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Abstract— Full-duplex (FD) systems have emerged as a
promising avenue to optimize temporal and spectral resource
utilization by enabling simultaneous data transmission and
reception on a single frequency. Nonetheless, the presence of
robust self-interference (SI) signals at the receiver presents a
critical challenge that necessitates effective SI cancellation
strategies. Recent advancements have introduced neural
networks (NN) to address this challenge, offering computational
advantages over conventional polynomial models. This paper
delves into the realm of leveraging Hyper Neural Networks
(hyperNet) for SI cancellation (SIC), thereby exploring their
unique attributes to enhance the efficiency of FD systems. The
proposed method utilizes a dynamic hyperNet model to learn the
non-linear characteristics of the SI channel and cancel it from
the received signal. The efficacy of the proposed SIC technique
is assessed using datasets derived from a MATLAB simulation
platform that accurately replicates the transmission process
observed in real-world scenarios. The simulation results
demonstrate the superior performance of the proposed
hyperNet in comparison to other state-of-art NN based SIC
methods. Our proposed hyperNet-based SIC technique
demonstrates its ability to autonomously adapt to more complex
characteristics of the varying self-interference channel.

Keywords—  self-interference cancellation, time-varying
channel, adaptability, hyper neural network.

I. INTRODUCTION

The rapid advancement of the Internet of Everything,
which enables extensive connectivity between billions of
users and devices, has prompted a significant paradigm shift
towards the development of next-generation wireless
networks, referred to as beyond the fifth generation (BSG) [1].
These advanced wireless networks are designed to offer
exceptional reliability, minimal latency, and high data rates,
reaching tens of gigabits per second.

As the demand for higher data rates in wireless
communication networks continues to rise, the need for
improved spectral efficiency becomes paramount. While
advanced techniques like multiple-input-multiple-output
(MIMO) [2] and orthogonal frequency division multiplexing
(OFDM) [3] show promise in enhancing spectral efficiency,
currently deployed wireless communication systems pre-
dominantly operate in half-duplex (HD) mode, resulting in
compromised resource/spectrum utilization. This operational
limitation leads to a capacity reduction by a factor of two, as
the inherent HD constraints cannot be circumvented [4].

This project is sponsored by National Science Foundation through grant
ECCS-2034530.

Chunxiao Chigan
Department of Electrical & Computer
Engineering
University of Massachusetts Lowell,
Lowell, MA 01854
Tricia_Chigan@uml.edu

In the past, the practicality of in-band full-duplex (FD)
wireless communication was questioned due to the significant
self-interference (SI) created by a transmitter affecting its own
receiver. Nevertheless, recent research [4] have revealed that
it is indeed feasible to mitigate this challenge and make FD
wireless systems viable. Fig.1 illustrates the classification of
SI cancellation (SIC) methods within the context of FD
wireless systems, as introduced in [4]. This classification is
based on how the input signal is handled, distinguishing
between passive, active, or a combination of both ways. As a
result, active SIC, passive SIC, or a combination of both are
commonly utilized to mitigate SI signals. Passive SIC is a
technique employed prior to the signal's entry into the
receiving antenna. It effectively mitigates SI signals by
leveraging various properties associated with antennas and
signal propagation. These techniques encompass the use of
directional antennas, optimizing antenna spacing, and power

management.
Passive l
SIC

Directional] [ Antenna Power
Antenna Separation Control
SIC
scheme ¢ ¢
Digital Analog Analog &
SIC SIC Digital SIC|

Fig. 1. Categorization of SIC approaches for FD systems [4]

The active SI mitigation approach is implemented once the
signal has entered the receiving antenna. The active SIC
method can be categorized into three main types: digital SIC,
analog SIC, and a combination of both, as depicted in Fig. 1.
Digital SIC is employed to eliminate SI arising from factors
such as phase noise in the oscillator and non-linearities in the
analog-to-digital converter (ADC) of the receiver.
Conversely, analog SIC is utilized to address SI at the ADC
stage. In many cases, a singular active SIC method, whether
analog or digital, may not suffice to adequately reduce SI.
Hence, a combination of both analog and digital SIC methods
is often necessary to effectively mitigate SI, as noted in [5].
The choice between analog and digital SIC depends on the
specific trade-offs that need to be made. Analog SIC might be
preferred when simplicity, low latency, and energy efficiency
are critical factors. Digital SIC is advantageous when
adaptability, high cancellation accuracy, and the ability to
handle complex interference scenarios are essential.

