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Abstract— Full-duplex (FD) systems have emerged as a 
promising avenue to optimize temporal and spectral resource 
utilization by enabling simultaneous data transmission and 
reception on a single frequency. Nonetheless, the presence of 
robust self-interference (SI) signals at the receiver presents a 
critical challenge that necessitates effective SI cancellation 
strategies. Recent advancements have introduced neural 
networks (NN) to address this challenge, offering computational 
advantages over conventional polynomial models. This paper 
delves into the realm of leveraging Hyper Neural Networks 
(hyperNet) for SI cancellation (SIC), thereby exploring their 
unique attributes to enhance the efficiency of FD systems. The 
proposed method utilizes a dynamic hyperNet model to learn the 
non-linear characteristics of the SI channel and cancel it from 
the received signal. The efficacy of the proposed SIC technique 
is assessed using datasets derived from a MATLAB simulation 
platform that accurately replicates the transmission process 
observed in real-world scenarios. The simulation results 
demonstrate the superior performance of the proposed 
hyperNet in comparison to other state-of-art NN based SIC 
methods. Our proposed hyperNet-based SIC technique 
demonstrates its ability to autonomously adapt to more complex 
characteristics of the varying self-interference channel. 

Keywords— self-interference cancellation, time-varying 
channel, adaptability, hyper neural network. 

I. INTRODUCTION 
The rapid advancement of the Internet of Everything, 

which enables extensive connectivity between billions of 
users and devices, has prompted a significant paradigm shift 
towards the development of next-generation wireless 
networks, referred to as beyond the fifth generation (B5G) [1]. 
These advanced wireless networks are designed to offer 
exceptional reliability, minimal latency, and high data rates, 
reaching tens of gigabits per second.  
 As the demand for higher data rates in wireless 
communication networks continues to rise, the need for 
improved spectral efficiency becomes paramount. While 
advanced techniques like multiple-input-multiple-output 
(MIMO) [2] and orthogonal frequency division multiplexing 
(OFDM) [3] show promise in enhancing spectral efficiency, 
currently deployed wireless communication systems pre-
dominantly operate in half-duplex (HD) mode, resulting in 
compromised resource/spectrum utilization. This operational 
limitation leads to a capacity reduction by a factor of two, as 
the inherent HD constraints cannot be circumvented [4].  

 In the past, the practicality of in-band full-duplex (FD) 
wireless communication was questioned due to the significant 
self-interference (SI) created by a transmitter affecting its own 
receiver. Nevertheless, recent research [4] have revealed that 
it is indeed feasible to mitigate this challenge and make FD 
wireless systems viable. Fig.1 illustrates the classification of 
SI cancellation (SIC) methods within the context of FD 
wireless systems, as introduced in [4]. This classification is 
based on how the input signal is handled, distinguishing 
between passive, active, or a combination of both ways. As a 
result, active SIC, passive SIC, or a combination of both are 
commonly utilized to mitigate SI signals. Passive SIC is a 
technique employed prior to the signal's entry into the 
receiving antenna. It effectively mitigates SI signals by 
leveraging various properties associated with antennas and 
signal propagation. These techniques encompass the use of 
directional antennas, optimizing antenna spacing, and power 
management. 

 
Fig. 1. Categorization of SIC approaches for FD systems [4]  

The active SI mitigation approach is implemented once the 
signal has entered the receiving antenna. The active SIC 
method can be categorized into three main types: digital SIC, 
analog SIC, and a combination of both, as depicted in Fig. 1. 
Digital SIC is employed to eliminate SI arising from factors 
such as phase noise in the oscillator and non-linearities in the 
analog-to-digital converter (ADC) of the receiver. 
Conversely, analog SIC is utilized to address SI at the ADC 
stage. In many cases, a singular active SIC method, whether 
analog or digital, may not suffice to adequately reduce SI. 
Hence, a combination of both analog and digital SIC methods 
is often necessary to effectively mitigate SI, as noted in [5]. 
The choice between analog and digital SIC depends on the 
specific trade-offs that need to be made. Analog SIC might be 
preferred when simplicity, low latency, and energy efficiency 
are critical factors. Digital SIC is advantageous when 
adaptability, high cancellation accuracy, and the ability to 
handle complex interference scenarios are essential.   
 Digital SIC (DSIC) can be further classified into linear 
DSIC and non-linear DSIC. Linear DSIC is a technique 
designed to eliminate distortions in digital signals that occur 
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when they traverse through the environmental channel. This 
process aims to mitigate the impact of signal degradation 
caused by factors such as noise, interference, or attenuation, 
which can alter the shape and integrity of the signal being 
transmitted. On the other hand, non-linear DSIC focuses on 
the suppression of non-linear effects, particularly those arising 
from radio circuits [6]. Unlike linear distortion, which 
primarily affects signal amplitude and phase, non-linear 
distortion introduces higher-order components, such as cubic 
and higher-order harmonics within the transmitted signals. 
Non-linearities are primarily introduced by the power 
amplifier (PA), in-phase and quadrature-phase (IQ) imbalance 
of the mixer, imperfections in the transceiver's oscillators 
causing phase noise, and the quantization noise from the 
digital-to-analog converter (DAC) and ADC. The goal of non-
linear digital cancellation is to reduce or eliminate these 
unwanted non-linear elements, ensuring that the received 
signals remain as faithful as possible to the originally 
transmitted signal. 

