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Abstract
Let E/Q be a semistable elliptic curve, and p > 3 a prime of good supersingular
reduction for E . In this paper we prove the following p-converse to a theorem of
Gross–Zagier and Kolyvagin:

corankZpSelp∞(E/Q) = 1 �⇒ ords=1L(E, s) = 1.

In particular, this gives new mod p criteria for a rational elliptic curve to satisfy the
Birch–Swinnerton-Dyer conjecture. For good ordinary primes p, the implication is
due to Skinner and Wei Zhang independently. A key new ingredient in our proof is a
result towards a Heegner point main conjecture in the style of Perrin-Riou formulated
in this paper.

Mathematics Subject Classification Primary 11R23; Secondary 11G05 · 11G40

1 Introduction

The purpose of this paper is to prove a p-converse to the theorem of Gross–Zagier and
Kolyvagin for good supersingular primes. With “supersingular” replaced by “ordi-
nary”, such a p-converse is due to Skinner [49] and Zhang [57] independently.
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1.1 Statement of themain results

Let E/Q be an elliptic curve, and p a prime of good reduction for E . Let
Selp∞(E/Q) ⊂ H1(Q, E[p∞]) be the p∞-Selmer group fitting into the descent exact
sequence

0→ E(Q)⊗Qp/Zp → Selp∞(E/Q)→X(E/Q)[p∞] → 0, (1.1)

where X(E/Q) is the Tate–Shafarevich group of E . In rank one, the Birch–
Swinnerton-Dyer conjecture predicts thefiniteness ofX(E/Q), and that the following
are equivalent:

(i) ords=1L(E, s) = 1;
(ii) corankZpSelp∞(E/Q) = 1.

The implication (i) ⇒ (ii) follows from the celebrated works of Gross–Zagier
and Kolyvagin in the 1980s, which also yield the finiteness of X(E/Q) when
ords=1L(E, s) = 1. More recently, the converse (ii)⇒ (i) was obtained by Skinner
[49] and Zhang [57] independently in the p-ordinary case.

The main result of this paper is a proof of the implication (ii) ⇒ (i) when p is
supersingular for E .

Theorem A Let E/Q be a semistable elliptic curve and p > 3 a prime of good
supersingular reduction. Then

corankZpSelp∞(E/Q) = 1 �⇒ ords=1L(E, s) = 1.

In particular, if corankZpSelp∞(E/Q) = 1 then #X(E/Q) <∞.

Note that Theorem A concludes the finiteness of the full X(E/Q), not just of
its p-primary part. In particular, Theorem A yields the following mod p criterion
for a rational elliptic curve to satisfy the Birch–Swinnerton-Dyer conjecture. Let
Selp(E/Q) ⊂ H1(Q, E[p]) be the p-Selmer group.

Corollary B Let E/Q be a semistable elliptic curve, and p > 3 a prime of good
supersingular reduction for E . If Selp(E/Q) � Z/pZ, then

rankZE(Q) = ords=1L(E, s) = 1

and #X(E/Q) <∞.

Proof Since E[p] is irreducible as a GQp -module by a well-known result of Fontaine
(see e.g. [18]), the natural surjection

Selp(E/Q)→ Selp∞(E/Q)[p]

is an isomorphism. By the exact sequence (1.1) and the non-degeneracy of theCassels–
Tate pairing on X(E/Q)/X(E/Q)div, we thus see that

Selp(E/Q) � Z/pZ �⇒ Selp∞(E/Q) � Qp/Zp,
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and therefore ords=1L(E, s) = 1 by Theorem A. The conclusion now follows from
the work of Gross–Zagier [23] and Kolyvagin [36]. 	

Remark 1.1 The mod p criterion of Corollary B for a rational elliptic curve to have
algebraic and analytic rank 1 extends to supersingular primes p an analogous criterion
in the p-ordinary case1 originally due to Skinner [49] and Zhang [57]. See the work of
Bhargava–Skinner–Zhang [6] for an application of such criteria to the proof that a large
proportion of rational elliptic curves satisfy the Birch–Swinnerton-Dyer conjecture.

1.2 Main ideas of the proof

A key input in the proof of the p-converse for ordinary primes in [49] is the “lower
bound” divisibility in a Greenberg type Iwasawa main conjecture for Rankin–Selberg
convolutions obtained by the second author in [52] by a delicate study of Eisenstein
congruences on GU(3, 1). Similarly, a key input in our proof of Theorem A is a
divisibility towards a Greenberg type Iwasawa main conjecture for Rankin–Selberg
convolutions obtained in recent work of the authors with Zheng Liu [13], extending
the main results of [52] to the non-ordinary case.

In this sense, our approach to the p-converse is similar in spirit to Skinner’s
proof in the p-ordinary case, but our method does not require the hypothesis that
#X(E/Q)[p∞] < ∞ (cf. [49, Rem. 2.9.1(x)]). This improvement is ultimately
explained by the fact that our approach takes advantage of the presence of Heeg-
ner points over the anticyclotomic tower, rather than just over the base. In practice, as
a key to the proof of Theorem A, in this paper we initiate the study of the anticyclo-
tomic Iwasawa theory of Heegner points at supersingular primes, extending a theory
first systematically developed by Perrin-Riou [42] in the p-ordinary case.

More precisely, for any elliptic curve E/Q with good supersingular reduction at p
satisfying the condition (automatic if p > 3) that

ap := p + 1− #E(Fp) = 0,

in Sect. 4 we construct signed �ac-adic Heegner classes z±∞ attached to an imaginary
quadratic field K in which p splits and satisfying a “generalized Heegner hypothesis”.
Here �ac = Zp�Gal(K ac∞/K )� denotes the Iwasawa algebra for the anticyclotomic
Zp-extension K ac∞/K . We show that the classes z±∞ land in a signed Selmer group
Sel±(K ,Tac) in the style of Kobayashi’s [35], and extending Perrin-Riou’s Heegner
point main conjecture [42, Conj. B] to the supersingular case, we conjecture that the
classes z±∞ are not �ac-torsion, that both Sel±(K ,Tac) and the Pontryagin dual X±
of its analogue for torsion coefficients have �ac-rank one, and that

char�ac
(
X±tors

) = char�ac

(
Sel±(K ,Tac)

�acz±∞

)2

(1.2)

1 See also [55] for a proof in the p-ordinary case of a similar mod p criterion for higher weight modular
forms.
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as ideals in �ac, where the subscript tors denotes the �ac-torsion submodule (see
Conjecture 4.8).

Contrary to the usual Selmer groups, the signed Selmer groups satisfy a version of
Mazur’s control theorem (see Lemma 6.5), and from this one sees that the implication

corankZpSelp∞(E/K ) = 1 �⇒ ords=1L(E/K , s) = 1,

follows fromConjecture 4.8 and theGross–Zagier formula [56]. In fact, the divisibility
“⊂” in (1.2) after inverting p suffices for the above implication.

The proof of Theorem A is thus deduced from the following result, where K is
any imaginary quadratic field in which p splits and satisfying the generalized Heegner
hypothesis (gen-H) in Sect. 2.

Theorem C Let E/Q be an elliptic curve of conductor N , and p > 3 a prime of good
supersingular reduction for E . Assume that:
(i) N is squarefree,
(ii) some prime � | N is non-split in K ,
(iii) if N is odd, then 2 splits in K .

Then the classes z±∞ are not �ac-torsion, Sel±(K ,Tac) and X± both have �ac-rank
one, and

char�ac
(
X±tors

) = char�ac

(
Sel±(K ,Tac)

�acz±∞

)2

as ideals in �ac[1/p]. If in addition E[p] is ramified at every prime � | N−, then the
above equality holds in �ac, and so Conjecture 4.8 holds.

For the proof of the key Theorem C, we first obtain an explicit reciprocity law (see
Theorem 6.2)

Log±p (resp(z±∞)) = σ−1,p ·
L BDP

p

�d

relating the image of z±∞ under certain anticyclotomic signed logarithm maps
constructed in Sect. 3 to the p-adic L-function L BDP

p first studied by Bertolini–
Darmon–Prasanna [4]. In particular, it follows from this result and the nonvanishing
ofL BDP

p that the classes z±∞ are not�ac-torsion. With this result in hand, in Sect. 6.2
we establish the equivalence between our Perrin-Riou Heegner point main conjecture
and the Iwasawa–Greenberg main conjecture for (L BDP

p )2. Since divisibilities are
preserved under the equivalence, we are thus ultimately able to deduce Theorem C
from the main result in [13].

Remark 1.2 Applied for a suitable auxiliary imaginary quadratic field K , the main
result of [13] (a divisibility in a 2-variable Iwasawa–Greenberg main conjecture; see
the proof of Theorem 5.3) is also a key ingredient in the proof by the second author [54]
of Kobayashi’s cyclotomic main conjecture [35]. In that case, Beilinson–Flach classes
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and their reciprocity laws are used in the passage between different main conjectures.
As a result, another key ingredient in [54] is a study of big Galois representations
associated with certain CMHida families carried out by Burungale–Skinner–Tian [5].
In this paper, we do not use Beilinson–Flach classes, and the results of [5] are not
needed.

Finally, we conclude this Introduction by noting that the method introduced in this
paper to deduce a p-converse theorem from a divisibility in an Iwasawa main conjec-
ture for Heegner points2 has influenced subsequent work in this direction, notably [3,
8, 37] (CM cases) and [11] (residually reducible case).

1.3 Notations

For every prime p we fix once and for all complex and p-adic embeddings C
ι∞←↩

Q
ιp
↪→ Cp, and use them to view algebraic numbers as lying in both C and Cp. For

L an algebraic extension of Q or Qp, we let GL denote the corresponding absolute
Galois group. If L is a number field and v a finite place of L,we let recL : A×L → Gab

L
and recv : L×v → Gab

Lv
be the global and local reciprocity maps of class field theory,

respectively. In this paper we take their geometric normalization, i.e., recv sends a
uniformizer 	v to a geometric Frobenius Frobv ∈ GLv /Iv, where Iv ⊂ GLv is the
inertia subgroup, and recL |L×v = recLv .

2 p-Adic L-functions

In this section we introduce the p-adic L-functions that will appear in our arguments.
Throughout this section, we let E/Q be an elliptic curve of conductor N , let f ∈
S2(
0(N )) be the associated newform, and let p ≥ 5 be a prime of good reduction for
E . Let K be an imaginary quadratic field with ring of integers OK and discriminant
DK < 0.Writing

N = N+N−

with N+ the largest factor of N divisible only by primes which are split or ramified
in K , we assume that K satisfies the following generalized Heegner hypothesis:

N− is the squarefree product of an even number of primes, (gen-H)

and fix an integral ideal N+ such that OK /N
+ = Z/N+Z. In addition, we assume

that

(p) = pp̄ splits in K , (spl)

2 An idea first appeared in an early draft of this paper [14] (not for publication), and in [53] in the ordinary
case.
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with p be the prime K above p induced by ιp.
Let 
ac = Gal(K ac∞/K ) be the Galois group of the anticyclotomic Zp-extension of

K , and set

�ac = Zp�

ac�, �ur = �ac⊗̂ZpZ

ur
p ,

whereZur
p is the completion of the ring of integers of themaximal unramified extension

of Qp. Note that since 
ac � Zp (non-canonically), �ac is isomorphic to a power
series ring in one variable (so in particular, is a domain).