Digital SIC (DSIC) can be further classified into linear
DSIC and non-linear DSIC. Linear DSIC is a technique
designed to eliminate distortions in digital signals that occur
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when they traverse through the environmental channel. This
process aims to mitigate the impact of signal degradation
caused by factors such as noise, interference, or attenuation,
which can alter the shape and integrity of the signal being
transmitted. On the other hand, non-linear DSIC focuses on
the suppression of non-linear effects, particularly those arising
from radio circuits [6]. Unlike linear distortion, which
primarily affects signal amplitude and phase, non-linear
distortion introduces higher-order components, such as cubic
and higher-order harmonics within the transmitted signals.
Non-linearities are primarily introduced by the power
amplifier (PA), in-phase and quadrature-phase (IQ) imbalance
of the mixer, imperfections in the transceiver's oscillators
causing phase noise, and the quantization noise from the
digital-to-analog converter (DAC) and ADC. The goal of non-
linear digital cancellation is to reduce or eliminate these
unwanted non-linear elements, ensuring that the received
signals remain as faithful as possible to the originally
transmitted signal.

Sophisticated memory polynomial models are a crucial
requirement for effectively tackling these challenges of non-
linearities, as they possess exceptional capabilities for
accurately capturing the SI signal within the DSIC process.
However, they suffer from high computation complexity [6].
For seeking lower complexity, a different approach has
emerged as an alternative in recent years, involving the
utilization of a neural network (NN) to model the non-
linearities [7-11]. These NN-based DSIC techniques achieve
similar SI cancellation performance with notably reduced
computational complexity. Various NN-based approaches
have been employed to address non-linearity in FD wireless
transceiver systems. In [7], the authors utilized a basic deep
NN (DNN) model for capturing the non-linearity of SI signal.
In contrast, in [8], hybrid neural network architectures,
specifically hybrid-layers NN, hybrid-convolutional recurrent
NN, and hybrid-convolutional recurrent dense NN, were
applied to capture the non-linear components of the SI signal.
Additionally, they conducted performance comparisons
among various recurrent neural network models. Additionally,
a complex-valued feed-forward neural network (CV-FFNN)
was introduced in [9] to extract non-linearities from the SI
signal. Furthermore, [10] implemented a low-rank tensor
completion technique known as canonical system
identification (CSID) to address non-linear SI cancellation.
Model based NN has been proposed in [11] where the authors
used deep unfolding concept to cascade the non-linear RF
system.

These Shallow NN models exhibit good performance on
datasets with fixed wireless channel conditions, but their
performance degrades significantly under varying channel
conditions. This decline in performance is attributed to the
limited training opportunities available for these simpler
models. A noteworthy drawback of these existing NN-based
approaches is the tendency of researchers to prioritize the
perceived simplicity of their models for real-time
implementation. To address this limitation, we propose a
modified hyperNet architecture that employs a relaxed
weight-sharing approach to extract more information from the
dataset.

Contribution: This study primarily concentrates on
capturing and mitigating non-linear SI signals using the noble
approach, hyperNet architecture. The key strength of our

hyperNet model lies in its ability to efficiently predict and
adapt to evolving SI signal patterns over time, resulting in
more precise and effective SI signal reduction. Unlike
conventional polynomial models and other state-of-the-art
NN-based methods, our proposed approach harnesses the
feature of hyper networks to predict the intricate non-linear
variations found in dynamic systems, thus eliminating the
need for repetitive retraining cycles. The comparative analysis
between a shallow model and our hyperNet is presented in
Table IV, revealing favorable outcomes for our proposed
model. To the best of our knowledge, our proposed model
achieves a higher number of SI cancellations with similar
floating-point operations per second (FLOPS) compared to
other existing methods [7-11]. In order to demonstrate the
high efficiency of the hyperNet, we simulated a FD system
encompassing RF elements and wireless fading channel using
Simulink [12]. Subsequently, we generated datasets from the
simulation and employed them as inputs for the hyperNet
model, thereby validating its superior performance in
comparison to alternative approaches.

The subsequent sections of this paper are structured as
follows. Section II, which focuses on the system model,
outlines the foundational framework of FD wireless
communications. In Section III elaborates the details of the
hyperNet based SI canceller, presenting the innovative
approach we employ for SIC. Section IV, dedicated to
performance evaluations, elaborates on the methodology used
in simulation, comparison of model performances. Lastly,
Section V serves as the conclusion, summarizing the key
findings of this article.