Sophisticated memory polynomial models are a crucial 
requirement for effectively tackling these challenges of non-
linearities, as they possess exceptional capabilities for 
accurately capturing the SI signal within the DSIC process. 
However, they suffer from high computation complexity [6]. 
For seeking lower complexity, a different approach has 
emerged as an alternative in recent years, involving the 
utilization of a neural network (NN) to model the non-
linearities [7-11]. These NN-based DSIC techniques achieve 
similar SI cancellation performance with notably reduced 
computational complexity. Various NN-based approaches 
have been employed to address non-linearity in FD wireless 
transceiver systems. In [7], the authors utilized a basic deep 
NN (DNN) model for capturing the non-linearity of SI signal. 
In contrast, in [8], hybrid neural network architectures, 
specifically hybrid-layers NN, hybrid-convolutional recurrent 
NN, and hybrid-convolutional recurrent dense NN, were 
applied to capture the non-linear components of the SI signal. 
Additionally, they conducted performance comparisons 
among various recurrent neural network models. Additionally, 
a complex-valued feed-forward neural network (CV-FFNN) 
was introduced in [9] to extract non-linearities from the SI 
signal. Furthermore, [10] implemented a low-rank tensor 
completion technique known as canonical system 
identification (CSID) to address non-linear SI cancellation. 
Model based NN has been proposed in [11] where the authors 
used deep unfolding concept to cascade the non-linear RF 
system.  

These Shallow NN models exhibit good performance on 
datasets with fixed wireless channel conditions, but their 
performance degrades significantly under varying channel 
conditions. This decline in performance is attributed to the 
limited training opportunities available for these simpler 
models.  A noteworthy drawback of these existing NN-based 
approaches is the tendency of researchers to prioritize the 
perceived simplicity of their models for real-time 
implementation. To address this limitation, we propose a 
modified hyperNet architecture that employs a relaxed 
weight-sharing approach to extract more information from the 
dataset.  

Contribution: This study primarily concentrates on 
capturing and mitigating non-linear SI signals using the noble 
approach, hyperNet architecture. The key strength of our 

hyperNet model lies in its ability to efficiently predict and 
adapt to evolving SI signal patterns over time, resulting in 
more precise and effective SI signal reduction. Unlike 
conventional polynomial models and other state-of-the-art 
NN-based methods, our proposed approach harnesses the 
feature of hyper networks to predict the intricate non-linear 
variations found in dynamic systems, thus eliminating the 
need for repetitive retraining cycles. The comparative analysis 
between a shallow model and our hyperNet is presented in 
Table IV, revealing favorable outcomes for our proposed 
model. To the best of our knowledge, our proposed model 
achieves a higher number of SI cancellations with similar 
floating-point operations per second (FLOPS) compared to 
other existing methods [7-11]. In order to demonstrate the 
high efficiency of the hyperNet, we simulated a FD system 
encompassing RF elements and wireless fading channel using 
Simulink [12]. Subsequently, we generated datasets from the 
simulation and employed them as inputs for the hyperNet 
model, thereby validating its superior performance in 
comparison to alternative approaches. 

The subsequent sections of this paper are structured as 
follows. Section II, which focuses on the system model, 
outlines the foundational framework of FD wireless 
communications. In Section III elaborates the details of the 
hyperNet based SI canceller, presenting the innovative 
approach we employ for SIC. Section IV, dedicated to 
performance evaluations, elaborates on the methodology used 
in simulation, comparison of model performances. Lastly, 
Section V serves as the conclusion, summarizing the key 
findings of this article. 