We say that an algebraic Hecke character χ : K×\A×K → C× has infinity type
(�1, �2) ∈ Z2 if χ∞(z) = z�1 z̄�2 for all z ∈ (K ⊗Q R)× � C×, where χ∞ is the
component of χ at the archimedean place, and we say that a locally algebraic p-adic
character χ̂ : Gab

K → C×p has weight (�1, �2) ∈ Z2 if χ̂ (recK (a)) = a�1 ā�2 for all
a ∈ (K ⊗Q Qp)

× close to 1 (cf. [48, §III.2]).
Associated with a locally algebraic p-adic character χ̂ of weight (�1, �2) there is

an algebraic Hecke character χ of infinity type (�1, �2) given by

χ(a) = ι∞ι−1p (χ̂(recK (a))a
−�1
p a−�2

p̄
)a�1∞ā�2∞, (2.1)

where (ap, ap̄) = (K ⊗Q Qp)
× and a∞ ∈ (K ⊗Q R)× are the components of a at p

and∞, respectively.
Let � be the cuspidal automorphic representation of GL2(A) such that L(�, s −

1/2) = L( f , s), and put

L( f , χ, s) = L(�K ⊗ χ, s − 1/2),

where �K denotes the base change of � to an automorphic representation of
GL2(AK ).

Proposition 2.1 There exists a square-root p-adic L-function

L BDP
p ∈ �ur

characterized by the following interpolation property. If N− �= 1, assume that N
is squarefree. Then for every locally algebraic character χ̂ : 
ac → C×p of weight
(n,−n) with n ∈ Z>0 and n ≡ 0 (mod p − 1) and crystalline at both p and p̄, we
have

L BDP
p (χ̂)2 =

(

p


K

)4n

· 
(n)
(n + 1)χ(xN+)
−1

4(2π)2n+1
√
DK

2n−1 · α( f , fB)−1

× (
1− apχ(xp̄)p

−1 + χ(xp̄)
2 p−1

)2 · L( f , χ, 1),

where

• xN+ ∈ A
∞,×
K is such that ordw(xN+,w) = ordw(N+) for all finite places w of K ,
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• 
p ∈ (Zur
p )
× and 
∞ ∈ C× are CM periods attached to K as in [12, §2.5] and

[30, §4.5.5],
• α( f , fB) = 〈 f , f 〉

〈 fB , fB 〉 is a ratio of Petersson norms normalized as in [45, §1] when

N− �= 1, and α( f , fB) = 1 otherwise.

Proof This is a refinement of the p-adic L-function constructed in [4] for N− = 1
and [7] for N− �= 1. As an element in�ur, the construction ofL BDP

p can be found in
[2, §4], where it is deduced from an extension of the construction in [12]. The proof
of the stated interpolation property, building on a explicit Waldspurger formula [45,
Thm. 3.2] is then deduced as in [7, §8].

Remark 2.2 The CM period 
K ∈ C× in Proposition 2.1 agrees with that in [4,
(5.1.16)], but is different from the period 
∞ defined in [17, p. 66] and [29, (4.4b)].
In fact, one has


∞ = 2π i ·
K .

In terms of 
∞, the interpolation formula in Proposition 2.1 reads

L BDP
p (χ̂)2 =

(

p


∞

)4n

· 
(n)
(n + 1)χ(xN+)
−1

4(2π)1−2n
√
DK

2n−1 · α( f , fB)−1

× (
1− apχ(xp̄)p

−1 + χ(xp̄)
2 p−1

)2 · L( f , χ, 1).

This is the form of the interpolation that we shall use later.

By an extension of Hida’s methods [25], the p-adic L-function L BDP
p of Propo-

sition 2.1 is known to have vanishing μ-invariant (and in particular, to be nonzero)
under a mild hypothesis.

Theorem 2.3 Assume that E[p] is absolutely irreducible as a GK -module. Then
μ(L BDP

p ) = 0.

Proof This follows from [28, Thm. B] for N− = 1 and [9, Thm. B] for N− �= 1. 	

As noted in the proof of Proposition 2.1, the proof of the interpolation property

of L BDP
p in [4] is based on an explicit from of Waldspurger’s formula [51]. Later

we shall use the fact that, up to unit, the construction of another element of �ur with
the same interpolation property as the square ofL BDP

p (and hence equal to it) can be
deduced from the work of Hida and Katz. We explain this in the remainder of this
section. (It should be possible to extract the following results from [30, §§5.2-5.3],
but we provide full details for the convenience of the reader.)

Let � be the Galois group of the Z2
p-extension of K , and set � = Zp��� and

�ur = �⊗̂ZpZ
ur
p .

Theorem 2.4 (Katz) There exists a p-adic L-function

L Katz
p ∈ �ur
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such that for every locally algebraic character χ̂ : � → C×p of weight (k, j) with
0 ≤ − j < k crystalline at both p and p̄, we have

L Katz
p (χ̂) =

(

p


∞

)k− j

· 
(k) ·
(√

DK

2π i

) j

× (
1− χ−1(xp)p−1

) · (1− χ(xp̄)
) · L(χ, 0),

where 
p and 
∞ are periods as in Theorem 2.1 and Remark 2.2, respectively, and
L(χ, s) is the Hecke L-function of χ.Moreover, we have the functional equation

L Katz
p ((χ̂c)−1N−1) = L Katz

p (χ̂),

where the equality is up to a p-adic unit and χ̂c denotes composition of χ̂ with the
non-trivial automorphism of K/Q.

Proof See [31, §5.3.0], or [17, Thm. II.4.14]. for the construction, and [31, §5.3.7] or
[17, Thm. II.6.4] for the functional equation. 	


Write f = ∑∞
n=1 anqn ∈ S2(
0(N )) for the newform associated to E, and let

M = lcm(N , DK ).

Theorem 2.5 (Hida) There exists a p-adic L-function

LHida
p ∈ Frac(�⊗Zp Qp)

such that for every locally algebraic character ψ̂ : � → C×p of weight (�2, �1) ∈ Z2

with �2 ≥ −�1 > 0 and crystalline at both p and p̄, we have

LHida
p (ψ̂) = j

2�1−�2 i�2−�1−1M�1+�2+1

(2π)2�2+1 · 〈θψ�2
, θψ�2

〉M · 
(�2)
(�2 + 1)

× E(ψ, f , 1)
(
1− ψ(xp̄)

ψ(xp)

) (
1− ψ(xp̄)

pψ(xp)

) · L( f , ψ, 1),

where θψ�2
is the theta series of weight �2 − �1 + 1 ≥ 3 associated to the Hecke

character ψ�2 := ψ | · |−�2
A
×
K
, 〈g, g〉M is the Petersson norm on 
1(M), and E(ψ, f , 1)

is given by

(1− p−1ψ(xp̄)α)(1− p−1ψ(xp̄)β)(1− ψ−1(xp)α−1)(1− ψ−1(xp)β−1),

with α and β the roots of X2 − apX + p.

Proof This is a special case of the p-adic Rankin–Selberg L-functions constructed
by Hida [24]. In the form stated here, the result is given [39, Thm. 6.1.3(ii)] after
reversing the roles p and p̄ (which accounts for our unconventional ordering (�2, �1)
in the statement). 	
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Since p is odd, the Galois group � decomposes as the product �+ × �− of its
eigenspaces under the action of complex conjugation, with the minus eigenspace
corresponding to the anticyclotomic Galois group 
ac � �−. Thus in particular � �
�ac⊗̂ZpZp��

+�.

Definition 2.6 Let LRS
p to be the element in the fraction field of �ur⊗Zp Qp given by

LRS
p :=

hK
wK
·L Katz,−

p · LHida
p ,

where hK is the class number of K , wK = |O×K |, andL Katz,−
p is the image ofL Katz

p

under the map �ur → �ur given by γ �→ γ (γ c)−1.

Let pr
ac(LRS
p ) be the image of LRS

p under themap induced by the natural projection
�→ �− � 
ac, which a priori defines an element in Frac(�ur ⊗Zp Qp), and put

LBDP
p := (L BDP

p )2. (2.2)

Proposition 2.7 If N− �= 1, assume that N is squarefree. Then pr
ac

(
LRS
p ) is an

element in �ur and

(
pr
ac

(
LRS
p

)) = (
LBDP
p · α( f , fB)

)

as ideals in �ur.

Proof It suffices to show that aftermultiplication by a unit in�ur the p-adic L-function
pr
ac(LRS

p ) satisfies the same interpolation property as the product LBDP
p · α( f , fB).

Let ψ̂ be a character of � as in Theorem 2.5 factoring through 
ac, hence of
weight (n,−n) for some n ∈ Z>0; then 〈θψn , θψn 〉M is the period appearing in the
interpolation formula. Since θψn has weight 2n+ 1, by Hida’s formula for the adjoint
L-value [29, Thm .7.1] and Dirichlet’s class number formula we obtain

〈θψn , θψn 〉M ∼

(2n + 1)

π2n+1 · hK
wK
· L(χn(χc

n )
−1, 1),

where ∼ means the ratio between the two terms is interpolated by a unit in �ur as n
varies. Since L(χn(χc

n )
−1, 1) = L(χn(χc

n )
−1N−1, 0) and χn(χc

n )
−1N−1 has infinity

type (2n + 1, 1 − 2n) within the range of interpolation of L Katz
p , by Theorem 2.4 it

follows that

L Katz,−
p (ψ̂) ∼ π4n ·

(

p


∞

)4n

·
(
1− ψ(xp̄)

ψ(xp)

)(
1− ψ(xp̄)

pψ(xp)

)
· 〈θψn , θψn 〉M ·

wK

hK
.

(2.3)

Noting that the modified Euler factor E(ψ, f , 1) in Theorem 2.5 satisfies

E(ψ, f , 1) = (1− apψ(xp̄)p
−1 + ψ(xp̄)

2 p−1)2,
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substituting (2.3) into the definition of LRS
p we thus see that

pr
ac(LRS
p )(ψ̂) ∼ L BDP

p (ψ̂)2 · α( f , fB)

by comparing the interpolation formulas in Theorems 2.1 and 2.5, and this yields the
result. 	


3 Local results

The results in this section will be used to study the local properties at the primes above
p of the signed Heegner classes constructed later in the paper. Throughout this section,
we let E/Qp be an elliptic curve with good supersingular reduction at an odd prime
p with

ap := p + 1− # Ẽ(Fp) = 0.

Let Qp,∞ (resp. k∞) be the cyclotomic (resp. unramified) Zp-extensions of Qp, and
denote by L∞ the compositum of Qp,∞ and k∞. Let

U := Gal(k∞/Qp), 
 := Gal(Qp,∞/Qp), G∞ := Gal(L∞/Qp) � U × 
,

andfix topological generatorsγ ∈ 
 andu ∈ U ,withu corresponding to the arithmetic
Frobenius. Finally, we let � = Zp�G∞� and, letting T = TpE be the p-adic Tate
module of E, we set

Tp := T ⊗̂Zp�, (3.1)

equipped with the diagonal Galois action, where GQp acts on the second factor via
the tautological character GQp � G∞ ↪→ �×.

3.1 Local points

Let k/Qp be a finite unramified extension with ring of integers Ok and maximal
ideal mk, and denote by σ the Frobenius automorphism of k. For f ∈ k�X�, we let
f σ ∈ k�X� denote the result of applying σ to the coefficients of f .
Fix z ∈ O×k , and consider

logϕz (X) =
∞∑

j=1
(−1) j ϕ

(2 j)
z (X)

p j
,
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where ϕ(2 j)z (X) = ϕσ
2 j−1

z ◦ · · · ◦ ϕσz ◦ ϕz(X) with ϕz(X) = (X + z)p − z p. For every
u =∑∞

�=0 b�t� ∈ Ok�t� and f ∈ k�X�, let

u(ϕz)( f )(X) :=
∞∑

�=0
bσ

�

� f (ϕ(�)z (X)).

As in [35], we say that f has Honda type u if u(ϕz)( f ) ≡ 0 (mod p) and f ′(0) = 1.

