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Abstract

Let E/Q be a semistable elliptic curve, and p > 3 a prime of good supersingular
reduction for E. In this paper we prove the following p-converse to a theorem of
Gross—Zagier and Kolyvagin:

corankg, Sel,=(E/Q) =1 = ords=1L(E,s) =1.

In particular, this gives new mod p criteria for a rational elliptic curve to satisfy the
Birch—Swinnerton-Dyer conjecture. For good ordinary primes p, the implication is
due to Skinner and Wei Zhang independently. A key new ingredient in our proof is a
result towards a Heegner point main conjecture in the style of Perrin-Riou formulated
in this paper.

Mathematics Subject Classification Primary 11R23; Secondary 11GO05 - 11G40

1 Introduction

The purpose of this paper is to prove a p-converse to the theorem of Gross—Zagier and
Kolyvagin for good supersingular primes. With “supersingular” replaced by “ordi-
nary”, such a p-converse is due to Skinner [49] and Zhang [57] independently.
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1.1 Statement of the main results

Let E£/Q be an elliptic curve, and p a prime of good reduction for E. Let
Sel =< (E/Q) C H'(Q, E[p™]) be the p>°-Selmer group fitting into the descent exact
sequence

0— EQ) ®Qp/Zp — Selp=(E/Q) — II(E/Q)[p™] — 0, (1.1)

where III(E/Q) is the Tate—Shafarevich group of E. In rank one, the Birch—
Swinnerton-Dyer conjecture predicts the finiteness of IIT (£ /Q), and that the following
are equivalent:
(1) ordg=1L(E,s) = 1;
(ii) corankz,Sel,~(E/Q) = 1.
The implication (i) = (ii) follows from the celebrated works of Gross—Zagier
and Kolyvagin in the 1980s, which also yield the finiteness of III(E/Q) when
ords—1 L(E, s) = 1. More recently, the converse (ii) = (i) was obtained by Skinner
[49] and Zhang [57] independently in the p-ordinary case.

The main result of this paper is a proof of the implication (ii) = (i) when p is
supersingular for E.

Theorem A Let E/Q be a semistable elliptic curve and p > 3 a prime of good
supersingular reduction. Then

corankz,, Sel,~(E/Q) =1 = ords=1L(E,s) = 1.

In particular, if corankz,,Sel poo (E/Q) = 1 then #1II(E /Q) < oo.

Note that Theorem A concludes the finiteness of the full III(£/Q), not just of
its p-primary part. In particular, Theorem A yields the following mod p criterion
for a rational elliptic curve to satisfy the Birch—-Swinnerton-Dyer conjecture. Let
Sel,(E/Q) C H'(Q, E[p]) be the p-Selmer group.

Corollary B Let E/Q be a semistable elliptic curve, and p > 3 a prime of good
supersingular reduction for E. If Sel ,(E/Q) ~ Z/pZ, then

rankz E(Q) = ord;—1L(E,s) =1

and #1II(E /Q) < oo.

Proof Since E[p] is irreducible as a G » -module by a well-known result of Fontaine
(see e.g. [18]), the natural surjection

Sel,(E/Q) — Sel,~(E/Q)[p]

is an isomorphism. By the exact sequence (1.1) and the non-degeneracy of the Cassels—
Tate pairing on III(E/Q)/II(E /Q)giv, We thus see that

Sel ,(E/Q) ~Z/pZ = Sel,~(E/Q)~Q,/Z,,
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and therefore ords—; L(E, s) = 1 by Theorem A. The conclusion now follows from
the work of Gross—Zagier [23] and Kolyvagin [36]. O

Remark 1.1 The mod p criterion of Corollary B for a rational elliptic curve to have
algebraic and analytic rank 1 extends to supersingular primes p an analogous criterion
in the p-ordinary case' originally due to Skinner [49] and Zhang [57]. See the work of
Bhargava—Skinner—Zhang [6] for an application of such criteria to the proof that a large
proportion of rational elliptic curves satisfy the Birch—-Swinnerton-Dyer conjecture.

1.2 Main ideas of the proof

A key input in the proof of the p-converse for ordinary primes in [49] is the “lower
bound” divisibility in a Greenberg type Iwasawa main conjecture for Rankin—Selberg
convolutions obtained by the second author in [52] by a delicate study of Eisenstein
congruences on GU(3, 1). Similarly, a key input in our proof of Theorem A is a
divisibility towards a Greenberg type Iwasawa main conjecture for Rankin—Selberg
convolutions obtained in recent work of the authors with Zheng Liu [13], extending
the main results of [52] to the non-ordinary case.

In this sense, our approach to the p-converse is similar in spirit to Skinner’s
proof in the p-ordinary case, but our method does not require the hypothesis that
#III(E/Q)[p™°] < oo (cf. [49, Rem. 2.9.1(x)]). This improvement is ultimately
explained by the fact that our approach takes advantage of the presence of Heeg-
ner points over the anticyclotomic tower, rather than just over the base. In practice, as
a key to the proof of Theorem A, in this paper we initiate the study of the anticyclo-
tomic Iwasawa theory of Heegner points at supersingular primes, extending a theory
first systematically developed by Perrin-Riou [42] in the p-ordinary case.

More precisely, for any elliptic curve E/Q with good supersingular reduction at p
satisfying the condition (automatic if p > 3) that

ap:=p+1—-#EF,) =0,

in Sect. 4 we construct signed A?-adic Heegner classes zéco attached to an imaginary
quadratic field K in which p splits and satisfying a “generalized Heegner hypothesis”.
Here A* = Z,[Gal(K%/K)] denotes the Iwasawa algebra for the anticyclotomic
Z,-extension K5$/K. We show that the classes zfo land in a signed Selmer group
Sel* (K, T*) in the style of Kobayashi’s [35], and extending Perrin-Riou’s Heegner
point main conjecture [42, Conj. B] to the supersingular case, we conjecture that the
classes zZ are not A*-torsion, that both Sel* (K, T*) and the Pontryagin dual X*
of its analogue for torsion coefficients have A?-rank one, and that

+ acy \ 2
Sel™(K, T )> (1.2)

+ ) _
CharAac (Xtors) = charAac< AaCZi
00

1 See also [55] for a proof in the p-ordinary case of a similar mod p criterion for higher weight modular
forms.
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as ideals in A?, where the subscript tors denotes the A?-torsion submodule (see
Conjecture 4.8).

Contrary to the usual Selmer groups, the signed Selmer groups satisfy a version of
Mazur’s control theorem (see Lemma 6.5), and from this one sees that the implication

corankz,,Sel,~(E/K) =1 = ords=1L(E/K,s) =1,

follows from Conjecture 4.8 and the Gross—Zagier formula [56]. In fact, the divisibility
“C”in (1.2) after inverting p suffices for the above implication.

The proof of Theorem A is thus deduced from the following result, where K is
any imaginary quadratic field in which p splits and satisfying the generalized Heegner
hypothesis (gen-H) in Sect. 2.

Theorem C Let E/Q be an elliptic curve of conductor N, and p > 3 a prime of good
supersingular reduction for E. Assume that:

(1) N is squarefree,

(i) some prime £ | N is non-splitin K ,
(iii) if N is odd, then 2 splits in K .

Then the classes zoﬂto are not A*-torsion, Seli(K , T%) and X £ both have A*-rank
one, and

Sel* (K, T) )2

+ )
CharAac (Xtors) = charAac< Aaczi
0

as ideals in A*[1/p]. If in addition E|[p] is ramified at every prime £ | N~ , then the
above equality holds in A*, and so Conjecture 4.8 holds.

For the proof of the key Theorem C, we first obtain an explicit reciprocity law (see
Theorem 6.2)

BDP
Logpi(resp(zéto)) =0_1p-

Ed

relating the image of zfo under certain anticyclotomic signed logarithm maps
constructed in Sect. 3 to the p-adic L-function .,%BDP first studied by Bertolini—
Darmon-Prasanna [4]. In particular, it follows from this result and the nonvanishing
of %BDP that the classes zZ, are not A*-torsion. With this result in hand, in Sect. 6.2
we establish the equivalence between our Perrin-Riou Heegner point main conjecture
and the Iwasawa—Greenberg main conjecture for (prDP)z. Since divisibilities are
preserved under the equivalence, we are thus ultimately able to deduce Theorem C
from the main result in [13].

Remark 1.2 Applied for a suitable auxiliary imaginary quadratic field K, the main
result of [13] (a divisibility in a 2-variable Iwasawa—Greenberg main conjecture; see
the proof of Theorem 5.3) is also a key ingredient in the proof by the second author [54]
of Kobayashi’s cyclotomic main conjecture [35]. In that case, Beilinson—Flach classes
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and their reciprocity laws are used in the passage between different main conjectures.
As a result, another key ingredient in [54] is a study of big Galois representations
associated with certain CM Hida families carried out by Burungale—Skinner—Tian [5].
In this paper, we do not use Beilinson—Flach classes, and the results of [5] are not
needed.

Finally, we conclude this Introduction by noting that the method introduced in this
paper to deduce a p-converse theorem from a divisibility in an Iwasawa main conjec-
ture for Heegner points” has influenced subsequent work in this direction, notably [3,
8, 37] (CM cases) and [11] (residually reducible case).

1.3 Notations

For every prime p we fix once and for all complex and p-adic embeddings C &

Q A C,, and use them to view algebraic numbers as lying in both C and C,,. For
L an algebraic extension of Q or Q,, we let G denote the corresponding absolute
Galois group. If L is a number field and v a finite place of L, we letrecy, : A} — Gib
and rec, : L} — G%tl be the global and local reciprocity maps of class field theory,
respectively. In this paper we take their geometric normalization, i.e., rec, sends a
uniformizer @, to a geometric Frobenius Frob, € G /I, where I, C G, is the
inertia subgroup, and recz |, x = rec, .

2 p-Adic L-functions
In this section we introduce the p-adic L-functions that will appear in our arguments.
Throughout this section, we let £/Q be an elliptic curve of conductor N, let f €
S$2(To(N)) be the associated newform, and let p > 5 be a prime of good reduction for
E. Let K be an imaginary quadratic field with ring of integers Ok and discriminant
Dk < 0. Writing

N=N"N"

with N the largest factor of N divisible only by primes which are split or ramified
in K, we assume that K satisfies the following generalized Heegner hypothesis:

N7 is the squarefree product of an even number of primes, (gen-H)

and fix an integral ideal Mt such that Ok /‘J’IJr = Z/N™TZ. In addition, we assume
that

(p) = pp splits in K, (spl)

2 Anidea first appeared in an early draft of this paper [14] (not for publication), and in [53] in the ordinary
case.
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with p be the prime K above p induced by ¢,.
Let I'* = Gal(K%/K) be the Galois group of the anticyclotomic Z ,-extension of
K, and set

Aac — Zp[[l“ac]], Aur — Aac®ZPZ1[1)r’

where Z;' is the completion of the ring of integers of the maximal unramified extension
of Q,. Note that since I'*° ~ Z, (non-canonically), A*® is isomorphic to a power
series ring in one variable (so in particular, is a domain).

