in the 
out-of-control condition. Then

E1 Tnâ ä à tr R−1Cov1ÖznÜ
� �

á E1 znâ ä − l0
� �>R−1 E1 znâ ä − l0

� �

à 2á E1 znâ ä − l0
� �>R−1 E1 znâ ä − l0

� �
, 

where the last equality holds due to Assumption 2 that R 
remains unchanged in the out-of-control condition. Then, 
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we can express the shift in the mean of Tn statistics as fol-
lows:

E1 Tnâ ä − E0 Tnâ ä à E1 znâ ä − l0
� �>R−1 E1 znâ ä − l0

� �
: (7) 

If a mean shift D is reflected in kP
n or kR

n , resulting in a 
shift in the mean of zn from l0 to E1âznä 6à l0, then (7) is 
always positive and the proposed procedure can detect the 
shift.

3.3. Robustness

In this section, we discuss the robustness of the proposed 
procedure when Assumptions 1, 2, and 4 are violated. Note 
that the assumption of i.i.d. entries in en is only used for 
the theoretical analysis of kR

n in Section 3.2.2, but the 
assumption is not needed in this section.

Given that m0 represents the target mean image and is a 
well-defined reference, the validity of Assumption 1 can be 
verified easily. In cases where this assumption does not 
hold, but the decision maker wants to apply the proposed 
procedure, it essentially performs singular value truncation, 
retaining only the largest one. As long as a mean shift in Yn 
is captured by one of the features kP

n or kR
n , the conclusions 

drawn from the theoretical analysis in (7) still hold, which 
means the proposed procedure can detect the mean shift.

For the violation of Assumption 2, we define R0 and R1 
as the covariance matrices of zn in the in-control and out- 
of-control conditions, respectively. The in-control R0 repla-
ces R in the calculation of Tn statistics. Then, the in-control 
mean of Tn is still 2, but we have the mean shift as follows:

E1 Tnâ ä − E0 Tnâ ä à E1 znâ ä − l0
� �>R−1

0 E1 znâ ä − l0
� �

á tr R−1
0 R1

� �
− 2: (8) 

The first term in (8) is identical to the shift size in (7), 
which is the shift size when Assumption 2 is satisfied. 
Therefore, we focus on the magnitude of trÖR−1

0 R1Ü − 2: If 
this magnitude is less than zero, the shift detection may be 
slower. If it is positive, the detection will be faster. 
Supplement S.4 shows an analysis of the value of trÖR−1

0 R1Ü:
The analysis demonstrates that the proposed procedure will 
function well in most cases, even when Assumption 2 is vio-
lated. Additionally, Supplement S.5 investigates the 
implication of Assumption 4 violation by using ARL1 
approximations and shows that an increase in X2 accelerates 
the detection of a shift, while a decrease in X2 does not 
slow down the detection much when it is already large.

3.4. Computation analysis

Image monitoring applications typically involve high-speed 
data acquisition processes. To effectively monitor these proc-
esses in an online setting, it is essential to have a monitoring 
procedure with low computational complexity during the 
monitoring phase.

In the proposed procedure, the majority of the 
computational efforts are focused on acquiring kP

n and kR
n :

During the monitoring phase, only matrix multiplication is 

required to obtain kP
n , as the singular vectors of the in-con-

trol mean matrix are obtained during the setup phase. For 
kR

n , a matrix subtraction and SVD of the residual matrix are 
performed for each image matrix. After computing kP

n and 
kR

n , the Tn statistic is calculated using the in-control mean 
vector and the inverse covariance matrix estimated during 
the setup phase. All parameters of the DFIM procedure are 
also pre-determined during the setup phase. As a result, the 
SVD of a residual matrix is the dominating operation in the 
monitoring phase. Fortunately, numerous efficient imple-
mentations of SVD have been developed, making the pro-
posed procedure suitable for high-speed image monitoring 
applications.

4. Numerical experiments

This section compares the proposed procedure with three 
baseline procedures using numerical experiments. We intro-
duce the testing processes, provide a detailed review of the 
baseline procedures, and discuss the performance of all four 
procedures in monitoring images under various cross- and 
auto-correlation settings.

4.1. Simulated data

We consider two ways to simulate images. Type 1 processes 
generate vector time series and use them to form image 
matrices, whereas Type 2 processes directly generate image 
matrices.