Lemma 3.1 For every n ≥ 0, log
ϕσ
−n

z
is of Honda type t2 + p.

Proof A straightforward computation (cf. [35, §8.2]).

Let Ê be the formal group associated to the minimal model of E over Zp. By
Honda theory (see [35, Thm. 8.3]), it follows from Lemma 3.1 that for every n ≥ 0
there exists a formal groupF [n]z overOk whose logarithm is given by log

ϕσ
−n

z
and for

which the composition

sn := expÊ ◦ logF [n]z
: F [n]z → Ê (3.2)

is an isomorphism. Let εn,z ∈ F [n]z (mk) be such that

logF [n]z
(εn,z) =

∞∑

j=1
(−1) j−1zσ−(n+2 j) p j

(this exists since logF [n]z
defines an isomorphismF [n]z (mk)

∼−→ mk), and define c̃n,z ∈
Ê(mk(μpn )) by

c̃n,z := sn
(
εn,z[+]F [n]z

zσ
−n
(ζpn − 1)

)
, (3.3)

where ζpn is a primitive pn-th root of unity. For varying n, we shall assume that the
roots ζpn have been chosen compatibly, so that ζ p

pn+1 = ζpn .

Lemma 3.2 Let Trn+1n : Ê(mk(μpn+1 ))→ Ê(mk(μpn )) be the trace map. If z ∈ O×k is
a root of unity, then

Trn+1n (̃cn+1,z) = −c̃n−1,z .

for every positive n.

Proof Since locÊ is injective on Ê(mk(μp∞ )) by [35, Prop. 8.7], it suffices to check
the stated relation after applying logÊ . Since z is a root of unity of order prime to p,
for every k ≥ 0 we have

(ϕσ
−n−1

z )(2k) = zσ
2k−n−1

(ζpn+1−2k − 1),

123



2606 F. Castella, X. Wan

and this is zero for 2k > n + 1. Hence

logÊ (Tr
n+1
n (̃cn+1,z))

= Trn+1n

⎛

⎝
∞∑

j=1
(−1) j−1zσ−(n+1+2 j) p j +

∞∑

k=0
(−1)k z

σ 2k−n−1
(ζpn+1−2k − 1)

pk

⎞

⎠

= p
∞∑

j=1
(−1) j−1zσ−(n+1+2 j) p j − pzσ

−n−1 + p
∞∑

k=1
(−1)k z

σ 2k−n−1
(ζpn+1−2k − 1)

pk

= −logÊ (̃cn−1,z),

using that Trn+1n (zσ
−n−1

(ζpn+1 − 1)) = −pzσ
−n−1

for the second equality. 	

Let kn be the subfield of k(μpn+1) with Gal(kn/k) � Z/pnZ, let mkn ⊂ kn be the

maximal ideal, and denote by

cn,z ∈ Ê(mkn ) (3.4)

the image of c̃n+1,z under the trace map Ê(mk(μpn+1 ))→ Ê(mkn ). Let

ω̃+n (X) :=
∏

2≤m≤n
m even

�m(X + 1), ω̃−n (X) :=
∏

1≤m≤n
m odd

�m(X + 1),

where �m(X) = ∑p−1
i=0 Xipm−1 is the pm-th cyclotomic polynomial. Set also

ω±n (X) = X ω̃±n (X), and note that

ωn(X) := (X + 1)p
n − 1 = X ω̃∓n (X)ω̃±n (X). (3.5)

Let also �n = Zp[Gal(kn/Qp)].
Proposition 3.3 There is an exact sequence

0→ Ê(mk)→ �ncn,z ⊕�n−1cn−1,z → Ê(mkn )→ 0,

where the first map is the diagonal embedding and the second map is (P, Q) �→
P[−]Ê Q.
Proof This follows from Lemma 3.2 by the same argument as in the proof of [35,
Prop. 8.12] (see also [34, Prop. 2.6]). 	


Now let k = Qpm ⊂ Qur
p be the unramified extension of Qp of degree pm, and

write mm,n ⊂ km,n for the previously defined mk ⊂ k with k = Qpm . We identify �
with the power series Zp�X ,U� setting X = γ − 1, U = u − 1 for the topological
generators γ and u fixed at the beginning of this section. We also set

�m,n := �/(ωm(U ), ωn(X)), �±m,n := �/(ωm(U ), ω±n (X)) = �m,n/(ω
±
n (X)),
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so that �m,n � Zp[Gal(km,n/Qp)] and �±m,n � ω̃∓n (X)�m,n by the relation (3.5).

Lemma 3.4 For m, n ≥ 0 there exists cm,n ∈ Ê(mm,n) such that

Trm,nm−1,n(cm,n) = cm−1,n
Trm,nm,n−1(cm,n) = −cm,n−2,

where Trm,nm′,n′ is the trace map Ê(mm,n)→ Ê(mm′,n′).

Proof We first show the existence of points c̃m,n ∈ Ê(mQpm (μpn+1 )) satisfying the
stated compatibilities with respect to the trace maps

Trm,nm′,n′ : Ê(mQpm (μpn+1 ))→ Ê(mQ
pm
′ (μ

pn
′+1 )). (3.6)

The result will then follow by taking cm,n to be the image of c̃m,n under the trace map
Ê(mQpm (μpn+1 ))→ Ê(mm,n).

Let Zpm be the ring of integers of Qpm , and consider the module

O∞ := lim←−
m

Zpm

with limit with respect to the trace maps. As shown in [40, Prop. 3.2], the moduleO∞
is free of rank one over Zp�U�. Let d = {dm}m be a generator of O∞ as a Zp�U�-
module, and write dm = ∑

j am, jζm, j with am, j ∈ Zp and ζm, j roots of unity (as is
possible by the normal basis theorem). Define c̃m,n by

c̃m,n :=
∑

j

am, j c̃n,ζm, j , (3.7)

where cn,ζm, j ∈ Ê(mQpm (μpn+1 )) is as in (3.3). Put Tr = Trm,nm−1,n for the trace map as
in (3.6). Then similarly as in the proof of Lemma 3.2 we find:

logÊ (Tr(̃cm,n)) = Tr

⎛

⎝
∞∑

j=1
(−1) j−1

∑

j

am, j ζ
σ−(n+1+2 j)
m, j p j

+
∞∑

k=0
(−1)k

∑
j am, j ζ

σ 2k−n−1
m, j (ζpn+1−2k − 1)

pk

⎞

⎠

=
∞∑

j=1
(−1) j−1Tr(dm)σ−(n+1+2 j) p j +

∞∑

k=0
(−1)k Tr(dm)

σ 2k−n−1
(ζpn+1−2k − 1)

pk

= logÊ (̃cm−1,n)

using that am, j is fixed by σ for the second equality and that Tr(dm) = dm−1 for the
third one. Since the second norm relation for c̃m,n (i.e., with respect to Trm,nm,n−1) is
immediate from Lemma 3.2, this concludes the proof. 	
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Keeping the notations in Lemma 3.4, define the plus/minus-norm subgroups
Ê±(mm,n) ⊂ Ê(mm,n) by

Ê+(mm,n) :=
{
P ∈ Ê(mm,n) | Trm,nm,�+1(P) ∈ Ê(mm,�) for all 0 ≤ � < n, even �

}
,

Ê−(mm,n) :=
{
P ∈ Ê(mm,n) | Trm,nm,�+1(P) ∈ Ê(mm,�) for all − 1 ≤ � < n, odd �

}
.

We conclude this sectionwith the following definition of subsequences of {cm,n}m,n
which we shall use in the next section:

c+m,n =
{
cm,n if n is even,

cm,n−1 if n is odd,
c−m,n =

{
cm,n−1 if n is even,

cm,n if n is odd.
(3.8)

From Lemma 3.4, we see that c±m,n ∈ Ê±(mm,n).

Corollary 3.5 The element c±m,n generates Ê±(mm,n) as a�m,n-module, and we have

�m,nc
±
m,n � �m,n/(ω

±
n (X)) � ω̃∓n (X)�m,n .

Proof The first part follows immediately from Proposition 3.3. For the second part,
suppose first that n is even and consider c+m,n .Using Lemma 3.4 repeatedly we obtain

ω+n (X)cm,n = ω+n−2(X)Tr
m,n
m,n−1(cm,n) = −ω+n−2(X)cm,n−2 = · · · = ±Xcm,0 = 0.

Thus we have a natural surjection �m,n/(ω
+
n (X)) → �m,nc+m,n, which is readily

seen to be an isomorphism by comparing Zp-ranks. Since multiplication by ω̃−n (X)
on �n,m defines an isomorphism �m,n/(ω

+
n (X)) � ω̃−n (X)�m,n this completes the

proof of the result in this case. The proof in the other cases is the same.

3.2 The plus/minus Colemanmaps

Let T be the p-adic Tate module of E, and consider the local Tate pairing

〈 , 〉m,n : H1(km,n, E[p∞])× H1(km,n, T )→ H2(km,n,Qp/Zp(1)) � Qp/Zp

obtained as the limit of the usual local Tate pairing associated to the Weil pairing
E[p j ] × E[p j ] → μp j = Z/p jZ(1).We denote by

( , )m,n : Ê(mm,n)⊗Qp/Zp × H1(km,n, T )→ Qp/Zp

the map obtained by pre-composing 〈 , 〉m,n with the Kummer map Ê(mm,n) ⊗
Qp/Zp → H1(km,n, E[p∞]).
Definition 3.6 Let H1±(km,n, T ) be the orthogonal complement of E±(km,n)⊗Qp/Zp

under ( , )m,n .
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Let c±m,n be as in (3.8), and define

P±m,n : H1(km,n, T )→ �m,n = Zp[Gal(km,n/Qp)]

by

P±m,n(x) = (−1)[ n+12 ]
∑

σ∈Gal(km,n/Qp)

((c±m,n)σ , x)m,n σ.

Corollary 3.5 easily implies that

H1±(km,n, T ) = ker(P±m,n) (3.9)

and the image of P±m,n is contained in ω̃∓n (X)�m,n (see [35, Props. 8.18, 8.19]). Thus
there is a unique map Col±m,n : H1(km,n, T )→ �±m,n making the following diagram
commutative

H1(km,n, T )
Col±m,n

�±m,n

×ω̃∓n (X)

H1(km,n, T )/H1±(km,n, T )
P±m,n

�m,n,

where the right vertical map is given by multiplication by ω̃∓n (X).

Proposition 3.7 The maps Col±m,n are surjective, and for any n > n′, m > m′ the
diagram

H1(km,n, T )
Col±m,n

�±m,n

H1(km′,n′ , T )
Col±

m′,n′
�±m′,n′

commutes, where the left (resp. right) vertical map is given by corestriction (resp. the
natural projection).

Proof This follows from the same argument as in Propositions 8.21 and 8.23 of [35].	

Recall the GQp -module Tp in (3.1), and note that Shapiro’s lemma yields an iso-

morphism

H1(Qp,Tp) � lim←−
m,n

H1(km,n, T ), (3.10)
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where the limit is with respect to corestriction, and by Proposition 3.7wemay consider
the map

Col± := lim←−
m,n

Col±m,n : H1(Qp,Tp)→ �, (3.11)

noting that lim←−m,n
�±m,n � �. Let H1±(Qp,Tp) be the submodule of H1(Qp,Tp)

corresponding to lim←−m,n
H1±(km,n, T ) under (3.10).

Proposition 3.8 The map Col± defines an exact sequence

0→ H1±(Qp,Tp)→ H1(Qp,Tp)
Col±−−→ �→ 0

between free �-modules of rank 1, 2, and 1, respectively.