II. SYSTEM MODEL OF FD WIRELESS COMMUNICATIONS 

A FD transceiver comprises a local transmitter and a local 
receiver, as shown in Fig.2. The FD system is designed to 
employ a training-based digital cancellation technique to 
reduce the SI signal to the level of receiver noise. The antenna 
cancellation is implemented at the initial stage of the receiver 
system by utilizing a dual antenna setup to prevent the SI 
signal from saturating the analog components of the receiver, 
such as the Low-Noise Amplifier (LNA), Variable Gain 
Amplifier (VGA), and ADC. However, DSIC is used after the 
ADC to eliminate any remaining SI signal. 

 
Fig. 2. Simplified illustration of a full-duplex transceiver model with a shared 
local oscillator (LO), omitting some components for clarity. 

In Fig.2, the notation x(n) symbolizes the digital signal in 
an OFDM configuration transmitted at a discrete time point 
denoted as n. This digital signal is subject to an initial 
conversion into an analog format through a DAC. Following 
this, a process of up-conversion takes place employing an IQ 
mixer. In the premise where the DAC is presumed to be ideal, 
the digital representation of the signal at its baseband, 
subsequent to the incorporation of IQ imbalance attributed to 
the IQ mixer, can be formally articulated using the following 
equation [7]: 
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                    𝑥୍୕(𝑛) = 𝐾ଵ𝑥(𝑛) + 𝐾ଶ𝑥∗(𝑛)                          (1) 

where 𝐾ଵ =
ଵ

ଶ
൫1 + 𝜓𝑒௜ఏ൯ , 𝐾ଶ =

ଵ

ଶ
൫1 − 𝜓𝑒௜ఏ൯  and typically 𝐾ଵ 

>> 𝐾ଶ . The gain and phase imbalance coefficients of the 
transmitter are denoted as 𝜓 and 𝜃 respectively. Subsequently, 
the signal generated by the mixer is subjected to amplification 
through the power amplifier (PA). This process can introduce 
additional distortions to the transmitted signal due to inherent 
imperfections within the PA. The resulting signal from the 
PA's output can be formally delineated through the 
conventional parallel-Hammerstein (PH) model [7], 
characterized as follows: 

𝑥୔୅(𝑛) =  ∑ ∑ ℎ୔୅,௣(𝑚)𝑥୍୕(𝑛 − 𝑚)ห𝑥୍୕(𝑛 − 𝑚)ห
௣ିଵெ

௠ୀ଴
௉
௣ୀଵ

௣ ௢ௗௗ

(2) 

Here, hPA,p represents the PA’s impulse response for the p-
th order nonlinearity, and M stands for the memory length of 
the PA. The received xPA signal makes its way to the receiver 
via a SI channel characterized by the impulse response hSI(l), 
where l = 0…(L − 1) and L corresponds to overall memory of 
the system. The transmission from the PA inevitably 
permeates into the receiver through the SI signal, resulting in 
the emergence of the SI signal. Within the receiver of the FD 
node, three distinct signals become apparent: the SI signal, a 
noise signal, and the desired receiving signal transmitted from 
another FD node situated at the far-end. In this study, we adopt 
the assumption that neither thermal noise nor desired signals 
from other FD nodes are present [9]. As a consequence, the 
residual SI signal that remains after the RF cancellation 
process undergoes a sequence of operations. These operations 
encompass filtration through a band-pass filter (BPF), 
followed by amplification through a low-noise amplifier 
(LNA), down-conversion through an IQ mixer, and eventual 
digitization carried out by an ADC. This progression can be 
denoted mathematically as per [7], [9] : 

𝑦ୗ୍(𝑛) =  ∑ ℎ௣,௤(𝑚)𝑥(𝑛 − 𝑚)௤𝑥∗(𝑛 − 𝑚)௣ି௤
∆          (3) 

where ∑ =  ∑ ∑ ∑ ,ெା௅ିଵ
௠ୀ଴

௣
௤ୀ଴

௉
௣ୀ௢ௗௗ∆  hp,q(m) is a channel im-

pulse response having the cumulative effects of 𝐾ଵ, 𝐾ଶ, hPA,p, 
and hSI. The objective of digital SIC is to generate an 
approximation of the SI signal 𝑦ୗ୍(𝑛), represented as 𝑦ොୗ୍(𝑛), 
wherein 𝑦ොୗ୍(𝑛)is a result of applying a nonlinear operation to 
the transmitted baseband samples. Non-linear digital canceler 
estimates total hp,q which is denoted by ℎ෠௣,௤ . Utilizing Eqn. 
(3), this canceler predicts the SI signal, 𝑦ොୗ୍(𝑛).  Then the 
predicted SI signal is subtracted from the received signal. At 
a window length of  N, the SI cancellation ratio (SICR) can be 
expressed as:  