We say that an algebraic Hecke character x : K*\Agx — C* has infinity type
(L1, 82) € 22 if xoo(z) = z112% for all z € (K ®q R)* =~ C*, where y is the
component of x at the archimedean place, and we say that a locally algebraic p-adic
character x : G‘}}’ — C has weight (€1, {2) € 72 if % (reck (a)) = a“1a® for all
a € (K ®qQp)* close to 1 (cf. [48, §IIL.2]).

Associated with a locally algebraic p-adic character ¥ of weight (£1, £2) there is
an algebraic Hecke character x of infinity type (£1, £>) given by

x(a) = Lootljl(f( (recK(a))a;ZIagez)agéElﬁg, 2.1
where (ay, a5) = (K ®Q Qp)™ and ax, € (K ® R)* are the components of a at p
and oo, respectively.

Let IT be the cuspidal automorphic representation of GL;(A) such that L(IT, s —
1/2) = L(f,s), and put

L(f,X,S)ZL(HK®X,S— 1/2)’

where Ilx denotes the base change of Il to an automorphic representation of
GL,(Ag).

Proposition 2.1 There exists a square-root p-adic L-function
BDP ur
2Ly EA

characterized by the following interpolation property. If N~ # 1, assume that N
is squarefree. Then for every locally algebraic character x : T'* — C; of weight
(n, —n) withn € Z-o andn = 0 (mod p — 1) and crystalline at both p and p, we
have

. a(f’ fB)_l

) Q\Y Tmro+1 !
%BDP(X)Z _ (Q_Z> . in) (f; 1 )X(x;;tn_)l
(27.[) n+ /DK

x (1= apx o) p ™"+ x )2 p ™) - L(f, x, 1),

where

o xp+ € AR is such that ordy (xp+ ) = ordy, (M) for all finite places w of K,
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e Q, ¢ (Z‘l‘,r)X and Qoo € C* are CM periods attached to K as in [12, §2.5] and
[30, §4.5.5],
e a(f, fp) = (;{;:2) is a ratio of Petersson norms normalized as in [45, §1] when

N~ # 1, anda(f, fg) = 1 otherwise.

Proof This is a refinement of the p-adic L-function constructed in [4] for N~ = 1
and [7] for N~ # 1. As an element in A", the construction of .,%BDP can be found in
[2, §4], where it is deduced from an extension of the construction in [12]. The proof
of the stated interpolation property, building on a explicit Waldspurger formula [45,
Thm. 3.2] is then deduced as in [7, §8].

Remark 2.2 The CM period Qx € C* in Proposition 2.1 agrees with that in [4,
(5.1.16)], but is different from the period R, defined in [17, p.66] and [29, (4.4b)].
In fact, one has

Qoo =2mi - Q.

In terms of Q, the interpolation formula in Proposition 2.1 reads

2B (32 — <&)4 T+ I)X(X?I_)l_l
Qoo 4(277)172'1«/D_K
x (1= apx ) p " + x )2 p ™)V - L(f, x, D).

a(f, f5)"!

This is the form of the interpolation that we shall use later.

By an extension of Hida’s methods [25], the p-adic L-function .,%BDP of Propo-
sition 2.1 is known to have vanishing p-invariant (and in particular, to be nonzero)
under a mild hypothesis.

Theorem 2.3 Assume that E[p] is absolutely irreducible as a G g-module. Then
M(D%BDP) =0.

Proof This follows from [28, Thm. B] for N~ = 1 and [9, Thm. B]for N~ # 1. O

As noted in the proof of Proposition 2.1, the proof of the interpolation property
of .,%BDP in [4] is based on an explicit from of Waldspurger’s formula [51]. Later
we shall use the fact that, up to unit, the construction of another element of A" with
the same interpolation property as the square of .i”pBDP (and hence equal to it) can be
deduced from the work of Hida and Katz. We explain this in the remainder of this
section. (It should be possible to extract the following results from [30, §§5.2-5.3],
but we provide full details for the convenience of the reader.)

Let T be the Galois group of the Zf,—extension of K, and set A = Z,[I'] and

A" = AQz, L.
Theorem 2.4 (Katz) There exists a p-adic L-function

ngatz c AW
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such that for every locally algebraic character ¥ : T — C;‘ of weight (k, j) with
0 < —j < k crystalline at both p and p, we have

Katz  »\ __ & k=i . . <\/ DK)j
LRt (g) = (%) ORI S
x (1= x"'p)p™") - (1= x(xp) - Lx, 0),

where ), and Q0 are periods as in Theorem 2.1 and Remark 2.2, respectively, and
L(x,s) is the Hecke L-function of x. Moreover, we have the functional equation

D%KatZ(()ZC)—lN—l) — D%KatZ()z)’
where the equality is up to a p-adic unit and x¢ denotes composition of X with the
non-trivial automorphism of K /Q.

Proof See [31, §5.3.0], or [17, Thm. I1.4.14]. for the construction, and [31, §5.3.7] or
[17, Thm. II.6.4] for the functional equation. O

Write f = ZZOII anq" € S2(I'g(N)) for the newform associated to E, and let
M =Ilcm(N, Dg).

Theorem 2.5 (Hida) There exists a p-adic L-function

L?ida € Frac(A ®z, Q)

such that for every locally algebraic character I/Af T — C; of weight (€2, 1) € Z?
with £y > —€1 > 0 and crystalline at both p and p, we have
. R ZZI_ZZ.ZZ_ZI_IMEH_ZZ_H
Lglda(w) = J 2[:4_1

(2m) ) <91///z2 ’ 9% )M

EW, f, 1)
U0 (1 v0p
(1= ) (1 p«ﬁ(xp))
where sz is the theta series of weight {» — £1 + 1 > 3 associated to the Hecke

;2, (g, &) m is the Petersson norm on U1 (M), and E(Yr, f, 1)
K

L) 2+ 1)

: L(f, ‘[/v 1),

character Yr¢, = Y| - |
is given by

(1= p 'Y Opa) (1 = p~ YA =¥ (a1 =y ()7,
with o and B the roots of X* — apX + p.

Proof This is a special case of the p-adic Rankin—Selberg L-functions constructed
by Hida [24]. In the form stated here, the result is given [39, Thm. 6.1.3(ii)] after
reversing the roles p and p (which accounts for our unconventional ordering (¢7, £1)
in the statement). ]
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Since p is odd, the Galois group I' decomposes as the product I't x I'™ of its
eigenspaces under the action of complex conjugation, with the minus eigenspace
corresponding to the anticyclotomic Galois group I'* >~ I' ™. Thus in particular A ~
A*®g,Z,[T].

Definition 2.6 Let LES to be the element in the fraction field of A"™ ®z, Q, given by

h , .
RS ._ 'K Katz,— 7 Hida
LES 1= 2K g e,
K
where h is the class number of K, wg = [O%|, and ,pratZ’_ is the image of %Katz
under the map A" — A given by y > y(y©) L.

Let pryac (Lgs) be the image of LES under the map induced by the natural projection
I' - IT'™ >~ I'*, which a priori defines an element in Frac(A" ®z, Q,), and put

LPP = (L7 F)2 2.2)

Proposition 2.7 If N~ # 1, assume that N is squarefree. Then pryac (Ll;S) is an
element in A" and

(prrs (LES)) = (LEPP - a (£, £3))

as ideals in A".

Proof It suffices to show that after multiplication by a unitin A" the p-adic L-function
Prrac (LES) satisfies the same interpolation property as the product LEDP ~a(f, fB).

Let ¥ be a character of T' as in Theorem 2.5 factoring through I'*, hence of
weight (n, —n) for some n € Z.¢; then {0y, , 0y, ) m is the period appearing in the
interpolation formula. Since 6y, has weight 2n 4 1, by Hida’s formula for the adjoint
L-value [29, Thm .7.1] and Dirichlet’s class number formula we obtain

rQn+1) hg B
(O, Oy ~ W'E'L(Xn(xrf) LD,

where ~ means the ratio between the two terms is interpolated by a unit in A" as n
varies. Since L(),(x$) ™', 1) = L (x$)"'N"1,0) and x, (x$)"!N~! has infinity
type (2n + 1, 1 — 2n) within the range of interpolation of .,%Katz, by Theorem 2.4 it
follows that

g Q,\ " ¥ (xp) ¥ (xp) Wk
ngtZ, ~ 4n.(7p> _(1_ p)<1_ P )9 , 0 C—_—
S o ¥ (xp) oGy ) O O
2.3)

Noting that the modified Euler factor £(y, f, 1) in Theorem 2.5 satisfies
_ N1 N2 =12
EW, LD =0 =apypp +¥ () p )7,
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substituting (2.3) into the definition of L?S we thus see that

prrac (LR () ~ ZPPP )7 - alf. fB)

by comparing the interpolation formulas in Theorems 2.1 and 2.5, and this yields the
result. O

3 Local results
The results in this section will be used to study the local properties at the primes above
p of the signed Heegner classes constructed later in the paper. Throughout this section,

we let £/Q), be an elliptic curve with good supersingular reduction at an odd prime
p with

ap:=p+1—#E(F,) =0.

Let Qp, o0 (resp. koo) be the cyclotomic (resp. unramified) Z ,-extensions of Q,,, and
denote by L, the compositum of Q) ~ and k. Let

U = Gal(keo/Qp), T :=Gal(Qp,00/Qp), Goo :=Gal(Loo/Qp) = U x T,

and fix topological generators y € I"'andu € U, withu corresponding to the arithmetic
Frobenius. Finally, we let A = Z,[G] and, letting T = T, E be the p-adic Tate
module of E, we set

T, :=T®gz,A, 3.1)

equipped with the diagonal Galois action, where Gq,, acts on the second factor via
the tautological character Gg, = Goo = A™.

3.1 Local points

Let k/Q, be a finite unramified extension with ring of integers O, and maximal
ideal my, and denote by o the Frobenius automorphism of k. For f € k[X], we let
f? € k[X] denote the result of applying o to the coefficients of f.