Proof By (3.9) and Proposition 3.7, the map Col± defines an isomorphism H1(Qp,

Tp)/H1±(Qp,Tp) � �.Note that the short exact sequence in the statement splits, and
so H1±(Qp,Tp) is a direct summand of H1(Qp,Tp). Since by [43, Prop. 3.2.1] the
�-module H1(Qp,Tp) is free of rank 2, the result follows. 	


3.3 The plus/minus Logarithmmaps

As shown in the proof of Corollary 3.5, if ε = (−1)n then

ωε
n(X)cm,n = 0. (3.12)

Via the natural inclusion

Ê(mm,n)⊗ Zp = (Ê(mm,n)⊗Qp/Zp)
⊥ ⊂ (Ê±(mm,n)⊗Qp/Zp)

⊥ = H1±(km,n, T ),

where M⊥ denotes the orthogonal complement of M with respect to the local Tate
pairing ( , )m,n, we shall view cm,n ∈ Ê(mm,n) as an element in H1±(km,n, T ).

Lemma 3.9 H1±(km,n, T ) is a free �m,n-module of rank one.

Proof This is an immediate consequence of [16, Lem. 3.9]. 	

Lemma 3.10 Let ε = (−1)n . There exists a unique class

βεm,n ∈ H1
ε (km,n, T )/ω

ε
n(X)H

1
ε (km,n, T )

such that ω̃−εn (X)βεm,n = cm,n .

Proof Since multiplication by ω̃−εn (X) on �m,n yields an isomorphism

�m,n/(ω
ε
n(X)) � ω̃−εn (X)�m,n,

the result follows from (3.12) and Lemma 3.9. 	
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Define b±m,n ∈ H1±(km,n, T )/ω±n (X)H1±(km,n, T ) by

{
b+m,n := (−1)n/2β+m,n if n is even,

b−m,n := (−1)(n+1)/2β−m,n if n is odd.

Proposition 3.11 The class β±m,n generates the free rank one �±m,n-module H1±(km,n,
T )/ω±n (X)H1±(km,n, T ), and the sequences

{b+m,n}n even,m {b−m,n}n odd,m

are compatible under corestriction.

Proof Since E(km,n) is torsion-free, Corollary 3.5 gives Ê±(mm,n)⊗Zp = �m,ncm,n,
and hence for the first part of the lemma it suffices to show that

ω̃∓n H1±(km,n, T ) = im
(
δ : Ê±(mm,n)⊗ Zp → H1(km,n, T )

)
, (3.13)

where δ is the Kummer map. Since local points are isotropic under ( , )m,n, we have
im(δ) ⊂ H1±(km,n, T ); and since H1(km,n, T ) is �m,n-free, from (3.12) we also have
im(δ) ⊂ ω̃∓n (X)H1(km,n, T ). Thus

im(δ) ⊂ H1±(km,n, T ) ∩ ω̃∓n (X)H1(km,n, T ),

which implies (3.13). The second part of the lemma follows from the same argument
as in [16, Lem. 2.9]. We explain the case n even, and the odd case is shown similarly.
Let c̃m,n be a lift of cm,n to H1±(Qp,Tp). By Lemma 3.4 we then have

c̃m,n ≡ −�n−1(X)c̃m,n−2 (mod ωn−1(X)H1+(Qp,Tp)),

and hence letting β̃+m,n be a lift of β+m,n to H1+(Qp,Tp) we obtain, for some d ∈
H1+(Qp,Tp), the equalities

ω̃−n (X)β̃+m,n = −�n−1(X)ω̃−n−2(X)β̃
+
m,n−2 + ωn−1(X)d

= −ω̃−n (X)β̃+m,n−2 + ω̃−n (X)ω+n−2(X)d.

Cancelling out ω̃−n (X), the result follows. 	

By Proposition 3.11 for every sign ε we may consider

bε := {bεm,n}n≡ε (mod 2),m ∈ lim←−H1
ε (km,n, T )/ω

ε
n(X)H

1
ε (km,n, T ) = H1

ε (Qp,Tp),

and bε generates the free �-module H1
ε (Qp,Tp).
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Definition 3.12 The plus/minus logarithm map Log± : H1±(Qp,Tp)→ � is defined
by

x = Log±(x)b±

for all x ∈ H1±(Qp,Tp).

Remark 3.13 Although not reflected in the above notation, we note that the map Log±
depends on the elements d ∈ O∞ and ζ = {ζpn }n chosen in the proof of Lemma 3.4.
It is easy to see that a different choice of d and ζ scales Log± be an element in �×.

Note that by Proposition 3.11 the map Log± is a�-module isomorphism. The next
result describes its interpolation property.

Proposition 3.14 Let φ : G∞ → C×p be a finite order character such that φ(γ ) is a
primitive pn-th root of unity and φ(u) �= 1 is a primitive pm-th root of unity, and let
x = {xm,n}m,n ∈ H1

ε (Qp,Tp), where ε = (−1)n . Then

φ−1
(
Logε(x)

) · g(φ|
)φ(u)n+1
∑

τ∈Um

dτmφ(τ)

= (−1)[ n+12 ]φ(ω̃−εn (X))
∑

τ∈Gal(km,n/Qp)

logÊ (x
τ
m,n)φ(τ),

where g(φ|
) =∑
γ∈Gal(Qp(μpn+1 )/Qp)

φ(γ )ζ
γ

pn+1 is the Gauss sum of φ.

Proof As shown in the proof of Lemma 3.4, the point cm,n is obtained by tracing down
to mm,n a point c̃m,n ∈ Ê(mQpm (μpn+1 )) satisfying

logÊ (c̃m,n) =
∞∑

j=1
(−1) j−1du−(n+1+2 j)m +

∞∑

k=0
(−1)k d

u2k−n−1
m (ζpn+1−2k − 1)

pk
.

Write Tr for the trace map Qpm (μpn+1)→ km,n . Twisting the above expression by φ
and summing over τ we then obtain

∑

τ∈Um×
n

logÊ (c
τ
m,n)φ(τ) =

∑

τ∈Um×
n

(du
−n−1

m )τTr(ζ τpn+1)φ(τ)

= g(φ|
)φ(u)n+1
∑

τ∈Um

dτmφ(τ),

which immediately yields the result. 	
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4 Heegner point main conjecture

In this section we construct plus/minus Heegner classes for rational elliptic curves at
good supersingular primes and formulate an analogue of Perrin-Riou’s Heegner point
main conjecture for them.

Throughout, we let E/Q be an elliptic curve of conductor N , with associated
newform f = ∑∞

n=1 anqn ∈ S2(
0(N )). We also let K be an imaginary quadratic
field satisfying hypothesis (gen-H) and p > 3 be a prime of good supersingular
reduction for E .

4.1 The plus/minus Heegner classes

Let XN+,N− be the Shimura curve over Q (with cusps added, if N− = 1) attached to
the rational quaternion algebra B of discriminant N− and an Eichler order R ⊂ OB

of level N+. Let Jac(XN+,N−)/Q be the Jacobian variety of XN+,N− and choose a
modular parametrization

π : Jac(XN+,N−)→ E .

For every positive integer S we letOS = Z+ SOK be the order of K of conductor S,
and let K [S] be ring class field of K conduction S, so that Gal(K [S]/K ) � Pic(OS)

by the Artin map.

Proposition 4.1 There is a collection of Heegner points xS ∈ E(K [S])⊗Zp indexed
by positive integers S prime to N DK such that

TrK [�S]/K [S](x�S) =

⎧
⎪⎨

⎪⎩

a�xS if � � S is inert in K ,

a�xS − xσ�S − x
σ ∗�
S if � � S splits in K ,

a�xS − xS/� if � | S,

where σ�, σ ∗� ∈ Gal(K [S]/K ) are the Frobenius elements at the primes above �.

Proof Fix a prime q � Np and consider the embedding

ιN+,N− : XN+,N− → Jac(XN+,N−), x �→ (Tq − q − 1)(x),

where Tq is the q-th Hecke correspondence on XN+,N− . By [27, Prop. 1.2.1] there is
a collection of CM points hS ∈ XN+,N− defined over K [S] and such that

NormK [�S]/K [S](h�S) =

⎧
⎪⎨

⎪⎩

T�(hS) if � � S is inert in K ,

T�(hS)− hσ�S − h
σ ∗�
S if � � S splits in K ,

T�(hS)− hS/� if � | S
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as divisors on XN+,N−(C). Choosing q as above with the additional property that
aq − q − 1 is a p-adic unit, the result follows by setting

xS := ιN+,N−(hS)⊗ (aq − q − 1)−1 ∈ E(K [S])⊗ Zp

(note that the GQ-representation E[p] is irreducible by [18], so such q exists). 	

Let T = TpE be the p-adic Tate module of E, and denote by z[S] ∈ H1(K [S], T )

the image of xS under the Kummer map

E(K [S])⊗ Zp → H1(K [S], T ).

Since ap = 0, letting Corn+1n denote the corestriction map for the extension
K [Spn+1]/K [Spn], the norm-compatibility in Proposition 4.1 yields

Corn+1n (z[Spn+1]) = −z[Spn−1] (4.1)

for all n > 0.
The anticyclotomic Zp-extension K ac∞/K is contained in K [p∞] = ∪k≥0K [pk],

and the Galois group Gal(K [p∞]/K ) decomposes as

Gal(K [p∞]/K ) � 
ac ×�

with� = Gal(K [p∞]/K )tors a finite group. Let L ⊂ K [p∞] be the fixed field of 
ac

and for each n let Ln+1 be the subfield of K [p∞] fixed by (
ac)p
n
. Then


̃n := Gal(Ln+1/K ) � �× Gal(K ac
n /K ), (4.2)

where K ac
n is the subextension of K ac∞ of degree pn over K . Note that there exists a

non-negative integer δ such that Ln+1+δ = K [pn] for n  0, with δ = 0 when the
class number of K is coprime to p.

Consider the modules

T̃ = T ⊗̂ZpZp�Gal(K [p∞]/K )�, Tac = T ⊗̂Zp�
ac

equipped with the diagonal GK -action, with GK acting on the right factors
via the tautological characters. In particular, similarly as in (3.10), there is a
Zp�Gal(K [p∞]/K )�-module isomorphism

H1(K , T̃) � lim←−
n

H1(K [pn], T )

given by Shapiro’s lemma.
For any field extension L/K , denote by L[S] the compositum of L and the ring

class field K [S]. Our construction of plus/minus Heegner classes hinges on the next
two lemmas.
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Lemma 4.2 Let S be a positive integer prime to Np. For every n > 0 the class z[Spn]
lies in the image of the natural map

H1(K [S], T̃)→ H1(K [Spn], T ).

Proof It suffices to show the result holds for all n sufficiently large. Note that (4.1)
yields

Corn+2kn (z[Spn+2k]) = ±pkz[Spn] (4.3)

for all k. Let γ ∈ 
ac be a topological generator, and set γn = γ |K ac
n
∈ Gal(K ac

n /K ).

From the GK -module exact sequence 0 → T̃
γn−1−−−→ T̃ → T ⊗Zp Zp[
̃n] → 0 we

obtain the exact sequence.

H1(K [S], T̃)→ H1(Ln+1[S], T ) αn−→ H2(K [S], T̃)
n → 0.

Note that under the maps αn, the corestriction H1(Ln+1[S], T ) → H1(Ln[S], T )
corresponds to the trace H2(K [S], T̃)
n → H2(K [S], T̃)
n−1 . Since H2(K [S], T̃) is
finitely generated over �ac, the modules Mn := H2(K [S], T̃)
n stabilize for n  0,
so there is some n0 such that Mn = Mn0 for all n ≥ n0. In particular, the trace map
Trn+1n : Mn+1 → Mn is given by multiplication by p on Mn0 = limn→∞ Mn for all
n ≥ n0. Combined with (4.3) we thus see that

±pkαn(z[Spn]) = αn(Cor
n+2k
n (z[Spn+2k]))

= Trn+2kn (αn+2k(z[Spn+2k])) = p2kαn+2k(z[Spn+2k])

for all n ≥ n0 and k ≥ 0. Letting k →∞, this shows that αn(z[Spn]) is divisible by
arbitrarily high powers of p, and hence αn(z[Spn]) = 0, yielding the result. 	