II. SYSTEM MODEL OF FD WIRELESS COMMUNICATIONS

A FD transceiver comprises a local transmitter and a local
receiver, as shown in Fig.2. The FD system is designed to
employ a training-based digital cancellation technique to
reduce the ST signal to the level of receiver noise. The antenna
cancellation is implemented at the initial stage of the receiver
system by utilizing a dual antenna setup to prevent the SI
signal from saturating the analog components of the receiver,
such as the Low-Noise Amplifier (LNA), Variable Gain
Amplifier (VGA), and ADC. However, DSIC is used after the
ADC to eliminate any remaining SI signal.

Fig. 2. Simplified illustration of a full-duplex transceiver model with a shared
local oscillator (LO), omitting some components for clarity.

In Fig.2, the notation x(n) symbolizes the digital signal in
an OFDM configuration transmitted at a discrete time point
denoted as n. This digital signal is subject to an initial
conversion into an analog format through a DAC. Following
this, a process of up-conversion takes place employing an IQ
mixer. In the premise where the DAC is presumed to be ideal,
the digital representation of the signal at its baseband,
subsequent to the incorporation of IQ imbalance attributed to
the IQ mixer, can be formally articulated using the following
equation [7]:
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xig(n) = Kyx(n) + Kyx* (n) (1
where K; = %(1 +el?) K, = %(1 —e'?) and typically K,
>> K,. The gain and phase imbalance coefficients of the
transmitter are denoted as i and 6 respectively. Subsequently,
the signal generated by the mixer is subjected to amplification
through the power amplifier (PA). This process can introduce
additional distortions to the transmitted signal due to inherent
imperfections within the PA. The resulting signal from the
PA's output can be formally delineated through the

conventional parallel-Hammerstein (PH) model [7],
characterized as follows:

-1
xpa(n) = Pp=1 Z%:o hPA,p (m)xIQ(n - m)|xIQ(n - m)|p 2

p odd

Here, /pa,, represents the PA’s impulse response for the p-
th order nonlinearity, and M stands for the memory length of
the PA. The received xpa signal makes its way to the receiver
via a SI channel characterized by the impulse response /si(/),
where /=0...(L — 1) and L corresponds to overall memory of
the system. The transmission from the PA inevitably
permeates into the receiver through the SI signal, resulting in
the emergence of the SI signal. Within the receiver of the FD
node, three distinct signals become apparent: the SI signal, a
noise signal, and the desired receiving signal transmitted from
another FD node situated at the far-end. In this study, we adopt
the assumption that neither thermal noise nor desired signals
from other FD nodes are present [9]. As a consequence, the
residual SI signal that remains after the RF cancellation
process undergoes a sequence of operations. These operations
encompass filtration through a band-pass filter (BPF),
followed by amplification through a low-noise amplifier
(LNA), down-conversion through an 1Q mixer, and eventual
digitization carried out by an ADC. This progression can be
denoted mathematically as per [7], [9] :

Ysi(n) = Yahyq(m)x(n —m)ix*(n —m)P1 3)

where Xa = Yp_paq =0 Zmt6 Y fipg(m) is a channel im-
pulse response having the cumulative effects of Ky, K, /pa,p,
and hsi. The objective of digital SIC is to generate an
approximation of the SI signal yg;(n), represented as ys;(n),
wherein yg;(n)is a result of applying a nonlinear operation to
the transmitted baseband samples. Non-linear digital canceler
estimates total /,, which is denoted by flp_q. Utilizing Eqn.
(3), this canceler predicts the SI signal, yg;(n). Then the
predicted SI signal is subtracted from the received signal. At
a window length of N, the SI cancellation ratio (SICR) can be
expressed as:

_ _ Insdysimi2
SICR4g = 10log;, (271\11;01 |y51(n)_y§,(n)|2) @

III. HYPERNET-BASED SELF-INTERFERENCE CANCELLER

Hyper Networks, also known as hyperNet is a category of
NN architectures in which a smaller network is employed to
create weight parameters for a larger NN referred as the main
network [13]. As shown in Fig. 3, within the hyperNet system
design, the more extensive network part is denoted as the main
larger network. This larger network is responsible for the
primary tasks. The smaller network, employed to forecast the
numerical values for the weights and bias parameters of the
main network, is termed the hyper smaller network.

