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ABSTRACT

This article presents a distribution-free image monitoring procedure for a manufacturing process,
where a series of images are converted into a vector of two feature values extracted from singular
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value decomposition. Traditional image-based monitoring methods often make specific assump-

tions about marginal distributions and spatio-temporal dependence structures, which are often vio-
lated in real-world scenarios such as battery coating processes. To overcome this issue, we propose
a distribution-free image monitoring procedure that detects a shift in the mean matrix of monitored
images. Our method involves performing singular value decomposition of each image matrix in two
ways to obtain two values, which are then combined into a bivariate vector. The bivariate vectors
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are monitored using a distribution-free multivariate CUSUM procedure, for which we determine con-
trol limits analytically, enabling convenient and easy implementation of the monitoring procedure.
We demonstrate the effectiveness of our proposed procedure, as measured by average run lengths,
using various simulated data and a real-data example from a battery coating process.

1. Introduction

The monitoring of streaming image data has emerged as a
crucial aspect of quality control in modern manufacturing.
Recent advancements in sensor technology have made it
possible to obtain real-time and high-resolution image data,
but the complexity of the data has created challenges in
monitoring. Firstly, the high resolution of images results in
a high-dimensional problem with a massive number of pix-
els. Secondly, pixels and image frames exhibit a complex
spatio-temporal correlation. Thirdly, the image data may not
follow a multivariate normal distribution. To address these
challenges, we propose a novel distribution-free monitoring
procedure for high-dimensional images, using low-rank
models to account for the complex correlation structure in
the data while being robust to non-normality.

Our study is motivated by a battery coating process that
is prevalent in the battery manufacturing industry. In this
process, the electrode slurry is uniformly sprayed onto a
long foil within a specific area, as illustrated in Figure 1,
during in-control production. The foil moves forward and
perpendicular to the sensor’s movement, and thickness
measurements are collected by the sensor at each trip from
one side of the foil to the other. The sensor captures
approximately 298 measurements during each trip, which
occurs roughly every 7 seconds. Figure 2 presents a heatmap
of the thickness measurements of the electrode slurry on
two distinct sections of the foil: Figure 2(a) exhibits a uni-
form in-control pattern, whereas Figure 2(b) demonstrates
missing spraying. These observations highlight the

importance of monitoring the battery coating process to
ensure the uniformity of the sprayed slurry, which is critical
for the battery’s performance. Our research aims to address
this need by proposing a novel monitoring procedure that is
capable of detecting any anomalies in the coating process.
The battery coating process presents all the challenges men-
tioned above that make the monitoring task difficult. Figure 3
illustrates the complex characteristics of the measurements in
the battery coating process. Figure 3(a) depicts the auto-cor-
relation of the first measurements in the thickness measure-
ment vectors obtained at each sensor trip, while Figure 3(b)
shows cross-correlation among a few selected measurements.
Furthermore, Figure 3(c) demonstrates the non-normality of
the first measurements obtained at each sensor trip. The
high-dimensionality issue is also present as each sensor trip
collects a vector of 298 measurements, let alone an image
consisting of a series of such vectors.

Different monitoring procedures can be used depending
on the interpretation of image data. For the thickness meas-
urements in battery coating processes, one approach
involves treating the measurements collected in each trip or
over a specific part of the foil as a vectorized profile and
applying  advanced profile monitoring techniques.
Alternatively, an image of the electrode slurry thickness over
a fixed portion of the foil can be formed, and image moni-
toring procedures can be applied. In practical settings, the
target mean matrix for an image is often rank-one. For
example, every row of a target mean matrix is identical in
the battery coating process or liquid crystal display screens.
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If one decides to convert images into vectorized data, pro-
file monitoring can be utilized, as discussed in Megahed et al.
(2011). A profile refers to a functional relationship between
explanatory variables and quality attributes of the variables.
Expository discussions on applying statistical process control
techniques to profile monitoring are available in Woodall
et al. (2004), and Woodall (2007). However, most profile
monitoring techniques, such as those reported by
Kazemzadeh et al. (2009), Zhu and Lin (2009), and Colosimo
and Pacella (2010), assume that measurements are not cross-
correlated, consecutive profiles are not auto-correlated, and
the measurements are normally distributed. Applying
restricted profile monitoring techniques to image data can
significantly increase the detection delay or the false alarm
rate. For instance, Alwan (1992) and Mastrangelo et al. (1996)
demonstrate that applying a procedure designed for tempor-
ally independent measurements to auto-correlated data can
increase the false alarm rate. Noorossana et al. (2008) also

Figure 1. A machine performing battery coating.
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shows that the violation of the normality assumption can
magnify the false alarm rate.

Recent developments in profile monitoring have addressed
the issue of cross- and auto-correlation to some extent. Some
methods, such as combining Principal Component Analysis
(PCA) with linear regression (Niaki et al, 2015), or using
wavelet-based distribution-free procedures (Lee et al., 2012;
Wang et al., 2015) or sparse multi-channel functional PCA
(Zhang et al., 2018), have tackled cross-correlation. In con-
trast, others, such as by Khedmati and Niaki (2016), Wang
and Lai (2019), or a multivariate spatio-temporal autoregres-
sive model (Wang et al, 2021), have dealt with auto-correl-
ation. However, these methods have limitations on either the
auto-correlation structure or the dimensionality. Zhang et al.
(2020) tackle the high-dimensional profile through random
projection and enhance computation efficiency by ensembling
and fusing. However, it requires temporally independent pro-
files. Although much effort has been made, it is difficult to
address cross- and auto-correlation, non-normality, and high
dimension simultaneously.

In image monitoring, many techniques can handle cross-
correlation but ignore auto-correlation, such as those reported
by Wang and Tsung (2005), Megahed et al. (2012), and
Amirkhani and Amiri (2020). Lu and Tsai (2005) propose a
low-rank projection approach without discussing correlation,
whereas Alaeddini et al. (2018) use novel feature extraction
but impose data independence. Yan et al. (2014) model
images with tensors, which is general but time-consuming. A
recent spatio-temporal decomposition methodology, such as

Figure 2. Heatmaps of thickness measurements of the electrode slurry on two different portions of a foil.
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Figure 3. Characteristics of battery coating data.
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Yan et al. (2017, 2018, 2022), can handle spatio-temporal cor-
relation and high-dimensionality, with focus on hot-spot
detection in metal additive manufacturing. Colosimo and
Grasso (2018) propose a weighted PCA for the same problem,
but its specificity limits general application. Eslami et al.
(2021) extend the wavelet-based methods of Koosha et al.
(2017) to handle potential spatio-temporal correlation but still
assume normality.

