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ABSTRACT

Efforts to reconstruct the tree of life have a long history, but the
field has changed fundamentally in the genomic era. Phylogenomics
examines evolutionary relationships using very large datasets, so a
major problem in the field is the development of unbiased computa-
tional methods for tree inference. Sources of bias include sequence
alignment errors, discordance among gene trees, and long branch
attraction. Distances based on data compression can address se-
quence alignment errors and analyses of distances may be robust to
amajor source of discordance among gene trees (incomplete lineage
sorting). However, compression distances appear to be susceptible
to long branch attraction. This study tested the hypothesis that
compression distances can be modified to be more resistant to long
branch attraction and found that correcting compression distances
for multiple substitutions improved their behavior. Calculating dis-
tances after grouping amino acids based on their physicochemical
properties incorporated more biological information. The modified
compression distances used in this study also made it possible to
estimate tree support using a method that closely resembles the
bootstrap, the most popular support metric in phylogenomics.
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1 INTRODUCTION

Understanding the historical relationships among living organisms
is an major goal in the fields of comparative genomics and phy-
logenetics. In the current “phylogenomic era” the primary source
of tree estimation error is systematic rather than stochastic in na-
ture. Adding data ameliorates stochastic error but it exacerbates
systematic error [20]. Standard methods of phylogenetic estimation
(e.g., maximum likelihood [ML] with commonly-used models of
sequence evolution) will yield incorrect estimates of topology if
those sources of error are strong enough. Long-branch attraction
(LBA) is the best characterized source of systematic error [12], but
changes in state frequencies (i.e., shifts in nucleotide or amino acid
frequencies) is also important [20]. However, discordance among
gene trees has come to the forefront as a source of systematic error
in phylogenomics [11]. This discordance reflects processes like in-
complete lineage sorting (ILS) that result in genuine conflict among
true gene trees [11, 29].

The simplest analytical approach in phylogenomics is ML analy-
sis of concatenated multiple sequence alignments for many different
loci. However, this “ML concatenation” approach can yield an in-
correct topology when there is ILS [22, 35]. Summary coalescent
analyses, which estimate individual gene trees (typically using ML)
and combine those trees [29], are the most commonly used solution
to the ILS problem. Summary coalescent analyses have many ad-
vantages but errors in the estimated gene trees can be problematic
for summary coalescent methods [26, 40]. Perhaps surprisingly,
analyses of concatenated data using certain distance methods were
recently shown to be statistically consistent (i.e., to converge on
the true tree in the limit of infinite data) [1, 8].

Genetic distance calculations typically use pairs of aligned se-
quences, but data compression methods can be used to alignment-
free calculate distances [7, 23, 24]. Compression distances are based
on the idea that compressing the concatenation of two very similar
files results in a smaller file than compressing the concatenation of
two very different files. In phylogenetics, the normalized compres-
sion distance (NCD) would be calculated using equation 1 with files
of sequences represented as one-letter codes (i.e., nucleotides € {A,
C, G, T} or the 20 amino acids):

NCD(x, y) = SBY) = min {CH).Cy} )
max {C(x), C(y)}

In equation 1, C(x) and C(y) are compressed file sizes for sequences
from taxa x and y and C(x,y) is the compressed file size for their
concatenation. NCD exhibited good performance in a simulation
study that assumed ILS [45]. However, it has seldom been used in
empirical studies; most NCD trees have used mammalian mitoge-
nomic data (Fig. 1). Unfortunately, those trees strongly suggest the
NCD is susceptible to LBA. Compression distances must be less
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sensitive to LBA to be useful phylogenomic tools. The goal of this
study is to determine whether it is possible to modify the NCD to
incorporate biological information and if doing so makes it less
sensitive to sources of systematic bias, like LBA.

A (True tree)
Monotremata (platypus)

Marsupialia (opossum, wallaby)
Ferungulata (cat, seal, horse, cow, whales)
Primates (human, great apes)

----Rodentia (mouse, rat) Euarchontoglires

B (Li et al. 2001 tree) C (Cilibrasi and Vitanyi 2005 tree)

Monotremata Monotremata
Marsupialia Marsupialia
Rodentia Rodentia
Primates Primates

Ferungulata Ferungulata
Figure 1: Published compression distance trees for mammals
appear to be affected by LBA. (A) Consensus mammal tree based
on many phylogenomic studies (reviewed by Murphy et al. [30];
this tree can be viewed as true. The rodent branch is extended by
a dashed line to emphasize the high rate of molecular divergence
in muroid rodents (e.g., rat and mouse); the high rate creates the
potential for LBA that disrupts the “indicator clade” (Euarchon-
toglires). (B) Li et al. [23] compression tree rooted rooted between
monotremes (e.g., platypus) and other mammals. (C) Cilibrasi and
Vitanyi [7] compression tree, rooted to a fish outgroup (not shown).
Note that the only rodents in the compression distance trees [7, 23]
were the rat and mouse.