In basic Recurrent Neural Network (RNN), the weights are
tied at each time step, restricting its expressive capabilities.
Dynamic hyperNet offers adaptability to generate relaxed
weights for main recurrent network across the time steps. At
each time step ¢, the smaller network receives concatenated
input X, and previous hidden state of the main network H;_;.
This process produces an output H,, and this vector is
employed to generate the weights for the main network at the
same time step. The training of larger and smaller networks is
conducted jointly through the backpropagation and gradient
descent technique. Basic RNN’s hidden states formula

Hy = o(WyH, 1 + WX, +b) (5)

where H; represents the hidden state, o denotes non-linear
operation i.e. sigmoid or relu, Wy and W, refers the weight
matrices, b denotes bias, and X denotes an input sequence.
These values are fixed in each time step. However, in
hyperNet architecture, the weights W, and W, are not tied.
The smaller network generates these weights for the main
network so they can be different at every time step. This
flexible weight-sharing approach permits us to manage the
balance between model complexity and expressive power. For
hyperNet architecture, H, can be represented by [13]

Hy = o(Wy(@y)He—1 + Wi (D) + (D))
Wy (@y) = (Whg, On) (6)
We(Dy) = (Wx(b' D)
b(@y) = Wyo@s + bo

where Wy, Wy, b are computed as the inner product between
the weights Wyg, Wyg, Wye and feature vectors @y, @,, @p .
These feature vectors are calculated by the smaller network as
a function of X; and H;_;. In hyperNet architecture, the
smaller network can be represented as

5 H 4
%= (%)
t X,

Hy = o(WgH,_, + WX, + D)

Py = WﬁHEt—l + ban )
Dy = Wﬁxl:{t—l + bpy
By = WapHe 4

where Wy, W,?,E are denoted as weights and bias of the
smaller network. The feature vectors @y, @,, @, are of
dimension of Ny, which is smaller than the hidden state size
of the main network (Ny) and the smaller network (Nj).
Typically, Ny < Ny. Output of the main network is projected
on the feature vectors by the linear network, which later help

Flow

Loss
Function

= = Forward Propagation
~ = Back Propagartion

Fig. 3. Simplified Version of HyperNet Architecture

Main Nerwork

However, the exact implementation of this hyperNet
architecture will cause memory overflow problem. To address
the issue, modifications are necessary so that the hyperNet
architecture can become more memory efficient and scalable.
In the modified design, a weight scaling vector, d(@) is
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introduced. This vector is obtained through a linear projection
of @. The modified W (@) can be represented as
do (D)W,

d, (D)W,

w(@) = w(d(®)) = (8)

dy, (D)Wy,,

Transforming W (@) into W (d(@)) proves to be a benefi-
cial tradeoff, leading to a reduction in the memory demands of
the hyperNet architecture. The row level operation in Eqn. (8)
can be replaced with element-wise multiplication, resulting in
increased practical efficiency. The modified memory efficient
version of Eqn.(5) can be refered as

Hy = 0(dy(@n) O WyH,—1 + dy(8,) O WeX, + b(Dp) )

©

where d(@) = W0, b(@)= Wyp®p+ by and O
denotes element-wise multiplication.
A. HyperNet Non-Linear Canceler

The SI signal can be divided into two components: a

linear part and a non-linear part. This can be represented as:
ysi(m) = ysy,, () + ys1,, () (10)

In Eqn. (10), the component ygy,, (n)represents the linear
part of the SI signal. This pertains to the specific term in the
sum of Eqn. (3) where p = I and ¢ = I. On the other hand,
the component yg; (1) encompasses all the remaining terms
that contribute to non-linearity. We employ conventional
linear cancellation techniques to create an approximation of
Ysi,, (M) , which we will symbolize as Jg;, (n) . This
approach treats the yg;  (n) signal, which is considerably
weaker, as unwanted interference, resembling noise.
Subsequently, we intend to restore yg (n) through
hyperNet. To detail the linear cancellation process: the linear
canceller initially calculates channel impulse response
fll_l using established methods of least-squares channel
estimation [6], Subsequently, this fll_l value is employed to
formulate the estimation y;,. (1) in the subsequent manner

[6]:
Psiy, (M) = THEE Ry 3 (m)x(n —m) (11)

