
Himatiichnus mangano igen.
et isp. nov., a scalidophoran
trace fossil from the late
Ediacaran of Namibia
Katherine A. Turk1,2, Mikaela A. Pulsipher3,4, Helke

Mocke5, Marc Laflamme6 and Simon A. F. Darroch7

1Department of Earth and Environmental Sciences, and 2Evolutionary Studies Institute,
Vanderbilt University, Nashville, TN, USA
3Department of Geological Sciences, University of Missouri, Columbia, MO, USA
4Grand Canyon National Park, National Park Service, Flagstaff, AZ, USA
5Geological Survey of Namibia, Ministry of Mines and Energy, Windhoek, Namibia
6University of Toronto Mississauga, Mississauga, Ontario, Canada
7Senckenberg Museum of Natural History, Frankfurt 60325, Germany

 KAT, 0000-0001-5436-7367; SAFD, 0000-0003-1922-7136

Himatiichnus mangano igen. et isp. nov., a new trace fossil from
the late Ediacaran Huns Member of the Urusis Formation,
southern Namibia, comprises intertwining tubes exhibiting
dual lineation patterns and reminiscent of both modern
and early Cambrian examples of priapulid worm burrows.
These similarities support the interpretation of a total-group
scalidophoran tracemaker for H. mangano, thus providing
direct evidence for the first appearance date of Scalidophora
in the late Ediacaran ca 539 Ma. This new material is thus
indicative of the presence of total-group scalidophorans below
the Cambrian boundary and supports inference of a lengthy
Precambrian fuse for the Cambrian explosion.

1. Introduction
The terminal Ediacaran ‘Nama’ assemblage approximately 550–
538 Ma [1–3] is a key interval in the history of life, preserv-
ing both soft-bodied Ediacara biota (an enigmatic collection of
soft-bodied organisms with uncertain relationships to extant
animal phyla) and a burgeoning fauna of more recognizable
animals reminiscent of the Cambrian [4–9]. This interval is thus
increasingly thought to record a ‘long fuse’ for the Cambrian
explosion and is key to understanding the origins of the modern
animal-dominated marine biosphere [5,7,10–15].
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While evidence from molecular clocks suggests Ediacaran divergence times for many animal taxa
[16,17], there remains a lack of definitive fossil evidence for many of these groups from below the
Ediacaran–Cambrian boundary (ECB). Of particular interest are the Ecdysozoa—a clade united by
the common process of cuticular moulting—and comprises the Panarthropoda (Arthropoda, Onycho-
phora and Tardigrada), Nematoida (Nematoda and Nematomorpha) and Scalidophora (Kinorhyncha,
Loricifera and Priapulida) [18–20]. Ecdysozoa represents the vast majority of both extant and fossil
animal diversity, with an estimated 5.5 million living species [21,22]. The recent discovery of putative
ecdysozoans from the late Ediacaran of China [23] aside, the earliest indisputable ecdysozoan body
fossils are known from the Fortunian [24], and the ichnofossil Treptichnus pedum—interpreted as the
repeated arcuate probing of a priapulan-grade organism [25]—is used as a biostratigraphic marker for
the base of the Cambrian [26,27]. However, divergence time estimation analyses [20] suggest crown-
group ecdysozoans first appeared between 636 and 578 Ma, thus indicating a substantial missing
Ediacaran fossil record for this group.

Within Ecdysozoa, priapulids and palaeoscolecids represent two groups that are potentially
crucial to understanding the character of benthic ecosystems over the Ediacaran–Cambrian transition.
Priapulid worms (Cambrian–recent) are scalidophorans distinguishable by their evaginable frontal
introvert possessing rings of equally spaced protruding scalids. This introvert transitions into an
annulated trunk and often one or two caudal appendages thought to serve respiratory and/or
defensive functions [28–32]. Priapulids are common components of Cambrian assemblages [33–36],
although they are today represented by a comparatively sparse 19 species largely restricted to high-
latitude, poorly oxygenated muddy sediments [25,37–39]. Traces attributed to priapulids are also
notable, with the aforementioned T. pedum used to mark the ECB and well-preserved ichnofossils
known from the Lower Cambrian of Sweden [40].