2 METHODS

NCD is an approximation to an idealized but uncomputable dis-
tance based on Kolmogorov complexity [25]. The quality of this
approximation depends on the properties of the data compression
program. Comparing NCD(x,y) to NCD(x,x) and NCD(y,y), as shown
in equation 2, should correct for compressor imperfections (to some
degree).
NCD(x, y) _ NCD(x,x);NCD(y,y)

_ NCD(x,x)+NCD(y,y) (2)

2

NCD, =

1

Correcting NCD for the behavior of the compressor does not yield
additive distances and non-additivity is the likely basis for LBA in
distance analyses. This issue can be addressed using a correction
analogous to the Poisson and I' distances for aligned data [31], as
shown in equations 3 and 4.

NCDpyisson = —In(1 - NCD.) (3
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NCDr = a | (1 - NCD,) "% - 1] (4)

Both equations correct the NCD, for multiple substitutions, but
equation 4 also accommodates variation in substitution rates across
sites using an adjustable parameter () related to that variation.
This is desirable because among-sites rate variation is pervasive in
proteins [10]. However, different types of substitutions also accu-
mulate at different rates in proteins (see Braun [4] for details). This
can be addressed by using alternative amino acid alphabets (Table 1)
might address the second issue. Four of the alphabets group amino
acids based on physicochemical properties and the fifth groups
captures the GC content of codons; the GC alphabet was used be-
cause amino acid frequencies are correlated with genomic base
composition [37, 39].

Table 1: Amino acid alphabets

Alphabet  States Groups
Standard 20 n/a
Dayhoff[9] 6  (C),(AGPST),(NDEQ),(RHK),(ILMV),(FWY)
Hanada [14] 4 (ANCGPST),(ILMV),(RQHKFWY),(DE)
HP 2 (RNDCQEHKSTWY),(AGILMFPV)
Size 2 (RQEHILKMFWY),(ANDCGPSTV)
GC 3 (FYMINK),(LVSTHQDECW),(GARP)

NCD values were calculated using gzip with best compression
(gzip -9). Concatenated sequence files were “tiled”; each line in
file x,y is a protein from taxon x immediately followed by its taxon
y ortholog (proteins were reiterated twice in files x,x and y,y). This
strategy requires ortholog identification but it does not require
multiple sequence alignment. Support values analogous to the boot-
strap, the support metric using in most phylogenetic studies [16]),
were calculated by randomly sampling orthologs (100 orthologs
for each replicate). Least squares trees were estimated from the
distances using PAUP* 4.0b166 [44] and consensus trees were gen-
erated using SumTrees.py from DendroPy [43]. Programs and links
to additional information (including the data used for these analy-
ses) are available from https://github.com/ebraun68/compdisttest.

The mammalian dataset comprised 1453 orthologs from the Or-
thoMaM v. 10c [38]; 19 taxa that resemble the taxon sample in
Fig. 1 of Li et al. [23] were analyzed. The avian dataset comprised
2590 aligned orthologs from Jarvis et al. [19]; 21 taxa were selected
for analysis; TAPER [46] was used to identify homology errors
in the Jarvis data, which have been noted earlier [41]. Analyses
were limited to loci with all selected taxa and no TAPER masking.
ML concatenation analyses used IQ-TREE, [28] and support was
calculated using the ultrafast bootstrap [15]. Patristic distances for
the ML trees (the sum of branch lengths connecting each pair of
taxa) were calculated using the T-REX server [3].
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3 RESULTS AND DISCUSSION

3.1 Transformed compression distances are less
susceptible to systematic bias

The concatenated ML tree (Fig. 2) was congruent with recent genome-
scale mammalian phylogenies [13, 30]; those phylogenies were gen-
erated using a variety of methods, including some that explicitly
incorporate discordance among gene trees due to ILS. The only
node with <100% support was Euungulata (Perissodactyla [horse
and rhinoceros] + Cetartiodactyla [cow and whales]); that clade is
poorly supported in other phylogenomic studies. The raw NCD,
tree broke up the LBA “indicator clade” (Euarchontogilres, see Fig.
3A), suggesting that raw NCD, trees are susceptible to LBA under
conditions where standard ML is robust. NCD, branch lengths had
proportionally longer terminal branches than the ML tree and they
exhibited less heterogeneity in root to tip distances.