Once the estimation of the linear component of the SI
signal is obtained, it is subsequently subtracted out from the
primary SI signal. This subtraction operation results in a
residual signal, which comprises the non-linear portions of the
SI signal. Our hyperNet's objective is to reconstruct individual
samples of yg;  (n) based on the relevant subset of x that these
particular yg;  (n) samples are dependent upon, as indicated
in Eqn. (10). We employ a hyperNet architecture shown in
Fig. 3. This NN comprises a single layer of nodes that transmit
information in one direction. Specifically, it has a total of 2
times the sum of L and M input nodes. These input nodes
correspond to the real and imaginary parts of the (M + L)
distinct time-shifted versions of x, as expressed in Eqn. (3).
Additionally, the neural network contains two output nodes,
which represent the real and imaginary parts of the desired
Vs, (n) samples.

IV. PERFORMANCE EVALUATIONS

In this section, we elaborate the simulations conducted for
the FD wireless system, the configuration of the hyperNet
model, and the evaluation of the proposed hyperNet-based

cancellers. This evaluation is carried out in the context of
suppressing the SI signal within a simulated FD system.

A. Simulation for FD System

In WLAN applications, creating an effective Simulink
model requires the incorporation of three key components: an
OFDM signal generator, transceiver RF elements, and an
accurate wireless channel representation. Creating OFDM
baseband signals need random bits generator, type of
modulation, and IFFT in Simulink. This baseband signal will
pass through simulated RF elements employed by the RF
Blockset in Simulink [12] [14]. These toolboxes in Simulink
facilitates the creation and oversampling of a baseband
wireless signal. The RF elements comprises of several
components such as IQ mixer, Power Amplifier (PA), Low
Noise Amplifier (LNA), and Variable Gain Amplifier (VGA)
essentially. These elements are characterized by gain, second-
order intercept point IP2, third-order intercept point IP3, noise
level, and order. We have set parameters for [Q mixer (/P2 =
47, IP3 = inf, order = even and odd), PA (IP3 = 47, order =
odd), LNA (IP2 = 7, IP3 = 10, order = even and odd), VGA
(IP3 = 47, order = odd). Finally, Simulink offers precise
simulation tools for various wireless fading channels,
allowing for the adjustment of parameters like path delays,
gains, Doppler shifts, and phases to simulate diverse scenarios
in wireless communication outlined in Tables I and II. Due to
the page limit, we will present the details of our Simulink
Simulation platform in our future publication.

TABLE I
Parameters for Rayleigh Fading Channel Modeling
Config Delay Gain Doppler AWGN
1 [00.40.61%107* [0-30 -33] 0.001 25
2 [0 0.4 0.6]*1072 [0 -30 -33] 0.001 25
3 [00.60.8]¥1072 | [0-30-33] 0.001 25
4 [00.4 0.6]*10™* [0-30 -33] 0.001 25
5 [00.4 0.6]*107° [0 -30 -45] 10 25
TABLE I
Parameters for Rician Fading Channel Modeling
Config Delay Gain Doppler AWGN
1 [00.40.6]¥1078 [0 -45 -48] 0.001 25
2 [00.40.6]*10™° | [0.7-45-48] | 0.001 25
3 [00.40.6]¥107° | [2-45 -48] 0.001 25
4 [00.40.6]*10™° | [5-45 -48] 0.01 25
5 [00.40.6]*10™° | [10-45 -48] 0.01 25

B. HyperNet Model Configuration

In this section, we meticulously present both the
commonalities and disparities between our simulated datasets
and provided datasets [6]. Furthermore, we emphasize the
rationale behind the development of new datasets to illustrate
the originality of our research.

1) Training Datasets from Real TestBed: According to
the author of [6], their dataset consists of QPSK-modulated
OFDM signals which has following attributes as Table 1.
Their transmitted OFDM frame consists of approximately
20,000 baseband samples, with 90% used for training and the
remaining 10% used for testing. They employed a two-
antenna setup that provides a passive analog suppression of
53 dB. Active analog cancellation is not used since their
achieved passive suppression is sufficient for the work of
digital SIC.
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2) Training Datasets from Simulations: We conducted
simulations using MATLAB Simulink to replicate a similar
system architecture. This simulation generates a signal
employing QPSK modulation with a 10 MHz frequency and
an average transmit power of 10 dBm. The signal uses OFDM
with 1024 sub-carriers and is sampled at a rate of 20 MHz.
The resulting dataset consists of approximately 30,000 time-
domain baseband samples. We divided this dataset into two
distinct parts for different purposes. It is important to note
that the simulation used in this work provided a significant 53
dB passive analog RF cancellation similar as in [6]. This
degree of cancellation was attained using the component
known as “Antenna” within the RF Blockset. Consequently,
in our simulation, we did not employ any additional
components as active analog cancellation techniques similar
as in [6]. The passive analog suppression, combined with
proposed digital cancellation methods, was sufficient to
reduce the SI signal’s power to the level of the receiver’s
background noise.