Fix z € O/, and consider

log, (X) =Y (1)) =—"—

y
07 (X)
pl

J=1
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where 9 (X) = 97" 6+ 0.9 0 9, (X) with ¢, (X) = (X 4 2)” — zP. For every

Z

u=7y2,bet" € Oft] and f € k[X], let

u(p) (N0 = > b7 f P (X))

£=0
As in [35], we say that f has Honda type u if u(¢;)(f) =0 (mod p) and f'(0) = 1.
Lemma 3.1 For everyn > 0, log(pg—n is of Honda type t* + p.
Proof A straightforward computation (cf. [35, §8.2]).

Let E be the formal group associated to the minimal model of E over Z,. By
Honda theory (see [35, Thm. 8.3]), it follows from Lemma 3.1 that for every n > 0

there exists a formal group 9}["] over O whose logarithm is given by log(p{,fn and for
which the composition )

Sy 1= expy o log s Fhn E (3.2)

is an isomorphism. Let €, ; € L%["](mk) be such that

oo
i1 _g—t2)
10g gini (€n,0) = Y (=1)/ 7127 " p/
Jj=1
(this exists since log z(n defines an isomorphism ﬁz["] (mp) — my), and define Cn.; €

E(mk(upn)) by

Cnz o= 5 (€n o [+] yz[,l]z”’” = 1), (3.3)

where ¢,» is a primitive p”-th root of unity. For varying n, we shall assume that the
roots ¢, have been chosen compatibly, so that ¢ ;;,l b =pn.

Lemma3.2 Let T/t : E(mk(upn+|)) — E(mk(ﬂp,,)) be the trace map. If z € O} is
a root of unity, then

1~ ~
TrZJr (Cn+1,2) = —Cn—1z-

for every positive n.

Proof Since loc is injective on E(mk(u,}w)) by [35, Prop. 8.7], it suffices to check
the stated relation after applying log 2. Since z is a root of unity of order prime to p,
for every k > 0 we have

O,Zkfnfl

—n—1
((Pg )(Zk) =z (Canrlek — 1),
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and this is zero for 2k > n + 1. Hence

log 4 (T (G41,2))

o0 00 O.Zk—n—l
- —(n+1+42j) Z (é‘ n+1-2k — 1)
=Tt [ =0T el 3 =k -
j=1 k=0 p
— ] g—+142) J— > kZUZk_n_] (Cpni1-2c — 1)
=py (172 pl—p " +pY (=D :
j=1 k=1 P
= _logé‘(gn—l,z)s
using that Tr;frl(z"ﬂF1 (Cpe1 = 1) = —pz°""" for the second equality. m|

Let k, be the subfield of k(1 ,n+1) with Gal(k, /k) =~ Z/p"Z, let my, C k, be the
maximal ideal, and denote by

cn € E(my,) (3.4)

the image of &, 1, under the trace map E (mk(u,,n ) E (mg,). Let

s =[] enx+D. @, = [] onX+D,

2<m=n 1<m=n
m even m odd
—1 yipm—1 . . .
where ®,,(X) = Zf;ol XP"" is the p"-th cyclotomic polynomial. Set also

a),ﬂzE (X)) = X&)f(X), and note that
on(X) = (X + D" —1 = X&F (X)aF (X). (3.5)

Let also A, = Z,[Gal(k,/Qp)].
Proposition 3.3 There is an exact sequence
0— E(mg) = Apcny ® Ap1cp—i1; — E(my,) — 0,
where the first map is the diagonal embedding and the second map is (P, Q) +—>
P[-1z0.

Proof This follows from Lemma 3.2 by the same argument as in the proof of [35,
Prop. 8.12] (see also [34, Prop. 2.6]). O

Now let k = Qpm C Q‘I‘,r be the unramified extension of Q, of degree p”, and
write My, , C ki, , for the previously defined my C k with k = Q,n. We identify A
with the power series Z,[X, U] setting X = y — 1, U = u — 1 for the topological
generators y and u fixed at the beginning of this section. We also set

A = N (@n(U), 0,(X)), AL, = A (0nU), 0f (X)) = Apn/(@F (X)),
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so that A, , = Z,[Gal(ky,,,/Qp)] and Afrjyn =~ & (X) Ay, by the relation (3.5).

Lemma 3.4 Form,n > O there exists ¢,y , € E(mm,n) such that

m,n
Trm ’1 n(Cm n) = Cm—1n

Tl'm n— 1(Cm n) = —Cmn—2,

where Tr”" o 1, is the trace map E(mm,n) — E(mm/,n/).

Proof We first show the existence of points ¢, , € E (mq,m 1 +1)) satisfying the
stated compatibilities with respect to the trace maps

TrZ nn, E(mem (Manrl )) - E(mem/ (/“Lpn/+l )) (36)

The result will then follow by taking c;, , to be the image of ¢, , under the trace map

EA'(mem (.uvpn+1 )) - E(mm,n)-
Let Z,m be the ring of integers of Q,», and consider the module

Ooo = 1(&1’1 me
m
with limit with respect to the trace maps. As shown in [40, Prop. 3.2], the module Oy,
is free of rank one over Z,[U]. Let d = {d,u}m be a generator of O as a Z,[U]-
module, and write d),, = Zj am, jm,j With a,, j € Z, and &, ; roots of unity (as is
possible by the normal basis theorem). Define ¢, ,, by

Em,n = Zam,jgn,;‘,,,,jv 3.7

mn

where ¢, ¢, ; € E(mem (1 y) is asin (3.3). Put Tr = Tr, ",  for the trace map as

in (3.6). Then similarly as 1n the proof of Lemma 3.2 we ﬁnd

lOgE(TI'(Cm n)) =Tr (Z( 1)/ 1 Zam J{mf(n+l+2,)pj

j=1 j

+Z(N

2k—n—1
Z am, 1(,21 (Cpnﬂ—zk -1
pk

Tr(dy, )”21{_”_1 Cprr1an = 1)
3

o0
DI e d)” " P 4 Y1
1 k=0 p

kmg

J
= logé (Em—l,n)

using that a,, ; is fixed by o for the second equality and that Tr(d,,) = d,,—1 for the
third one. Since the second norm relation for ¢, , (i.e., with respect to Trm n_1) 18
immediate from Lemma 3.2, this concludes the proof. O
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Keepmg the notations in Lemma 3.4, define the plus/minus-norm subgroups
E*(my0) C E(my,) by

ET (M) i= {P € E(myp) | I}, (P) € E(my, () forall 0 < £ < n, even ¢},

m[+

E=(myp) = {P € Emyy) | T, ((P) € E(my) forall —1 <€ <n, odd ¢}.

We conclude this section with the following definition of subsequences of {c;;; » }im.n
which we shall use in the next section:

Cm.n if n is even _ cman—1 ifniseven
ct = ’ = ’ (3.8)

C =
mn Cmn—1 if nisodd, . Cmp  ifnisodd.

From Lemma 3.4, we see that cm n € E i(mm,n).
Corollary 3.5 The element C%,n generates E* (My.n) as a Ay n-module, and we have
+ ~ + ~ ,HF
Am,ncmﬁ = Am,n/(wn (X)) >~ w, (X)Am,n-

Proof The first part follows immediately from Proposition 3.3. For the second part,
suppose first that n is even and consider cm ,,- Using Lemma 3.4 repeatedly we obtain

o (X)emn = o) (T (emn) = =0} y(X)emn—2 =+ =£Xcno =0
Thus we have a natural surjection Ay, ,/ (a)+(X ) — Ay ”cm ,»» Which is readily
seen to be an isomorphism by comparing Z,-ranks. Since multiplication by o, (X)

on A, defines an isomorphism Am,,,/(a),;F (X)) ~ , (X)Ap,, this completes the
proof of the result in this case. The proof in the other cases is the same.

3.2 The plus/minus Coleman maps
Let T be the p-adic Tate module of E, and consider the local Tate pairing
(Vi = H Gy ELp™D) x H Gy T) = B (ks Qp/Zp (1) = Qpp/Zy

obtained as the limit of the usual local Tate pairing associated to the Weil pairing
E[p’] x Elp’] — p,; = Z/p’Z(1). We denote by

ot EMyy ) @ Qp/Zy x H (ki T) — Qp/Zy

the map obtained by pre-composing ( , )., with the Kummer map E M) ®
Qy/Z, — H'(kp n, E[p™)).

Definition 3.6 Let Hi(km,n, T) be the orthogonal complement of E* (k) ®Qp/ZLp
under (, )m.n.
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Let c,j,f,n be as in (3.8), and define
PE, H (ko T) = Amon = Zp[Gal(kn,n/Q))]
by

n+l
P () =(=DT1 3" (e )7 ma o
UEGal(km,lz/Qp)

Corollary 3.5 easily implies that
HY (k. T) = ker(P;,) (3.9)

and the image of Pnjin is contained in @] (X) A, , (see [35, Props. 8.18, 8.19]). Thus
there is a unique map Col3; , : H! (ky», T) — A3, making the following diagram

commutative

Colﬁ’n
H (kyp . T) A

| [
+

m,n

Hl (km,nv T)/Hlt(km,n: T)———— Am,m

where the right vertical map is given by multiplication by @, (X).

Proposition 3.7 The maps Coli‘n are surjective, and for any n > n', m > m’ the
diagram

Colf

H (k. T) A%,
\L Coli,_n/ :LL
H! ko, T) ————— Am’,n’

commutes, where the left (resp. right) vertical map is given by corestriction (resp. the
natural projection).

Proof This follows from the same argument as in Propositions 8.21 and 8.23 of [35]. O

Recall the Gg,-module T, in (3.1), and note that Shapiro’s lemma yields an iso-
morphism

H'(Qp. Tp) = lim H' (k. T, (3.10)

m,n
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where the limit is with respect to corestriction, and by Proposition 3.7 we may consider
the map

Col* :=l<iLnC01$’n tH'(Q,, T)) — A, (3.11)

m,n

noting that 1(1£1mn A,j,in ~ A. Let HL(Q,,, T,) be the submodule of HI(Q,,, T,)
corresponding to l<i£1m ; Hi (km.n, T) under (3.10).

Proposition 3.8 The map Col™ defines an exact sequence

Col*
0 - HL(Q,,T,) - H'(Q,,T,) = A =0

between free A-modules of rank 1, 2, and 1, respectively.

