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ABSTRACT

E�orts to reconstruct the tree of life have a long history, but the

�eld has changed fundamentally in the genomic era. Phylogenomics

examines evolutionary relationships using very large datasets, so a

major problem in the �eld is the development of unbiased computa-

tional methods for tree inference. Sources of bias include sequence

alignment errors, discordance among gene trees, and long branch

attraction. Distances based on data compression can address se-

quence alignment errors and analyses of distances may be robust to

a major source of discordance among gene trees (incomplete lineage

sorting). However, compression distances appear to be susceptible

to long branch attraction. This study tested the hypothesis that

compression distances can be modi�ed to be more resistant to long

branch attraction and found that correcting compression distances

for multiple substitutions improved their behavior. Calculating dis-

tances after grouping amino acids based on their physicochemical

properties incorporated more biological information. The modi�ed

compression distances used in this study also made it possible to

estimate tree support using a method that closely resembles the

bootstrap, the most popular support metric in phylogenomics.
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1 INTRODUCTION

Understanding the historical relationships among living organisms

is an major goal in the �elds of comparative genomics and phy-

logenetics. In the current “phylogenomic era” the primary source

of tree estimation error is systematic rather than stochastic in na-

ture. Adding data ameliorates stochastic error but it exacerbates

systematic error [20]. Standard methods of phylogenetic estimation

(e.g., maximum likelihood [ML] with commonly-used models of

sequence evolution) will yield incorrect estimates of topology if

those sources of error are strong enough. Long-branch attraction

(LBA) is the best characterized source of systematic error [12], but

changes in state frequencies (i.e., shifts in nucleotide or amino acid

frequencies) is also important [20]. However, discordance among

gene trees has come to the forefront as a source of systematic error

in phylogenomics [11]. This discordance re�ects processes like in-

complete lineage sorting (ILS) that result in genuine con�ict among

true gene trees [11, 29].

The simplest analytical approach in phylogenomics is ML analy-

sis of concatenatedmultiple sequence alignments for many di�erent

loci. However, this “ML concatenation” approach can yield an in-

correct topology when there is ILS [22, 35]. Summary coalescent

analyses, which estimate individual gene trees (typically using ML)

and combine those trees [29], are the most commonly used solution

to the ILS problem. Summary coalescent analyses have many ad-

vantages but errors in the estimated gene trees can be problematic

for summary coalescent methods [26, 40]. Perhaps surprisingly,

analyses of concatenated data using certain distance methods were

recently shown to be statistically consistent (i.e., to converge on

the true tree in the limit of in�nite data) [1, 8].

Genetic distance calculations typically use pairs of aligned se-

quences, but data compression methods can be used to alignment-

free calculate distances [7, 23, 24]. Compression distances are based

on the idea that compressing the concatenation of two very similar

�les results in a smaller �le than compressing the concatenation of

two very di�erent �les. In phylogenetics, the normalized compres-

sion distance (NCD) would be calculated using equation 1 with �les

of sequences represented as one-letter codes (i.e., nucleotides ∈ {A,

C, G, T} or the 20 amino acids):

#�� (G,~) =
� (G,~) −<8= {� (G),� (~)}

<0G {� (G),� (~)}
(1)

In equation 1, C(x) and C(y) are compressed �le sizes for sequences

from taxa x and y and C(x,y) is the compressed �le size for their

concatenation. NCD exhibited good performance in a simulation

study that assumed ILS [45]. However, it has seldom been used in

empirical studies; most NCD trees have used mammalian mitoge-

nomic data (Fig. 1). Unfortunately, those trees strongly suggest the

NCD is susceptible to LBA. Compression distances must be less
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sensitive to LBA to be useful phylogenomic tools. The goal of this

study is to determine whether it is possible to modify the NCD to

incorporate biological information and if doing so makes it less

sensitive to sources of systematic bias, like LBA.

Monotremata (platypus)

Primates (human, great apes)

Rodentia (mouse, rat)

Marsupialia (opossum, wallaby)

Ferungulata (cat, seal, horse, cow, whales)

Euarchontoglires

Monotremata

Primates

Ferungulata

Marsupialia

Rodentia

B (Li et al. 2001 tree)

Marsupialia

Rodentia

Monotremata

Primates

Ferungulata

C (Cilibrasi and Vitányi 2005 tree)

A (True tree)

Figure 1: Published compression distance trees for mammals

appear to be a�ected by LBA. (A) Consensus mammal tree based

on many phylogenomic studies (reviewed by Murphy et al. [30];

this tree can be viewed as true. The rodent branch is extended by

a dashed line to emphasize the high rate of molecular divergence

in muroid rodents (e.g., rat and mouse); the high rate creates the

potential for LBA that disrupts the “indicator clade” (Euarchon-

toglires). (B) Li et al. [23] compression tree rooted rooted between

monotremes (e.g., platypus) and other mammals. (C) Cilibrasi and

Vitányi [7] compression tree, rooted to a �sh outgroup (not shown).