One currently thriving thread of literature employs
machine learning or deep learning techniques to monitor
high-dimensional data. Deep learning techniques such as
Recurrent Neural Networks (Ebrahimzadeh et al, 2019),
Long Short-Term Memory autoencoder (Atashgahi et al.,
2023), and Generative Adversarial Networks (Li et al., 2019)
have been used to monitor data with complex spatio-tem-
poral dependence. Wu et al. (2020) and Gupta et al. (2022)
introduce end-to-end adaptive methods for anomaly detec-
tion, focusing on data pre-processing and feature extraction
with deep learning techniques. Recently, some studies have
explored online training of neural networks to construct
control charts and integrate them with conventional statis-
tical process control. Lee et al. (2023) perform online train-
ing of neural networks to build a CUSUM procedure,
whereas Hushchyn et al. (2020) develop online neural net-
work classification and online neural network regression for
monitoring. It is noteworthy that the aforementioned meth-
ods are originally developed for multivariate time series, but
can be applied to image monitoring when images are vector-
ized. Garcia et al. (2022) consider multivariate time series
but transform them into images to facilitate the training of
deep learning models. Thus, if their method is used for
image monitoring, it can handle images directly. However,
their primary focus is comparing different encoding meth-
ods rather than monitoring signals or images with complex
dynamics. Although these neural network-based monitoring
methods have the potential to handle complex data, the
computation time required for online training of neural net-
works, especially for high-dimensional data, is substantial.

In this article, we propose a distribution-free procedure
for effectively monitoring an image process with a rank-one
target mean image. Although images can be monitored
using profile monitoring with vectorized data, direct moni-
toring of image data is better for capturing spatial relation-
ships and providing interpretable visualizations. However,
cross- and auto-correlations and the inherently high dimen-
sionality make image monitoring more challenging. Our
approach is distribution-free in that it does not assume any
specific marginal distributions or correlation structures. It
also allows for high dimensionality of image data. The pro-
posed procedure utilizes Singular Value Decomposition
(SVD) of the image data to reduce dimensionality and then
captures any cross-correlation in bivariate vectors con-
structed from singular values through T>-type statistics.
Additionally, possible auto-correlation is considered by
incorporating an asymptotic variance constant, known to
capture the variability of a stationary, but dependent, pro-
cess effectively. Moreover, the control limits are analytically
determined based on a pre-specified performance metric,
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the in-control average run length (ARL;). The use of analyt-
ically determined control limits makes implementation easy
and convenient, particularly in cases where only one sample
path is available, or the monitoring needs to start immedi-
ately without sufficient in-control data or time for calibra-
tion. Some preliminary results of this article are included in
the second author’s doctoral dissertation (Liu, 2022).

The rest of this article is organized as follows: Section 2
defines the problem and notation. Section 3 provides the
proposed monitoring statistics and procedure. In Section 4,
we present numerical comparisons between the proposed
procedure and three baseline procedures. Section 5 illus-
trates the performance of our procedure in a real-world
application involving the battery coating process, and con-
cluding remarks are given in Section 6.

2. Problem and background

In this section, we define the detection problem and provide
a preliminary discussion on a relevant distribution-free
monitoring procedure for multivariate time-series data.

2.1. Problem definition

Let Y, represent a w x p matrix representing the nth image
matrix obtained from a monitored process. An image matrix
Y, can comprise pixel values from each image. Or, it can
represent measurements captured by a sensor over a specific
region, such as thickness measurements on a piece of foil in
a battery coating process. Image matrix Y, is modeled as
Y, = m+ €,, where m is a w x p deterministic matrix, and
€, is a w x p random noise matrix with zero mean. Each
entry in €, can have any general marginal distribution. The
noise matrices may exhibit complex correlations, including
cross-correlations among their entries and auto-correlations
over time.

The monitoring problem can be formulated as the follow-
ing online hypothesis testing:

Hy: Y, =my+e€,, n=12,..
my+e€, n=12,..,1, 1
H: Y,=¢ ° ™ M
m +e€, n=t+1,71+2,..,

where 7 is the change point for the mean of Y,,my is the
in-control mean matrix of Y,,, and m; = my + A is the out-
of-control mean matrix with a w x p non-zero shift matrix
A. In practice, my is a known target matrix while m; is an
unknown matrix. Note that we consider only the mean shift,
while the statistical properties of €, remain unchanged,
including cross- and auto-correlations. We have the follow-
ing assumptions on my :

Assumption 1. The in-control mean matrix my is a w X p
rank-one matrix. The SVD of my is my = ZouovoT, where 2,
is the only non-zero singular value of my; and uy and v, are
the corresponding left and right singular orthonormal vectors,
respectively.

Assumption 1 only constrains the rank of the in-control
mean matrix my while the rank of the out-of-control mean
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matrix m; is unrestricted. This assumption on m, is based
on the fact that many manufacturing applications have a
specific target mean pattern. A rank one matrix can repre-
sent a complex target mean pattern with non-stationary and
non-cyclic oscillations as shown in Figure S.1 in
Supplement S.1.

2.2. Relevant work

This section reviews a distribution-free CUSUM procedure
for monitoring multivariate time-series data, which is used
in the proposed procedure in Section 3.

Let {z, : n=1,2,...} be a multivariate time series follow-
ing a general marginal distribution with mean vector p and
covariance matrix X.

Assumption 2. The covariance matrix X of z, is positive def-
inite. Moreover, when the mean of z, shifts from in-control
mean p, to out-of-control mean pu, at an unknown point, the
covariance matrix X does not change.

In order to detect a shift in the mean of z,, Liu et al
(2022) propose to convert {z,:n =1,2,...} to a univariate
time-series by computing the T>-type statistics of each z, as
T, = (2. —#y) (2, —py), and monitor {T,:n=
1,2,...} with a distribution-free CUSUM procedure pro-
posed by Kim et al. (2007). Let v, and o7 represent the
in-control mean and standard deviation of T,. Then, the
one-sided CUSUM statistic is computed as:

{o if n=0,

+ >
Sn = max{0,S,_, + (T, —vo—K)}, if n>1,

n

2)

where K is set to K = kor for a pre-selected real-valued
constant k.

Assumption 3. Define the standardized time series of the
first n observations as
Z'L”tj Ti — ntyy

i=1
Q/n
There exist finite real constants vy and Q > 0 such that as

n— oo, the sequence of random functions {C,(-):n=

1,2,...} converges in distribution to standard Brownian
motion W(-) in the Skorohod space D|0,1]. Formally,

Cu(t) = for t €[0,1].

D D .
C,()=W(-), as n — oo where — represents convergence in
distribution.

Assumption 3 is a Functional Central Limit Theorem
(ECLT). The constant Q7 is called the asymptotic variance
parameter of process {T, : n = 1,2,...} and is defined as:

1 &
2 .
Q= I\}EI;ON - Var (N ng:l T,,).

When auto-correlation is present, Q is a better measure
of process variability than a marginal variance. Techniques
for estimating Q* in a distribution-free manner are discussed
in Alexopoulos et al. (2007). A more comprehensive discus-
sion on the conditions under which a FCLT holds is

available in Glynn and Iglehart (1985). Chapter 4.4 of Whitt
(2011) states that, from a practical perspective, it is usually
reasonable to assume that a FCLT is valid if Q* is finite.