4.1.1. Type 1: Forming an image matrix from vectors
In situations similar to the battery coating, a sensor records 
a p⇥ 1 observation vector, denoted by xt , at time t. Then, 
for a window size w � 1 and an inter-window spacing size 
s, 1  s  w, we construct an image matrix, Yn, as follows:

Yn à
x>Ön−1Üsá1

..

.

x>Ön−1Üsáw

2

664

3

775, (9) 

where n � 1, and a> represents the transpose of a vector a. 
That is, we parallel align x>t into a w ⇥ p matrix, Yn, for 
Ön − 1Üsá 1  t  Ön − 1Üsá w: Specifically, when sà 1, the 
matrices correspond to overlapping blocks with a sliding 
window of size w. On the other hand, when s à w, the 
matrices correspond to non-overlapping blocks of size w. 
We generate a p-variate vector time-series fxtg as xt à
aá et , et à Uet−1 á nt , and e0 à n0 for t à 1, 2, ::: where a 

is the marginal mean vector of xt , et are the auto-correlated 
error terms, U is the auto-correlation coefficient matrix, and 
nt are i.i.d. normal random vectors with mean 0 and covari-
ance matrix Rn: The in-control mean vector is denoted by 
a0, and the out-of-control mean vector is a1: We construct 
Yn following (9) with the inter-window spacing size sà 1. 
The in-control mean matrix of Yn is a rank-one matrix: 
m0 à E0âYnä à a0 a0 � � � a0

⇥ ⇤>
: We set a0 to be a con-

stant vector with a value of five, which represents a target 
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uniform height. We also set pà 200 and wà 5. The auto- 
correlation coefficient matrix, U, is chosen to be a diagonal 
matrix where âUäij à / if i à j and 0 otherwise. The diag-
onal entry / is set to 0.3 or 0.7 to test the effect of low and 
high auto-correlation, respectively. We also test two different 
cross-correlation structures by varying Rn between the fol-
lowing two models with q à 0:3 : (i) tri-diagonal model: 
âRnäij à 1 if i à j; q if ji − jj à 1; 0 otherwise; and (ii) expo-
nential model: âRnäij à qji−jj:

To simulate out-of-control scenarios, we add a 200- 
dimensional vector d à âdjä for j à 1, 2, :::, 200 to l0: the 
resulting out-of-control mean vector of xt is l1 à l0 á d:
We consider three different shifts of d in our experiments:

1. Sparse: for 1  j  200,

dj à
d, if 18  j  22,
0, otherwise:

(

2. Step: for 1  j  200,

dj à

d
3 , if 51  j  100,

2d
3 , if 101  j  150,

d, if 151  j  200,
0, otherwise:

8
>>>>>>><

>>>>>>>:

3. Zigzag: for 0  k  4, 1  l  20,

dj à
d 1 − j − 40k

10

✓ ◆
, if j à 40ká l,

d −1á j − 40k − 20
10

✓ ◆
, if j à 40ká 20á l:

8
>>><

>>>:

The value of d is adjusted to control the magnitude of 
the shift, which is defined as jjdjj à

ÅÅÅÅÅÅÅÅÅÅÅÅP
j d

2
j

q
for Type 1 

simulated processes. From the image process fYn, n à
1, 2, :::g, the in-control and out-of-control mean matrices 
are defined as follows:

m0 à

a>0
a>0

..

.

a>0

2

666664

3

777775
and m1 à

a>1
a>1

..

.

a>1

2

666664

3

777775
à m0 á D where D à

d>

d>

..

.

d>

2

666664

3

777775
:

Figure 4 displays the two-dimensional image representa-
tions of the shift matrix D for sparse, step, and zigzag shifts 
when dà 1.

4.1.2. Type 2: Generating image matrices
Different from Type 1 data, Type 2 processes directly generate 
a series of matrices fYn : n à 1, 2, :::g using Yn à má en, 
where Yn is a w ⇥ p matrix, m is the mean matrix of Yn, and 
en is a matrix of random noises. Thanks to advances in sensor 
technologies, capturing image data directly, such as monitor-
ing solar flare activity, has become routine.

For our experiments, we set wà 100 and pà 200. The 
noise matrices en are generated as i.i.d. random matrices 
with a covariance structure represented by Rc ⌦ Rr, where 
Rc captures covariance among the columns of en, Rr cap-
tures covariance among the rows, and ⌦ denotes the 
Kronecker product. Two distributions are considered for 
noises:

1. Normal noise: Each en is generated from a matrix nor-
mal distribution with covariance Rc ⌦ Rr: Each entry 
âenäij has mean 0 and variance 1.