Note that the only rodents in the compression distance trees [7, 23]

were the rat and mouse.

2 METHODS

NCD is an approximation to an idealized but uncomputable dis-

tance based on Kolmogorov complexity [25]. The quality of this

approximation depends on the properties of the data compression

program. ComparingNCD(x,y) toNCD(x,x) andNCD(y,y), as shown

in equation 2, should correct for compressor imperfections (to some

degree).

#��2 =

#�� (G,~) −
#�� (G,G )+#�� (~,~)

2

1 −
#�� (G,G )+#�� (~,~)

2

(2)

Correcting NCD for the behavior of the compressor does not yield

additive distances and non-additivity is the likely basis for LBA in

distance analyses. This issue can be addressed using a correction

analogous to the Poisson and � distances for aligned data [31], as

shown in equations 3 and 4.

#��Poisson = −ln(1 − #��2 ) (3)

#��� = U
[

(1 − #��2 )
− 1

Ă − 1

]

(4)

Both equations correct the NCDc for multiple substitutions, but

equation 4 also accommodates variation in substitution rates across

sites using an adjustable parameter (U) related to that variation.

This is desirable because among-sites rate variation is pervasive in

proteins [10]. However, di�erent types of substitutions also accu-

mulate at di�erent rates in proteins (see Braun [4] for details). This

can be addressed by using alternative amino acid alphabets (Table 1)

might address the second issue. Four of the alphabets group amino

acids based on physicochemical properties and the �fth groups

captures the GC content of codons; the GC alphabet was used be-

cause amino acid frequencies are correlated with genomic base

composition [37, 39].

Table 1: Amino acid alphabets

Alphabet States Groups

Standard 20 n/a

Dayho� [9] 6 (C),(AGPST),(NDEQ),(RHK),(ILMV),(FWY)

Hanada [14] 4 (ANCGPST),(ILMV),(RQHKFWY),(DE)

HP 2 (RNDCQEHKSTWY),(AGILMFPV)

Size 2 (RQEHILKMFWY),(ANDCGPSTV)

GC 3 (FYMINK),(LVSTHQDECW),(GARP)

NCD values were calculated using gzip with best compression

(gzip -9). Concatenated sequence �les were “tiled”; each line in

�le x,y is a protein from taxon x immediately followed by its taxon

y ortholog (proteins were reiterated twice in �les x,x and y,y). This

strategy requires ortholog identi�cation but it does not require

multiple sequence alignment. Support values analogous to the boot-

strap, the support metric using in most phylogenetic studies [16]),

were calculated by randomly sampling orthologs (100 orthologs

for each replicate). Least squares trees were estimated from the

distances using PAUP* 4.0b166 [44] and consensus trees were gen-

erated using SumTrees.py from DendroPy [43]. Programs and links

to additional information (including the data used for these analy-

ses) are available from https://github.com/ebraun68/compdisttest.

The mammalian dataset comprised 1453 orthologs from the Or-

thoMaM v. 10c [38]; 19 taxa that resemble the taxon sample in

Fig. 1 of Li et al. [23] were analyzed. The avian dataset comprised

2590 aligned orthologs from Jarvis et al. [19]; 21 taxa were selected

for analysis; TAPER [46] was used to identify homology errors

in the Jarvis data, which have been noted earlier [41]. Analyses

were limited to loci with all selected taxa and no TAPER masking.

ML concatenation analyses used IQ-TREE, [28] and support was

calculated using the ultrafast bootstrap [15]. Patristic distances for

the ML trees (the sum of branch lengths connecting each pair of

taxa) were calculated using the T-REX server [3].
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3 RESULTS AND DISCUSSION

3.1 Transformed compression distances are less

susceptible to systematic bias

The concatenatedML tree (Fig. 2) was congruentwith recent genome-

scale mammalian phylogenies [13, 30]; those phylogenies were gen-

erated using a variety of methods, including some that explicitly

incorporate discordance among gene trees due to ILS. The only

node with <100% support was Euungulata (Perissodactyla [horse

and rhinoceros] + Cetartiodactyla [cow and whales]); that clade is

poorly supported in other phylogenomic studies. The raw NCDc

tree broke up the LBA “indicator clade” (Euarchontogilres, see Fig.