Under a FCLT, Kim et al. (2007) show that the CUSUM
statistic asymptotically behaves like a drifted Brownian
motion and that the in-control average run length (ARL)
for a given control limit H is approximated by:

Q? 2K(H + 1.166Q) 2K(H + 1.166Q)
w\ T e T e
~ ARL,. 3)

To determine the threshold H, one can solve (3) for H
with a specified target ARL,. Once H is determined, the pro-
cedure raises an out-of-control alarm at the first point »*
where the statistic S exceeds the threshold H, that
is, n* = min{n : S > H}.

Finally, we assume the following assumption holds:

Assumption 4. When the mean of z, shifts from in-control
mean g, to out-of-control mean pu, at an unknown point, the
variance parameter of process {T, :n = 1,2, ...},Qz, remains
unchanged.

In this article, we convert the monitoring problem of a high-
dimensional process {Y,:n=1,2,...} into that of a low-
dimensional process {z,:n=1,2,..}, which requires
Assumptions 2, 3, and 4 on z,. It is important to note that
although there are no specific assumptions made regarding Y,
it is necessary to ensure that the correlation structure of Y,
meets certain conditions to guarantee that a z,, derived from an
in-control Y, conforms to Assumption 3 for the existence of
the variance parameter Q°. On the other hand, Assumptions 2
and 4 are similar to the usual assumption for mean-shift detec-
tion, where variance is assumed to remain unchanged when the
mean shifts. We discuss the robustness of our proposed proced-
ure to the violation of these assumptions in Section 3.3 and val-
idate them for battery coating data in Section 5.

3. Distribution-free image monitoring procedure

In this section, we formulate two new statistics to monitor
Y,, representing images, and propose our image monitoring
procedure. Then, we provide a theoretical basis for the
effectiveness of the monitoring procedure.

3.1. Monitoring statistics

We propose two monitoring statistics that utilize the SVD
technique, building on Assumption 1, which assumes that the
SVD representation of my is my = Agttov, . The first statistic,
denoted by /%, is constructed by projecting Y, along the dir-
ection of uy and vy, and it is defined as 25 = ug Y, v, forn=
1,2,.... The second statistic, denoted by A%, is constructed by
subtracting the in-control mean matrix m, from Y, to obtain
the residual matrix: R, = Y, — my for n = 1,2, ..., and then
calculating the largest singular value of R,. When the process
is in control, R, = €, and the entries of R, are random varia-

bles with mean 0. We define z, = [25,2%]" and monitor the



bivariate time-series {z, : n = 1,2,...} using the distribution-
free CUSUM procedure reviewed in Section 2.2. Algorithm 1
gives the steps of the Distribution-Free Image Monitoring
(DFIM) procedure.

During the setup phase before the implementation of the
DFIM procedure, various parameters need to be estimated,
including p, (in-control mean of z,), X (covariance matrix
of z,), vy (in-control mean of T,), or (in-control standard
deviation of T,), and Q* (in-control asymptotic variance
constant of T,). Algorithm 2 provides a detailed description
of the estimation process in the setup phase. The combined
proposed procedure of Algorithms 1 and 2 is summarized in
a flowchart shown in Figure S.2 in Supplement S.2.

Algorithm 1 Distribution-free Image Monitoring Procedure

Input: From the target mean image, obtain myg, 4y, and .
From in-control training data, obtain uy, X, vo, o7, and Q.
Choose target ARL, and k between 0.01 and 0.1.
1: Set K = ko and calculate control limit H by solving
the following equation:

Q? 2K(H + 1.166Q)

2K(H + 1.166Q)
QZ

(4)

Set n=1 and go to Step 2.

2: Compute A = u] Y, v, and obtain the largest singular
value /lff of R, =Y, —mq.

3: Set z,= [ /%] and compute
X7 (2, — 1)

4: Compute CUSUM statistic S, as in (2).

5: Raise an out-of-control alarm if SZ > H. Otherwise,
set n =n+ 1 and go to Step 2.

T, = (zn - .“o)T

3.2. Theoretical analysis

This subsection analyzes the in-control and out-of-control
mean values of A° and /X. Then we discuss the validity of
assumptions imposed on z, and investigate if any shift in
the mean matrix from mgy to m; is accurately reflected in
the statistics z, and T,,.

Algorithm 2 Setup Phase for Distribution-free Image
Monitoring Procedure

Input: In-control process {Y°:n=1,2,..,N} and target

mean my
1: Perform SVD on mg : mg = Aouovo
2: For n=1,2,..,N, compute /. = u] Y%, and R’ =

Y% —my, and perform SVD on R? to obtain the larg-

est singular value 2X. Define z, = 17, )Lﬁ]T

3: Compute in-control sample mean vector denoted by
i, and sample covariance matrix denoted by S, using
2} for n=1,2,...,N as follows:

Estimate p, and X by z and S, respectively, and pass
them to the DFIM procedure.
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4. For n=12,..,N, (2% — Z)T
S;' (2 -z).
5: Compute sample mean and standard deviation of T);:

compute  T0 «

1 N

(T0 - T)?.

Estimate v, and o1 by T and s; and pass these values
to the DFIM procedure.

6: Estimate asymptotic variance parameter Q? of T using
the CvM estimator (Alexopoulos et al, 2007). The
variance  estimation  algorithm is given in
Supplement S.3.

_ 1 X
T‘_N;Tg and sy «—

3.2.1. Mean of i}

Let Eo[-] and E;[] represent expectation under in-control
and out-of-control conditions, respectively. Then the in-con-
trol and out-of-control mean values of 2° are as follows:
Eo[4}]
Ey[2,]

= ]Eo [u(—)r YnV()} = ug]Eo[Yn]Vo = u(-)rm()Vo = ).0,

=Ei[ug Yavo| = ug Ei[Y,]vo = ug myvy = Jo + ug Avg.

The difference in in-control and out-of-control mean val-
ues of /15 is

Eq (4]

It is important to note that the difference in (5) may be
zero even for a non-zero mean shift A in the image process,
resulting in the failure to capture the shift. Therefore, any
image monitoring procedure that relies solely on A7 could
fail to detect a shift in the process.

—Eo[2] = uj Av,. (5)

3.2.2. Mean of /}

The analysis of the mean value of 2* is complex because it
is the largest singular value of a matrix, R,, with random
variables as entries. To gain a better understanding of X,
we consider a special case where all entries of R, are
assumed to be independent and identically distributed
(iid.). In the in-control condition, R, becomes a random
matrix with each entry having expectation 0, while the
entries in R, exhibit different expectations in the out-of-
control condition. Then, the following lemmas are applicable
to random matrices:

Lemma 1 (Yin et al, 1988). Suppose C is a w X p matrix
whose entries are i.i.d. random variables having mean zero,
variance %, a finite fourth moment, and w/p —c¢ as
p — oco. Then the largest singular value of C converges a.s.
to o(1++/c) as p — oc.