In the following, we identify �ac with the one variable power series ring Zp�Y �
setting Y = γ ac − 1 for a fixed topological generator γ ac − 1.

Lemma 4.3 Let S be a positive integer prime to p. Then H1(K [S],Tac) is free over
�ac.

Proof As we recall in Lemma 6.6 below, E[p] is absolutely irreducible as a GK -
module, and using this the result can be shown by arguing similarly as in [32, §13.8].
Here we give a slightly different argument.

It suffices to show that MS := H1(K [S],Tac) is free over�ac � Zp�Y �.We claim
that the maps

αY : MS
×Y−−→ MS, αp : MS/YMS

×p−−→ MS/YMS (4.4)

are both injective. Indeed, the irreducibly of E[p] as a GQp -module implies that
E(K )[p] = 0, which gives H0(K∞, T ) = 0. By [44, §1.3.3], it follows that the �ac-
torsion submodule of MS is trivial, and so αY is injective. On the other hand, in light
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of the natural inclusion

MS/YMS ↪→ H1(K [S], T ),

to check the injectivity of αp it suffices to check that multiplication by p is injective
on H1(K [S], T ), but this follows easily again by the irreducibility of E[p].

By the structure theorem, the injectivity of (4.4) implies that MS injects into a free
�ac-module F with finite quotient N :

0→ MS → F → N → 0.

If N �= 0, then Tor�
ac

1 (N ,�ac/Y�ac) is a nonzero Zp-torsion module injecting into
MS/YMS, but this is impossible by injectivity of αp. Thus N = 0, and this concludes
the proof.

To ease notation, in the next result we let Corn be the corestriction map for
K [Spn+1−δ]/K ac

n [S].
Proposition 4.4 Let ε = (−1)n . There exists a unique class

zn[S]ε ∈ H1(K [S],Tac)/ωε
n(Y )H

1(K [S],Tac) (4.5)

such that ω̃−εn (Y )zn[S]ε = Corn(z[Spn+1−δ]).Moreover, the sequences

{(−1)n/2zn[S]+}n even, {(−1)(n+1)/2zn[S]−}n odd

are compatible under the natural maps

H1(K [S],Tac)/ωε
n(Y )H

1(K [S],Tac)→ H1(K [S],Tac)/ωε
n−2(Y )H1(K [S],Tac).

Proof By Lemma 4.2 the class z[Spn+1−δ] is in the image of the natural embedding

H1(K [S], T̃)/ωn(Y )H
1(K [S], T̃) ↪→ H1(K [Spn+1−δ], T ).

With a slight abuse of notation, denote by z[Spn+1−δ] the natural image of this class
under the map

H1(K [S], T̃)/ωn(Y )H
1(K [S], T̃)→ H1(K [S],Tac)/ωn(Y )H

1(K [S],Tac)

given by corestriction. Using (4.1), the same calculation as in Corollary 3.5 shows
that ωε

n(Y )z[Spn+1−δ] = 0. In light of the freeness result in Lemma 4.3, this
implies the existence of a unique class zn[S]ε as in (4.5) such that ω̃−εn (Y )zn[S]ε =
Corn(z[Spn+1−δ]) in the image of the map

H1(K [S],Tac)/ωε
n(Y )H

1(K [S],Tac)
∼−→ ω̃ε

n(Y )H
1(K [S],Tac)/ωn(Y )H

1(K [S],Tac)

↪→ H1(Kn[S], T ),
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where the first arrow is the isomorphism given by multiplication by ω̃−εn (Y ). This
shows the first part of the lemma, and the second is shown by the same argument as
in the proof of Proposition 3.11. 	


In light of the last part of Proposition 4.4, we can make the following.

Definition 4.5 For every sign ε ∈ {±} and positive integer S prime to Np we define
the ε-Heegner point of conductor S to be the class z∞[S]ε ∈ H1(K [S],Tac) given by

z∞[S]ε := {zn[S]ε}n ∈ lim←−
n

H1(K [S],Tac)/ωε
n(Y )H

1(K [S],Tac) � H1(K [S],Tac),

where the limit is over the positive integers n of parity ε.

Note that since {ωε
n(Y )}n≡ε mod 2 forms a basis for the topology of �ac, the class

z∞[S]ε is well-defined.

4.2 Themain conjecture

In this section we formulate the supersingular analogue of Perrin-Riou’s Heegner
point main conjecture (see [42, Conj. B] for the ordinary case) in terms of the signed
Heegner classes z∞[S]±.

Assume that

(p) = pp̄ splits in K . (spl)

Recall that
ac = Gal(K ac∞/K ) is the Galois group of the anticyclotomicZp-extension
of K , and � = Gal(K∞/K ) is the Galois group of the unique Z2

p-extension of K .
Let v be a prime of K above p, and let v1, . . . , vpt be the primes of K ac∞ lying above
v. Since each vi is totally ramified in K∞/K ac∞, by abuse of notation we shall also
denote by v1, . . . , vpt the primes of K∞ lying above v. Fix v1, let 
ac

v1
(resp. �v1 ) be

the decomposition group of v1 in 
ac (resp. �) and let γ1 = id, γ2, . . . , γpt ∈ 
ac be
such that vi = γiv1.

Identifying Kv = Qp, we then have �v1 � Gal(Qur
p,∞/Qp), as considered in

Sect. 3. Set

Tac
v1
= T ⊗̂ZpZp�


ac
v1

�

with GKv acting on the second factor by the character GKv � 
ac
v1

↪→ Zp�

ac
v1

�×,
and define Tv1 similarly.

Definition 4.6 Let H1±(Kv,Tac
v1
) be the image of H1±(Kv,Tv1) � H1±(Qp,Tp) under

the map induced by the projection � � 
ac, and set

H1±(Kv,Tac) :=
pt⊕

i=1
γi .H

1±(Kv,Tac
v1
). (4.6)
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Let z±∞ ∈ H1(K ,Tac) denote the image of the class z∞[1]± under the corestriction
map H1(K [1],Tac)→ H1(K ,Tac).

Lemma 4.7 For each prime v of K above p we have locv(z±∞) ∈ H1±(Kv,Tac).

Proof Since H1±(Qp,Tp) � lim←−m,n
ker(P±m,n) and the image of P±m,n is contained in

ω̃∓m,n�m,n (see Sect. 3.2), the result follows immediately from the isotropy of points
under the local Tate pairing and the construction of z±∞. 	


Now let F± be the Selmer structure on Tac defined by

H1
F±(Kv,Tac) =

{
H1±(Kv,Tac) if v | p,
H1(Kv,Tac) if v � p,

and let Sel±(K ,Tac) be the associated Selmer group:

Sel±(K ,Tac) := ker

{
H1(K ,Tac)→

∏

v

H1(Kv,Tac)

H1
F±(Kv,Tac)

}
, (4.7)

where the product is over all places v of K .
Setting Aac := T ⊗̂ZpHomZp (�

ac,Qp/Zp) equipped with the natural GK -action,
we let H1

F±(Kv,Aac) ⊂ H1(Kv,Aac) be the orthogonal complement of H1
F±(Kv,Tac)

under local duality, and define Sel±(K ,Aac) by the same recipe as in (4.7). Let

X± = HomZp (Sel
±(K ,Aac),Qp/Zp)

be the Pontryagin dual. Note that it follows from Lemma 4.7 that z±∞ lands in
Sel±(K ,Tac). As a natural extension of [42, Conj. B], we conjecture the following.

Conjecture 4.8 (Plus/minus Heegner point main conjecture)

1. The class z±∞ is not �ac-torsion.
2. The modules X± and Sel±(K ,Tac) both have �ac-rank one.
3. We have

char�ac
(
X±tors

) = char�ac

(
Sel±(K ,Tac)

�acz±∞

)2

,

where the subscript tors denotes the �ac-torsion submodule.

Remark 4.9 Like its counterpart for ordinary primes, Conjecture 4.8 might be seen
as a �ac-adic analogue3 of Kolyvagin’s result [36] showing that when the Heegner
point yK ∈ E(K ) is non-torsion, the p-primary part of the Tate–Shafarevich group
X(E/K ) is finite, of order essentially given by square of the index [E(K ) ⊗ Zp :
Zp yK ].
3 In connection with this analogy, we note that building on the results in this paper towards Conjecture 4.8,
Lei–Lim–Müller [38] have obtained a new proof of a result originally due to Çiperiani [10] showing that
for supersingular primes p, the Tate–Shafarevich groupX(E/K∞)[p∞] is �ac-cotorsion.
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5 Greenbergmain conjecture forL BDP
p

Keeping the setting from Sect. 2, we now consider certain variants of the Selmer
groups Sel±(K ,Tac) and Sel±(K ,Aac) obtained by changing their conditions at the
primes above p. Recall the Selmer structure F± introduced in Sect. 4.2.

Definition 5.1 Let M denote either Tac or Aac. For v ∈ {p, p} and Lv ∈ {rel,±, str},
set

H1
Lv

(Kv,M) =

⎧
⎪⎨

⎪⎩

H1(Kv,M) ifLv = rel,

H1±(Kv,M) = H1
F±(Kv,M) ifLv = ±,

0 ifLv = str.

Then for L = {Lp,Lp} we define the modified Selmer group SelL (K ,M) by

SelL (K ,M) := ker

{
H1(K ,M)→

∏

v∈{p,p}

H1(Kv,M)

H1
Lv

(Kv,M)
×

∏

v�p

H1(Kv,M)

H1
F±(Kv,M)

}
.

We also let XL denote the Pontryagin dual of SelL (K ,Aac), and for � a finite
set of places of K away from p, let XL ,� denote the Pontryagin dual of Selmer
group obtained as above by relaxing the local conditions at the primes w ∈ �. Thus
in particular Selrel,str(K ,Aac) consists of classes which are trivial at p and satisfy
no condition at p, and Sel±,±(K ,Aac) recovers the Selmer module Sel±(K ,Aac) of
Sect. 4.2.

Note that for any character χ̂ in the interpolation range for the square-root p-adic L-
functionL BDP

p in Proposition 2.1, the p-adic representation VpE⊗ IndQK (χ̂) satisfies
thePanchishkin condition introduced byGreenberg [21]. The followingConjecture 5.2
may thus be viewed as an instance of the Iwasawa main conjectures formulated in
op.cit. for LBDP

p = (L BDP
p )2 .

Conjecture 5.2 (Iwasawa–Greenberg main conjecture) The module X rel,str is �ac-
torsion, and

char�ac
(
X rel,str)�ur = (

LBDP
p

)

as ideals in �ur.

An important consequence of the main result of the authors with Zheng Liu [13] is
the following divisibility towards Conjecture 5.2.

Theorem 5.3 [13] Assume that:
(i) N is squarefree,
(ii) some prime � | N is non-split in K ,
(iii) if N is odd, then 2 splits in K .
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Then

char�ac
(
X rel,str)�ur ⊂ (

LBDP
p

)

in�ur[1/p]. If in addition E[p] is ramified at every prime � | N−, then the divisibility
holds in �ur.