                𝑆𝐼𝐶𝑅ୢ୆ = 10 logଵ଴ ቀ
∑  ಿషభ

೙సబ |௬ೄ಺(௡)|మ

∑  ಿషభ
೙సబ |௬ೄ಺(௡)ି௬ೄ಺ෞ (௡)|మቁ                (4) 

III. HYPERNET-BASED SELF-INTERFERENCE CANCELLER 

Hyper Networks, also known as hyperNet is a category of 
NN  architectures in which a smaller network is employed to 
create weight parameters for a larger NN referred as the main 
network [13]. As shown in Fig. 3, within the hyperNet system 
design, the more extensive network part is denoted as the main 
larger network. This larger network is responsible for the 
primary tasks. The smaller network, employed to forecast the 
numerical values for the weights and bias parameters of the 
main network, is termed the hyper smaller network. 

In basic Recurrent Neural Network (RNN), the weights are 
tied at each time step, restricting its expressive capabilities. 
Dynamic hyperNet offers adaptability to generate relaxed 
weights for main recurrent network across the time steps. At 
each time step t, the smaller network receives concatenated 
input 𝑋௧ and previous hidden state of the main network 𝐻௧ିଵ. 
This process produces an output 𝐻෡௧ , and this vector is 
employed to generate the weights for the main network at the 
same time step. The training of larger and smaller networks is 
conducted jointly through the backpropagation and gradient 
descent technique. Basic RNN’s hidden states formula 

               𝐻௧ =  𝜎(𝑊ு𝐻௧ିଵ +  𝑊௫𝑋௧ + 𝑏 )                      (5) 
where 𝐻௧  represents the hidden state, 𝜎 denotes non-linear 

operation i.e. sigmoid or relu, 𝑊ு  and 𝑊௫  refers the weight 
matrices, b denotes bias, and X denotes an input sequence. 
These values are fixed in each time step. However, in 
hyperNet architecture, the weights 𝑊௛  and 𝑊௫  are not tied. 
The smaller network generates these weights for the main 
network so they can be different at every time step. This 
flexible weight-sharing approach permits us to manage the 
balance between model complexity and expressive power. For 
hyperNet architecture, 𝐻௧  can be represented by [13] 

𝐻௧ =  𝜎(𝑊ு(∅ு)𝐻௧ିଵ +  𝑊௫(∅௫) + 𝑏(∅௕)) 
𝑊ு(∅ு) =  ⟨𝑊ு∅, ∅ு⟩                                                              (6) 
𝑊௫(∅௫) =  ⟨𝑊௫∅ , ∅௫⟩ 

𝑏(∅௕) =  𝑊௕∅∅௕ +  𝑏଴ 
where 𝑊ு , 𝑊௫ , 𝑏 are computed as the inner product between 
the weights 𝑊ு∅, 𝑊௫∅, 𝑊௕∅  and feature vectors ∅ு , ∅௫ , ∅௕ . 
These feature vectors are calculated by the smaller network as 
a function of 𝑋௧  and 𝐻௧ିଵ . In hyperNet architecture, the 
smaller network can be represented as  

𝑋෠௧ = ൬
𝐻௧ିଵ

𝑋௧
൰ 

𝐻௧ =  𝜎൫𝑊ு෡𝐻෡௧ିଵ +  𝑊௫ො𝑋෠௧ + 𝑏෠൯ 
∅ு = 𝑊ு෡ு𝐻෡௧ିଵ +  𝑏ு෡ு                                     (7) 
∅௫ = 𝑊ு෡௫𝐻෡௧ିଵ +  𝑏ு෡௫ 

                       ∅௕ = 𝑊ு෡௕𝐻෡௧ିଵ 
where 𝑊ு෡ , 𝑊௫ො, 𝑏෠  are denoted as weights and bias of the 
smaller network. The feature vectors ∅ு , ∅௫, ∅௕ are of 
dimension of 𝑁∅, which is smaller than the hidden state size 
of the main network (𝑁ு ) and the smaller network (𝑁෡ு ). 
Typically, 𝑁෡ு < 𝑁ு. Output of the main network is projected 
on the feature vectors by the linear network, which later help 
to generate the weights for the main larger network. 