Lemma 2 (Bryce and Silverstein, 2020). Suppose D is a
w X p random matrix in the following form: D =B + C,
where B is a deterministic matrix with the largest singular
value denoted as n and C is a random matrix satisfying the
conditions in Lemma 1. Represent the SVD of B as
B = UAV' =UG', where G = VA. Define T = E[C'C]/w,
T, = G'TG,T =E[CC"]/p, and Z,, = U'T'U. Also, define
W, a deterministic term depending on the variances of the
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entries of C, as

1{ 1
Y= 2 <y3wp [Z*hl + ﬁ [2**]11> >

where ¢ = limp oo ¥,y = lim, . -, and [Z.]}, and [Z..],
are the (1,1)th entrzes of X, an[**, respectzvely Finally,
define Z, a random centered fluctuation term with mean 0,
as follows:

1

P v
Then the largest singular value of D, denoted by A, can be rep-
resented as a sum of four terms: A =n -+ +Z+ ¢, wherey

and \ are deterministic terms, Z is a random term that depends
on random matrix C, and ¢ — 0 in probability as p — oo.

G'C’ U]
11

When a monitored process {Y,:n=1,2,..} is in con-
trol, R, can be represented as a random matrix and i
becomes the largest singular value of the random matrix.
Then, assuming i.i.d. entries of the random matrix, Lemma 1
implies that for large p, Eo[45] ~ (/W + /p). In contrast,
when the monitored process is out of control and the mean
matrix shifts to m;, a residual matrix is R, = m; — my +
€, = A + €,, which can be viewed as a random perturbation
of a low-rank matrix A. Denote the largest singular value of
A as ;. When €, has iid. entries with variance
o*,Ele, €,]/w and E[€,€, | /p become diagonal matrices, with
all diagonal entries being ¢*. Then in Lemma 2, we have y =
2 [Zi]y, = 0247, [E.],, = 0% and for large p

a*(w+p)

R]
El [in] ~ /LL"’ 2&11

The difference between the in-control and out-of-control
mean values of 2" is

E: [45]

z/lL—FM—O'(\/W‘F\/ﬁ)

ZiL
> o awip -o(vwtvp) @
= o(\/2AWFP) Vi~ V)

where the inequality holds due to a + b > 2v/ab for a,b >
with the equality holding when a = b, ie., A = ay/"3L.
The lower bound in (6) is always non-negative since

V2w +p) > Vw+/p == 2(w+p) > w+p+2/wp
=S w+p-—2y/wp >0

= (Vw—-p)

When w # p, the lower bound is strictly positive. Thus,
when p is large, w # p, and A, # a+/(w + p)/2, a non-zero
shift A in the image process is reflected into A%.

We have explored the expectations of 2 in both the in-
control and out-of-control conditions and expect the results
to hold when auto-correlations exist, as the results are derived
from marginal analysis. However, it is unclear whether the
results will hold when spatial independence is lost. Spatial
independence is the minimum requirement for conducting
theoretical analysis in the field of random matrix theory and

— Ko [47]

extending the results to cases with spatial correlation in the
random matrix is challenging. Therefore, we conduct experi-
ments in Section 4.2 to numerically verify the results in (6).

3.2.3. Theoretical comparison

From the previous derivations, we have E,[2f] —E,[2f] =
ujAvo and  E\ 2N —Eo[iN = a(\/2(w +p) — VW — /)
where the first equation holds for general R, while the second
approximation is derived under the assumption of i.i.d. noise
entries with variance 62 in €,. We consider two cases to show
the advantages and disadvantages of each statistic.

Case 1: Consider a shift matrix A such that A = /lLudv;,
where u; u; = 0. Using (5), we can see that the difference in
the in-control and out-of-control mean values of 2’ is
uy Avg = Jpuy ugv)vo = 0. This result suggests that any shift
A has no effect on the mean of /’. The same conclusion
holds for any shift A such that vjv; =0. On the other
hand, the mean value of 2% is impacted by the shift A as
shown in (6), assuming that the equality does not hold (i.e.,
L # o/ (w+ p)/2. Thus, if we want to capture a shift in

the monitored process, A is a better statistic for this case.

Case 2: Consider a case where u; = uy and v; = vy. In this
case, the difference in the in-control and out-of-control
means of ii can be further simplified to 1, because u, and
vy are unit vectors. Suppose that

a(wtp)
2/LL

ow+p)
NCE)

Then, from (6), we can see that the mean difference of
/R is smaller than /;. In this case, A” is a better statistic
because it exhibits a larger shift in the mean, making it
more responsive to the shift A.

Case 1 demonstrates that 4 alone may fail to capture a
shift, highlighting the need to incorporate another statistic
to ensure robust mean shift detection. Case 2 shows that 2°
can be more effective at capturing a shift than 2%, although
our analysis in Section 3.2.2 shows /X consistently captures
a shift. To take advantage of both singular values, we com-
bine the two into a bivariate vector z, and monitor the vec-
tors. Although one can monitor 2° and 2* individually with
two CUSUM charts, the two charts become correlated and
make it challenging to set control limits that ensure the
overall ARL, matches the target.

Further, for €, with general spatial correlations, we calcu-
late the difference between the in-control and out-of-control
means of T, statistics because the final monitoring statistics
for the DFIM procedure is T,. When the monitored process
is in control, Ey[T,] = E[tr():_l(zn — o) (zn — l‘o)T)I =2.
Let Covy(z,) represent the covariance matrix of z, in the
out-of-control condition. Then

Eq[T,] = tr(E7'Covi(zn)) + (E1[za] — #p) =7 (Eafzu] — o)
=24 (Bfza] — ) T (B ] — ),

a(Vw+p) <0 or Iy > At D)

where the last equality holds due to Assumption 2 that X
remains unchanged in the out-of-control condition. Then,



we can express the shift in the mean of T, statistics as fol-
lows:

Er[T,] = Eo[T,] = (Er[za] — #) ' 7 (Erfza] — ). (7)

If a mean shift A is reflected in iﬁ or )ﬁ, resulting in a
shift in the mean of z, from p, to E[z,] # p,, then (7) is
always positive and the proposed procedure can detect the
shift.

3.3. Robustness

In this section, we discuss the robustness of the proposed
procedure when Assumptions 1, 2, and 4 are violated. Note
that the assumption of ii.d. entries in €, is only used for
the theoretical analysis of A% in Section 3.2.2, but the
assumption is not needed in this section.

Given that m, represents the target mean image and is a
well-defined reference, the validity of Assumption 1 can be
verified easily. In cases where this assumption does not
hold, but the decision maker wants to apply the proposed
procedure, it essentially performs singular value truncation,
retaining only the largest one. As long as a mean shift in Y,
is captured by one of the features ﬂvi or /1};, the conclusions
drawn from the theoretical analysis in (7) still hold, which
means the proposed procedure can detect the mean shift.