Proof By (3.9) and Proposition 3.7, the map Col* defines an isomorphism H'!(Q s
T,) /HjE (Qp. Tp) = A. Note that the short exact sequence in the statement splits, and
SO HL(QP, T,) is a direct summand of H! (Qp, Tp). Since by [43, Prop. 3.2.1] the
A-module HY(Q p» Tp) is free of rank 2, the result follows. O

3.3 The plus/minus Logarithm maps
As shown in the proof of Corollary 3.5, if € = (—1)" then
@5, (X)emn = 0. (3.12)
Via the natural inclusion
Eyn) @ Zp = (Epn) ® Qp/Zp)™ C (E* (M) ® Qp/Zp)* = Hi (ki T),

where M~ denotes the orthogonal complement of M with respect to the local Tate
pairing (, )m.n, we shall view ¢, ,, € E (M) as an element in HjE (ks T).

Lemma 3.9 Hi (kp.n, T) is a free Ay n-module of rank one.
Proof This is an immediate consequence of [16, Lem. 3.9]. O

Lemma 3.10 Let € = (—1)". There exists a unique class
Brnn € Bk n, T) /@, OHL (ks T)

such that @, “(X) By, , = Cm.n-

Proof Since multiplication by @, €(X) on A,, , yields an isomorphism
A/ (@0, (X)) = @, (X) A n,
the result follows from (3.12) and Lemma 3.9. ]
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Define b | € HY (k.n, T)/&F (X)HL (kp.n, T) by

m,n

b, = (=D"2BE if n is even,
by o= (=D if nis odd.

Proposition 3.11 The class ﬁ,jn[n generates the free rank one A,j;’n-module Hli (km s
T)/w,d,E (X)Hli (km.n,» T), and the sequences

{bjn_,n }n even,m {br;’n}n odd,m
are compatible under corestriction.

Proof Since E (k, ,) is torsion-free, Corollary 3.5 gives E* (M) ®Zp = Ay nCimns
and hence for the first part of the lemma it suffices to show that

OFHY (ks T) = im(8 2 EE (M) @ Zpy — H ki, T)), (3.13)
where § is the Kummer map. Since local points are isotropic under (, )m.», we have
im(§) C Hl_L (km.n, T); and since H! (km.n, T) is Ay p-free, from (3.12) we also have
im(8) € @ (X)H' (ky.n, T). Thus

im(8) € HYy (k. n, T) N &F (X)H (ki T),

which implies (3.13). The second part of the lemma follows from the same argument
asin [16, Lem. 2.9]. We explain the case n even, and the odd case is shown similarly.
Let ¢ n be alift of ¢, tO Hl_L (Qp, T)). By Lemma 3.4 we then have

Emn = —Pu_1(X)émn—2 (mod w,—1(X)HL(Q,, T)p)),

and hence letting Bj;n be a lift of B, to H!.(Q,., T,) we obtain, for some d €
Hﬁ_ (Qp, T)), the equalities

@, (X) By = =P 1 (X)@,_,(X)BS ) + wa1(X)d
= —a, X)B o+ @, (X)) ,(X)d.

Cancelling out @, (X), the result follows. O

By Proposition 3.11 for every sign € we may consider

b 1= {55, e mod 2m € lim HL (k. T) /@0 COHL (k. T) = HL(Qp, T,

and b€ generates the free A-module Hi (Qp. T)p).
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Definition 3.12 The plus/minus logarithm map Log® : Hi(Qp, T,) — A is defined
by

X = LogjE (x)b*

forall x € HL(QP, T,).

Remark 3.13 Although not reflected in the above notation, we note that the map Log®
depends on the elements d € O and ¢ = {¢pn}, chosen in the proof of Lemma 3.4.
It is easy to see that a different choice of d and ¢ scales Log™ be an element in A .

Note that by Proposition 3.11 the map Log™ is a A-module isomorphism. The next
result describes its interpolation property.

Proposition3.14 Let ¢ : G, — C; be a finite order character such that ¢(y) is a
primitive p"-th root of unity and ¢ (u) # 1 is a primitive p"-th root of unity, and let
X = {xm,n}m,n S Hi(Qp, Tp), where € = (—1)". Then

¢~ (Log*(x)) - 9(@Ir)p @)™ Y drop(1)

Tel,

=D @ x) Y loga( )8 ().

TGGal(km.n/Qp)

where g(P|r) = ZyeGal(Qp(ﬂle)/Qp) ¢>(y)§[}:”+l is the Gauss sum of ¢.

Proof As shown in the proof of Lemma 3.4, the point ¢, ,, is obtained by tracing down
{0 My, @ point G n € E(MqQ, (4t e)) Satistying

y2k—n—1

~ — 1 g 142)) > ©m (pnr1-2 — 1)
102 Emn) = Y (=17~ +) (=D = .
Jj=1 k=0

Write Tr for the trace map Qpm (i pn+1) — ki, Twisting the above expression by ¢
and summing over T we then obtain

> gl )b = Y (i) T )9 (D)

teU, xI'y, €Uy xTy

= 9@l Y dre (o),

tely

which immediately yields the result. O
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4 Heegner point main conjecture

In this section we construct plus/minus Heegner classes for rational elliptic curves at
good supersingular primes and formulate an analogue of Perrin-Riou’s Heegner point
main conjecture for them.

Throughout, we let £/Q be an elliptic curve of conductor N, with associated
newform f = Z;’lozl anq™ € S2(I'o(N)). We also let K be an imaginary quadratic
field satisfying hypothesis (gen-H) and p > 3 be a prime of good supersingular
reduction for E.

4.1 The plus/minus Heegner classes

Let X y+ n- be the Shimura curve over Q (with cusps added, if N~ = 1) attached to
the rational quaternion algebra B of discriminant N~ and an Eichler order R C Op
of level NT. Let Jac(X y+ n-)/Q be the Jacobian variety of X+ y- and choose a
modular parametrization

7w Jac(Xy+ y-) — E.

For every positive integer S we let Os = Z + SOk be the order of K of conductor S,
and let K[S] be ring class field of K conduction S, so that Gal(K[S]/K) >~ Pic(Oy)
by the Artin map.

Proposition 4.1 There is a collection of Heegner points xs € E(K[S]) ® Z, indexed
by positive integers S prime to N Dk such that

agxs ife1Sisinertin K,
Tries)/kis1(xXes) = {apxs — ng - xg‘j if €1 S splits in K,
agxs — Xxs/u ifels,

where oy, GL;* € Gal(K[S]/K) are the Frobenius elements at the primes above £.

Proof Fix a prime g { Np and consider the embedding
N+ N- Xy+ n- = Jac(Xy+ n-), x = (Ty — g — D(x),

where T} is the g-th Hecke correspondence on X y+ y-. By [27, Prop. 1.2.1] there is
a collection of CM points s € X y+ y- defined over K[S] and such that

Te(hs) if €1 S is inertin K,
Normgiesy/k(s)(hes) = | Te(hs) — h$' — hg‘ if ¢ 1 S splits in K,
Ty(hs) — hsye ite] s
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as divisors on X y+ n-(C). Choosing g as above with the additional property that
ag —q — 1is a p-adic unit, the result follows by setting

x5 i=ty+ n-(hs) ® (ag —q — 1) € E(K[S) ® Z,,

(note that the G-representation E[ p] is irreducible by [18], so such g exists). O

Let T = T, E be the p-adic Tate module of E, and denote by z[S] € HI(K[S], T)
the image of xg under the Kummer map

E(KIS) ® Z, — H'(K[S], T).
Since a, = 0, letting Cor,’;“ denote the corestriction map for the extension
K[Sp"t11/K[Sp"], the norm-compatibility in Proposition 4.1 yields

Cor™ (z[Sp" 1)) = —z[Sp" 1] (4.1)

forall n > 0.
The anticyclotomic Z,-extension K3°/K is contained in K[p>] = UkZoK[pk],
and the Galois group Gal(K[p>°]/K) decomposes as

Gal(K[p™]/K) ~ T x A

with A = Gal(K[p®°]/K )tors a finite group. Let L C K[p®°] be the fixed field of "¢
and for each n let L, be the subfield of K[p°°] fixed by (I'*)?"  Then

[, = Gal(L,+1/K) ~ A x Gal(K*/K), (4.2)

where K¢ is the subextension of K5 of degree p” over K. Note that there exists a
non-negative integer é such that L, 145 = K[p"] for n > 0, with § = 0 when the
class number of K is coprime to p.

Consider the modules

T= T®szp[[Gal(K[poo]/1<)]}, T — T®ZpAac

equipped with the diagonal Gg-action, with Gk acting on the right factors
via the tautological characters. In particular, similarly as in (3.10), there is a
Z,[Gal(K[p>°]/K)]-module isomorphism

H'(K,T) = limH (K[p"], T)

n

given by Shapiro’s lemma.

For any field extension L/K, denote by L[S] the compositum of L and the ring
class field K[S]. Our construction of plus/minus Heegner classes hinges on the next
two lemmas.
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Lemma 4.2 Let S be a positive integer prime to Np. For every n > 0 the class z[Sp”]
lies in the image of the natural map

H!(K[S], T) — HY(K[Sp"], T).

Proof 1t suffices to show the result holds for all n sufficiently large. Note that (4.1)
yields

Cory 4 (z[Sp" T2 ]) = £p*z[Sp"] 4.3)

for all k. Let y € I'* be a topological generator, and set ¥, = y |z € Gal(K°/K).

~ =1~ ~
From the G g-module exact sequence 0 — T T ST ®z, Z,[I'y] — 0 we
obtain the exact sequence.

H(KIS1, T) — H (Lo (81, 7) 5 HAK[S], D™ — 0.

Note that under the maps «,,, the corestriction Hl(Ln+1[S], T) — HYL,[S1.T)
corresponds to the trace H2(K[S], T)' — H2(K[S], T)'»-1. Since H2(K[S], T) is
finitely generated over A%, the modules M, := H2(K[S], T)r,, stabilize for n > 0,
so there is some ng such that M,, = M,,, for all n > ng. In particular, the trace map
Tr;j‘H : M1 — M, is given by multiplication by p on M,,, = lim,_, o M, for all
n > ng. Combined with (4.3) we thus see that

+p 0 (2[Sp"]) = an (Cory P (z[ Sp™T2¢]))

n
= Tr" 2 (421 2ISP"™ 1) = pHay o (2[Sp™ )

for all n > ng and k > 0. Letting k — oo, this shows that o, (z[Sp™]) is divisible by
arbitrarily high powers of p, and hence o, (z[Sp"]) = 0, yielding the result. O

In the following, we identify A® with the one variable power series ring Z,[Y]
setting ¥ = 2 — 1 for a fixed topological generator % — 1.