By contrast, palaeoscolecids (Cambrian–Silurian) are worm-like animals bearing an annulated
cuticle possessing phosphatic or phosphatized arrays of transverse sclerites and are often interpreted
as scalidophorans, although their exact taxonomic placement within the Ecdysozoa remains a subject
of debate [34,41–44]. Palaeoscolecids represent the most diverse subset of fossil record scalidophor-
ans, with more than 60 species (45 genera) described; one-third of palaeoscolecid genera have been
described on the basis of microscopic cuticle and scleritome fragments alone [44]. Palaeoscolecids have
been posited as major sediment bioturbators [45], although their endobenthic life habits have largely
been inferred based on morphological features such as aboral hooks, cylindrical bodies and radial
sclerite distribution [34,46–48].

Here, we describe a new trace fossil attributable to vermiform scalidophorans such as priapulids
or palaeoscolecids from the late Ediacaran Huns Member (Urusis Formation) of the Nama Group,
with broad implications for understanding late Ediacaran palaeoecology and the early history of a key
extant animal phylum.

2. Geologic setting
The Ediacaran–Cambrian Nama Group of southern Namibia consists of more than 3000 m of mixed
siliciclastic-carbonate sedimentary rocks deposited in a foreland basin formed due to orogenic activity
associated with the assembly of Gondwana (figure 1) [49–55]. South of Windhoek, the Nama is
subdivided into two sub-basins (the northern Zaris and southern Witputs) partitioned by the central
high Osis Arch [49,55].

Within the Witputs Sub-basin, the Urusis Formation is subdivided into the Nasep, Huns, Feld-
schuhhorn and Spitskop members [55,56]. The Nasep–Huns transition is interpreted as representing a
transgressive sequence, with the upper Nasep sandstone interpreted as a delta slope-to-coastal plain
depositional environment [55–57]. The overlying Huns limestone, by contrast, represents a storm-
dominated carbonate ramp succession with an inner ramp, ramp crest and ramp-to-basin transition
facies recognized in various parts of the basin [53,55–57]. The Huns Member primarily comprises
thin stromatolitic intervals, cross-stratified limestone grainstone and interspersed limestone intraclast
conglomerate, with the lower Huns (0–40 m) characterized by shale–limestone interbeds that transition
into metre-scale stromatolitic units and small patch reefs in the upper approximately 260 m [56,58].

The position of the ECB in the Nama Group is currently disputed. Traditionally, the boundary has
been placed stratigraphically between the Urusis and Nomtsas Formations, which in many localities is
marked by an erosive unconformity [49,53,55,58–60]. While some studies have argued that the ECB lies
toward the top of the Spitskop Member [61], recent work on Nama-equivalent strata from the nearby
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Neint Nababeep Plateau in South Africa suggests that much of the Nomtsas Formation may also be
Ediacaran, and thus, the ECB is stratigraphically higher [3]. In all current models, however, the Huns
Member is interpreted as Ediacaran, underlying dense accumulations of erniettomorph Ediacara biota
in the Spitskop Member and below the last appearance dates of Cloudina and Namacalathus [59,61–
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Figure 1. (a) Map of Nama Group sediments in Namibia south of Windhoek; Zaris (ZS) and Witputs (WS) sub-basins are indicated
(modified from [6]); shapefiles are sourced from the Geological Survey of Namibia. (b) Generalized stratigraphy of the Witputs
sub-basin, with star indicating position of Farm Arimas (adapted from [6]; dates follow from [3]). (c) Close view of the study area
within the Witputs; star indicates the location of Farm Arimas.
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63]. Employing a Bayesian age-depth model, the Nasep–Huns contact and, thus, the approximate
stratigraphic position of the trace fossil material described here can be precisely constrained to 539.78 
+0.63/−0.22 Ma (see electronic supplementary material, table S3 in [3]).

3. Description of new trace material
Institutional abbreviations. Geological Survey of Namibia (GSN), Windhoek, Namibia.

            Ichnogenus Himatiichnus igen. nov.
Type and only ichnospecies. Himatiichnus mangano isp. nov.
Diagnosis. Complex trace fossil comprising non-tapering, meandering, longitudinally striated tubes,

with rare faint transverse annulations in the medial portion. In some instances, tubes appear to dip
below and re-emerge from the sediment surface and terminate with rounded, bulbous structure(s).