Proof We first need to introduce some more notations. Denote by � : � → �× the
tautological character, and by ε the p-adic cyclotomic character. For � a finite set
of primes of K not containing any prime above p, define the �-imprimitive p-adic
L-function LRS,�

p ∈ �ur by

LRS,�
p := LRS

p ×
∏

w∈�
Pw(ε

−1�(Frobw)), (5.1)

where Pw(X) = det(1− FrobwX) gives the Euler factor at w of the L-function of E .
Part (1) of [13, Thm. 8.2.1] yields the divisibility as fractional ideals in�ur⊗Zp��+�

Frac(Zp��
+�):

char�
(
Xrel,str,�)

�ur ⊂ (
LRS,�
p

)
, (5.2)

where � is any finite set of primes of K away from p containing all primes divid-
ing NDK and Xrel,str,� is defined in the same manner as X rel,str,� with A :=
T ⊗̂ZpHomZp (�,Qp/Zp) in place of Aac.

Letting γ+ ∈ �+ be a topological generator, the natural inclusion �ac → �

identifies �ac with �/I+�, where I+ = (γ+ − 1), and induces an isomorphism

Xrel,str,�/I+Xrel,str,� � X rel,str,� (5.3)

as �ac-modules (see [50, Prop. 3.9]). Since I+ generates the kernel of the projection
pr
ac : �→ �ac, combining (5.2) and (5.3) with Proposition 2.7 we conclude that

char�ac
(
X rel,str,�)

�ur[1/p] ⊂ (
pr
ac

(
LRS,�
p

))
(5.4)

as ideals in �ur[1/p]. Without loss of generality, assume that X rel,str is �ac-torsion
(otherwise the characteristic ideal of X rel,str is (0) by definition, and there is nothing
to show). Then by [46, Lem. A.2] for any �′ ⊂ � we have an exact sequence

0→ Selrel,str,�
′
(K ,Aac)→ Selrel,str,�(K ,Aac)→

∏

w∈���′
H1(Kw,Aac)→ 0.

By a simple adaptation of [22, Prop. 2.4], it follows that

char�ac
(
X rel,str,�) = char�ac

(
X rel,str,�′) ·

∏

w∈���′
Pw(ε

−1�−1(Frobw)),
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and hence combined with (5.1) it follows that the divisibility (5.4) also holds for
� = ∅. Together with Proposition 2.7, this shows that

char�ac
(
X rel,str)�ur[1/p] ⊂ (

LBDP
p · α( f , fB)

)
(5.5)

as ideals in �ur[1/p], yielding the first claim in the theorem.
Finally, if E[p] is ramified at every prime � | N− then by [45, p. 912] the term

α( f , fB) is a p-adic unit (indeed, this condition ensures that f is not congruent mod
p to any weight 2 newform of level dividing N/� for any prime � | N−); since
μ(LBDP

p ) = 0 by Theorem 2.3, it follows that in this case the divisibility (5.5) holds
in �ur.

Remark 5.4 At the referee’s request, we note that assumption (iii) in Theorem 5.3 is
used in op.cit. to simplify the choice of test vectors for which the corresponding local
triple product integrals can be shown to be nonzero.

6 Main results

Let E/Q be an elliptic curve of conductor N , f = ∑∞
n=1 anqn ∈ S2(
0(N )) the

newform associated with E, p > 3 a prime of good supersingular reduction for E,
and K an imaginary quadratic field satisfying hypotheses (gen-H) and (spl).

6.1 Explicit reciprocity law

In this section we give a new construction of L BDP
p in terms of the signed Heegner

classes z±∞ and the signed logarithmmaps. This explicit reciprocity lawwill be the key
ingredient allowing us to bring the Iwasawa–Greenberg main conjecture forL BDP

p to
bear on Conjecture 4.8.

Let HK be the Hilbert class field of K , let L0 := K ac∞ ∩ HK , and denote by Lm

the subextension of K ac∞ with [Lm : L0] = pm (so Lm = K ac
m+M for some fixed

M ≥ 0). As in Sect. 4.2, for every prime v of K above p we have H1±(Kv,Tv1) �
H1±(Qp,Tp), which is generated as Zp��v1�-module by the element b± = {b±m,n}
from Proposition 3.11. Letting pa be the inertial degree of v1 ∩ L0 over v, we have
Lm,v1 ⊂ km+a,m . Set

a±m := Corkm+a,m/Lm,v1
(b̃±m+a,m) ∈ H1±(Lm,v1, T ),

where b̃±m+a,m is an arbitrary lift of b±m+a,m to H1(km+a,m, T ). This defines a±m ∈
H1(K ac

m,v1 , T ) for m ≥ M and setting a±m := CorK ac
M,v1

/K ac
m,v1

(am) ∈ H1(K ac
m,v1 , T ) for

0 ≤ m < M we obtain a system

a± = {a±m }m ∈ lim←−
m

H1±(K ac
m,v1, T ) � H1±(Kv,Tac

v1
)

which by Proposition 3.11 generates H1±(Kv,Tac
v1
) as a free rank oneZp�


ac
v1

�-module.
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Definition 6.1 For v a prime of K above p, define Log±v,1 : H1±(Kv,Tac
v1
)→ Zp�


ac
v1

�
by

x = Log±v,1(x)a
±

for all x ∈ H1±(Kv,Tac
v1
). Using �ac = ⊕pt

i=1 γi .Zp�

ac
v1

� and the decompositions
(4.6), we also define

Log±v : H1±(Kv,Tac)→ �ac

by Log±v ( y) =
∑

i γi .Log
±
v,1( yi )), writing y =∑

i γi . yi with yi ∈ H1±(Kv,Tac
v1
).

Recall the element d = {dm}m ∈ O∞ = lim←−m
Zpm chosen in the proof of

Lemma 3.4 (and on which the construction of Log±v depends). As explained in [40,
§3], for varying m the maps

ym : Zpm → Zpm [Gal(Qpm/Qp)]

defined by ym(x) =∑
σ∈Gal(Qpm /Qp)

xσ σ−1 assemble to yield in the limit an isomor-

phism between O∞ and the subring of Zur
p �U� consisting of elements f ∈ Zur

p �U�
such that

f u = u. f for all u ∈ U ,

where the action of u on the left-hand side (resp. the right-hand side) is on the coeffi-
cients (resp. by multiplication as group-like elements). Let

�d := lim←−
m

∑

σ∈Gal(Qpm /Qp)

dσmσ
−1 ∈ Zur

p �U�

be the image of d under this isomorphism. Since d is a Zp�U�-module generator of
O∞, the element �d is invertible.

Recall that by Lemma 4.7 for every prime v of K above p we have locv(z±∞) ∈
H1±(Kv,Tac), and hence Log±v may be evaluated on locv(z±∞).

Theorem 6.2 The following equality holds:

L BDP
p

�d
= σ−1,p · Log±p (locp(z±∞)),

where σ−1,p = recp(−1)|K ac∞ ∈ 
ac.

Proof We just give the proof in the plus case, as the proof in the minus case is the
same. Let χ̂ : 
ac → μp∞ be a non-trivial character factoring through a primitive
character on Gal(K ac

n /K ) for some even n. Viewing χ̂ as a character on 
̃ via (4.2),
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the calculation in [12, pp. 598-9] (as adapted in [2, Thm. 4.4] to the case N− �= 1)
gives

L BDP
p (χ̂−1) = p−ng(χ−1p )χp(u

−n)
∑

σ∈
̃n

χ̂ (σ ) logÊ (σ z[pn+1−δ]),

where χp denotes the component at p of the Hecke character corresponding to χ̂

by (2.1). Combined with the definition of zn[1]+ (see Proposition 4.4) and z+∞, and
Proposition 3.14, we thus obtain

L BDP
p (χ̂−1) = χp(−1)

g(χp)χp(un)
· (−1)n/2χ̂(ω̃−n (X))

∑

σ∈
̃n

χ̂ (σ )logÊ (σ zn[1]+)

= χp(−1) · χ̂−1(Log+p (locp(z+∞))) ·
∑

σ∈Un+a
χ̂(σ )dσn+a

= χ̂−1
(
σ−1,p · Log+p (locp(z+∞)) ·�d

)
.

Letting χ̂ as above vary, we obtain the result. 	

Remark 6.3 Note that Theorem 6.2 shows that the period �d encodes all the �ur/�-
transcendence of L BDP

p .

Corollary 6.4 The class locp(z±∞) is not �ac-torsion.

Proof Immediate from Theorem 6.2 and the non-vanishing result forL BDP
p in Theo-

rem 2.3. 	


6.2 Relatingmain conjectures

The main result of this section is Theorem 6.8, connecting Conjectures 4.8 and 5.2.
Let P �= p�ac be a height one prime of �ac, denote by SP the integral closure of

�ac/P, and let�P be the field of fractions of SP. Let also πP ∈ SP be a uniformizer
and mP = πPSP be the maximal ideal of SP. Consider the SP-modules

TP := Tac ⊗�ac SP, VP := TP ⊗SP �P, AP := VP/TP. (6.1)

As in [26, Prop. 2.2.4] the Weil pairing induces a perfect GK -equivariant pairing

e� : Tac × Aac→ μp∞ (6.2)

satisfying e�(λ · t, a) = e�(t, λι · a) for all t ∈ Tac, a ∈ Aac, and λ ∈ �ac, where
λι denotes the image of λ under the involution ι : �ac → �ac given by γ �→ γ−1
for γ ∈ 
ac. Letting Pι denote the image of P under ι, this gives rise to a GK -
equivariant pairing eP : TPι × AP → μp∞ satisfying eP(λ · x, y) = eP(x, λι · y),
which together with (6.2) allows us to dualize the natural map Tac/PιTac → TPι to
a GK and �ac-equivariant map AP→ Aac[P].
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Using Tac→ Tac/PTac→ TP, we define

Sel±(K , TP) ⊂ H1(K , TP), Sel±(K ,Tac/PTac) ⊂ H1(K ,Tac/PTac)

from Sel±(K ,Tac) by propagation (i.e., defining the local conditions cutting out
Sel±(K , TP) to be the pushforward of those for Sel±(K ,Tac) via the above
map Tac → TP), and similarly define Sel±(K , AP) and Sel±(K ,Aac[P]) from
Sel±(K ,Aac) by propagation (i.e., pulling back the local conditions) via AP →
Aac[P] → Aac.

Lemma 6.5 There is a finite set�� of height one primesP ⊂ �ac, with p�ac ∈ ��,

such that for P /∈ �� the composite natural maps

Sel±(K ,Tac)/PSel±(K ,Tac)→ Sel±(K ,Tac/PTac)→ Sel±(K , TP),
Sel±(K , AP)→ Sel±(K ,Aac[P])→ Sel±(K ,Aac)[P]

have finite kernel and cokernel of order bounded by a constant depending only on
[SP : �ac/P].
Proof As in the proof of [26, Prop. 2.2.8], it suffices to show (thanks to [41,
Lem. 5.3.13]) that for all height one primes P ⊂ �ac with P �= p�ac, and for
every place v of K , the natural maps

H1
F±(Kv, AP)→ H1

F±(Kv,Aac[P]), (6.3)

H1
F±(Kv,Tac/PTac)→ H1

F±(Kv, TP), (6.4)

have finite kernel and cokernel which are bounded by a constant depending only on
[SP : �ac/P],which for primes v � p is shown in [41, Lem. 5.3.13]. For v | p, that the
map (6.3) has the desired property is shown in the proof of [33, Prop. 4.18] (see also
the discussion preceding it). On the other hand, since the natural map H1(Kv, AP)→
H1(Kv,Aac[P]) clearly has finite kernel and cokernel with a bound of the desired
sort, we deduce that so does the induced map

H1(Kv, AP)/H
1
F±(Kv, AP)→ H1(Kv,Aac[P])/H1

F±(Kv,Aac[P]),

from where the desired property for (6.4) follows by local duality. 	