Bonobo
Chimpanzee
Human
Gorilla
Orangutan
- Gibbon
I: Rat
Mouse

Minke whale
Sperm whale
Cow
Horse
Rhinoceros
Walrus
Seal
Cat

Opossum
— Wallaby

Platypus

concatenated ML tree

0.03

Figure 2: Concatenated ML tree for mammals. IQ-TREE topol-
ogy obtained using the best-fitting model (Q.bird+F+I+G4 [27])
identified using the -m TEST option [21]. Support values reflect the
ultrafast bootstrap [15]; unlabeled nodes had complete support.

Using NCDr (equation 4) to calculate distances appeared to ame-
liorate LBA (Fig. 3B). Relative branch length differences between
ML tree and the NCDr tree were evident, suggesting that the two
methods extract different information from the data. The most strik-
ing branch length difference involves the wallaby. Provocatively,
NCDr trees with @<0.7 had, at most, weak support for marsupial
monophyly. NCDr with a=0.7 is likely reasonable since the ML
concatenation estimate of « for variable sites in these sequences
was 0.7531. Moreover, support for Euarchontoglires was >50% for
all alphabets when o was between 0.3 and 0.8 (see github). There is
no ideal way to estimate «; the o parameter for aligned I" distances
is non-identifiable given pairwise comparisons [42]. ML estimates
of the o parameter are themselves imperfect because ILS can lead
to sites that appear artificially fast (see Fig. 5 in Houde et al. [17]).
Estimating rate heterogeneity parameters is fertile area for further
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Figure 3: Comparison of uncorrected and corrected NCD,
trees for mammals. (A) Least squares tree for uncorrected (“raw”)
NCD, values. Support was calculated using 100 random samples of
the full ortholog set (see Methods); unlabeled nodes had complete
support. Red asterisks indicate conflicts with the ML tree. (B) Least
squares tree for corrected NCD, values with a=0.7. Support and
conflicts with the ML tree are indicated as in part A. Distances
calculations for both trees used the standard amino acid alphabet.

research if compression distances are to become a mature tool in
phylogenomics.

3.2 Different alphabets capture distinct
evolutionary information

Pairwise NCD, values calculated using different alphabets (Table 1)
were quite similar, but they were not identical (Fig. 4). Nevertheless,
there were some general patterns; uncorrected NCD, values for the
two- and three-state alphabets showed consistently higher slopes
than the standard 20-state alphabet whereas the uncorrected values
for the four- and six-state alphabets had shallower slopes. Support
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for some nodes also differed based on the alphabet. NCDr trees
had relatively high support for Euarchontoglires when the value
of a was between 0.3 and 0.7 (Fig. 5A). However, the behavior of
the Hanada and Dayhoff alphabets differed from the other alpha-
bets (Table 1); both of those alphabets provided higher support
for Euarchotoglires for @>0.7 and for @=0.2. Support for marsupial
monophyly in NCDr trees exhibited a pattern that was essentially
the opposite of the pattern for Euarchontoglires. As described above,
NCDr trees a<0.7 had greatly reduced support for Marsupialia (Fig.
5B). However, the different patterns of support for Euarchontoglire
and Marsupialia also extended to the alphabets; calculating NCDr
using the Hanada and Dayhoff alphabets always resulted in lower
support marsupial monophyly, regardless of the a value. For addi-
tional details, see the github page for this project.

Comparison of untransformed NCD,; values
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Figure 4: Different amino acid alphabets capture distinct
information about evolutionary divergence. (A) Uncorrected
NCD, values for each alphabet plotted against NCD, for the standard
alphabet. The dashed green line has a slope of one.

3.3 Compression distances exhibit similar
behaviors with mammal and bird proteins

This overall pattern of increase for NCD, observed for avian pro-
teins (see github) was essentially identical to that observed for
mammalian proteins (Fig. 4). This is not especially surprising given
that models of protein sequence evolution estimated from aligned
data are very similar for birds and mammals [32]. However, avian
coding regions are known to exhibit a high degree of variation in
GC-content [5, 6, 18, 34]. Moreover, this variation is correlated, at
least to some degree, with evolutionary rate [5, 18]. This prompted
us to compare uncorrected NCD, values for the standard amino
acid alphabet and the GC alphabet to patristic distances for the ML
tree of birds.