 
Fig. 3. Simplified Version of  HyperNet Architecture 

However, the exact implementation of this hyperNet 
architecture will cause memory overflow problem. To address 
the issue, modifications are necessary so that the hyperNet 
architecture can become more memory efficient and scalable. 
In the modified design, a weight scaling vector, 𝑑(∅)  is 
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introduced. This vector is obtained through a linear projection 
of ∅. The modified 𝑊(∅) can be represented as 

                𝑊(∅) = 𝑊൫𝑑(∅)൯ =  ൮

𝑑଴(∅)𝑊଴

𝑑ଵ(∅)𝑊ଵ

…
𝑑ேಹ

(∅)𝑊ேಹ

൲             (8) 

Transforming 𝑊(∅) into 𝑊(𝑑(∅)) proves to be a benefi-
cial tradeoff, leading to a reduction in the memory demands of 
the hyperNet architecture. The row level operation in Eqn. (8) 
can be replaced with element-wise multiplication, resulting in 
increased practical efficiency. The modified memory efficient 
version of Eqn.(5) can be refered as 

𝐻௧ =  𝜎(𝑑ு(∅ு) ⊙ 𝑊ு𝐻௧ିଵ +  𝑑௫(∅௫) ⊙ 𝑊௫𝑋௧ + 𝑏(∅௕) )                      
(9) 

where 𝑑(∅) =   𝑊∅∅ ,  𝑏(∅) =  𝑊௕∅∅௕ + 𝑏଴  and ⊙ 
denotes element-wise multiplication. 
A. HyperNet Non-Linear Canceler 

The SI signal can be divided into two components: a 
linear part and a non-linear part. This can be represented as:                 
                       𝑦ୗ୍(𝑛) =  𝑦ୗ୍ౢ౟౤

(𝑛) + 𝑦ୗ୍౤ౢ
(𝑛)                     (10) 

In Eqn. (10), the component 𝑦ୗ୍ౢ౟౤
(𝑛)represents the linear 

part of the SI signal. This pertains to the specific term in the 
sum of Eqn. (3) where p = 1 and q = 1. On the other hand, 
the component 𝑦ୗ୍౤ౢ

(𝑛) encompasses all the remaining terms 
that contribute to non-linearity. We employ conventional 
linear cancellation techniques to create an approximation of 
𝑦ୗ୍ౢ౟౤

(𝑛) , which we will symbolize as 𝑦ොୗ୍ౢ౟౤
(𝑛) . This 

approach treats the 𝑦ୗ୍౤ౢ
(𝑛)  signal, which is considerably 

weaker, as unwanted interference, resembling noise. 
Subsequently, we intend to restore 𝑦ୗ୍౤ౢ

(𝑛)  through 
hyperNet. To detail the linear cancellation process: the linear 
canceller initially calculates channel impulse response 
ℎ෠ଵ,ଵ using established methods of least-squares channel 
estimation [6], Subsequently, this ℎ෠ଵ,ଵ value is employed to 
formulate the estimation 𝑦ොୗ୍ౢ౟౤

(𝑛) in the subsequent manner 
[6]: 

𝑦ොୗ୍ౢ౟౤
(𝑛) = ∑  ெା௅ିଵ

௠ୀ଴ ℎ෠ଵ,ଵ(𝑚)𝑥(𝑛 − 𝑚)              (11)   

 Once the estimation of the linear component of the SI 
signal is obtained, it is subsequently subtracted out from the 
primary SI signal. This subtraction operation results in a 
residual signal, which comprises the non-linear portions of the 
SI signal. Our hyperNet's objective is to reconstruct individual 
samples of 𝑦ୗ୍౤ౢ

(𝑛) based on the relevant subset of x that these 
particular  𝑦ୗ୍౤ౢ

(𝑛)  samples are dependent upon, as indicated 
in Eqn. (10). We employ a hyperNet architecture shown in 
Fig. 3. This NN comprises a single layer of nodes that transmit 
information in one direction. Specifically, it has a total of 2 
times the sum of L and M input nodes. These input nodes 
correspond to the real and imaginary parts of the (M + L) 
distinct time-shifted versions of x, as expressed in Eqn. (3). 
Additionally, the neural network contains two output nodes, 
which represent the real and imaginary parts of the desired 
𝑦ୗ୍౤ౢ

(𝑛) samples.  