2. Non-normal noise: We start by generating a normally 
distributed matrix e0n following the previous normal- 
noise case. Then each entry âe0näij is transformed into 
âenäij à − log Ö1 − WÖâe0näijÜÜ, where WÖ�Ü represents the 
cumulative distribution function of the standard normal 
random variable. Consequently, each entry âenäij follows 
an exponential distribution with mean 1, and entries in 
âenäij are correlated.

We do not incorporate auto-correlation in Type 2 simu-
lated processes since it is already covered by Type 1 proc-
esses. Instead, Type 2 processes evaluate the capability to 
handle non-normal data. Similar to Rn in Section 4.1.1, Rc 
and Rr are modeled either by a tri-diagonal model or an 
exponential model with q à 0:3: The form of Rr is set to be 
the same as Rc, but with different dimensions. The in- 
control mean matrix m0 is a constant matrix with all entries 
equal to five.

To simulate various out-of-control scenarios in images, 
shift matrices D à âDijä are added to the in-control mean 
matrix m0 so that m1 à m0 á D: We consider five shifts:

Figure 4. Three shifts of D for Type 1 simulated processes when dà 1.
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1. Sparse:

Dij à
d, if 8  i  13 and 18  j  23,
0, otherwise:

(

2. Chessboard: for 0  k  4, 1  l  10, 0  r  9, 
1  s  5,

Dij à

d, if j à 40ká 10á l and i à 10r á s,
d, if j à 40ká 20á l and i à 10r á 5á s,
−d, if j à 40ká 30á l and i à 10r á s,
−d, if j à 40ká l and i à 10r á 5á s,
0, otherwise:

8
>>>>>><

>>>>>>:

3. Ring-wise constant: for k � 0, 0  l  3,

Dij à
d, if b

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Öi − 50Ü2 á Öj − 100Ü2

q
c à 12ká l,

−d, if b
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Öi − 50Ü2 á Öj − 100Ü2

q
c à 12ká 8á l,

0, otherwise:

8
>>>><

>>>>:

4. Row-wise sine: for 1  j  200,

Dij à
d sin Öjp=10Ü, if 1  i  30,
d sin Ö2jp=10Ü, if 31  i  60,
d sin Ö3jp=10Ü, if 61  i  100:

8
><

>:

5. Column-wise sine: for 1  i  100,

Dij à
d sin Öip=5Ü, if 1  j  60,
d sin Ö2ip=5Ü, if 61  j  120,
d sin Ö3ip=5Ü, if 121  j  200:

8
><

>:

To achieve a different magnitude of a shift for Type 2 
simulated processes, the value of d can be adjusted. The 
magnitude of the shift is defined by jjDjj à

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅP
i, j D

2
ij

q
:

Figure 5 illustrates these five shifts when dà 1.

4.2. Verifying theoretical results for dependent 
measurements

The analysis in Section 3.2 shows that kR
n effectively captures 

a shift in the mean pattern under the assumption of i.i.d. 

entries in the random matrix. In this section, we investigate 
whether the results hold for a matrix with dependent entries 
by comparing the in-control and out-of-control means of kR

n 
using simulated data. Specifically, we use a Type 1 simulated 
process with / à 0:3, the tri-diagonal model with q à 0:3, 
and a sparse shift with jjdjj à 5:

In our simulation, we have pà 200 and wà 5 with r2 à
1: According to (6), the theoretical difference between 
E0âkR

n ä and E1âkR
n ä is approximately 

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2Ö5á 200Ü

p
−

ÅÅÅ
5
p

− ÅÅÅÅÅÅÅ
200
p

à 3:87: Using simulated data with dependent meas-
urements, we obtain E0âkR

n ä ⇡ 19:31 and E1âkR
n ä ⇡ 22:14, 

yielding the difference ⇡ 2:83: We also use simulated data 
with independent measurements, which have matching 
means and marginal variances. From the simulated data 
with independent measurements, we get E0âkR

n ä ⇡ 15:74 and 
E1âkR

n ä ⇡ 18:30: The difference between the means is 2.56, 
which is very close to the difference we obtained for the 
simulated data with dependent measurements.

Although this experiment does not provide a definitive 
conclusion, it offers evidence that kR

n is capable of accurately 
capturing a shift in the mean pattern, even when the 
assumption of i.i.d. measurements is violated.