Lemma 4.3 Let S be a positive integer prime to p. Then H' (K[S], T) is free over
A%,

Proof As we recall in Lemma 6.6 below, E[p] is absolutely irreducible as a Gg-
module, and using this the result can be shown by arguing similarly as in [32, §13.8].
Here we give a slightly different argument.

It suffices to show that M := H! (K[S], T*) is free over A% =~ Z,[¥]. We claim
that the maps

ay : Ms 25 M, a,: Mg/Y Mg 2B Mgy M; (4.4)
are both injective. Indeed, the irreducibly of E[p] as a Gq,-module implies that

E(K)[p] = 0, which gives H* (K, T) = 0. By [44, §1.3.3], it follows that the A?-
torsion submodule of My is trivial, and so ay is injective. On the other hand, in light
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of the natural inclusion
Ms/YMg — H'(K[S]. T).

to check the injectivity of «, it suffices to check that multiplication by p is injective
on H' (K [S], T), but this follows easily again by the irreducibility of E[p].

By the structure theorem, the injectivity of (4.4) implies that M injects into a free
A*-module F with finite quotient N:

0—- Mg— F— N—0.
If N # 0, then Torf\aC (N, A* /Y A%) is a nonzero Z ,-torsion module injecting into

Ms/Y M, but this is impossible by injectivity of . Thus N = 0, and this concludes
the proof.

To ease notation, in the next result we let Cor, be the corestriction map for
K[Sp"H1 =21/ Ki°[S].

Proposition 4.4 Let € = (—1)". There exists a unique class

zu[S1€ € H'(K[S], T%) /oof, (Y)H' (K [S], T) 4.5)
such that o, €(Y)z,[S]¢ = Cor, (z[Sp"T172)). Moreover, the sequences

(D228 evens (=D 22,1817} oaa
are compatible under the natural maps
H'(K[S], T*) fo, (V)H (K [S], T*) — H'(K[S], T*) /o,_, (")H' (K[S], T).
Proof By Lemma 4.2 the class z[Sp"*!7%] is in the image of the natural embedding
HY(K[S]. T) /o, (V)H'(K[S], T) = H'(K[Sp"*' 7, 7).

With a slight abuse of notation, denote by z[Sp™+! %] the natural image of this class
under the map

H'(K[S]. T) /e, (V)H' (K [S]. T) — H'(K[S]. T*) /e, (Y)H' (K [S], T*)
given by corestriction. Using (4.1), the same calculation as in Corollary 3.5 shows
that a),i(Y)z[Sp”“_S] = 0. In light of the freeness result in Lemma 4.3, this

implies the existence of a unique class z,[S]¢ as in (4.5) such that &, “(Y)z,[S]® =
Cor, (z[Sp"+17?]) in the image of the map

H'(K[S], T) /ol (Y)H (K [S], T*) = &S (Y)H (K[S], T*) /w, (Y)H' (K[S], T*)
— H'(K,[S], T),
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where the first arrow is the isomorphism given by multiplication by @, (Y). This
shows the first part of the lemma, and the second is shown by the same argument as
in the proof of Proposition 3.11. O

In light of the last part of Proposition 4.4, we can make the following.

Definition 4.5 For every sign € € {+£} and positive integer S prime to Np we define
the e-Heegner point of conductor S to be the class zoo[S]¢ € H! (K[S], T*) given by

2ol S1° = {za[S1)n € Lim H' (K [S], T*) /oof, (V)H' (K[S], T*) =~ H'(K[S], T*),

n
where the limit is over the positive integers n of parity €.

Note that since {&f,(Y)},=c mod 2 forms a basis for the topology of A%, the class
Zoo[S]€ is well-defined.

4.2 The main conjecture

In this section we formulate the supersingular analogue of Perrin-Riou’s Heegner
point main conjecture (see [42, Conj. B] for the ordinary case) in terms of the signed
Heegner classes zoo[S]i.

Assume that

(p) = pp splits in K. (sph)

Recall that I'* = Gal(K5S/K) is the Galois group of the anticyclotomic Z ,-extension
of K, and I' = Gal(K,/K) is the Galois group of the unique Z?,—extension of K.
Let v be a prime of K above p, and let vy, ..., v, be the primes of K5 lying above
v. Since each v; is totally ramified in Ko, /K3, by abuse of notation we shall also
denote by vy, ..., v, the primes of Koo lying above v. Fix vy, let 'y (resp. I'y,) be
the decomposition group of vy in I'* (resp. I') and let y; =id, y2, ..., ¥ € ['* be
such that v; = y;v1.

Identifying K, = Q, we then have I',; ~ Gal(Q;r’oo/Qp), as considered in
Sect. 3. Set

TS = Ty, 2,

acT x

with G, acting on the second factor by the character Gk, — 'S’ — Z,[I'57]>,

and define T, similarly.

Definition 4.6 Let HY (K, T%) be the image of HY (K, Ty;) ~ HL(Q,, T) under
the map induced by the projection I' — I"*, and set

o

HL(K,, T) := @) yi HL (K, TZ). (4.6)
i=1
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Let zfo e H! (K, T*) denote the image of the class Zoo[ 1] under the corestriction
map H'(K[1], T*) — H! (K, T®).

Lemma 4.7 For each prime v of K above p we have locv(zfo) € HL(KU, T%).

Proof Since HL(Q,,T,) ~ lim ker(P;f,) and the image of P;f, is contained in

oF Amn (see Sect. 3.2), the result follows immediately from the isotropy of points
under the local Tate pairing and the construction of zfo. O

Now let F* be the Selmer structure on T2 defined by

HL(K,, T®) if
Hlﬁ(Kv,TaC): :1t( R] ' ) 1 U|p7
H'(K,, T*) ifv{p,
and let Sel™ (K, T2°) be the associated Selmer group:
group

Sel*(K, T*) := ker{Hl(K, ™) - [] (4.7)

v

Hl(Kv, TaC) }
HL (K, T) |

where the product is over all places v of K.

Setting A% := T®Z,, Homg, (A*, Qp/Zp) equipped with the natural G g -action,
we let HI}_AE (K,, A*) c H'(K,, A*) be the orthogonal complement of HlFE (K,, T?)
under local duality, and define Sel® (K, A*) by the same recipe as in (4.7). Let

+ +
X = HomZP (Sel™ (K, AﬁC)y Qp/Zp)

be the Pontryagin dual. Note that it follows from Lemma 4.7 that zéco lands in
Seli(K , T#). As a natural extension of [42, Conj. B], we conjecture the following.

Conjecture 4.8 (Plus/minus Heegner point main conjecture)

1. The class zZ, is not A*-torsion.

2. The modules X* and Sel™ (K , T?) both have A**-rank one.
3. We have

Sel (K, T) )2

+
char pac (Xtors) = charAac< Aoyt
o0

where the subscript tors denotes the A*-torsion submodule.

Remark 4.9 Like its counterpart for ordinary primes, Conjecture 4.8 might be seen
as a A®-adic analogue® of Kolyvagin’s result [36] showing that when the Heegner
point yx € E(K) is non-torsion, the p-primary part of the Tate—Shafarevich group
II(E/K) is finite, of order essentially given by square of the index [E(K) ® Z), :

Z,yk]

3 In connection with this analogy, we note that building on the results in this paper towards Conjecture 4.8,
Lei-Lim—Miiller [38] have obtained a new proof of a result originally due to Ciperiani [10] showing that
for supersingular primes p, the Tate-Shafarevich group III(E/K o) [p®] is A% -cotorsion.
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5 Greenberg main conjecture for .£?PP

Keeping the setting from Sect. 2, we now consider certain variants of the Selmer
groups Sel® (K, T%) and Sel* (K, A*) obtained by changing their conditions at the
primes above p. Recall the Selmer structure = introduced in Sect. 4.2.

Definition 5.1 Let M denote either T% or A%*. For v € {p, p} and .&, € {rel, =+, str},
set

H'(K,, M) if £, =rel,
Hy, (Ky, M) = YHL(K,, M) =HL.(K,, M) if %, =+,
0 if &, = str.

Then for & = {%},, Z5} we define the modified Selmer group SelZ (K, M) by

HY(K,, M HY(K,, M
SelZ (K, M) :=ker{Hl(K,M)—> ]_[ g ]‘[%}
velp 3] Hy, (Ky, M) H . (Ky, M)

vip

We also let X< denote the Pontryagin dual of SelZ (K, A*), and for X a finite
set of places of K away from p, let XZ-% denote the Pontryagin dual of Selmer
group obtained as above by relaxing the local conditions at the primes w € X. Thus
in particular Sel™"s" (K, A%) consists of classes which are trivial at p and satisfy
no condition at p, and Sel™* (K, A*) recovers the Selmer module Sel* (K, A%) of
Sect. 4.2.

Note that for any character x in the interpolation range for the square-root p-adic L-
function %BDP in Proposition 2.1, the p-adic representation V, E ® Ind% (%) satisfies
the Panchishkin condition introduced by Greenberg [21]. The following Conjecture 5.2
may thus be viewed as an instance of the Iwasawa main conjectures formulated in
op. cit. for L§PP = (£PPP)? .

Conjecture 5.2 (Iwasawa—Greenberg main conjecture) The module X™S" js A2-
torsion, and

ChaI'Aac (Xrel,str)Aur — (LEDP)

as ideals in A".

An important consequence of the main result of the authors with Zheng Liu [13] is
the following divisibility towards Conjecture 5.2.

Theorem 5.3 [13] Assume that:

(1) N is squarefree,
(i) some prime £ | N is non-splitin K ,
(iii) if N is odd, then 2 splits in K .
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Then
ChaI'Aac (Xrel,str)Aur C (LEDP)

in A" [1/p]. If in addition E| p] is ramified at every prime £ | N, then the divisibility
holds in A".

Proof We first need to introduce some more notations. Denote by W : I' — A* the
tautological character, and by ¢ the p-adic cyclotomic character. For ¥ a finite set
of primes of K not containing any prime above p, define the X-imprimitive p-adic
L-function LES’Z € A" by

L>% = L3S x [ Pu(e™" ¥ (Froby,)). (5.1)
wWEX

where Py, (X) = det(1 — Frob,, X) gives the Euler factor at w of the L-function of E.
Part (1) of [13, Thm. 8.2.1] yields the divisibility as fractional ideals in A" ®z [+

Frac(Z,[T*]):
charA (Xrel,str,Z)Aur c (LI;S’Z), (52)

where X is any finite set of primes of K away from p containing all primes divid-
ing NDg and X" is defined in the same manner as X™S"> with A =
T®ZPH0mZp(A, Q,/Z,) in place of A*.