IV. PERFORMANCE EVALUATIONS 

 In this section, we elaborate the simulations conducted for 
the FD wireless system, the configuration of the hyperNet 
model, and the evaluation of the proposed hyperNet-based 

cancellers. This evaluation is carried out in the context of 
suppressing the SI signal within a simulated FD system. 

A. Simulation for FD System 

 In WLAN applications, creating an effective Simulink 
model requires the incorporation of three key components: an 
OFDM signal generator, transceiver RF elements, and an 
accurate wireless channel representation. Creating OFDM 
baseband signals need random bits generator, type of 
modulation, and IFFT in Simulink. This baseband signal will 
pass through simulated RF elements employed by the RF 
Blockset in Simulink [12] [14]. These toolboxes in Simulink 
facilitates the creation and oversampling of a baseband 
wireless signal. The RF elements comprises of several 
components such as IQ mixer, Power Amplifier (PA), Low 
Noise Amplifier (LNA), and Variable Gain Amplifier (VGA) 
essentially. These elements are characterized by gain, second-
order intercept point IP2, third-order intercept point IP3, noise 
level, and order. We have set parameters for IQ mixer (IP2 = 
47, IP3 = inf, order = even and odd), PA (IP3 = 47, order = 
odd), LNA (IP2 = 7, IP3 = 10, order = even and odd), VGA 
(IP3 = 47, order = odd). Finally, Simulink offers precise 
simulation tools for various wireless fading channels, 
allowing for the adjustment of parameters like path delays, 
gains, Doppler shifts, and phases to simulate diverse scenarios 
in wireless communication outlined in Tables I and II. Due to 
the page limit, we will present the details of our Simulink 
Simulation platform in our future publication.   

 

B. HyperNet Model Configuration 

In this section, we meticulously present both the 
commonalities and disparities between our simulated datasets 
and provided datasets [6]. Furthermore, we emphasize the 
rationale behind the development of new datasets to illustrate 
the originality of our research. 

1) Training Datasets from Real TestBed: According to 
the author of [6], their dataset consists of QPSK-modulated 
OFDM signals which has following attributes as Table I. 
Their transmitted OFDM frame consists of approximately 
20,000 baseband samples, with 90% used for training and the 
remaining 10% used for testing. They employed a two-
antenna setup that provides a passive analog suppression of 
53 dB. Active analog cancellation is not used since their 
achieved passive suppression is sufficient for the work of 
digital SIC. 

TABLE I 
Parameters for Rayleigh Fading Channel Modeling   

Config Delay Gain Doppler AWGN  

1 
2 
3 
4 
5  

[0 0.4 0.6]*10ିଵ 
[0 0.4 0.6]*10ିଶ 
[0 0.6 0.8]*10ିଶ 
[0 0.4 0.6]*10ିସ 
[0 0.4 0.6]*10ି଺ 

[0 -30 -33] 
[0 -30 -33] 
[0 -30 -33] 
[0 -30 -33] 
[0 -30 -45]  

0.001 
0.001 
0.001 
0.001 

10 

25 
25 
25 
25 
25 

TABLE II 
Parameters for Rician Fading Channel Modeling   

Config Delay Gain Doppler AWGN  

1 
2 
3 
4 
5  

[0 0.4 0.6]*10ି଼ 
[0 0.4 0.6]*10ିଽ 
[0 0.4 0.6]*10ିଽ 
[0 0.4 0.6]*10ିଽ 
[0 0.4 0.6]*10ିଽ 

[0 -45 -48] 
[0.7 -45 -48] 
[2 -45 -48] 
[5 -45 -48] 
[10 -45 -48]  

0.001 
0.001 
0.001 
0.01 
0.01 

25 
25 
25 
25 
25 
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2) Training Datasets from Simulations: We conducted 
simulations using MATLAB Simulink to replicate a similar 
system architecture. This simulation generates a signal 
employing QPSK modulation with a 10 MHz frequency and 
an average transmit power of 10 dBm. The signal uses OFDM 
with 1024 sub-carriers and is sampled at a rate of 20 MHz. 
The resulting dataset consists of approximately 30,000 time-
domain baseband samples. We divided this dataset into two 
distinct parts for different purposes. It is important to note 
that the simulation used in this work provided a significant 53 
dB passive analog RF cancellation similar as in [6]. This 
degree of cancellation was attained using the component 
known as “Antenna” within the RF Blockset. Consequently, 
in our simulation, we did not employ any additional 
components as active analog cancellation techniques similar 
as in [6]. The passive analog suppression, combined with 
proposed digital cancellation methods, was sufficient to 
reduce the SI signal’s power to the level of the receiver’s 
background noise. 