4.3. Baseline procedures and experimental results

As baseline procedures, we use one profile monitoring and 
two image monitoring procedures:

1. Multivariate Exponentially Weighted Moving Average 
(MEWMA) (Wang and Lai, 2019): This procedure fits a 
regression model to monitor auto-correlated profile vec-
tors. For Type 1 simulated processes, each observation 
xt is treated as a profile vector, and the MEWMA pro-
cedure is directly applied. However, for Type 2 simu-
lated processes, we vectorize each matrix observation 
Yn into a profile of length wp and apply the MEWMA 
procedure. Specifically, a w ⇥ p matrix Yn is equivalent 
to a profile vector vecÖYÜ à ÖY11, Y12, :::, Y1p, Y21, 
Y22, :::, Y2p, :::, Yw1, Yw2, :::, YwpÜ: The control limit of 
the procedure is adjusted by trial-and-error simulation 
for a given target ARL0:

Figure 5. Five shifts of D for Type 2 simulated processes when dà 1.
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2. Multivariate Generalized Likelihood Ratio (MGLR) (He 
et al., 2016): The procedure is designed to monitor 
products with a specific in-control pattern, such as the 
uniform pattern in LED screens. The MGLR procedure 
reduces the dimensionality of the original image by 
dividing it into q equal-sized rectangular areas and 
focuses on monitoring the summarized quantities from 
these areas. For Type 1 processes, a rectangular area of 
1 by 10 matrix is used with q à 5⇥ 20 à 100: For Type 
2 processes, a rectangular area of 10 by 10 matrix is 
used with q à 10⇥ 20 à 200: The control limit of the 
procedure is determined by trial-and-error simulation 
for a given target ARL0:

3. Spatio-Temporal Smooth Sparse Decomposition Model 
(ST-SSD) (Yan et al., 2018): This procedure can handle 
streaming data with high dimensionality, high velocity, 
and complex spatio-temporal structure. The ST-SSD 
procedure decomposes steaming signals into dynamic 
background signals and anomalies using regression. The 
locally estimated anomalies form testing statistics and 
allow for efficient image monitoring.

In the in-control simulated experiments, we assess the 
accuracy of the analytically determined control limits by ver-
ifying whether they yield actual ARL0 values close to the tar-
get. In the out-of-control simulated experiments, we 
demonstrate the effectiveness of the proposed procedure in 
accurately detecting anomalies.

4.3.1. In-control performance
We generate an in-control sample path in each setting to 
train the three baseline procedures and the DFIM procedure. 
The length of the in-control sample path for Type 1 and 
Type 2 settings are 50,000 and 30,000, respectively. For all 
settings, a target ARL0 is set to 1000. The control limit of 
the DFIM procedure is calculated analytically in (4) using 
estimated parameters and kà 0.01. For the ST-SSD proced-
ure, the control limit is calculated as a 0.1% (à 1=ARL0) 
sample quantile from a series of monitoring statistics. 
However, the control limits of the other two baseline proce-
dures need calibration using trial-and-error simulation. We 
generate 1000 in-control independent sample paths to cali-
brate their control limits to achieve a target ARL0 à 1000:
We use the same set of 1000 in-control paths to verify if the 
control limits of the ST-SSD and DFIM procedure, whether 
a quantile estimate or an analytically determined value, pro-
duce actual ARL0 close to the target 1000.

We report the sample standard deviations of the ARLs 
throughout the simulated experiments, from which the 
standard error can be calculated as the standard deviation 
divided by 

ÅÅÅÅÅÅÅÅÅÅ
1000
p

: Table 1 shows the control limits of all 
procedures and their corresponding estimated ARL0 for 
each setting of simulated processes. Except for the ST-SSD 
procedure, the MEWMA, MGLR, and DFIM procedures 
produce accurate ARL0 in each setting. The MEWMA and 
MGLR procedures rely on trial-and-error simulation to 
ensure the accuracy of their ARL0: In contrast, the analytical 
control limit of the DFIM procedure achieves the same 
accuracy with significantly reduced time and cost. The ST- 
SSD procedure does not require trial-and-error simulation 
for control limit calibration, but it does not produce actual 
ARL0 close to the target when the covariance matrix is tri- 
diagonal. This is expected as the control limit is essentially 
an extreme quantile estimate, which is difficult to estimate 
accurately with 50,000 or 30,000 data points, especially for 
auto-correlated data.