Letting y© € T be a topological generator, the natural inclusion A* — A
identifies A% with A/ITA, where I™ = (y* — 1), and induces an isomorphism

Xrel,str,Z/I—i-Xrel,str,E ~ Xrel,str,E (53)

as A*-modules (see [50, Prop. 3.9]). Since I generates the kernel of the projection
prrac : A — A%, combining (5.2) and (5.3) with Proposition 2.7 we conclude that

char pac (X™ ST E) A1/ p] C (prrac (Ly>”)) (5.4)
as ideals in AY[1/p]. Without loss of generality, assume that X" is A*-torsion

(otherwise the characteristic ideal of X™"S" is (0) by definition, and there is nothing
to show). Then by [46, Lem. A.2] for any &' C ¥ we have an exact sequence

0— Selrel,str,E’(K’Aac) — Selrel,str,E(K’Aac) — 1_[ Hl(Kw,AaC) = 0.

weXNY/

By a simple adaptation of [22, Prop. 2.4], it follows that

char pae (X" %) = char g (Xrel’Str’E,) : 1_[ P, (='W~ (Frob,)),

weXNY/
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and hence combined with (5.1) it follows that the divisibility (5.4) also holds for
Y = ¢). Together with Proposition 2.7, this shows that

char pae (X" ST) A1/ p] C (LPY - (£, [B)) (5.5)

as ideals in A" [1/p], yielding the first claim in the theorem.

Finally, if E[p] is ramified at every prime £ | N~ then by [45, p.912] the term
a(f, fp) is a p-adic unit (indeed, this condition ensures that f is not congruent mod
p to any weight 2 newform of level dividing N /¢ for any prime ¢ | N7); since
(LyPP) = 0 by Theorem 2.3, it follows that in this case the divisibility (5.5) holds
in A",

Remark 5.4 At the referee’s request, we note that assumption (iii) in Theorem 5.3 is
used in op. cit. to simplify the choice of test vectors for which the corresponding local
triple product integrals can be shown to be nonzero.

6 Main results

Let E/Q be an elliptic curve of conductor N, f = Zflozl anq" € S2(I'g(N)) the
newform associated with E, p > 3 a prime of good supersingular reduction for E,
and K an imaginary quadratic field satisfying hypotheses (gen-H) and (spl).

6.1 Explicit reciprocity law

In this section we give a new construction of .ZPBDP in terms of the signed Heegner
classes zfo and the signed logarithm maps. This explicit reciprocity law will be the key
ingredient allowing us to bring the Iwasawa—Greenberg main conjecture for DQ”pBDP to
bear on Conjecture 4.8.

Let Hg be the Hilbert class field of K, let Lo := K3 N Hg, and denote by L,,
the subextension of K35 with [L,: Lol = p™ (so L, = KijrM for some fixed
M > 0). As in Sect. 4.2, for every prime v of K above p we have Hi(KU, T,) =~
HL(Q »» Tp), which is generated as Z, I, |-module by the element bt = {bi’n}
from Proposition 3.11. Letting p* be the inertial degree of v N Lo over v, we have
Lm,vl C km+a,m~ Set

+ . e 1
am = CorkrrH»u,m/Lm,Ul (bm+a,m) € H:I:(Lmvvl ’ T)’

where l;,i_a’m is an arbitrary lift of b,i_a’m to H' (kw+a.m, T). This defines af
HY (K3, T)form > M and setting a;f := COTK;’,‘;,UI /Kge, (@m) € HY (K2, T) for

0 <m < M we obtain a system

at ={at), € LiLnHi(Kf,ﬁvl, T) ~HL (K, T3

m

which by Proposition 3.11 generates HY (K, Ti) as a free rank one Z , [T} [-module.
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Eeﬁnition 6.1 For v a prime of K above p, define Logf)'f1 tHL(K,, Ti) — Z,[T5
y

X = Logvjt’l(x)ai

for all x € HL(K,, T%). Using A* = @f;l ¥i-Zp[T%] and the decompositions
(4.6), we also define

Logt : HL(K,, T®) — A%

by Logf(y) = ¥, vi-Logy | (y,)). writing y = Y, yi.y; with y; € HL(K,, T%).

Recall the element d = {d,}n € O = 1(i£1m Z,n chosen in the proof of

Lemma 3.4 (and on which the construction of Logvi depends). As explained in [40,
§3], for varying m the maps

Ym  Lpm — Lpm [Gal(Qpm /Qp)]

defined by y,, (x) = >, €Gal(Q,m /Q,) x% 0~ ! assemble to yield in the limit an isomor-

phi;mhbetween O and the subring of Z{T[U] consisting of elements f € Z\[U]
such that

fY=u.f forallu e U,

where the action of u on the left-hand side (resp. the right-hand side) is on the coeffi-
cients (resp. by multiplication as group-like elements). Let

(1]

T -1
ai=lim Y dioT' eZy[U]
M oeGal(Q,m/Qp)

be the image of d under this isomorphism. Since d is a Z,[U]-module generator of
O, the element Z is invertible.

Recall that by Lemma 4.7 for every prime v of K above p we have loc, (zoio) €
Hi(KU, T4¢), and hence Logvi may be evaluated on loc, (Zfo).

Theorem 6.2 The following equality holds:

EBDP
p

d

=01 - Logy (locy(z,)),

[x]

where o1y = recp(—1)|gac € T'*.

Proof We just give the proof in the plus case, as the proof in the minus case is the
same. Let ¥ : '* — f 0 be a non-trivial character factoring through a primitive

character on Gal(K}°/K) for some even n. Viewing X as a character on I via 4.2),
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the calculation in [12, pp. 598-9] (as adapted in [2, Thm. 4.4] to the case N~ # 1)
gives

LPPGTN = p a0 Dxp@ ™) Y (o) logg(azlp ),
oely,

where x, denotes the component at p of the Hecke character corresponding to x
by (2.1). Combined with the definition of z,[1]" (see Proposition 4.4) and zZ, and
Proposition 3.14, we thus obtain

pBDP 51y _ xp(=1) (=D 5 (- (X 2 (0)log (o2, [11F
BDP (5 1) AT (=" 5@ ( ))gf: X (0)logz (0 z,[117)
= xp(=1) - 37 (Log (locy (z5)) - >~ R(0)dg,,
o0€Upta

= )E_l(o,l,p -Log;(locp(z;)) . Ed).
Letting x as above vary, we obtain the result. O

Remark 6.3 Note that Theorem 6.2 shows that the period E; encodes all the A"/ A-
transcendence of .,%BDP.

Corollary 6.4 The class locy (zfo) is not A*-rorsion.
Proof Immediate from Theorem 6.2 and the non-vanishing result for ,prDP in Theo-

rem 2.3. O

6.2 Relating main conjectures

The main result of this section is Theorem 6.8, connecting Conjectures 4.8 and 5.2.

Let P # pA* be a height one prime of A%, denote by Sy the integral closure of
A /B, and let g be the field of fractions of Sy. Let also s € Sy be a uniformizer
and my = Sy be the maximal ideal of Sy3. Consider the Syz-modules

Typ = T @ pac Sy, Vg =Ty sy Dy, Ag = Vi/Tp. 6.1)

As in [26, Prop. 2.2.4] the Weil pairing induces a perfect G g -equivariant pairing
en T X A" — pp (6.2)
satisfying ep (A - 1, a) = ep(t, A' - a) forall t € T?, a € A*, and A € A, where
A' denotes the image of A under the involution ¢ : A* — A% given by y > y~!
for y € I'*. Letting ' denote the image of P under ¢, this gives rise to a Gg-
equivariant pairing ey : Ty X Ay — wpoo satisfying e (A - x, y) = ep(x, A - y),

which together with (6.2) allows us to dualize the natural map T /B'T* — Ty to
a Gk and A*-equivariant map Ap — A*[[3].
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Using T% — T* /BT — Ty, we define
Sel*(K, Tp) C H'(K, Ty), Sel*(K, T*/PT*) c H (K, T*/BT)

from Sel* (K, T*°) by propagation (i.e., defining the local conditions cutting out
Sel* (K, Tyy) to be the pushforward of those for Sel* (K, T*) via the above
map T%* — Ty), and similarly define Sel* (K, Ag) and Sel* (K, A*[]) from
Sel* (K, A*) by propagation (i.e., pulling back the local conditions) via Ap —
A*[B] — A,

Lemma 6.5 There is a finite set X 5 of height one primes B C A, with pA* € ¥y,
such that for 3 ¢ X p the composite natural maps

Sel™ (K, T*) /PSel= (K, T*) — Sel*(K, T*/PT*) — Sel* (K, Typ),
Sel* (K, Ag) — Sel™ (K, A*[P]) — Sel*(K, A*)[F]

have finite kernel and cokernel of order bounded by a constant depending only on
[Sp: AX/B].

Proof As in the proof of [26, Prop. 2.2.8], it suffices to show (thanks to [41,
Lem. 5.3.13]) that for all height one primes P C A? with ¥ # pA?, and for
every place v of K, the natural maps

Hl. (Ky, Ap) — Hi (Ko, A“[B)), (6.3)
Hl. (K, T /PT*) — HL (K, Tp), (6.4)

have finite kernel and cokernel which are bounded by a constant depending only on
[Syp : A% /B], which for primes v { p is shownin [41,Lem. 5.3.13]. For v | p, that the
map (6.3) has the desired property is shown in the proof of [33, Prop. 4.18] (see also
the discussion preceding it). On the other hand, since the natural map H' (K, Ag) —
H! (Ky, A*['B]) clearly has finite kernel and cokernel with a bound of the desired
sort, we deduce that so does the induced map

H'(K,, Ap)/H (Ko, Ap) — H' (Ky, A[P]) /H e (K, A€TBD),

from where the desired property for (6.4) follows by local duality. O

Lemma 6.6 For every k the natural maps Tsp/mng -~ Am[né‘g] —~ Ag induce
isomorphisms

Hi (K, Top /7y Tp) ~ Hie (K, Aplg]) > Hi (K, Ap) gl
Proof This follows from Lemmas 3.5.3 and 3.5.4 in [41]. O

Lemma 6.7 The following hold:
1. The modules X* and Sel* (K, T*) have the same A*-rank.
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2. I'al’lkAac (Xrel’:t) =1+ rankAac (X:t'Str) and

char e (XiG.™) = charqoe (X(G1").

where the subscript tors denotes the A*-torsion submodule.