Etymology. From the ancient Greek garment himation, the draped parallel folds of which are visually
similar to the longitudinal striations present on this material.

           Himatiichnus mangano isp. nov.
2022 Unnamed longitudinally striated traces; Turk et al. [57], fig. 9.
Holotype. Specimen A preserved on GSN F1643 (figure 2a).
Diagnosis. As for ichnogenus.
Etymology. In recognition of the significant contributions of Dr. M. Gabriela Mángano to ichnology

and our understanding of the Ediacaran–Cambrian transition.
Material and stratigraphic setting. One slab (GSN F1643) with four prominent specimens; specimen A

(figure 2a) is denoted as the holotype. These traces were recovered from the lower Huns Member of the
Urusis Formation at Farm Arimas (27°41′36.1″ S, 17°1′50.5″ E), approximately 55 km west of the Fish
River Canyon. The material is reposited at the GSN in Windhoek.

Traces are preserved in convex semi-relief (probably from bed sole) on reddish sandstone collected
from an interval of subcrop (approx. 78 m above the lowermost exposures at Arimas) also preserv-
ing examples of Corumbella, bounded both below and above by thick- to very thick-bedded sandy
limestone.

Description. Intertwining 1–3 cm long tubes (approx. 2–3 mm in width) preserved in convex
semi-relief and exhibiting consistently spaced longitudinal striations approximately 0.4 mm apart;
in some instances, this patternation shifts to a transverse annulation in the more proximal (i.e. closer
to the point of radiation) portions of the material. Individual tubes are 2–3 cm in width and appear
in several instances to disappear beneath and re-emerge on top of the sediment surface. Structures
maintain constant width with no evidence of terminal tapering; distal ends (furthest from the point of
radiation) terminate in a rounded, bulbous manner. Some distal portions preserve a series of nub-like
protrusions (figure 2b,d) immediately adjacent to burrow terminations.

Remarks. Himatiichnus mangano is interpreted to have formed as an animal bearing convex frontal
ornamentation, and anterior transverse lineation moved across—and penetrated slightly beneath—the
sediment surface, while the series of nub-like structures found adjacent to the terminations suggest a
repeated probing behaviour by the organism along the direction of motion. These factors are consistent
with both the anatomy and burrowing behaviours of extant priapulid worms. Priapulid locomotion is
a multi-step process, beginning with an evagination of the frontal introvert on which are present lines
of equally spaced protrusions (scalids; figure 3b) that converge at the mouth [29,64]. These posteriorly
oriented scalids serve to increase friction between the animal and substrate, anchoring the proboscis
and thus allowing the worm to generate a peristaltic wave that shortens the annulated trunk, which
then shifts into the space previously occupied by the frontal portions of the animal. Upon reaching
the posterior praesoma, the muscular contractions cease, and the introvert is evaginated to begin the
process anew [65]. A neoichnological study [40] demonstrated that experimentally produced casts of
modern priapulid burrows bear notable resemblance to early Cambrian material described in the same
paper; of particular note was the dual patternation of equally spaced longitudinal striations transition-
ing into transverse annulations. The multi-pronged, braided structure is indicative of repeated probe–
retract–probe behaviour commonly exhibited by modern priapulids (i.e. Priapulus caudatus) when
vertically restricted [25,66] (figure 3a).
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4. Discussion
The attribution of H. mangano to probing traces left by vermiform scalidophorans aids our understand-
ing of the timing and impacts of animal evolution in the late Ediacaran. We first discuss the anatomy of
priapulids versus palaeoscolecids in the context of these new traces, a potential match with divergence
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Figure 2. (a) Holotype specimen of H. mangano, probably representing bed sole. (b,d,e) Additional examples of H. mangano. (c) Full
slab (GSN F1643). Abbreviations: ls, longitudinal striations; ta, transverse annulations; pn, probing nubs. Filled scale bars in (a), (d), (e)
= 1 cm, hollow in (b) = 5 mm.
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Figure 3. (a) Specimen of P. caudatus exhibiting surficial probe–retract–probe behaviour; individual probes marked with numbers,
where 1 indicates the first probe and 5 indicates the most recent. The outline of greater probing structure is marked by a dotted line.
Abbreviation: ls, longitudinal striations. (b) Close view of introvert displaying evenly spaced scalids. Filled scale bar in (a) = 1 cm,
hollow in (b) = 1 mm.
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times for these groups obtained from molecular clocks, and explore the roles these organisms and
behaviours may have played in late Ediacaran communities. Lastly, we discuss the evolving picture
of a transitional Nama interval comprising elements of both Ediacaran and Cambrian-type faunas,
thus lending new support for a ‘long fuse’ model for the Cambrian explosion and emergence of
Phanerozoic-type ecosystems.