3) Comparison of Both Datasets: The dataset provided
by the author in reference [6] presents a fixed channel
condition, but they did not provide explicit details regarding
their wireless channel configuration in their research. One
major distinction between their study and ours lies in our
ability to adjust the wireless channel parameters to closely
align with real-world scenarios. This enables us to train and
evaluate our model across various scenarios. Additionally,
we can train our model under specific wireless channel
conditions and assess its performance in the presence of
changing channel conditions. Our generated dataset offers
greater versatility from research aspect. Table I and II
represent the datasets which have varying wireless fading
channels configuration.

There are some other parameters which reflect the real-life
scenarios such as rural area or urban area. In a fading channel
model that reflects rural area behavior, one parameter that is
commonly adjusted to capture the characteristics of rural
environments is the Rician K-factor. In a rural area, especially
in scenarios where there is a clear line of sight between the
transmitter and receiver, the dominant line-of-sight
component can be relatively strong compared to the scattered
multipath components. This is because rural areas often have
fewer obstacles and buildings that can cause significant
multipath propagation.

0.5

\ ——Train Loss (HyperNet)
04 .\ ===Tast Loss (HyperNet)

—e-Train Loss (DNN)
2 0.
@
@ \
=

Test Loss (DNN)
02 R e P R S

0.1 < e

0 5 10 15 20 25
Epoch

Fig. 4. MSE in the training and testing phase for the proposed hyperNet and
other NN architecture.
C. Comparison of model performance

In this subsection, the evaluation of proposed hyperNet-
based SI cancellers and the state-of-the-art counterparts takes
place within the context of suppressing SI signal in a
simulated FD system. The performance evaluation
encompasses several key aspects, including the model training
performance, the SI reduction performance of the modeled SI

signal, and the performance under the varying wireless fading
channel conditions. The hyperNet model was implemented
using the PyTorch framework. The underlying optimization
algorithm for training was Adam, and the chosen loss function
was mean squared error. A learning rate of A = 0.004 was
utilized, with mini-batches containing 32 samples each. To
ensure a fair comparison with the other NN models, our
hyperNet was designed with an input layer of 2(M + L) = 26
units. Following table III, the main network's hidden layer
size, Ny = 8, and the hyper smaller network's hidden layer
size, Ny = 5 are set. According to [13], our system's
computational performance, measured in FLOPS,; is estimated
at approximately 3500. Notably, FLOPS serves as a widely
accepted standard for evaluating performance in the field of
SI cancellation, as established by previous works [6-11].
Significantly, our study demonstrates that not only do our
FLOPS match those of other studies, but our cancellation limit
excels, outperforming papers with similar FLOPS values.

=100

—— Received Si Signal (-42.7 dBm)

—— Aafter Linear Digital Cancellation (-80.6 dBm)

—— After Nor-Linear Digital Cancellation DNN (-B7.1 dBm)
-1101 —— After Non-Linear Digital Cancellation HyperNet (-88.3 dBm)
= Measured Noise Floor (-90.8 dBm)

-130

-140 4

-150

Power Spectral Density (dBm/Hz)

~160

~1m—m -8 -6 -4 =2 0 2 4 6 8
Frequency (MHz)

Fig. 5. Power spectral densities of the SI signal, the SI signal after linear

cancellation, as well as the SI signal after non-linear cancellation using both

the deep neural network and hyper network. We also show the measured

noise floor for reference.

TABLE III
Hyperparameter Optimization
Input Size Ny N, Ny FLOPS
26 8 5 2 ~3500
26 8 6 2 ~3800
26 10 6 2 ~4500
26 10 8 2 ~5500

1) Training Performance: Fig.4 illustrates the Mean
Squared Error (MSE) performance during both the training
and testing phases of the proposed hyperNet architecture, in
comparison to a Deep Neural Network (DNN) architecture
[6]. The MSE serves as an error metric for evaluating the
difference between the predicted SI signal and the ground-
truth. It is evident from Fig.4 that the MSE values differ 10%
between the architectures in both the training and testing
phases. Moreover, it is apparent that both the suggested
hyperNet and DNN do not display indications of overfitting.
They consistently perform well during both the training and
testing stages. Notably, our hyperNet model excels at
capturing more intricate behaviors within the FD system.
Furthermore, the graph indicates that the proposed hyperNet
consistently converge faster and reaches lower errors in both
training and testing. This convergence underscores the
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effectiveness of the solution offered by the proposed
hyperNet architectures.