3) Comparison of Both Datasets: The dataset provided 
by the author in reference [6] presents a fixed channel 
condition, but they did not provide explicit details regarding 
their wireless channel configuration in their research. One 
major distinction between their study and ours lies in our 
ability to adjust the wireless channel parameters to closely 
align with real-world scenarios. This enables us to train and 
evaluate our model across various scenarios. Additionally, 
we can train our model under specific wireless channel 
conditions and assess its performance in the presence of 
changing channel conditions. Our generated dataset offers 
greater versatility from research aspect. Table I and II 
represent the datasets which have varying wireless fading 
channels configuration.   
 There are some other parameters which reflect the real-life 
scenarios such as rural area or urban area. In a fading channel 
model that reflects rural area behavior, one parameter that is 
commonly adjusted to capture the characteristics of rural 
environments is the Rician K-factor. In a rural area, especially 
in scenarios where there is a clear line of sight between the 
transmitter and receiver, the dominant line-of-sight 
component can be relatively strong compared to the scattered 
multipath components. This is because rural areas often have 
fewer obstacles and buildings that can cause significant 
multipath propagation. 

 
Fig. 4.  MSE in the training and testing phase for the proposed hyperNet and 
other NN architecture. 

C. Comparison of model performance 
In this subsection, the evaluation of proposed hyperNet-

based SI cancellers and the state-of-the-art counterparts takes 
place within the context of suppressing SI signal in a 
simulated FD system. The performance evaluation 
encompasses several key aspects, including the model training 
performance, the SI reduction performance of the modeled SI 

signal, and the performance under the varying wireless fading 
channel conditions. The hyperNet model was implemented 
using the PyTorch framework. The underlying optimization 
algorithm for training was Adam, and the chosen loss function 
was mean squared error. A learning rate of λ = 0.004 was 
utilized, with mini-batches containing 32 samples each. To 
ensure a fair comparison with the other NN models, our 
hyperNet was designed with an input layer of 2(M + L) = 26 
units. Following table III, the main network's hidden layer 
size, 𝑁ு  = 8, and the hyper smaller network's hidden layer 
size, 𝑁෡ு  = 5 are set. According to [13], our system's 
computational performance, measured in FLOPS, is estimated 
at approximately 3500. Notably, FLOPS serves as a widely 
accepted standard for evaluating performance in the field of 
SI cancellation, as established by previous works [6-11]. 
Significantly, our study demonstrates that not only do our 
FLOPS match those of other studies, but our cancellation limit 
excels, outperforming papers with similar FLOPS values. 

 
Fig. 5.  Power spectral densities of the SI signal, the SI signal after linear 
cancellation, as well as the SI signal after non-linear cancellation using both 
the deep neural network and hyper network. We also show the measured 
noise floor for reference. 

 
1) Training Performance: Fig.4 illustrates the Mean 

Squared Error (MSE) performance during both the training 
and testing phases of the proposed hyperNet architecture, in 
comparison to a Deep Neural Network (DNN) architecture  
[6]. The MSE serves as an error metric for evaluating the 
difference between the predicted SI signal and the ground-
truth. It is evident from Fig.4 that the MSE values differ 10% 
between the architectures in both the training and testing 
phases. Moreover, it is apparent that both the suggested 
hyperNet and DNN do not display indications of overfitting. 
They consistently perform well during both the training and 
testing stages. Notably, our hyperNet model excels at 
capturing more intricate behaviors within the FD system. 
Furthermore, the graph indicates that the proposed hyperNet 
consistently converge faster and reaches lower errors in both 
training and testing. This convergence underscores the 

TABLE III 
Hyperparameter Optimization  

Input Size 𝑁ு 𝑁෡ு 𝑁∅ FLOPS  

26 
26 
26 
26 

8 
8 

10 
10 

5 
6 
6 
8 

2 
2 
2 
2 

~3500 
~3800 
~4500 
~5500 
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effectiveness of the solution offered by the proposed 
hyperNet architectures. 