Proof For part (1), it suffices to show that for every height one prime ‘B # pA®
outside a finite set X 5 the modules

X*/PXT = Homg, (Sel* (K, A)[P], Qp/Zp). Sel* (K, T*)/PSel* (K, T*)

have the same Z -rank. Since Lemma 6.6 gives that Sel* (K, Tip) is the myp-adic Tate
module of Sel™ (K, Agq), the Z ,-corank of Sel* (K, Agq) is the same as the Z ,-rank
of Sel* (K, Tip), which by Lemma 6.5 implies the result.

For the proof of part (2), we need some more preparation. For any height one prime
B # pA™, let Tig be as in (6.1). As explained in the proof of [26, Lem. 2.1.1], the
Weil pairing e : T X T — ppoo gives rise to a perfect symmetric Syp-bilinear pairing

e : Tp x Ty — Sy (1) (6.5)
satisfying eqz(s®, t*°7) forall s, ¢ € Tip and 0 € Gk, where T € G is any complex
conjugation. Letting Tw(Tyz) denote the Gg-module given by T with Gk acting
through the automorphism given by conjugation by t, the pairing (6.5) becomes a
G g -equivariant pairing

ep : Ty x Tw(Typ) — Sp(1),

and by [33, Prop. 4.11] the local conditions HIFE (Ky, Tg/ mfi; Typ), obtained by propa-
gating H}___t (Ky, Trp) via the quotient Ty — Tip /m]gp Ty, are orthogonal complements

under the induced local pairing

H'(K,, qu/m%qu) x H' (K3, Tsp/mf%qu) — ng/m’;p. (6.6)

Now set HY (K, Ag) := Sel™" (K, Ay), and H},| | (K, Agp) to be

rel,

H(K,, A HY(K;, A H'(K,, A
ker{Hl(K,Aqg)—> (Kp, Ap) X (K. Ap) xl_[ (Ko, Ap) }

1 } 1 - 1
H' (Kyp, Ap)aiv - Hi(Kj, Ap) otp H . (Ky, Ap)
where the subscript div denotes the maximal divisible submodule. (Thus Hi)str (K, Ap)
and Hrlel) (K, Aqp) are the propagation of Hli,str(K , Vp) and Hrlel) (K, Vi) under
Vg — Ag and Vig — Ag, respectively.) By Lemma 6.6 and [41, Thm. 4.1.13], for
every k there is a non-canonical isomorphism

H + (K, Ap)[p*] =~ (@q/Sp) [p"] @ HL (K, Ap)[p"], (6.7)
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where r is the core rank (in the sense of [41, Def. 4.1.11]) of the Selmer conditions
defining H; . (K, Ag), which by [15, Thm. 2.18] is computed by

corankSmH1 (Kyp, Ap) + corankS(BHli(Kﬁ, Ag) — corankquHO(Kw, Ag), (6.8)

where w denotes the infinite place of K. By Proposition 3.8, the first two terms in
(6.8) are equal to 2 and 1, respectively, and the third term is clearly equal to 2. Thus
r = 11in (6.7) and letting k — 0o we conclude that

Hly 2 (K, Ap) = (Pg/Syp) ® HL (K, Ag). (6.9)

Hence the Syz-coranks of Hrlel’ (K, Ap) and Hli’str(K , Ayp) differ by one, and their
quotient by the maximal divisible submodule have the same order. The argument in the
proof of [1, Lem. 1.2.6] (taking also care of the prime 53 = p A?® by approximating it
by Q = (Y + p™) C A* ~Z,[Y] as m — 00) now allows us to conclude the proof
of part (2), once we show that for 3 outside a finite set X 5, the natural maps

HY o (K, Ag) — Sel™ £ (K, A™)[], (6.10)
HL (K, Ap) — Sel®U(K, A%)[p], 6.11)

have finite kernel and cokernel, of order bounded by a constant depending only on
the degree [Sg3: A% /B]. For (6.11), this is shown in Lemma 6.5, and for (6.10), it
suffices to note that Hrlel (K, Ap) injects into Selrel’i(K , Agy) with quotient con-

tained in HO(Kp, Ag) /HO(Kp, Agq)div, which has a bound of the desired sort, and
apply Lemma 6.5 again. This completes the proof. O

With the explicit reciprocity law of Theorem 6.2 and the preceding three lemmas
in hand, we are now ready to establish the link Conjectures 4.8 and 5.2.

Theorem 6.8 The following are equivalent:

(i) BothSel* (K, T*) and X* have A*-rank one, and the following divisibility holds
in A*:

Sel* (K, T*) )2

+
char pac (Xtors) C charpac ( Aaczi
00

(ii) Both Sel*™™ (K T%) and X" are A*-torsion, and the following divisibility
holds in A":

charAac (Xrel,str)Aur c (LEDP)'

The same result holds for the opposite divisibilities. In particular, Conjectures 4.8
and 5.2 are equivalent.
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Proof Note that E(K)[p] = 0 (since E[p] is irreducible as a GQp-module and p
splits in K), and hence E(K~)[p™] = 0, which by [44, §1.3.3] implies that the
A%*-torsion submodule of H! (K, T%) is trivial. Global duality yields the following
exact sequence

locy

0 — Sel™™™(K, T*) — Sel*™! (K, T*) —> H (K,, T*)
— XS XS, (6.12)

Since Hi(Kp, T) ~ A% (see Proposition 3.8), by Theorem 6.2 the equivalence
between ranks in parts (i) and (ii) follows easily from (6.12). Indeed, if both X"elstr
and Sel*™" (K| T%) are A-torsion, then (6.12) shows that Sel™ ™! (K, T2%) has A%-
rank one, and since by Lemma 4.7 and Corollary 6.4 the submodule Seli(K ,T%) C
Sel* (K . T2°) contains the non-torsion class szo, it follows that Sel* (K, T?) has
rank one, and therefore so does X* by Lemma 6.7(1). The other implication for
A®-ranks is similar.

As for the relation between divisibilities in (i) and (ii), note that it follows
from the preceding paragraph that either of the rank hypotheses in (i) or (ii)
implies that both Sel* (K, T%) and Sel*™ (K, T®) have A*-rank one, and hence
Sel* (K, T*®) = Sel*™! (K, T%), since the quotient Sel*™! (K, T2) /Sel* (K, T*)
injects into Hl(Kp, T) /Hli(Kp, T?), which has trivial A*-torsion by Proposi-
tion 3.8. The map locy, in (6.12) is therefore the same as the one in the exact sequence

1
0 — Sel'™ (K, T%) — Sel* (K, T*) —5 H (K,, T*)
— Xt 5 x*t 0. (6.13)

Since H' (K, T®) has trivial A%-torsion, the non-vanishing of locy and the equality
rank yac (Sel™ (K, T)) = 1 implies that Sel*™>* (K, T*) = 0, since it is of A*-rank
zero. From (6.13) we thus obtain

0 Sel* (K, T®) loc, HL(Ky, TH)
—
A‘dczfO Aacloc(zfo)

— coker(locp) — 0,

which by Theorem 6.2 yields the relation

Sel* (K, T*
char Aac<Li)> - char pac (coker(locp))Aur = (%BDP). (6.14)

Az

On the other hand, taking A?%-torsion in the short exact sequence 0 —
coker(locy) — X™* — X* — 0 deduced from (6.13) and using Lemma 6.7(2)
(noting that X5 is A%-torsion) we obtain

char e (X57) = char e (X5 ;) - char pac (coker (locy)). (6.15)

@ Springer



2628 F. Castella, X. Wan

Similarly, the short exact sequence 0 — coker(locy) — X relstr . xEST s 0 from
(6.12) yields

char pae (X™5T) = charpac (X*57) - char pac (coker (locy))

= charpac (thgrs) - char pac (coker(locp))2,
using (6.15) for the second equality. Combined with (6.14) we thus obtain

Sel* (K, T*)

rel, str ’
charAac (X ) . charAdc ( AaCz:t
00

)Aur = Chal‘Aac (Xti()rs) . (D%BDP)2.

The equivalence between the divisibilities in the statement of the proposition is now
clear. O

6.3 A p-converse to Gross-Zagier and Kolyvagin for supersingular primes

In this section we prove a p-converse to a theorem of Gross—Zagier and Kolyvagin
for supersingular primes (Theorem 6.11).

The key step in our proof is the following result towards Conjecture 4.8.
Theorem 6.9 Assume that:

(1) N is squarefree,
(ii) some prime £ | N is non-split in K ,
(iii) if N is odd, then 2 splits in K .

Then both Sel® (K, T) and X* have A*-rank one, and we have the equality

Sel (K, T*) >2

+
char pac (Xtors) = charAac( NaogE
o0

as ideals in A*[1/p]. If in addition E|[p] is ramified at every prime £ | N~ , then the
equality holds in A*.

Proof In the Appendix we explain how to adapt the methods of [26] to deduce from
Corollary 6.4 that both X + and Seli(K , T%) have A*-rank one, see Theorem A.5,
and that we have the divisibility “C” in A?® in the claimed equality of characteristic
ideals. In light of the equivalences in Theorem 6.8 (whose proof applies without change
for the Iwasawa algebras with p inverted), the result follows from Theorem 5.3. O

Let x1 be the Heegner point of conductor one (see Proposition 4.1), and set
vk = Trgpyx (x1) € E(K) ® Z.

It is immediate from the definitions that Sel* (K, E[p>®°]) = Sel o (E/K) and
Sel™ (K, T) is identified with the pro-p Selmer group

Sp(E/K) = lim Sel yn (E/K).

m
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In the next result we recall all our running hypotheses for the convenience of the reader.

Theorem 6.10 Let E/Q be an elliptic curve of conductor N, p > 3 a prime of good
supersingular reduction for E, and K an imaginary quadratic field satisfying hypothe-
ses (gen-H) and (spl). Assume that:

(1) N is squarefree,
(ii) some prime £ | N is non-splitin K ,
(iii) if N is odd, then 2 splits in K .
If Sel o (E/K) has Z,-corank one, then yk is non-torsion.

Proof Let P, = ker(A* — Z,) be the augmentation ideal. Since A*’['By] = E[p*°]
and T /B,T* = T, by Lemma 6.5 there are natural maps with finite kernel and
cokernel:

XT/PoXt — Sel™ (K, E[p™]) = Sel )= (E/K),
Sel™ (K, T*) /Py Sel T (K, T*) — Selt (K, T) = S,(E/K). (6.16)

By Theorem A.5 we have a A*-module pseudo-isomorphism X+ ~ A* @M & M for
some finitely generated torsion A*-module M, and Theorem 6.9 gives the equality*

Sel (K, T
ChaI'Aac (M) = CharAac (M>

+
Azl

asidealsin A*[1/p]. Thus the assumption that Sel ,oc (E /K) has Z ,-corank 1 implies
that char pa (Sel ™ (K, T*¢)/A*zZ,) is not divisible by 9B, and hence, denoting by z;
the image of z1 in Sel™ (K, T%) /BSel T (K, T), it follows that zg generates a
Z ,-submodule of Sel™ (K, T*) /P,Sel ™ (K, T*) of finite index. Since S‘,,(E/K) has
Z,-rank one by hypothesis, and by construction the class zar is sent to the Kummer
image of yx in EP(E/K) under the second map in (6.16), the result follows. O

We conclude with the proof of Theorem A in the Introduction.