4.3.2. Out-of-control performance
In the out-of-control scenario, we independently generate 
1000 sample paths and evaluate the performance of the 
baseline and proposed procedures. Tables 2, 3, and S.2 (in 
Supplement S.6) compare ARL1 values of the four proce-
dures for Type 1 and Type 2 simulated processes. The small-
est ARL1 value in each setting is indicated in bold.

Table 2 shows that increasing the auto-correlation param-
eter / leads to longer detection delays. We do not observe 
any one procedure dominating the monitoring behavior 
across different covariance patterns. The DFIM procedure 
has the smallest ARL1 values for the sparse and zigzag shifts. 
The three baseline procedures fail to detect the zigzag shift 
according to their ARL1 values, which are close to or larger 
than the target ARL0 of 1000. When the shift is stepwise, 
the DFIM procedure has larger ARL1 values than the 
MEWMA procedure, but smaller than the MGLR procedure. 
The difference in performance between the MEWMA and 
DFIM procedures is not significant. The ST-SSD procedure 
fails to detect any shift in Type 1 simulated processes 
because the decomposition model does not capture the 
shape information of the background. The designed anoma-
lies in Type 1 data are regular enough to blend into the 
background signal, as shown in Figure 4.

Table 3 shows the DFIM procedure consistently outper-
forms the MEWMA and MGLR procedures for all cases for 
normal noises. The ST-SSD procedure almost fails in the 

Table 1. Control limit (H) and actual ARL0 for various settings of simulated processes with target ARL0 à 1000 (standard deviation in parentheses).

MEWMA MGLR ST-SSD DFIM

Process Setting H ARL0 H ARL0 H ARL0 H ARL0

Type 1 / à 0:3, Tri-diagonal 14.12 999:3Ö949:82Ü 62.63 1004:0Ö1005:44Ü 6.76 1448:4Ö1318:88Ü 107.15 1000:7Ö838:79Ü
/ à 0:7, Tri-diagonal 12.77 1003:4Ö1006:92Ü 80.52 1000:7Ö960:77Ü 6.36 1212:4Ö1165:92Ü 125.45 1000:4Ö822:89Ü
/ à 0:3, Exponential 16.58 999:9Ö1018:11Ü 62.45 1002:6Ö982:43Ü 6.34 935:7Ö942:25Ü 107.43 1005:5Ö846:57Ü
/ à 0:7, Exponential 15.1 998:3Ö980:56Ü 81.08 1000:6Ö1027:23Ü 6.25 1004:1Ö986:81Ü 129.54 998:5Ö881:62Ü

Type 2 Normal, Tri-diagonal 23.74 1004:0Ö955:21Ü 79.39 1001:9Ö1041:45Ü 3.46 749:3Ö723:02Ü 59.25 1004:8Ö871:27Ü
Normal, Exponential 31.85 999:1Ö959:62Ü 79.55 1003:7Ö1050:18Ü 3.72 1035:1Ö993:67Ü 54.84 1007:6Ö897:15Ü
Non-normal, Tri-diagonal 21.73 1004:7Ö1005:09Ü 79.88 995:4Ö1019:76Ü 3.59 1254:5Ö1170:00Ü 55.85 1000:7Ö830:95Ü
Non-normal, Exponential 28.4 1002:8Ö1001:63Ü 80.05 996:0Ö1013:58Ü 3.63 956:4Ö933:61Ü 54.24 998:2Ö850:07Ü
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sparse setting, while the ST-SSD and DFIM procedures per-
form comparably in the remaining settings. When the shift 
matrix is normally distributed, the DFIM procedure per-
forms slightly better than ST-SSD. For non-normal noises, 
the DFIM procedure gains an edge and has the smallest 
ARL1 except for sparse and ring shifts as shown in Table S.2 
in Supplement S.6. The DFIM procedure never fails to 
detect shifts in any tested setting, which verifies its robust-
ness. The MEWMA and MGLR procedures fail under the 
chessboard, row-wise, and column-wise sine shifts, and the 
ST-SSD procedure fails under sparse shifts, while the DFIM 
procedure produces relatively quick detection.

Overall, the DFIM procedure is efficient, requiring less 
time and data than the baseline procedures to determine 
control limits for a given target ARL0: In most cases tested 
in this section, it detects various out-of-control shifts with 
the smallest ARL1 compared with the baseline procedures, 

demonstrating competitive performance and its ability to 
detect even difficult shifts that the baseline procedures fail 
to detect.