2) SI Reduction Performance: In this subsection, we 
analyze the Power Spectral Density (PSD). As observed in 
Fig.5, the linear SI canceller effectively reduces the SI signal 
power by approximately 38 dB, reducing it from -42.7 dBm 
to -80.60 dBm. Furthermore, the DNN canceller achieves an 
additional 6.6 dB of cancellation, lowering the power of the 
residual SI signal from -80.60 dBm to -87.1 dBm, bringing it 
very close to the receiver's noise floor (approximately 3 dB 
above the receiver's noise floor). A similar outcome is 
achieved by the proposed hyperNet canceller, which cancels 
the SI signal after the linear canceller by 7.7 dB, making it 
closely resemble the receiver's background noise level, as 
depicted in the inset graph of Fig.5. 

3) Performance on Varying Wireless Channels: In this 
subsection, we undertook an evaluation process involving 
several trained models. To test and evaluate the trained 
models, we use new datasets where the fading channel 
parameters were slightly varied, as outlined in Tables I, and 
II. To ensure a fair and consistent comparison between our 
proposed hyperNetand DNN model [6], we ensured that both 
models were trainedusing the same dataset specified in Table 
IV. For further clarity, in Table IV, the column labeled 
“config” denotes thespecific parameter conditions that align 
with those detailed inTables I and II. This approach was 
implemented to maintain consistency and fairness in our 
comparative analysis of the models. 

TABLE IV 
Performance Comparison   

Fading 
Channel 

Config 
Trained and Tested / Tested 

with Pretrained Model 

Hyper 
Net 
(dB) 

DNN 
(dB) 

Rayleigh 
 

1 
2 
3 
4 
5 

Tested with Pretrained Model 
Tested with Pretrained Model 
Tested with Pretrained Model 

Trained and Tested 
Tested with Pretrained Model 

6.8 
7.1 
6.3 
5.4 
1.5 

6.2 
6.8 
6.1 
5.1 
1.2 

Rician 

1 
2 
3 
4 
5 

Trained and Tested 
Tested with Pretrained Model 
Tested with Pretrained Model 
Tested with Pretrained Model 
Tested with Pretrained Model 

7.7 
7.6 
6.7 
6.3 
5.8 

2.9 
2.85 
2.6 
2.5 

2.35 
 

Based on [15], the characteristics of fading channels are 
influenced by variations in channel gain and delay values. 
Fading channels exhibit a greater degree of variability in real-
time conditions, rendering them highly susceptible to 
alterations in the environment's specific parameters. Notably, 
varying the distance between the transmitter and receiver may 
likely change the properties of the wireless fading channel. 
Our model outperforms the conventional DNN in Rayleigh 
fading channel and Rician fading channel, as indicated in table 
IV [6]. Both models undergo training and testing under the 
Rayleigh Fading channel configuration 4. Following this, the 
model is saved and applied directly to the remaining Rayleigh 
fading datasets. It becomes evident that across all aspects of 
dataset testing, our hyperNet consistently outperforms the 
DNN model. This performance advantage is even more 
pronounced in the context of the Rician Fading channel, where 
utilizing the pretrained model leads to significant 
enhancements in the detection of non-linear characteristics in 
the SI signal. 

V. CONCLUSION 
In this research paper, we introduce a novel approach for 

enhancing signal quality for FD wireless systems in the 
presence of self-interference. Our method combines a 
hyperNet with adaptive SI cancellation to effectively mitigate 
interference effects in dynamic communication channels. Our 
model excels at accurately predicting the complex 
interference factor. The proposed SIC technique significantly 
reduces interference to the point of being indistinguishable 
from background noise. Importantly, our approach offers a 
reasonable computational complexity compared to a 
polynomial based SIC scheme and other NN models with 
adaptive extensions [6 - 9]. To assess the effectiveness of our 
digital interference cancellation scheme in real-world 
scenarios, we conducted simulations in a dynamic wireless 
fading channel environment. Our findings demonstrate that 
our proposed scheme can remarkably diminish interference 
power to the level of background noise in situations where 
interference sources change over time. Furthermore, our 
results underscore the importance of appropriately processing 
estimated interference channel characteristics, particularly in  
changing environments with multiple signal paths causing 
interference. 
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