The concatenated ML tree for the avian dataset exhibited substan-
tial branch length heterogeneity (Fig. 6A) . The deepest divergence
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Figure 5: Support for selected clades in phylogenetic anal-
yses of NCD,. values. (A) Support for Euarchontoglires (ro-
dents+primates). (B) Support for marsupial monophyly. Both graphs
show different transformations of the NCD, as sets of columns. Col-
umn colors indicate the alphabet. Each set of columns indicates
the transformation used to correct the NCD,; Uncorr indicates no
transformation.

within Neoaves (the clade comprising most extant birds) was be-
tween Strisores (hummingbirds, nightjars, and allies [36]) and all
other Neoaves in this tree. For this taxon sample, the correct root
of Neoaves is likely to be between Mirandornithes (flamingos and
grebes [36]) and other Neoaves [5, 6, 18]. This conflict was not com-
pletely unexpected; several studies [6, 34] have noted that analyses
of coding data often place Strisores sister to all other Neoaves (e.g.,
the coding exon trees in Jarvis et al. [18] and the primary tree in
Prum et al. [33]). Perhaps surprisingly, given the presumed role of
GC-content variation across taxa in biased estimation of the bird
tree [5, 6, 18, 34], we observed very similar patterns of increase
for NCD, values calculated using the standard and GC alphabets
relative to patristic distances (Fig. 6B). Although the two alphabets
clearly extract different information from the data, the most notice-
able difference between the alphabets was the higher values for the
GC alphabet, which was expected based on the mammal data (Fig.
4). A recent study showed that the patterns of base composition
change across the bird tree are more complex than expected for
simple shifts in GC content [2]; it might be more difficult to detect
those complex changes using the relatively simple GC alphabet.
Estimates of the bird tree based on transformed NCD, values had
limited support regardless of the value of «. However, we note the
ML concatenation tree for birds exhibits several differences from
the likely true species tree (Fig. 6A). In addition to the unexpected
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A Concatenated ML tree for birds
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Figure 6: NCD, values for the standard amino acid alphabet
and the GC alphabet exhibit similar patterns of increase in
birds. (A) Concatenated ML tree for birds used to calculate patristic
distances. This topology was obtained using IQ-TREE topology with
the best-fitting model (Q.bird+F+I+G4 [27]) identified using the -m
TEST option [21]. Red arrows indicate rearrangements relative to
the likely true tree; moving the relevant clades to the positions
indicated using the arrows would yield the best available estimate
of the true tree (see Braun [5] for review). Avian clade names are
from Sangster et al. [36]. Unlabeled nodes had complete support. (B)
Uncorrected NCD, values the standard and GC alphabets calculated
for birds and compared to patristic distances.

position of Strisores, the seriema is also misplaced relative to expec-
tation (and that expectation is based on extensive data; see Braun
[5] for review). Thus, neither ML concatenation nor analyses of
compression distances were able to provide accurate estimates of
phylogeny for birds. The part of the bird tree captured in this taxon
sample is very challenging, with clear branch length differences,
base compositional variation, and pervasive ILS (and potentially
other sources of bias) [2, 5, 6, 17, 18, 34]. Thus, it is unsurprising
that modified NCD trees for birds were inaccurate.
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4 CONCLUSIONS

This study provided empirical evidence that phylogenetic analyses
using unmodified compression distances (i.e., the NCD) are suscepti-
ble to LBA. However, it also revealed that there are straightforward
ways to transform the NCD to correct this problem; specifically, the
NCDr can be used to incorporate the potential for multiple that cor-
rect can this problem. This study also corroborated the hypothesis
that calculating compression distances using alternative alphabets
can reveal distinct signals in the data; using different alphabets af-
fected support (Fig. 5). Although the transformation to incorporate
among-sites substitution rate variation (i.e., the NCDr) and the use
of alternative alphabets both represent ways to incorporate biolog-
ical information into compression distances, the I' transformation
is likely to be more important based on these analyses. Finally, the
approach used in this study made it possible to generate support
values similar to the bootstrap, which is a major benefit relative
to other methods to calculate support that can be used with com-
pression distance analyses (e.g., Li et al. [23]). This study did not
show that analyses of compression distances (or analyses of any
distances) were more robust to ILS than concatenated ML. How-
ever, overcoming LBA is a prerequisite for any useful phylogenomic
method and that was the focus of this study. The demonstration
that compression distances can be improved by adding biological
information represents an important step in the development of
those distances as useful phylogenomic tools.
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