2) SI Reduction Performance: In this subsection, we
analyze the Power Spectral Density (PSD). As observed in
Fig.5, the linear SI canceller effectively reduces the SI signal
power by approximately 38 dB, reducing it from -42.7 dBm
to -80.60 dBm. Furthermore, the DNN canceller achieves an
additional 6.6 dB of cancellation, lowering the power of the
residual SI signal from -80.60 dBm to -87.1 dBm, bringing it
very close to the receiver's noise floor (approximately 3 dB
above the receiver's noise floor). A similar outcome is
achieved by the proposed hyperNet canceller, which cancels
the SI signal after the linear canceller by 7.7 dB, making it
closely resemble the receiver's background noise level, as
depicted in the inset graph of Fig.5.

3) Performance on Varying Wireless Channels: In this
subsection, we undertook an evaluation process involving
several trained models. To test and evaluate the trained
models, we use new datasets where the fading channel
parameters were slightly varied, as outlined in Tables I, and
II. To ensure a fair and consistent comparison between our
proposed hyperNetand DNN model [6], we ensured that both
models were trainedusing the same dataset specified in Table
IV. For further clarity, in Table IV, the column labeled
“config” denotes thespecific parameter conditions that align
with those detailed inTables I and II. This approach was
implemented to maintain consistency and fairness in our
comparative analysis of the models.

TABLE IV
Performance Comparison

Fading Config Trained and Tested / Tested Hﬁ,’z ter DNN

Channel with Pretrained Model (dB) (dB)
1 Tested with Pretrained Model 6.8 6.2
Rayleigh 2 Tested w?th Pretra@ned Model 7.1 6.8
3 Tested with Pretrained Model 6.3 6.1
4 Trained and Tested 54 5.1
5 Tested with Pretrained Model 1.5 1.2
1 Trained and Tested 7.7 2.9

2 Tested with Pretrained Model 7.6 2.85
Rician 3 Tested with Pretrained Model 6.7 2.6
4 Tested with Pretrained Model 6.3 2.5

5 Tested with Pretrained Model 5.8 2.35

Based on [15], the characteristics of fading channels are

influenced by variations in channel gain and delay values.
Fading channels exhibit a greater degree of variability in real-
time conditions, rendering them highly susceptible to
alterations in the environment's specific parameters. Notably,
varying the distance between the transmitter and receiver may
likely change the properties of the wireless fading channel.
Our model outperforms the conventional DNN in Rayleigh
fading channel and Rician fading channel, as indicated in table
IV [6]. Both models undergo training and testing under the
Rayleigh Fading channel configuration 4. Following this, the
model is saved and applied directly to the remaining Rayleigh
fading datasets. It becomes evident that across all aspects of
dataset testing, our hyperNet consistently outperforms the
DNN model. This performance advantage is even more
pronounced in the context of the Rician Fading channel, where
utilizing the pretrained model leads to significant
enhancements in the detection of non-linear characteristics in
the SI signal.

V. CONCLUSION

In this research paper, we introduce a novel approach for
enhancing signal quality for FD wireless systems in the
presence of self-interference. Our method combines a
hyperNet with adaptive SI cancellation to effectively mitigate
interference effects in dynamic communication channels. Our
model excels at accurately predicting the complex
interference factor. The proposed SIC technique significantly
reduces interference to the point of being indistinguishable
from background noise. Importantly, our approach offers a
reasonable computational complexity compared to a
polynomial based SIC scheme and other NN models with
adaptive extensions [6 - 9]. To assess the effectiveness of our
digital interference cancellation scheme in real-world
scenarios, we conducted simulations in a dynamic wireless
fading channel environment. Our findings demonstrate that
our proposed scheme can remarkably diminish interference
power to the level of background noise in situations where
interference sources change over time. Furthermore, our
results underscore the importance of appropriately processing
estimated interference channel characteristics, particularly in
changing environments with multiple signal paths causing
interference.
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