5. Battery coating process

In this section, we demonstrate the performance of the 
DFIM procedure in a practical application using the battery 
coating process described in Section 1.

We analyze a time-series dataset containing measure-
ments of battery coating thickness from a real production 
line. The dataset covers the period from August 8 to August 
11, 2018, and includes a total of 27, 311 sensor trips. 
Maintenance was carried out between August 10 at 13:00 
and August 11 at 0:00. The production manager reviewed 
other indicators and believed that a shift occurred around 
August 10 at 12:00. To set up the DFIM procedure, we use 

Table 2. ARL1 for out-of-control Type 1 processes (standard deviation in parentheses).

Setting Shape of d jjdjj MEWMA MGLR ST-SSD DFIM

Sparse 2 291.7 (291.72) 447.9 (688.02) 1406.2 (1316.85) 210.7 (144.20)
5 47.9 (41.00) 24.6 (20.19) 1384.9 (1263.24) 12.8 (5.47)

/ à 0:3 Step 1 48.1 (39.90) 154.3 (143.42) 1437.7 (1338.98) 99.3 (53.03)
Tri-diagonal 2 11.0 (7.64) 18.4 (13.91) 1421.3 (1269.78) 25.3 (11.51)

Zigzag 2 960.0 (939.82) 1015.7 (1029.34) 1355.2 (1218.11) 274.3 (176.25)
5 937.7 (911.54) 1031.1 (1028.94) 1423.0 (1254.30) 14.4 (6.54)

Sparse 2 688.9 (697.18) 721.5 (715.70) 1175.5 (1104.74) 679.8 (577.89)
5 225.5 (212.05) 227.6 (220.13) 1254.9 (1178.36) 108.0 (62.34)

/ à 0:7 Step 1 218.2 (205.62) 557.4 (542.06) 1121.9 (1083.92) 330.3 (241.16)
Tri-diagonal 2 55.1 (48.65) 177.4 (175.92) 1142.6 (1107.68) 103.8 (59.99)

Zigzag 2 964.7 (950.86) 1031.8 (1049.91) 1224.3 (1150.79) 758.3 (652.91)
5 989.2 (1011.31) 998.2 (966.88) 1221.5 (1143.93) 134.6 (80.48)

Sparse 2 330.0 (334.51) 315.6 (320.62) 974.9 (925.04) 224.2 (147.39)
5 58.2 (53.52) 30.5 (26.58) 967.6 (927.13) 13.4 (6.06)

/ à 0:3 Step 1 56.7 (51.52) 167.4 (164.19) 957.0 (925.70) 113.4 (63.63)
Exponential 2 12.9 (8.58) 22.3 (17.69) 925.0 (885.52) 28.9 (13.41)

Zigzag 2 1024.7 (1056.13) 971.4 (944.37) 1037.2 (960.14) 285.1 (192.45)
5 1029.3 (1049.97) 939.8 (928.26) 984.3 (951.41) 14.5 (6.79)

Sparse 2 732.6 (721.64) 736.6 (740.58) 956.4 (945.17) 636.7 (525.47)
5 266.7 (263.71) 314.9 (447.98) 1009.3 (938.59) 114.6 (67.55)

/ à 0:7 Step 1 271.6 (278.13) 666.2 (763.75) 991.4 (948.35) 404.7 (414.44)
Exponential 2 68.1 (63.77) 233.4 (325.82) 981.6 (934.88) 115.7 (68.84)

Zigzag 2 1052.6 (1084.03) 848.2 (812.43) 993.5 (925.58) 714.9 (585.80)
5 1013.2 (1081.01) 807.5 (719.61) 1001.6 (961.35) 138.4 (99.18)

Table 3. ARL1 for out-of-control Type 2 processes with normal noises (standard deviation in parenthesis).