Lemma 6.6 For every k the natural maps TP/πk

PTP � AP[πk
P] ↪→ AP induce

isomorphisms

H1
F±(K , TP/π

k
PTP) � H1

F±(K , AP[πk
P]) � H1

F±(K , AP)[πk
P].

Proof This follows from Lemmas 3.5.3 and 3.5.4 in [41]. 	

Lemma 6.7 The following hold:
1. The modules X± and Sel±(K ,Tac) have the same �ac-rank.
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2. rank�ac(X rel,±) = 1+ rank�ac(X±,str) and

char�ac
(
X rel,±
tors

) = char�ac
(
X±,strtors

)
,

where the subscript tors denotes the �ac-torsion submodule.

Proof For part (1), it suffices to show that for every height one prime P �= p�ac

outside a finite set �� the modules

X±/PX± = HomZp (Sel
±(K ,Aac)[P],Qp/Zp), Sel±(K ,Tac)/PSel±(K ,Tac)

have the same Zp-rank. Since Lemma 6.6 gives that Sel±(K , TP) is the πP-adic Tate
module of Sel±(K , AP), the Zp-corank of Sel±(K , AP) is the same as the Zp-rank
of Sel±(K , TP), which by Lemma 6.5 implies the result.

For the proof of part (2), we need some more preparation. For any height one prime
P �= p�ac, let TP be as in (6.1). As explained in the proof of [26, Lem. 2.1.1], the
Weil pairing e : T × T → μp∞ gives rise to a perfect symmetric SP-bilinear pairing

eP : TP × TP→ SP(1) (6.5)

satisfying eP(sσ , tτστ ) for all s, t ∈ TP and σ ∈ GK , where τ ∈ GQ is any complex
conjugation. Letting Tw(TP) denote the GK -module given by T with GK acting
through the automorphism given by conjugation by τ, the pairing (6.5) becomes a
GK -equivariant pairing

eP : TP × Tw(TP)→ SP(1),

and by [33, Prop. 4.11] the local conditions H1
F±(Kv, TP/mk

PTP), obtained by propa-

gating H1
F±(Kv, TP) via the quotient TP→ TP/mk

PTP, are orthogonal complements
under the induced local pairing

H1(Kv, TP/m
k
PTP)× H1(K v̄ , TP/m

k
PTP)→ SP/m

k
P. (6.6)

Now set H1±,str(K , AP) := Sel±,str(K , AP), and H1
rel,±(K , AP) to be

ker

{
H1(K , AP)→ H1(Kp, AP)

H1(Kp, AP)div
× H1(Kp̄, AP)

H1±(Kp̄, AP)
×

∏

v�p

H1(Kv, AP)

H1
F±(Kv, AP)

}
,

where the subscript div denotes themaximal divisible submodule. (ThusH1±,str(K , AP)

and H1
rel,±(K , AP) are the propagation of H1±,str(K , VP) and H1

rel,±(K , VP) under
VP → AP and VP → AP, respectively.) By Lemma 6.6 and [41, Thm. 4.1.13], for
every k there is a non-canonical isomorphism

H1
rel,±(K , AP)[pk] � (�P/SP)

r [pk] ⊕ H1±,str(K , AP)[pk], (6.7)
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where r is the core rank (in the sense of [41, Def. 4.1.11]) of the Selmer conditions
defining H1

rel,±(K , AP), which by [15, Thm. 2.18] is computed by

corankSPH
1(Kp, AP)+ corankSPH

1±(Kp̄, AP)− corankSPH
0(Kw, AP), (6.8)

where w denotes the infinite place of K . By Proposition 3.8, the first two terms in
(6.8) are equal to 2 and 1, respectively, and the third term is clearly equal to 2. Thus
r = 1 in (6.7) and letting k →∞ we conclude that

H1
rel,±(K , AP) � (�P/SP)⊕ H1±,str(K , AP). (6.9)

Hence the SP-coranks of H1
rel,±(K , AP) and H1±,str(K , AP) differ by one, and their

quotient by themaximal divisible submodule have the same order. The argument in the
proof of [1, Lem. 1.2.6] (taking also care of the primeP = p�ac by approximating it
byQ = (Y + pm) ⊂ �ac � Zp�Y � as m →∞) now allows us to conclude the proof
of part (2), once we show that for P outside a finite set ��, the natural maps

H1
rel,±(K , AP)→ Selrel,±(K ,Aac)[P], (6.10)

H1±,str(K , AP)→ Sel±,str(K ,Aac)[P], (6.11)

have finite kernel and cokernel, of order bounded by a constant depending only on
the degree [SP : �ac/P]. For (6.11), this is shown in Lemma 6.5, and for (6.10), it
suffices to note that H1

rel,±(K , AP) injects into Selrel,±(K , AP) with quotient con-
tained in H0(Kp, AP)/H0(Kp, AP)div, which has a bound of the desired sort, and
apply Lemma 6.5 again. This completes the proof. 	


With the explicit reciprocity law of Theorem 6.2 and the preceding three lemmas
in hand, we are now ready to establish the link Conjectures 4.8 and 5.2.

Theorem 6.8 The following are equivalent:
(i) Both Sel±(K ,Tac) and X± have�ac-rank one, and the following divisibility holds

in �ac:

char�ac
(
X±tors

) ⊂ char�ac

(
Sel±(K ,Tac)

�acz±∞

)2

.

(ii) Both Selstr,rel(K ,Tac) and X rel,str are �ac-torsion, and the following divisibility
holds in �ur:

char�ac
(
X rel,str)�ur ⊂ (

LBDP
p

)
.

The same result holds for the opposite divisibilities. In particular, Conjectures 4.8
and 5.2 are equivalent.
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Proof Note that E(K )[p] = 0 (since E[p] is irreducible as a GQp -module and p
splits in K ), and hence E(K∞)[p∞] = 0, which by [44, §1.3.3] implies that the
�ac-torsion submodule of H1(K ,Tac) is trivial. Global duality yields the following
exact sequence

0→ Selstr,rel(K ,Tac)→ Sel±,rel(K ,Tac)
locp−−→ H1±(Kp,Tac)

→ X rel,str → X±,str → 0. (6.12)

Since H1±(Kp,Tac) � �ac (see Proposition 3.8), by Theorem 6.2 the equivalence
between ranks in parts (i) and (ii) follows easily from (6.12). Indeed, if both X rel,str

and Selstr,rel(K ,Tac) are�ac-torsion, then (6.12) shows that Sel±,rel(K ,Tac) has�ac-
rank one, and since by Lemma 4.7 and Corollary 6.4 the submodule Sel±(K ,Tac) ⊂
Sel±,rel(K ,Tac) contains the non-torsion class z±∞, it follows that Sel±(K ,Tac) has
rank one, and therefore so does X± by Lemma 6.7(1). The other implication for
�ac-ranks is similar.

As for the relation between divisibilities in (i) and (ii), note that it follows
from the preceding paragraph that either of the rank hypotheses in (i) or (ii)
implies that both Sel±(K ,Tac) and Sel±,rel(K ,Tac) have �ac-rank one, and hence
Sel±(K ,Tac) = Sel±,rel(K ,Tac), since the quotient Sel±,rel(K ,Tac)/Sel±(K ,Tac)

injects into H1(Kp,Tac)/H1±(Kp,Tac), which has trivial �ac-torsion by Proposi-
tion 3.8. The map locp in (6.12) is therefore the same as the one in the exact sequence

0→ Selstr,±(K ,Tac)→ Sel±(K ,Tac)
locp−−→ H1±(Kp,Tac)

→ X rel,± → X± → 0. (6.13)

Since H1(K ,Tac) has trivial �ac-torsion, the non-vanishing of locp and the equality
rank�ac(Sel±(K ,Tac)) = 1 implies that Selstr,±(K ,Tac) = 0, since it is of �ac-rank
zero. From (6.13) we thus obtain

0→ Sel±(K ,Tac)

�acz±∞
locp−−→ H1±(Kp,Tac)

�acloc(z±∞)
→ coker(locp)→ 0,

which by Theorem 6.2 yields the relation

char�ac

(
Sel±(K ,Tac)

�acz±∞

)
· char�ac

(
coker(locp)

)
�ur = (L BDP

p ). (6.14)

On the other hand, taking �ac-torsion in the short exact sequence 0 →
coker(locp) → X rel,± → X± → 0 deduced from (6.13) and using Lemma 6.7(2)
(noting that X±,str is �ac-torsion) we obtain

char�ac
(
X±,str

) = char�ac
(
X±tors

) · char�ac(coker(locp)). (6.15)
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Similarly, the short exact sequence 0→ coker(locp)→ X rel,str → X±,str → 0 from
(6.12) yields

char�ac
(
X rel,str) = char�ac

(
X±,str

) · char�ac
(
coker(locp)

)

= char�ac
(
X±tors

) · char�ac(coker(locp))
2,

using (6.15) for the second equality. Combined with (6.14) we thus obtain

char�ac
(
X rel,str) · char�ac

(
Sel±(K ,Tac)

�acz±∞

)
�ur = char�ac

(
X±tors

) · (L BDP
p

)2
.

The equivalence between the divisibilities in the statement of the proposition is now
clear. 	


6.3 A p-converse to Gross–Zagier and Kolyvagin for supersingular primes

In this section we prove a p-converse to a theorem of Gross–Zagier and Kolyvagin
for supersingular primes (Theorem 6.11).

The key step in our proof is the following result towards Conjecture 4.8.

Theorem 6.9 Assume that:
(i) N is squarefree,
(ii) some prime � | N is non-split in K ,
(iii) if N is odd, then 2 splits in K .

Then both Sel±(K ,Tac) and X± have �ac-rank one, and we have the equality

char�ac
(
X±tors

) = char�ac

(
Sel±(K ,Tac)

�acz±∞

)2

as ideals in �ac[1/p]. If in addition E[p] is ramified at every prime � | N−, then the
equality holds in �ac.

Proof In the Appendix we explain how to adapt the methods of [26] to deduce from
Corollary 6.4 that both X± and Sel±(K ,Tac) have �ac-rank one, see Theorem A.5,
and that we have the divisibility “⊆” in �ac in the claimed equality of characteristic
ideals. In light of the equivalences inTheorem6.8 (whose proof applieswithout change
for the Iwasawa algebras with p inverted), the result follows from Theorem 5.3. 	


Let x1 be the Heegner point of conductor one (see Proposition 4.1), and set

yK = TrK [1]/K (x1) ∈ E(K )⊗ Zp.

It is immediate from the definitions that Sel+(K , E[p∞]) = Selp∞(E/K ) and
Sel+(K , T ) is identified with the pro-p Selmer group

Šp(E/K ) = lim←−
m

Selpm (E/K ).
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In the next result we recall all our running hypotheses for the convenience of the reader.

Theorem 6.10 Let E/Q be an elliptic curve of conductor N , p > 3 a prime of good
supersingular reduction for E, and K an imaginary quadratic field satisfying hypothe-
ses (gen-H) and (spl). Assume that:
(i) N is squarefree,
(ii) some prime � | N is non-split in K ,
(iii) if N is odd, then 2 splits in K .

If Selp∞(E/K ) has Zp-corank one, then yK is non-torsion.