For the violation of Assumption 2, we define Xy and X;
as the covariance matrices of z, in the in-control and out-
of-control conditions, respectively. The in-control X, repla-
ces X in the calculation of T, statistics. Then, the in-control
mean of T, is still 2, but we have the mean shift as follows:

Ei[T,] — Eo[Ta] = (Ei[e] — o) ' Zo" (Bt [2n] — o)
+tr(E5'E,) - 2. (8)

The first term in (8) is identical to the shift size in (7),
which is the shift size when Assumption 2 is satisfied.
Therefore, we focus on the magnitude of tr(X;'X;) — 2. If
this magnitude is less than zero, the shift detection may be
slower. If it is positive, the detection will be faster.
Supplement S.4 shows an analysis of the value of tr(X;'%,).
The analysis demonstrates that the proposed procedure will
function well in most cases, even when Assumption 2 is vio-
lated. Additionally, Supplement S.5 investigates the
implication of Assumption 4 violation by using ARL,
approximations and shows that an increase in Q* accelerates
the detection of a shift, while a decrease in Q* does not
slow down the detection much when it is already large.

3.4. Computation analysis

Image monitoring applications typically involve high-speed
data acquisition processes. To effectively monitor these proc-
esses in an online setting, it is essential to have a monitoring
procedure with low computational complexity during the
monitoring phase.

In the proposed procedure, the majority of the
computational efforts are focused on acquiring 2 and 2%
During the monitoring phase, only matrix multiplication is
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required to obtain A7, as the singular vectors of the in-con-
trol mean matrix are obtained during the setup phase. For
R, a matrix subtraction and SVD of the residual matrix are
performed for each image matrix. After computing /> and
X the T, statistic is calculated using the in-control mean
vector and the inverse covariance matrix estimated during
the setup phase. All parameters of the DFIM procedure are
also pre-determined during the setup phase. As a result, the
SVD of a residual matrix is the dominating operation in the
monitoring phase. Fortunately, numerous efficient imple-
mentations of SVD have been developed, making the pro-
posed procedure suitable for high-speed image monitoring
applications.

4. Numerical experiments

This section compares the proposed procedure with three
baseline procedures using numerical experiments. We intro-
duce the testing processes, provide a detailed review of the
baseline procedures, and discuss the performance of all four
procedures in monitoring images under various cross- and
auto-correlation settings.

4.1. Simulated data

We consider two ways to simulate images. Type 1 processes
generate vector time series and use them to form image
matrices, whereas Type 2 processes directly generate image
matrices.

4.1.1. Type 1: Forming an image matrix from vectors

In situations similar to the battery coating, a sensor records
a p x 1 observation vector, denoted by x;, at time . Then,
for a window size w > 1 and an inter-window spacing size
5,1 <s < w, we construct an image matrix, Y, as follows:

-
X(n-1)s+1

Y, = > (9)
x(n—l)s+w
where n > 1, and a' represents the transpose of a vector a.
That is, we parallel align x| into a w x p matrix, Y,, for
(n=1)s+ 1<t < (n—1)s+ w. Specifically, when s=1, the
matrices correspond to overlapping blocks with a sliding
window of size w. On the other hand, when s = w, the
matrices correspond to non-overlapping blocks of size w.
We generate a p-variate vector time-series {x:} as x; =
a+e,e,=De_; + &, and g =&, for t =1,2,... where a
is the marginal mean vector of x;, e, are the auto-correlated
error terms, @ is the auto-correlation coefficient matrix, and
¢, are i.i.d. normal random vectors with mean 0 and covari-
ance matrix X¢. The in-control mean vector is denoted by
®y, and the out-of-control mean vector is a;. We construct
Y, following (9) with the inter-window spacing size s=1.
The in-control mean matrix of Y, is a rank-one matrix:
my =EoY,] = [a0 oo ocof. We set a, to be a con-
stant vector with a value of five, which represents a target
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uniform height. We also set p=200 and w=5. The auto-
correlation coefficient matrix, @, is chosen to be a diagonal
matrix where [®]; = ¢ if i = j and 0 otherwise. The diag-
onal entry ¢ is set to 0.3 or 0.7 to test the effect of low and
high auto-correlation, respectively. We also test two different
cross-correlation structures by varying X between the fol-
lowing two models with p =0.3: (i) tri-diagonal model:
[Xe]; = 1ifi = j; p if |i — j| = 1; 0 otherwise; and (ii) expo-
nential model: [E¢]; = pli=il,

To simulate out-of-control scenarios, we add a 200-
dimensional vector ¢ = [§;] for j=1,2,...,200 to pm,. the
resulting out-of-control mean vector of x;, is u, = y, + o.
We consider three different shifts of d in our experiments:

1. Sparse: for 1 <j <200,
if 18 <j <22,

otherwise.

2. Step: for 1 <j <200,

d . )

5 i s1<j<00,

2d if <i<
5;‘: ?, if 101 <j <150,

d, if 151 <j <200,

0, otherwise.

3. Zigzag: for 0 <k <4,1 </ <20,

d<1 —]_4Ok>,
10

j — 40k —2
d<—1 —l—](i#), if j=40k+20+7.

if j = 40k + 7,
S =

The value of d is adjusted to control the magnitude of
the shift, which is defined as [|d]| = /> 5;‘2 for Type 1
simulated processes. From the image process {Y,,n=
1,2,...}, the in-control and out-of-control mean matrices
are defined as follows:

Figure 4 displays the two-dimensional image representa-
tions of the shift matrix A for sparse, step, and zigzag shifts
when d=1.

4.1.2. Type 2: Generating image matrices

Different from Type 1 data, Type 2 processes directly generate
a series of matrices {Y,:n=1,2,...} using Y, =m+ €,,
where Y, is a w X p matrix, m is the mean matrix of Y,,, and
€, is a matrix of random noises. Thanks to advances in sensor
technologies, capturing image data directly, such as monitor-
ing solar flare activity, has become routine.

For our experiments, we set w=100 and p=200. The
noise matrices €, are generated as ii.d. random matrices
with a covariance structure represented by X. ® X,, where
X, captures covariance among the columns of €,,X, cap-
tures covariance among the rows, and ® denotes the
Kronecker product. Two distributions are considered for
noises:

1. Normal noise: Each €, is generated from a matrix nor-
mal distribution with covariance X, ® X,. Each entry
[€,];; has mean 0 and variance 1.

2. Non-normal noise: We start by generating a normally
distributed matrix €, following the previous normal-
noise case. Then each entry [€]]; is transformed into
€];; = —log (1 —¥([€,];;)), where W(-) represents the
cumulative distribution function of the standard normal
random variable. Consequently, each entry [en]ij follows
an exponential distribution with mean 1, and entries in
[€,]; are correlated.