3A), suggesting that raw NCDc trees are susceptible to LBA under

conditions where standard ML is robust. NCDc branch lengths had

proportionally longer terminal branches than the ML tree and they

exhibited less heterogeneity in root to tip distances.

0.03 76

concatenated ML tree

Rat

Chimpanzee

Opossum

Mouse

Cat

Orangutan

Cow

Minke whale

Rhinoceros

Gorilla

Gibbon

Walrus

Horse

Sperm whale

Seal

Bonobo

Platypus
Wallaby

Human

Figure 2: Concatenated ML tree for mammals. IQ-TREE topol-

ogy obtained using the best-�tting model (Q.bird+F+I+G4 [27])

identi�ed using the -m TEST option [21]. Support values re�ect the

ultrafast bootstrap [15]; unlabeled nodes had complete support.

Using NCD� (equation 4) to calculate distances appeared to ame-

liorate LBA (Fig. 3B). Relative branch length di�erences between

ML tree and the NCD� tree were evident, suggesting that the two

methods extract di�erent information from the data. The most strik-

ing branch length di�erence involves the wallaby. Provocatively,

NCD� trees with U<0.7 had, at most, weak support for marsupial

monophyly. NCD� with U=0.7 is likely reasonable since the ML

concatenation estimate of U for variable sites in these sequences

was 0.7531. Moreover, support for Euarchontoglires was >50% for

all alphabets when U was between 0.3 and 0.8 (see github). There is

no ideal way to estimate U ; the U parameter for aligned � distances

is non-identi�able given pairwise comparisons [42]. ML estimates

of the U parameter are themselves imperfect because ILS can lead

to sites that appear arti�cially fast (see Fig. 5 in Houde et al. [17]).

Estimating rate heterogeneity parameters is fertile area for further
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Figure 3: Comparison of uncorrected and corrected NCDc

trees for mammals. (A) Least squares tree for uncorrected (“raw”)

NCDc values. Support was calculated using 100 random samples of

the full ortholog set (see Methods); unlabeled nodes had complete

support. Red asterisks indicate con�icts with the ML tree. (B) Least

squares tree for corrected NCDc values with U=0.7. Support and

con�icts with the ML tree are indicated as in part A. Distances

calculations for both trees used the standard amino acid alphabet.

research if compression distances are to become a mature tool in

phylogenomics.

3.2 Di�erent alphabets capture distinct

evolutionary information

Pairwise NCDc values calculated using di�erent alphabets (Table 1)

were quite similar, but they were not identical (Fig. 4). Nevertheless,

there were some general patterns; uncorrected NCDc values for the

two- and three-state alphabets showed consistently higher slopes

than the standard 20-state alphabet whereas the uncorrected values

for the four- and six-state alphabets had shallower slopes. Support



BCB ’23, September 3–6, 2023, Houston, TX, USA E. L. Braun

for some nodes also di�ered based on the alphabet. NCD� trees

had relatively high support for Euarchontoglires when the value

of U was between 0.3 and 0.7 (Fig. 5A). However, the behavior of

the Hanada and Dayho� alphabets di�ered from the other alpha-

bets (Table 1); both of those alphabets provided higher support

for Euarchotoglires for U>0.7 and for U=0.2. Support for marsupial

monophyly in NCD� trees exhibited a pattern that was essentially

the opposite of the pattern for Euarchontoglires. As described above,

NCD� trees U<0.7 had greatly reduced support for Marsupialia (Fig.

5B). However, the di�erent patterns of support for Euarchontoglire

and Marsupialia also extended to the alphabets; calculating NCD�

using the Hanada and Dayho� alphabets always resulted in lower

support marsupial monophyly, regardless of the U value. For addi-

tional details, see the github page for this project.
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Figure 4: Di�erent amino acid alphabets capture distinct

information about evolutionary divergence. (A) Uncorrected

NCDc values for each alphabet plotted againstNCDc for the standard

alphabet. The dashed green line has a slope of one.

3.3 Compression distances exhibit similar

behaviors with mammal and bird proteins

This overall pattern of increase for NCDc observed for avian pro-

teins (see github) was essentially identical to that observed for

mammalian proteins (Fig. 4). This is not especially surprising given

that models of protein sequence evolution estimated from aligned

data are very similar for birds and mammals [32]. However, avian

coding regions are known to exhibit a high degree of variation in

GC-content [5, 6, 18, 34]. Moreover, this variation is correlated, at

least to some degree, with evolutionary rate [5, 18]. This prompted

us to compare uncorrected NCDc values for the standard amino

acid alphabet and the GC alphabet to patristic distances for the ML

tree of birds.