Proof LetP0 = ker(�ac→ Zp) be the augmentation ideal. SinceAac[P0] = E[p∞]
and Tac/P0T

ac = T , by Lemma 6.5 there are natural maps with finite kernel and
cokernel:

X+/P0X
+ → Sel+(K , E[p∞]) = Selp∞(E/K ),

Sel+(K ,Tac)/P0Sel
+(K ,Tac)→ Sel+(K , T ) = Šp(E/K ). (6.16)

By TheoremA.5we have a�ac-module pseudo-isomorphism X+ ∼ �ac⊕M⊕M for
some finitely generated torsion�ac-module M, and Theorem 6.9 gives the equality4

char�ac
(
M

) = char�ac

(
Sel±(K ,Tac)

�acz+∞

)

as ideals in�ac[1/p].Thus the assumption that Selp∞(E/K ) hasZp-corank 1 implies
that char�ac(Sel+(K ,Tac)/�acz+∞) is not divisible byP0, and hence, denoting by z

+
0

the image of z+∞ in Sel+(K ,Tac)/P0Sel
+(K ,Tac), it follows that z0 generates a

Zp-submodule of Sel+(K ,Tac)/P0Sel
+(K ,Tac) of finite index. Since Šp(E/K ) has

Zp-rank one by hypothesis, and by construction the class z+0 is sent to the Kummer
image of yK in Šp(E/K ) under the second map in (6.16), the result follows. 	


We conclude with the proof of Theorem A in the Introduction.

Theorem 6.11 Let E/Q be a semistable elliptic curve, and p > 3 a prime of good
supersingular reduction for E . Then

corankZpSelp∞(E/Q) = 1 �⇒ ords=1L(E, s) = 1.

Proof By Ribet’s level lowering [47, Thm. 1.1], the representation E[p] is ramified at
some prime q dividing N . Fix one such prime q, and choose an imaginary quadratic
field K of discriminant DK such that:

(a) hypothesis (gen-H) holds,
(b) q is non-split in K ,
(c) hypothesis (spl) holds,

4 Note that only the divisibility “⊆” coming from Theorem 5.3 is needed for this proof.
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(d) if N is odd, then 2 splits in K ,
(e) L(EK , 1) �= 0.

The existence of such K follows easily from the non-vanishing result [20, Thm. B].
Indeed, if N is divisible by another prime q ′ �= q, we require q, q ′ to be both inert
in K and every prime factor of N/qq ′ to split in K ; while if N = q, we consider K
ramified at q.Any such K satisfies conditions (a) and (b); in particular, the root number
of E/K is w(E/K ) = −1. Since corankZpSelp∞(E/Q) = 1 �⇒ w(E/Q) = −1 by
[33, Thm. 4.30], it follows that w(EK /Q) = +1, and since (a) through (d) impose
only finitely many congruence conditions on the discriminant of K , condition (e) can
also be arranged by [20, Thm. B].

Having fixed K as above, by work of Kolyvagin [36] and Kato [32], the non-
vanishing of L(EK , 1) implies that

rankZE
K (Q) = 0, #X(EK /Q)[p∞] <∞.

Thus

corankZpSelp∞(E/Q) = 1 �⇒ corankZpSelp∞(E/K ) = 1,

and so the Heegner point yK is non-torsion by Theorem 6.10. By the Gross–Zagier
formula [23, 56], it follows that ords=1L(E/K , s) = 1, which by (e) implies that
ords=1L(E, s) = 1. 	
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Appendix A: Kolyvagin system argument

In this Appendix we explain how to derive a Kolyvagin system from the set of
plus/minus Heegner classes constructed in Sect. 4.1, and use it to prove Theorem A.5
below towards Conjecture 4.8.

We place ourselves in the setting of Sect. 6. We begin by briefly recalling the
ingredients from the theory of Kolyvagin systems that we need, referring the reader
to [26, 41] for more details. Let L denote the set of rational primes � satisfying:
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• � � Np,
• � is inert in K ,
• a� ≡ �+ 1 ≡ 0 (mod p), where a� = �+ 1− # Ẽ(F�),

and denote by N the set of squarefree products of primes � ∈ L, with the convention
that 1 ∈ N. For each � ∈ L, let I� ⊂ Zp be the ideal generated by a� and �+ 1, and
for S = �1 · · · �r ∈ N set IS =∑r

i=1 I�i , with IS = 0 when S = 1.
For any GK -module M and v a finite prime of K , define the unramified local

condition H1
f (Kv,M) by

H1
f (Kv,M) := ker

{
H1(K�,M)→ H1(K ur

� ,M)
}
,

and the singular quotient H1
s (Kv,M) by the exactness of the sequence

0→ H1
f (Kv,M)→ H1(Kv,M)→ H1

s (Kv,M)→ 0.

Then for � ∈ L, letting λ be the prime of K above �, there is a finite-singular com-
parison map

φfs
� = Ev−1σ� ◦ evλ : H1

f (Kλ,Tac/I�) � Tac/I� � H1
s (Kλ,Tac/I�), (.17)

where evλ is given by evaluation at a Frobenius element at λ, and Evσ� is given by
evaluation at a fixed generator σ� of G(�) := Gal(K [�]/K [1]), viewed as an element
in the Galois group of the totally tamely ramified extension K [�]λ′/Kλ, where λ′ is
the unique prime of K [�] above λ.

For each S = �1 · · · �r ∈ N set

G(S) := Gal(K [S]/K ), G(S) := Gal(K [S]/K [1]) � G(�1)× · · · × G(�r ),

and note that since the primes �i are inert, each G(�i ) is cyclic order �i + 1. Fix gen-
erators σ�i ∈ G(�i ), and define the Kolyvagin derivative operator DS ∈ Z[G(S)] �
Z[G(�1)] ⊗ · · · ⊗ Z[G(�r )] by

DS := D�1 · · · D�r , where D�i :=
�i∑

j=1
jσ j

�i
∈ Z[G(�i )].

Tracing through the construction of z∞[S]± in Sect. 4.1, [26, Lem. 1.7.1] implies
that the natural image of

κ̃±S :=
∑

σ∈G(S)/G(S)
σDSz∞[S]± ∈ H1(K [S],Tac)

in H1(K [S],Tac/ISTac) is fixed under G(S).
In what follows we shall use repeatedly the fact that E(K )[p] = 0, which (as

already noted in the body of the paper) is immediate from the fact that E[p] is an
irreducible GQp -module and p splits in K .
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Lemma A.1 For every S ∈ N the restriction map

resS : H1(K ,Tac/ISTac)→ H1(K [S],Tac/ISTac)G(S)

is an isomorphism.

Proof This follows readily from the inflation-restriction exact sequence, noting that
H0(K [S],Tac/ISTac) � lim←−n

H0(K ac
n [S], E[IS]) vanishes, since E(K∞)[p∞] = 0

and Q(E[p∞]) ∩ K [S] = Q. 	

In light ofLemmaA.1,we letκ±S ∈ H1(K ,Tac/ISTac)be the unique class satisfying

resS(κ
±
S ) = κ̃±S . To describe its local properties, for � ∈ L define the transverse local

condition H1
tr(Kλ,M) by

H1
tr(Kλ,M) := ker

{
H1(Kλ,M)→ H1(K [�]λ′,M)

}
,

where λ′ is the unique prime of K [�] above λ. Letting H1
F±(Kv,Tac/I ) be the prop-

agation of H1
F±(Kv,Tac) under a quotient map Tac � Tac/I , for S ∈ N define the

S-transverse Selmer group H1
F±(S)(K ,T

ac/ITac) to be

ker

{
H1(K ,Tac/I )→

∏

v�S

H1(Kv,Tac/I )

H1
F±(Kv,Tac/I )

×
∏

v|S

H1(Kv,Tac/I )

H1
tr(Kv,Tac/I )

}
.

Lemma A.2 Let S ∈ N. Then we have pd · κ±S ∈ H1
F±(S)(K ,T

ac/ISTac) for some
d ≥ 0 independent of S.

Proof Let λ | � | S be a prime, and as before let λ′ be the unique prime of K [�] above
λ. Then for every n the prime λ′ splits completely in K ac

n [S], and fixing a prime λ′′ of
K ac
n [S] above λ′ we have K [�]λ′ = K ac

n [S]λ′′ .Hence from the construction of z∞[S]±
in Proposition 4.4, to show that κ±S satisfies the transverse local condition at � is suffices
to check that

∑
σ∈G(S)/G(S) σDSzn[S] has trivial restriction to H1(K ac

n [S]λ′′ , T /IST ),
which is checked in the proof of [26, Lem. 1.7.3]. On the other hand, for primes v � S
the only non-trivial condition to check is that at the primes v | p and at the primes
v | N . In the former case, that the class κ±S satisfies locv(κ

±
S ) ∈ H1

F±(Kv,Tac/ISTac)

follows immediately from Lemma 4.7. And in the latter case, the existence of some
d ≥ 0 such that pd · locv(κ±S ) ∈ H1

F±(S)(Kv,Tac/ISTac) (for all v | N and all S) is
shown by the same argument as in the proof of the inclusion (15) in [27, Prop. 3.4.1].	

Lemma A.3 For all �S ∈ N, we have φfs

�

(
locλ(pd · κ±S )

) = locλ(pd · κ±�S).
Proof This follows from [26, Prop. 1.7.4] similarly as in the proof of Lemma A.2. 	


In terms of [26, Def. 1.2.3], the preceding Lemmas A.2 and A.3 show that the
collection of classes {pd ·κ±S }S∈N forms aKolyvagin system for the triple (Tac,F±,L).
LettingKS(Tac,F±,L) denote the�ac-module of such systems, we have thus shown
the following.
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Theorem A.4 There exists a collection of cohomology classes

κ± = {κ±n ∈ H1(K ,Tac/ISTac)}n∈N
with κ±1 = z±∞ such that pd · κ± := {pd · κ±n }n∈N ∈ KS(Tac,F±,L).

Since z±∞ is not �ac-torsion by Corollary 6.4, the Kolyvagin system pd · κ± of
Theorem A.4 is non-trivial. From the methods of Mazur–Rubin [41], as extended by
Howard [26, 27] to the anticyclotomic setting of Heegner points, we thus obtain:

Theorem A.5 Assume that N is squarefree. Then the module Sel±(K ,Tac) has �ac-
rank one, and there is a finitely generated �ac-module M such that:
(i) X± ∼ �ac ⊕ M ⊕ M,

(ii) We have the divisibility

char�ac(M) ⊃ char�ac(Sel±(K ,Tac)/�acz±∞)

in �ac.

Proof Let P be a height one prime of �ac with P �= p�ac, let SP be the integral
closure of�ac/P, and let TP := Tac⊗�ac SP, endowedwith the diagonalGalois action
GK -action. Let�P be the field of fractions of SP, and set VP := TP⊗SP �P, AP :=
VP/TP. Letting F±ss denote the Selmer structure on TP obtained by propagation,
specialization at P yields a map

KS(Tac,F±,L)→ KS(TP,F±ss,L).

Denoting by pd · κ±,(P) = {pd · κ±,(P)
n }n∈N the image of pd · κ± under this map,

it follows from Lemma 6.5 and the non-triviality of z±∞ that the class κ±,(P)
1 is non-

torsion for all but finitely many P. Since by [33, Prop. 4.11] the local conditions
H1
F±ss(Kv, TP) for v | p are self-dual under the local Tate pairing and by [19, Prop. 2.1]

our assumption that N is squarefree and p is supersingular (so in particular, E[p] is
an irreducible GQ-module) implies that the GQ-action of E[p] is surjective,5 by [27,
Thm. 2.2.2] it follows that for all but finitely manyPwe have κ±,(P)

1 ∈ H1
F±ss(K , TP),

that H1
F±ss(K , TP) is a free, rank one SP-module, and that

H1
F±ss(K , AP) � (�P/SP)⊕ MP ⊕ MP,

with MP a finite SP-module satisfying

length(MP) ≤ length(H1
F±ss(K , TP)/SP · κ

±,(P)
1 ).

The same argument as in [26, Thm. 2.2.10] then yields the result. 	

5 We thank the anonymous referee for bringing this result to our attention.
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