Theorem 6.11 Let E/Q be a semistable elliptic curve, and p > 3 a prime of good
supersingular reduction for E. Then

corankZPSelpoo(E/Q) =1 =— ords—L(E,s)=1.

Proof By Ribet’s level lowering [47, Thm. 1.1], the representation E[ p] is ramified at
some prime ¢ dividing N. Fix one such prime ¢, and choose an imaginary quadratic
field K of discriminant Dg such that:

(a) hypothesis (gen-H) holds,
(b) g is non-splitin K,
(c) hypothesis (spl) holds,

4 Note that only the divisibility “C” coming from Theorem 5.3 is needed for this proof.
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(d) if N is odd, then 2 splits in K,
(e) L(EX, 1) #0.

The existence of such K follows easily from the non-vanishing result [20, Thm. B].
Indeed, if N is divisible by another prime ¢’ # ¢, we require ¢, ¢’ to be both inert
in K and every prime factor of N /gq’ to split in K; while if N = ¢, we consider K
ramified at ¢. Any such K satisfies conditions (a) and (b); in particular, the root number
of E/K isw(E/K) = —1. Since corankz, Sel , (E/Q) = | = w(E/Q) = —1by
[33, Thm. 4.30], it follows that w(EX /Q) = +1, and since (a) through (d) impose
only finitely many congruence conditions on the discriminant of K, condition (e) can
also be arranged by [20, Thm. B].

Having fixed K as above, by work of Kolyvagin [36] and Kato [32], the non-
vanishing of L(EX, 1) implies that

rankz EX (Q) = 0, #IIL(EX /Q)[p™] < 0.
Thus
corankZ],Selpoo (E/Q =1 = corankZpSelpoo(E/K) =1,

and so the Heegner point yg is non-torsion by Theorem 6.10. By the Gross—Zagier
formula [23, 56], it follows that ords—1L(E/K,s) = 1, which by (e) implies that
ordg— 1 L(E,s) = 1. O
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Appendix A: Kolyvagin system argument

In this Appendix we explain how to derive a Kolyvagin system from the set of
plus/minus Heegner classes constructed in Sect. 4.1, and use it to prove Theorem A.5
below towards Conjecture 4.8.

We place ourselves in the setting of Sect. 6. We begin by briefly recalling the
ingredients from the theory of Kolyvagin systems that we need, referring the reader
to [26, 41] for more details. Let £ denote the set of rational primes ¢ satisfying:
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e ({Np,

e [isinertin K,

e ay=(+1=0 (mod p), where ay = £ + 1 — #E(Fy),
and denote by N the set of squarefree products of primes £ € £, with the convention
that 1 € V. Foreach £ € L, let I, C Z,, be the ideal generated by a; and ¢ + 1, and
forS=4¢;---¢ € Nsetls =Y :_, Iy, with Is = 0 when § = 1.

For any Gg-module M and v a finite prime of K, define the unramified local

condition H! (K, M) by

H{(Ky, M) := ker{H'(K,, M) — H'(K}", M)},
and the singular quotient H; (Ky, M) by the exactness of the sequence
0 — H}(K,, M) - H'(K,, M) - H!(K,, M) — 0.

Then for £ € L, letting A be the prime of K above ¢, there is a finite-singular com-
parison map

¢y =Ev, ' oevy : H{ (K, T%/Iy) > T /I, ~ HL (K, T*/Ip), (.17

where ev, is given by evaluation at a Frobenius element at A, and Ev,, is given by
evaluation at a fixed generator o, of G(¢) := Gal(K[£]/K[1]), viewed as an element
in the Galois group of the totally tamely ramified extension K [£];//K; , where A/ is
the unique prime of K [£] above A.

Foreach S = {1 --- £, € Nset

G(S) := Gal(K[S]/K), G(S):=Gal(K[S]/K[1]) > G(£)) x --- x G(£;),

and note that since the primes ¢; are inert, each G (¢;) is cyclic order ¢; + 1. Fix gen-
erators oy, € G(¢;), and define the Kolyvagin derivative operator Dg € Z[G(S)] =
Z[GUD]® - @ Z[G(L,)] by

i
Ds:= Dy, -+ Dy,, where Dy, := Y jo] € ZIG(t)].
j=1

Tracing through the construction of Zoo[STF in Sect. 4.1, [26, Lem. 1.7.1] implies
that the natural image of

Ry = > oDszoo[SIF € H'(K[S], T*)
7€G($)/G(S)

in H'(K[S], T*/IsT%) is fixed under G(S).

In what follows we shall use repeatedly the fact that E(K)[p] = 0, which (as
already noted in the body of the paper) is immediate from the fact that E[p] is an
irreducible Gq,-module and p splits in K.
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LemmaA.1 Forevery S € N the restriction map
ress : H'(K, T/ IsT*) — H'(K[S], T/ IsT*)9S

is an isomorphism.

Proof This follows readily from the inflation-restriction exact sequence, noting that
HO(K[S], T2/ IgT%) ~ 1<i£1n HO(K;‘C[S], E[Is]) vanishes, since E(Kx)[p™] = 0
and Q(E[p™]) N K[S] = Q. o

Inlightof LemmaA.1, welet K;F € H' (K, T°/IsT™) be the unique class satisfying

I'eSS(K;:) = /Zsi. To describe its local properties, for £ € L define the transverse local
condition H\. (K3, M) by

iy

HL (K, M) = ker {HI(KA, M) — H (K[€],. M)} ,

where A’ is the unique prime of K[£] above A. Letting H;j (Ky, T /I) be the prop-
agation of Hlfi(l( v» T%) under a quotient map T* — T3/, for S € N define the
S-transverse Selmer group H;,E ( S)(K , T%/I'T*) to be

1 ac 1 ac
ker{Hl(K,Tac/I)—>H H(KU,T /I) XHH(KU’T /1)}

oS Hi. (Ko, T/1) ¢ Hy(Ky, T/ 1)
LemmaA.2 Let S € N. Then we have p“ - th € HI}__E(S)(K, T/ IsT*) for some
d > 0 independent of S.

Proof Let A | £ | S be a prime, and as before let A’ be the unique prime of K [£] above
A. Then for every n the prime A’ splits completely in K2°[S], and fixing a prime A" of
K°[S]above A’ we have K[£],, = K2°[S];~. Hence from the construction of Zoo[STE
in Proposition 4.4, to show that KSjE satisfies the transverse local condition at £ is suffices
to check that Zer(S)/G(S) o Dgz,[S] has trivial restriction to H! (K2[STyr, T/1IsT),
which is checked in the proof of [26, Lem. 1.7.3]. On the other hand, for primes v S
the only non-trivial condition to check is that at the primes v | p and at the primes
v | N.In the former case, that the class /céE satisfies loc, (Ksi) € Hlf__t (Ky, T*/IsT*)
follows immediately from Lemma 4.7. And in the latter case, the existence of some
d > 0 such that p? - loc, (k§) € HI}:E (5 (Ko, T/IsT) (for all v | N and all S) is
shown by the same argument as in the proof of the inclusion (15) in [27, Prop. 3.4.1]. O

LemmaA.3 Forall £S € N, we have qb}fs (locA (p?- K:;E)) =locy (p? - Keis).
Proof This follows from [26, Prop. 1.7.4] similarly as in the proof of Lemma A.2. O

In terms of [26, Def. 1.2.3], the preceding Lemmas A.2 and A.3 show that the
collection of classes { p? ~/<Sjt}5e v forms a Kolyvagin system for the triple (T2, 7+, £).
Letting KS(T?¢, F*, £) denote the A*-module of such systems, we have thus shown
the following.
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Theorem A.4 There exists a collection of cohomology classes

= {K,;t e H! (K, TaC/ISTaC)}neN

with Kl = Z such that p¢ - k* = {p? 'Kni}ne/\[ e KS(T*, F*, 1).
Since zfo is not A®-torsion by Corollary 6.4, the Kolyvagin system p¢ - k* of

Theorem A.4 is non-trivial. From the methods of Mazur—Rubin [41], as extended by
Howard [26, 27] to the anticyclotomic setting of Heegner points, we thus obtain:

Theorem A.5 Assume that N is squarefree. Then the module Sel™ (K, T®) has A-
rank one, and there is a finitely generated A*°-module M such that:

i) XT~A“pMoM,
(i) We have the divisibility

char yae (M) D char pae (Sel £ (K, T%)/A%zE)
in A%,

Proof Let ‘I3 be a height one prime of A% with B # pA%, let Sy be the integral
closure of A% /B, andlet Tip := T ® pac Sz, endowed with the diagonal Galois action
G g -action. Let ®gs be the field of fractions of Sy;, and set Vig := Tip Qsy Dy, A =
Vi /T Letting fg; denote the Selmer structure on Ty obtained by propagation,
specialization at 3 yields a map

KS(T*, F£, L) — KS(Ty, F=, L

SS’

d. Kf’(m)}ne/\/ the image of pd - k% under this map,

it follows from Lemma 6.5 and the non-triviality of zZ that the class Kli “® s non-
torsion for all but finitely many ‘B. Since by [33, Prop. 4.11] the local conditions

H! 7 (Ky, Tp) for v | p are self-dual under the local Tate pairing and by [19, Prop. 2.1]

Denoting by p? - k*=® = {p

our assumption that N is squarefree and p is supersingular (so in partlcular E[p]is
an irreducible G-module) implies that the G g-action of E[p] is surjective,’ by [27,

Thm. 2.2.2] it follows that for all but finitely many 3 we have /cli B e HI}__E (K, Twp),
that HlFESS (K, Typ) is a free, rank one Sy-module, and that )

Hys (K, Ap) = (Dp/Sp) & My & My,
with Mg a finite Syz-module satisfying
length(Mg) < length(Hlf%(K, Ty)/ Sy - Kliv(‘ﬁ))'

The same argument as in [26, Thm. 2.2.10] then yields the result. ]

5 We thank the anonymous referee for bringing this result to our attention.
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