The concatenatedML tree for the avian dataset exhibited substan-

tial branch length heterogeneity (Fig. 6A) . The deepest divergence
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Figure 5: Support for selected clades in phylogenetic anal-

yses of NCDc values. (A) Support for Euarchontoglires (ro-

dents+primates). (B) Support for marsupial monophyly. Both graphs

show di�erent transformations of the NCDc as sets of columns. Col-

umn colors indicate the alphabet. Each set of columns indicates

the transformation used to correct the NCDc; Uncorr indicates no

transformation.

within Neoaves (the clade comprising most extant birds) was be-

tween Strisores (hummingbirds, nightjars, and allies [36]) and all

other Neoaves in this tree. For this taxon sample, the correct root

of Neoaves is likely to be between Mirandornithes (�amingos and

grebes [36]) and other Neoaves [5, 6, 18]. This con�ict was not com-

pletely unexpected; several studies [6, 34] have noted that analyses

of coding data often place Strisores sister to all other Neoaves (e.g.,

the coding exon trees in Jarvis et al. [18] and the primary tree in

Prum et al. [33]). Perhaps surprisingly, given the presumed role of

GC-content variation across taxa in biased estimation of the bird

tree [5, 6, 18, 34], we observed very similar patterns of increase

for NCDc values calculated using the standard and GC alphabets

relative to patristic distances (Fig. 6B). Although the two alphabets

clearly extract di�erent information from the data, the most notice-

able di�erence between the alphabets was the higher values for the

GC alphabet, which was expected based on the mammal data (Fig.

4). A recent study showed that the patterns of base composition

change across the bird tree are more complex than expected for

simple shifts in GC content [2]; it might be more di�cult to detect

those complex changes using the relatively simple GC alphabet.

Estimates of the bird tree based on transformed NCDc values had

limited support regardless of the value of U . However, we note the

ML concatenation tree for birds exhibits several di�erences from

the likely true species tree (Fig. 6A). In addition to the unexpected
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Figure 6: NCDc values for the standard amino acid alphabet

and the GC alphabet exhibit similar patterns of increase in

birds. (A) Concatenated ML tree for birds used to calculate patristic

distances. This topology was obtained using IQ-TREE topologywith

the best-�tting model (Q.bird+F+I+G4 [27]) identi�ed using the -m

TEST option [21]. Red arrows indicate rearrangements relative to

the likely true tree; moving the relevant clades to the positions

indicated using the arrows would yield the best available estimate

of the true tree (see Braun [5] for review). Avian clade names are

from Sangster et al. [36]. Unlabeled nodes had complete support. (B)

Uncorrected NCDc values the standard and GC alphabets calculated

for birds and compared to patristic distances.

position of Strisores, the seriema is also misplaced relative to expec-

tation (and that expectation is based on extensive data; see Braun

[5] for review). Thus, neither ML concatenation nor analyses of

compression distances were able to provide accurate estimates of

phylogeny for birds. The part of the bird tree captured in this taxon

sample is very challenging, with clear branch length di�erences,

base compositional variation, and pervasive ILS (and potentially

other sources of bias) [2, 5, 6, 17, 18, 34]. Thus, it is unsurprising

that modi�ed NCD trees for birds were inaccurate.

4 CONCLUSIONS

This study provided empirical evidence that phylogenetic analyses

using unmodi�ed compression distances (i.e., theNCD) are suscepti-

ble to LBA. However„ it also revealed that there are straightforward

ways to transform the NCD to correct this problem; speci�cally, the

NCD� can be used to incorporate the potential for multiple that cor-

rect can this problem. This study also corroborated the hypothesis

that calculating compression distances using alternative alphabets

can reveal distinct signals in the data; using di�erent alphabets af-

fected support (Fig. 5). Although the transformation to incorporate

among-sites substitution rate variation (i.e., the NCD� ) and the use

of alternative alphabets both represent ways to incorporate biolog-

ical information into compression distances, the � transformation

is likely to be more important based on these analyses. Finally, the

approach used in this study made it possible to generate support

values similar to the bootstrap, which is a major bene�t relative

to other methods to calculate support that can be used with com-

pression distance analyses (e.g., Li et al. [23]). This study did not

show that analyses of compression distances (or analyses of any

distances) were more robust to ILS than concatenated ML. How-

ever, overcoming LBA is a prerequisite for any useful phylogenomic

method and that was the focus of this study. The demonstration

that compression distances can be improved by adding biological

information represents an important step in the development of

those distances as useful phylogenomic tools.
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