4.1. Scalidophorans in the late Ediacaran
Several features seen in the H. mangano holotype material are suggestive of priapulid or palaeoscolecid
tracemakers. Both priapulids and palaeoscolecids exhibit an overall dual surface patternation, with
their anterior portions characterized by cuticular ornaments (scalids and spines, respectively). In
modern macroscopic priapulids, there is no transition between the introvert and the densely annulated
trunk, the morphology of which is controlled by regular spacing of circular muscle bundles along
its length [39]. Palaeoscolecids also possess annulated trunks, with individual annulations marked by
regularly spaced button-like sclerites along the length of the body [42,67]. The material described here
as H. mangano displays a double patterned surface, with the distal portions (furthest from the point
of tube origination) characterized by equally spaced longitudinal striations. In some examples, these
appear to transition into proximal sections (closer to the tube origination point) exhibiting equidistant
transverse annulations. This surface patternation closely matches the priapulid and palaeoscolecid
anatomies described above, with neoichnological work [40,66] showing that the burrowing of modern
priapulids produces visually similar striae as the friction-generating scalids (figure 3b) are dragged
parallel to the overall direction of motion. The largely horizontal nature of the traces is also consistent
with experimental results demonstrating that modern priapulids restricted to a single horizontal plane
produce similar ‘probing’ traces to the material found here [25,66] (also see figure 3a).

The age constraints on these new fossils also provide a close match with divergence time esti-
mates obtained via molecular clocks. A fossil-calibrated Bayesian analysis of protein-coding genes
has obtained a divergence time estimate of 617−534 Ma for crown-group Scalidophora [20]. Using a
Bayesian age-depth model, the Nasep–Huns contact and, thus, the approximate stratigraphic position
of H. mangano can be precisely constrained to 539.78 +0.63/−0.22 Ma [3]. While trace fossils left by
potential ecdysozoans are known between 551 and 555 Ma [23,68,69], H. mangano represents the
earliest-known example of trace material with clear total-group scalidophoran affinity, especially in
the context of comparison with both early Cambrian and modern priapulid traces [40,70]. Our trace
fossil material thus represents an updated first appearance date (FAD) for scalidophorans and provides
support for a deeper Ediacaran divergence of sister lineages of Priapulida and/or Scalidophora (i.e.
total-groups Kinorhyncha, Loricifera and Cryptovermes [20]).

It is important to note, however, that the extent to which these lineages stretch into the Ediacaran
is dependent on the placement of the ECB. While the current geologic time scale places the ECB at
538.8 Ma [61,71], recent high-precision geochronological work on the lower Wood Canyon Formation
of Nevada has suggested that the boundary (as defined by the FAD of T. pedum) may be as young as
533 Ma [72]. As it currently stands, H. mangano precedes the ECB by approximately one million years;
however, successive calibrations of the ECB over the last 40 years have indicated progressively younger
dates [72]. Thus, with further refinement, it is quite possible this new material may instead represent a
several million year-long antecedent to the Cambrian.