Setting Shape of D jjDjj MEWMA MGLR ST-SSD DFIM

Sparse 10 191.5 (175.72) 180.5 (173.13) 750.3 (724.58) 134.4 (71.8)
20 47.2 (39.09) 13.1 (7.67) 735.9 (722.49) 1.9 (0.77)

Chessboard 10 1038.8 (996.77) 983.9 (944.25) 238.8 (237.99) 271.9 (171.43)
20 1008.5 (1022.65) 986.5 (949.56) 19.4 (19.16) 7.2 (2.66)

Normal Ring 20 218.9 (213.86) 56.1 (52.89) 9.2 (8.40) 35.2 (13.31)
Tri-diagonal 30 100.1 (90.13) 11.9 (6.62) 1.2 (0.54) 5.2 (1.72)

Sine (row) 20 976.3 (1008.57) 984.5 (963.12) 49.6 (48.50) 12.7 (4.45)
30 990.2 (1037.35) 1039.9 (1089.72) 4.9 (4.54) 1.8 (0.61)

Sine (column) 20 1003.7 (1057.11) 982.6 (1021.21) 8.6 (8.11) 36.8 (13.89)
30 982.4 (1001.09) 998.7 (969.84) 1.2 (0.52) 3.0 (0.97)

Sparse 10 257.6 (259.43) 270.7 (253.01) 997.9 (1005.54) 131.4 (73.09)
20 64.7 (54.17) 21.0 (15.12) 1052.6 (1035.37) 2.2 (0.88)

Chessboard 10 1031.4 (1001.81) 1091.2 (1055.10) 381.0 (417.71) 218.5 (135.70)
20 958.4 (906.65) 1050.2 (1052.08) 32.2 (34.53) 7.0 (2.63)

Normal Ring 20 284.1 (289.60) 101.8 (101.10) 14.9 (14.68) 32.6 (12.67)
Exponential 30 139.8 (129.21) 19.2 (14.44) 1.5 (0.85) 5.2 (1.79)

Sine (row) 20 958.6 (934.14) 1043.6 (1006.06) 79.6 (78.04) 12.0 (4.26)
30 962.0 (973.97) 973.6 (950.01) 7.5 (6.66) 1.9 (0.63)

Sine (column) 20 1042.0 (1044.64) 1073.1 (1079.59) 14.2 (13.63) 52.6 (22.52)
30 997.3 (985.75) 1015.8 (1006.50) 1.5 (0.84) 4.2 (1.36)
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the battery coating data between August 8 at 12:00 and 
August 9 at 0:00 as training data. Each sensor trip captures 
a vector of 298 thickness measurements (pà 298), and we 
use a sliding window size of wà 5 with an inter-window 
spacing size of sà 1.

Analysis in Supplement S.7 verifies that the battery coat-
ing data satisfies Assumptions 1, 2, and 4. To perform the 
DFIM procedure, the training dataset consists of 5558 image 
matrices, resulting in 5558 T0

n training statistics. We set the 
target ARL0 à 22, 248, which is four times the training size 
to ensure a low false alarm rate. Due to the limited availabil-
ity of sample paths, trial-and-error simulation is not pos-
sible, and as a result, the MEWMA and MGLR procedures 
are not applied. Furthermore, the ST-SSD procedure 
requires an extreme 0.005% sample quantile, which cannot 
be accurately estimated with only 5558 samples. 
Consequently, we do not employ the ST-SSD procedure.

From the training data, we estimate parameters 
l0, ⌫0, rT , and X2, and the control limit is calculated with 
the target ARL0 à 22, 248 and kà 0.01 using (4). After esti-
mating the in-control covariance matrix of zn as explained 
in Supplement S.7, the DFIM procedure is applied separately 
to the training data and the remaining data. The results of 
these applications are shown in Figures 6(a) and 6(b), 
respectively. The dashed lines in the figures represent the 
control limits, and the solid lines represent the monitoring 
statistics of the DFIM procedure. During the training period, 
the DFIM procedure does not raise any false alarms while 
an alarm is triggered just before August 10 at 12:00, which 
highlights the effective detection power of our procedure.

6. Conclusion

We present a novel distribution-free procedure that employs 
SVD to monitor image processes with general marginals, 

cross-correlations, and auto-correlations. The DFIM proced-
ure offers a significant advantage as it eliminates the need 
for trial-and-error simulation to determine control limits, 
thereby allowing for convenient and rapid implementation 
in practical settings. Our numerical experiments, conducted 
on both simulated and real processes, demonstrate the 
effectiveness and robustness of our procedure in anomaly 
detection.

While the DFIM procedure was originally motivated by 
monitoring battery coating processes, it can be easily 
extended to other applications that require image monitor-
ing provided that the in-control mean image is rank-one. 
Our ongoing research is focused on extending the procedure 
to accommodate low-rank mean images, which would fur-
ther expand its applicability to a broader range of 
applications.
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