We do not incorporate auto-correlation in Type 2 simu-
lated processes since it is already covered by Type 1 proc-
esses. Instead, Type 2 processes evaluate the capability to
handle non-normal data. Similar to X; in Section 4.1.1, X,
and X, are modeled either by a tri-diagonal model or an
exponential model with p = 0.3. The form of X, is set to be
the same as X, but with different dimensions. The in-
control mean matrix m, is a constant matrix with all entries

T T T
o, o .
¢ L ‘sT equal to five.
%o d * 4 A where A 0 To simulate various out-of-control scenarios in images,
my = and m; = =m where A = . . .
’ : ! 0 shift matrices A = [A;] are added to the in-control mean
T T 5T matrix mg so that m; = my + A. We consider five shifts:
%o %
i) Sparse i) Stepwise constant i) Zigza
(i) Sp 1 (ii) Step 8 (iii) Zigzag 10
0 0
0.8 0.8
1 11 0.5
0.6 0.6
2 2 0.0
0.4 0.4
3 3
0.2 0.2 =8
4 4
, : : 0.0 0.0 -1.0
0 50 100 150 0 50 100 150 50 100 150

Figure 4. Three shifts of A for Type 1 simulated processes when d =1.




if 8<i<13 and 18 <j <23,

otherwise.

2. Chessboard: for

1 <s<5

0<k<41</<10, 0<r<y,

d, if j=40k+ 10+ and i = 10r +s5,
d, if j=40k+20+/ and i =10r +5+s,

Aj=14 —d, if j=40k+30+/ and i = 10r +s5,
—d, if j=40k+ ¢ and i =10r+5+s5,
0,  otherwise.

3. Ring-wise constant: for k > 0,0 < / < 3,

d, if L\/(i —50)% + (j — 100)*| = 12k + 7,

8= md i 507 + - 100)7) = 12k £ 81 7,

0, otherwise.

4.  Row-wise sine: for 1 < j < 200,

dsin (jn/10),  if 1 <i< 30,
Ajj = < dsin (2jn/10), if 31 < i <60,
dsin (3jr/10), if 61 <i < 100.
5. Column-wise sine: for 1 < i < 100,
dsin (in/5), if 1<j< 60,
A= { dsin (2in/5), if 61 <j < 120,
dsin (3in/5), if 121 <j < 200.

To achieve a different magnitude of a shift for Type 2
simulated processes, the value of d can be adjusted. The

magnitude of the shift is defined by [[All= /3, . Alzj

Figure 5 illustrates these five shifts when d=1.

4.2. Verifying theoretical results for dependent
measurements

The analysis in Section 3.2 shows that /X effectively captures
a shift in the mean pattern under the assumption of i.i.d.

0 (i) Sparse 0 (ii) Chessboard
n

25
50
75

0 50 100 150 50 100

(iv) Row-wise sine g (v) Column-wise sine

25 25
50 50 1
75 75

0 50 100 150 0 50 100

Figure 5. Five shifts of A for Type 2 simulated processes when d =1.
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entries in the random matrix. In this section, we investigate
whether the results hold for a matrix with dependent entries
by comparing the in-control and out-of-control means of AX
using simulated data. Specifically, we use a Type 1 simulated
process with ¢ = 0.3, the tri-diagonal model with p = 0.3,
and a sparse shift with ||d|| = 5.

In our simulation, we have p=200 and w=5 with ¢ =
1. According to (6), the theoretical difference between

Eo[2%] and E,[4%] is approximately /2(5 + 200) — /5 —
v/200 = 3.87. Using simulated data with dependent meas-
urements, we obtain Fo[2%] ~ 19.31 and E,[/5] ~22.14,
yielding the difference ~ 2.83. We also use simulated data
with independent measurements, which have matching
means and marginal variances. From the simulated data
with independent measurements, we get Eo[/X] & 15.74 and
E,[2%] ~ 18.30. The difference between the means is 2.56,
which is very close to the difference we obtained for the
simulated data with dependent measurements.

Although this experiment does not provide a definitive
conclusion, it offers evidence that /X is capable of accurately
capturing a shift in the mean pattern, even when the
assumption of i.i.d. measurements is violated.

4.3. Baseline procedures and experimental results

As baseline procedures, we use one profile monitoring and
two image monitoring procedures:

1. Multivariate Exponentially Weighted Moving Average
(MEWMA) (Wang and Lai, 2019): This procedure fits a
regression model to monitor auto-correlated profile vec-
tors. For Type 1 simulated processes, each observation
x; is treated as a profile vector, and the MEWMA pro-
cedure is directly applied. However, for Type 2 simu-
lated processes, we vectorize each matrix observation
Y, into a profile of length wp and apply the MEWMA
procedure. Specifically, a w x p matrix Y, is equivalent
to a profile vector vec(Y)= (Y11, Y12,..., Y1p, You,
Ya2s o Yapsooos Your, Yy, oo, Yyyp). The control limit of
the procedure is adjusted by trial-and-error simulation
for a given target ARL,.

(iii) Ring-wise constant rl

150 0 50

150
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2. Multivariate Generalized Likelihood Ratio (MGLR) (He
et al., 2016): The procedure is designed to monitor
products with a specific in-control pattern, such as the
uniform pattern in LED screens. The MGLR procedure
reduces the dimensionality of the original image by
dividing it into q equal-sized rectangular areas and
focuses on monitoring the summarized quantities from
these areas. For Type 1 processes, a rectangular area of
1 by 10 matrix is used with ¢ =5 x 20 = 100. For Type
2 processes, a rectangular area of 10 by 10 matrix is
used with g = 10 x 20 = 200. The control limit of the
procedure is determined by trial-and-error simulation
for a given target ARL,.

3. Spatio-Temporal Smooth Sparse Decomposition Model
(ST-SSD) (Yan et al., 2018): This procedure can handle
streaming data with high dimensionality, high velocity,
and complex spatio-temporal structure. The ST-SSD
procedure decomposes steaming signals into dynamic
background signals and anomalies using regression. The
locally estimated anomalies form testing statistics and
allow for efficient image monitoring.

In the in-control simulated experiments, we assess the
accuracy of the analytically determined control limits by ver-
ifying whether they yield actual ARL, values close to the tar-
get. In the out-of-control simulated experiments, we
demonstrate the effectiveness of the proposed procedure in
accurately detecting anomalies.

4.3.1. In-control performance

We generate an in-control sample path in each setting to
train the three baseline procedures and the DFIM procedure.
The length of the in-control sample path for Type 1 and
Type 2 settings are 50,000 and 30,000, respectively. For all
settings, a target ARLg is set to 1000. The control limit of
the DFIM procedure is calculated analytically in (4) using
estimated parameters and k=0.01. For the ST-SSD proced-
ure, the control limit is calculated as a 0.1% (= 1/ARLg)
sample quantile from a series of monitoring statistics.
However, the control limits of the other two baseline proce-
dures need calibration using trial-and-error simulation. We
generate 1000 in-control independent sample paths to cali-
brate their control limits to achieve a target ARL; = 1000.
We use the same set of 1000 in-control paths to verify if the
control limits of the ST-SSD and DFIM procedure, whether
a quantile estimate or an analytically determined value, pro-
duce actual ARL, close to the target 1000.