4.2. Late Ediacaran community palaeoecology
The new trace fossils described here form part of a diverse ichnofossil assemblage from the Nasep–
Huns transition, alongside Archaeonassa, Gordia, Helminthoidichnites, Helminthopsis, Torrowangea, small
treptichnids and meiofaunal traces [57]. Other studies [73,74] targeting this transition have also
described Curvolithus, Didymaulichnus, Palaeophycus, Planolites and Skolithos, although these ichnotaxa
have not been found by our group (and occurrences of Skolithos in particular are now thought to
instead represent plug-shaped burrows such as Conichnus and Bergaueria [6,75]). Alongside these trace
fossils, the body fossil Corumbella werneri—interpreted as either an early scyphozoan cnidarian [76–78]
or a calcareous sinotubilitid [79]—has been reported from nearby horizons [57]. The addition of H.
mangano—a trace fossil more easily attributed to the responsible animal tracemaker(s) than many
others from this interval—paints a clearer picture of late Ediacaran ecological diversity and reinforces
the inference that benthic communities preserved in the upper Schwarzrand Subgroup of the Nama
Group possess many ecological features typically associated with the Cambrian.
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Based on preserved morphology, the H. mangano tracemaker probably bore affinities with scalido-
phorans such as priapulids or palaeoscolecids. As an entirely extinct group, the ecology of palaeo-
scolecids is little understood, although preserved gut remains [47,48,80–82] indicate that Cambrian
examples were carnivorous [83] and deposit feeders that often consumed smaller invertebrates such
as Isoxys [46,48]. Priapulids, by contrast, survive into the present day, and as such, more is known
about their behaviour and ecology. Priapulids are thought to have been overwhelmingly predatory
since at least the early Palaeozoic [84–86]; preserved gut contents from these animals have been
found to contain a variety of small marine invertebrate material, including elements from hyolithids,
brachiopods, bradoriids, trilobites, agnostids, polychaetes and wixwaxiids [87]. These new trace fossils
thus reinforce the inference that predatory and/or deposit-feeding behaviours were well-established by
the late Ediacaran [88,89] and, thus, probably played a part in structuring benthic communities and
driving successive waves of evolutionary radiation over the Cambrian explosion [13,16,90].

Lastly, the attitude and orientation of H. mangano traces may also offer insight into the character of
organism–substrate interactions over the ECB. Despite the dramatic increase in trace fossil diversity
seen in the Nama interval (relative to the older White Sea and Avalon), recent work [6,91] indicates that
ichnofossil assemblages continued to be dominated by biomixing, rather than bioirrigative behaviours,
and moreover, that the impact of these traces would probably have been to shallow the depth of
oxygen penetration [91]. Our specimens of H. mangano indicate an overall burrow architecture similar
to those of treptichnids (i.e. gallery-type burrows characterized by repeated offset probes beneath the
sediment–water interface) but which would have been extremely shallow, probably less than 1 cm
deep. This contrasts starkly with modern priapulids, which will burrow along a horizontal path (often
with offset probes deviating 20°–40° from the overall direction of motion) only when vertical motion
is restricted [25,66] (figure 3a). The shallow depth of H. mangano burrows may potentially reflect a
barrier to subsurface movement imposed, for example, by both lower shallow marine oxygen levels
and a redox discontinuity surface close to the surface and largely unaffected by the predominant
biomixers [40,92], with more modern-looking deep-tier scalidophoran burrows only appearing later
in the Cambrian with the emergence of more intense bioirrigators facilitating increased subsurface
oxygenation [91].

5. Summary
We describe H. mangano, a new, complex trace fossil from low in the Ediacaran Huns Member of the
Nama Group in southern Namibia, characterized by repeated probes possessing both longitudinal
and transverse lineations. We interpret these burrows as being formed by scalidophorans such as
priapulids or palaeoscolecids, with longitudinal striations produced by a circular arrangement of
frontal extrusions as they are pushed through the sediment, and transverse structures representing
the preserved impressions of an annulated trunk. The late Ediacaran horizons preserving these traces
are constrained to precisely 539.78 +0.63/−0.22 Ma, representing an updated first appearance date for
total-group Scalidophora and providing support for a deeper Ediacaran divergence of Ecdysozoa.
These burrows also contribute to an emerging picture of Nama-aged Ediacaran ecosystems that is
far more similar to those of the lower Cambrian than previously appreciated, with a diversity of
metazoan clades present and exhibiting a variety of predatory, deposit-feeding and suspension-feeding
lifestyles. In turn, these late Ediacaran communities contribute to a burgeoning weight of support
for the ‘long fuse’ model for the Cambrian explosion, illustrating that organisms, behaviours and
ecological interactions once thought to be confined to the Palaeozoic now extend millions of years back
into the late Ediacaran.
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