We report the sample standard deviations of the ARLs
throughout the simulated experiments, from which the
standard error can be calculated as the standard deviation
divided by 1/1000. Table 1 shows the control limits of all
procedures and their corresponding estimated ARL, for
each setting of simulated processes. Except for the ST-SSD
procedure, the MEWMA, MGLR, and DFIM procedures
produce accurate ARLy in each setting. The MEWMA and
MGLR procedures rely on trial-and-error simulation to
ensure the accuracy of their ARLj. In contrast, the analytical
control limit of the DFIM procedure achieves the same
accuracy with significantly reduced time and cost. The ST-
SSD procedure does not require trial-and-error simulation
for control limit calibration, but it does not produce actual
ARL, close to the target when the covariance matrix is tri-
diagonal. This is expected as the control limit is essentially
an extreme quantile estimate, which is difficult to estimate
accurately with 50,000 or 30,000 data points, especially for
auto-correlated data.

4.3.2. Out-of-control performance

In the out-of-control scenario, we independently generate
1000 sample paths and evaluate the performance of the
baseline and proposed procedures. Tables 2, 3, and S.2 (in
Supplement S.6) compare ARL; values of the four proce-
dures for Type 1 and Type 2 simulated processes. The small-
est ARL; value in each setting is indicated in bold.

Table 2 shows that increasing the auto-correlation param-
eter ¢ leads to longer detection delays. We do not observe
any one procedure dominating the monitoring behavior
across different covariance patterns. The DFIM procedure
has the smallest ARL; values for the sparse and zigzag shifts.
The three baseline procedures fail to detect the zigzag shift
according to their ARL; values, which are close to or larger
than the target ARL, of 1000. When the shift is stepwise,
the DFIM procedure has larger ARL; values than the
MEWMA procedure, but smaller than the MGLR procedure.
The difference in performance between the MEWMA and
DFIM procedures is not significant. The ST-SSD procedure
fails to detect any shift in Type 1 simulated processes
because the decomposition model does not capture the
shape information of the background. The designed anoma-
lies in Type 1 data are regular enough to blend into the
background signal, as shown in Figure 4.

Table 3 shows the DFIM procedure consistently outper-
forms the MEWMA and MGLR procedures for all cases for
normal noises. The ST-SSD procedure almost fails in the

Table 1. Control limit (H) and actual ARL, for various settings of simulated processes with target ARLy = 1000 (standard deviation in parentheses).

MEWMA MGLR ST-SSD DFIM

Process Setting H ARLy H ARL, H ARL, H ARLy

Type 1 ¢ = 0.3, Tri-diagonal 14.12 999.3(949.82) 62.63 1004.0(1005.44) 6.76 1448.4(1318.88) 107.15 1000.7(838.79)
¢ = 0.7, Tri-diagonal 12.77 1003.4(1006.92) 80.52 1000.7(960.77) 6.36 1212.4(1165.92) 125.45 1000.4(822.89)
¢ = 0.3, Exponential 16.58 999.9(1018.11) 62.45 1002.6(982.43) 6.34 935.7(942.25) 107.43 1005.5(846.57)
¢ = 0.7, Exponential 151 998.3(980.56) 81.08 1000.6(1027.23) 6.25 1004.1(986.81) 129.54 998.5(881.62)

Type 2 Normal, Tri-diagonal 23.74 1004.0(955.21) 79.39 1001.9(1041.45) 3.46 749.3(723.02) 59.25 1004.8(871.27)
Normal, Exponential 31.85 999.1(959.62) 79.55 1003.7(1050.18) 3.72 1035.1(993.67) 54.84 1007.6(897.15)
Non-normal, Tri-diagonal 21.73 1004.7(1005.09) 79.88 995.4(1019.76) 3.59 1254.5(1170.00) 55.85 1000.7(830.95)
Non-normal, Exponential 284 1002.8(1001.63) 80.05 996.0(1013.58) 3.63 956.4(933.61) 54.24 998.2(850.07)




Table 2. ARL; for out-of-control Type 1 processes (standard deviation in parentheses).
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Setting Shape of & [10]] MEWMA MGLR ST-SSD DFIM
Sparse 2 291.7 (291.72) 447.9 (688.02) 1406.2 (1316.85) 210.7 (144.20)
5 47.9 (41.00) 24.6 (20.19) 1384.9 (1263.24) 12.8 (5.47)
¢ =03 Step 1 48.1 (39.90) 154.3 (143.42) 1437.7 (1338.98) 99.3 (53.03)
Tri-diagonal 2 11.0 (7.64) 18.4 (13.91) 1421.3 (1269.78) 253 (11.51)
Zigzag 2 960.0 (939.82) 1015.7 (1029.34) 1355.2 (1218.11) 274.3 (176.25)
5 937.7 (911.54) 1031.1 (1028.94) 1423.0 (1254.30) 14.4 (6.54)
Sparse 2 688.9 (697.18) 721.5 (715.70) 1175.5 (1104.74) 679.8 (577.89)
5 225.5 (212.05) 227.6 (220.13) 1254.9 (1178.36) 108.0 (62.34)
¢ =07 Step 1 218.2 (205.62) 557.4 (542.06) 1121.9 (1083.92) 330.3 (241.16)
Tri-diagonal 2 55.1 (48.65) 177.4 (175.92) 1142.6 (1107.68) 103.8 (59.99)
Zigzag 2 964.7 (950.86) 1031.8 (1049.91) 1224.3 (1150.79) 758.3 (652.91)
5 989.2 (1011.31) 998.2 (966.88) 1221.5 (1143.93) 134.6 (80.48)
Sparse 2 330.0 (334.51) 315.6 (320.62) 974.9 (925.04) 224.2 (147.39)
5 58.2 (53.52) 30.5 (26.58) 967.6 (927.13) 13.4 (6.06)
¢ =03 Step 1 56.7 (51.52) 167.4 (164.19) 957.0 (925.70) 113.4 (63.63)
Exponential 2 12.9 (8.58) 22.3 (17.69) 925.0 (885.52) 28.9 (13.41)
Zigzag 2 1024.7 (1056.13) 971.4 (944.37) 1037.2 (960.14) 285.1 (192.45)
5 1029.3 (1049.97) 939.8 (928.26) 984.3 (951.41) 14.5 (6.79)
Sparse 2 732.6 (721.64) 736.6 (740.58) 956.4 (945.17) 636.7 (525.47)
5 266.7 (263.71) 314.9 (447.98) 1009.3 (938.59) 114.6 (67.55)
¢ =07 Step 1 271.6 (278.13) 666.2 (763.75) 991.4 (948.35) 404.7 (414.44)
Exponential 2 68.1 (63.77) 233.4 (325.82) 981.6 (934.88) 115.7 (68.84)
Zigzag 2 1052.6 (1084.03) 848.2 (812.43) 993.5 (925.58) 714.9 (585.80)
5 1013.2 (1081.01) 807.5 (719.61) 1001.6 (961.35) 138.4 (99.18)
Table 3. ARL,; for out-of-control Type 2 processes with normal noises (standard deviation in parenthesis).
Setting Shape of A [|A]] MEWMA MGLR ST-SSD DFIM
Sparse 10 191.5 (175.72) 180.5 (173.13) 750.3 (724.58) 134.4 (71.8)
20 47.2 (39.09) 13.1 (7.67) 735.9 (722.49) 1.9 (0.77)
Chessboard 10 1038.8 (996.77) 983.9 (944.25) 238.8 (237.99) 271.9 (171.43)
20 1008.5 (1022.65) 986.5 (949.56) 19.4 (19.16) 7.2 (2.66)
Normal Ring 20 218.9 (213.86) 56.1 (52.89) 9.2 (8.40) 35.2 (13.31)
Tri-diagonal 30 100.1 (90.13) 11.9 (6.62) 1.2 (0.54) 5.2(1.72)
Sine (row) 20 976.3 (1008.57) 984.5 (963.12) 49.6 (48.50) 12.7 (4.45)
30 990.2 (1037.35) 1039.9 (1089.72) 49 (4.54) 1.8 (0.61)
Sine (column) 20 1003.7 (1057.11) 982.6 (1021.21) 8.6 (8.11) 36.8 (13.89)
30 982.4 (1001.09) 998.7 (969.84) 1.2 (0.52) 3.0 (0.97)
Sparse 10 257.6 (259.43) 270.7 (253.01) 997.9 (1005.54) 131.4 (73.09)
20 64.7 (54.17) 21.0 (15.12) 1052.6 (1035.37) 2.2 (0.88)
Chessboard 10 1031.4 (1001.81) 1091.2 (1055.10) 381.0 (417.71) 218.5 (135.70)
20 958.4 (906.65) 1050.2 (1052.08) 32.2 (34.53) 7.0 (2.63)
Normal Ring 20 284.1 (289.60) 101.8 (101.10) 14.9 (14.68) 32.6 (12.67)
Exponential 30 139.8 (129.21) 19.2 (14.44) 1.5 (0.85) 5.2 (1.79)
Sine (row) 20 958.6 (934.14) 1043.6 (1006.06) 79.6 (78.04) 12.0 (4.26)
30 962.0 (973.97) 973.6 (950.01) 7.5 (6.66) 1.9 (0.63)
Sine (column) 20 1042.0 (1044.64) 1073.1 (1079.59) 14.2 (13.63) 52.6 (22.52)
30 997.3 (985.75) 1015.8 (1006.50) 1.5 (0.84) 4.2 (1.36)

sparse setting, while the ST-SSD and DFIM procedures per-
form comparably in the remaining settings. When the shift
matrix is normally distributed, the DFIM procedure per-
forms slightly better than ST-SSD. For non-normal noises,
the DFIM procedure gains an edge and has the smallest
ARL, except for sparse and ring shifts as shown in Table S.2
in Supplement S.6. The DFIM procedure never fails to
detect shifts in any tested setting, which verifies its robust-
ness. The MEWMA and MGLR procedures fail under the
chessboard, row-wise, and column-wise sine shifts, and the
ST-SSD procedure fails under sparse shifts, while the DFIM
procedure produces relatively quick detection.

Overall, the DFIM procedure is efficient, requiring less
time and data than the baseline procedures to determine
control limits for a given target ARL;. In most cases tested
in this section, it detects various out-of-control shifts with
the smallest ARL; compared with the baseline procedures,

demonstrating competitive performance and its ability to
detect even difficult shifts that the baseline procedures fail
to detect.

5. Battery coating process

In this section, we demonstrate the performance of the
DFIM procedure in a practical application using the battery
coating process described in Section 1.

We analyze a time-series dataset containing measure-
ments of battery coating thickness from a real production
line. The dataset covers the period from August 8 to August
11, 2018, and includes a total of 27, 311 sensor trips.
Maintenance was carried out between August 10 at 13:00
and August 11 at 0:00. The production manager reviewed
other indicators and believed that a shift occurred around
August 10 at 12:00. To set up the DFIM procedure, we use
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Figure 6. Performance of the DFIM procedure on the battery coating process.

the battery coating data between August 8 at 12:00 and
August 9 at 0:00 as training data. Each sensor trip captures
a vector of 298 thickness measurements (p=298), and we
use a sliding window size of w=>5 with an inter-window
spacing size of s=1.

Analysis in Supplement S.7 verifies that the battery coat-
ing data satisfies Assumptions 1, 2, and 4. To perform the
DFIM procedure, the training dataset consists of 5558 image
matrices, resulting in 5558 T? training statistics. We set the
target ARL, = 22,248, which is four times the training size
to ensure a low false alarm rate. Due to the limited availabil-
ity of sample paths, trial-and-error simulation is not pos-
sible, and as a result, the MEWMA and MGLR procedures
are not applied. Furthermore, the ST-SSD procedure
requires an extreme 0.005% sample quantile, which cannot
be accurately estimated with only 5558 samples.
Consequently, we do not employ the ST-SSD procedure.

From the training data, we estimate parameters
My> Vo, 07, and Q?, and the control limit is calculated with
the target ARLy = 22,248 and k=0.01 using (4). After esti-
mating the in-control covariance matrix of z, as explained
in Supplement S.7, the DFIM procedure is applied separately
to the training data and the remaining data. The results of
these applications are shown in Figures 6(a) and 6(b),
respectively. The dashed lines in the figures represent the
control limits, and the solid lines represent the monitoring
statistics of the DFIM procedure. During the training period,
the DFIM procedure does not raise any false alarms while
an alarm is triggered just before August 10 at 12:00, which
highlights the effective detection power of our procedure.

6. Conclusion

We present a novel distribution-free procedure that employs
SVD to monitor image processes with general marginals,

cross-correlations, and auto-correlations. The DFIM proced-
ure offers a significant advantage as it eliminates the need
for trial-and-error simulation to determine control limits,
thereby allowing for convenient and rapid implementation
in practical settings. Our numerical experiments, conducted
on both simulated and real processes, demonstrate the
effectiveness and robustness of our procedure in anomaly
detection.

While the DFIM procedure was originally motivated by
monitoring battery coating processes, it can be -easily
extended to other applications that require image monitor-
ing provided that the in-control mean image is rank-one.
Our ongoing research is focused on extending the procedure
to accommodate low-rank mean images, which would fur-
ther expand its applicability to a broader range of
applications.
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