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Abstract

We establish the asymptotic stability of the sine-Gordon kink under odd perturbations
that are sufficiently small in a weighted Sobolev norm. Our approach is perturba-
tive and does not rely on the complete integrability of the sine-Gordon model. Key
elements of our proof are a specific factorization property of the linearized opera-
tor around the sine-Gordon kink, a remarkable nonresonance property exhibited by
the quadratic nonlinearity in the Klein-Gordon equation for the perturbation, and
a variable coefficient quadratic normal form. We emphasize that the restriction to
odd perturbations does not bypass the effects of the odd threshold resonance of the
linearized operator. Our techniques have applications to soliton stability questions
for several well-known nonintegrable models, for instance, to the asymptotic stability
problem for the kink of the ¢* model as well as to the conditional asymptotic stability
problem for the solitons of the focusing quadratic and cubic Klein—Gordon equations
in one space dimension.
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2716 LUHRMANN and SCHLAG

1. Introduction

1.1. The sine-Gordon model
The sine-Gordon model is a classical nonlinear scalar field theory for real-valued
fields ¢: R!*! — R. Its Lagrangian is given by

1 1
// (—5(09)* + 5(0x9)? + 1 = cos(@) ) dxdr,
R1+1 2 2
and the associated Euler-Lagrange equation reads
(02 — %) = —sin(¢p), (t,x) eRxR. (1.1)

The equation enjoys space-time translation invariance and Lorentz invariance. Its
solutions formally conserve the energy

1 1
E= /}R(E(a,qs)2 +5(0x9)7 +1- cos(¢)) dx.

The sine-Gordon model was discovered as early as in the 1860s in the study of
surfaces with constant negative curvature (see [6]), and it arises in a diverse range
of applications in physics. We refer to the monographs [11], [12], [47], and [57] for
more background. Due to its complete integrability the sine-Gordon model assumes a
special place among other well-known nonlinear scalar field theories on the line such
as the ¢* model, the P(¢), theories, or the double sine-Gordon theory.

Global existence of all finite energy solutions to (1.1) is a consequence of a stan-
dard fixed-point argument and energy conservation. The longtime behavior of solu-
tions to (1.1) is therefore the main objective in the study of the dynamics of the sine-
Gordon model. In this regard its soliton solutions such as kinks and breathers play a
fundamental role.

A static sine-Gordon kink is a stationary solution to (1.1) that connects the two
constant finite energy solutions 0 and 27, which are also referred to as vacuum solu-
tions of (1.1). In other words, a static kink corresponds to a heteroclinic orbit of the
ordinary differential equation (ODE) f” = sin(f) and is, up to translation, explicitly
given by

K(x) = 4arctan(e™).

The invariance of (1.1) under spatial translations and Lorentz transformations then
gives rise to the family of moving kinks

Kia(t.x) = K(y(x — 1 —a),
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where £ € (—1,1),aeR,and y := (1 — 62)_%. Kinks are simple examples of topo-
logical solitons, that is, solitary wave solutions that exhibit a nontrivial topological
invariant.
Breathers are time-periodic, spatially localized solutions to (1.1). An example is
given by
B sin(at)

Bg(t,x) = 4arctan(a cosh(,Bx))’

where « := /1 — % and B8 € (—1, 1)\{0}.

Kinks and breathers form the building blocks of the longtime dynamics of solu-
tions to (1.1) in the sense that, loosely speaking, any generic global-in-time solution
to (1.1) asymptotically decouples into a finite sum of weakly interacting kinks and
breathers plus a radiation term that decays to zero. Relying on the complete integra-
bility of the sine-Gordon model, its initial value problem had been formally studied
via inverse scattering techniques by Ablowitz et al. [1], Takhtadzhyan [72], Kaup
[36], and Zaharov, Takhtadzhyan, and Faddeev [74]. Recently, the soliton resolution
for the sine-Gordon model was rigorously established by Chen, Liu, and Lu [9, The-
orem 1.1].

In this work we investigate the asymptotic stability of the sine-Gordon kink
K(x) = 4arctan(e”) under small perturbations. Interestingly, the presence of excep-
tional periodic solutions called wobbling kinks poses an obstruction to the asymp-
totic stability of the sine-Gordon kink under small perturbations in the energy space,
but not relative to perturbations that are small with respect to (sufficiently) weighted
Sobolev norms. Wobbling kinks can be thought of as nonlinear superpositions of a
kink and a breather. We refer to Alejo, Mufioz, and Palacios [3] and Chen, Liu, and
Lu [9] for detailed discussions of this aspect of the problem.

While the asymptotic stability problem for the sine-Gordon kink has been
resolved via inverse scattering techniques (see [9, Corollary 1.5]), we instead pro-
ceed perturbatively in this work and do not rely on the complete integrability of
the sine-Gordon model. One finds that the evolution equation for odd perturbations
u(t,x) = ¢(t,x) — K(x) of the sine-Gordon kink K(x) is given by

(97 — 02 — 2sech?(x) + 1)u
I 1
= —sech(x) tanh(x)u? + <6 ~3 sechz(x))u3 + {higher order}. (1.2)

Correspondingly, the proof of the asymptotic stability of the sine-Gordon kink under
odd perturbations consists in proving the decay to zero of small solutions to (1.2). We
establish sharp decay estimates and asymptotics of solutions to (1.2) for odd initial
data that are small with respect to a weighted Sobolev norm. Since arbitrary perturbed
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kink solutions may asymptotically converge to a slightly translated and boosted kink,

our restriction to odd perturbations is only for technical reasons, namely to prevent the

translational mode of the kink from entering the dynamics. We stress that the restric-
tion to odd initial data does not bypass the effects of the odd threshold resonance of
the linearized operator around the sine-Gordon kink.

Our motivation is twofold:

. First, we believe that our asymptotic stability proof highlights remarkable
structures of the sine-Gordon model from a nonintegrable point of view. These
should be of independent relevance in view of the recent interest in the study of
the decay and the asymptotics of small solutions to one-dimensional quadratic
Klein—Gordon equations with a potential such as (1.2).

. Second, we introduce techniques to study long-range scattering problems for
one-dimensional nonlinear Klein—-Gordon equations with Poschl-Teller poten-
tials. Our approach has applications to soliton stability questions for several
well-known nonintegrable models, for instance, to the asymptotic stability
problem for the kink of the ¢* model as well as to the conditional asymp-
totic stability problem for the solitons of the focusing quadratic and cubic
Klein—Gordon equations in one space dimension.

1.2. Previous results

The study of the stability of solitons in nonlinear dispersive and hyperbolic equations
is a rich and vast subject that we cannot review here in its entirety. In this subsection
we only attempt to give an overview of previous results on the stability of kinks in
classical nonlinear scalar field theories on the line and we discuss prior works on
the closely related problem of proving decay and asymptotics of small solutions to
one-dimensional Klein—Gordon equations.

The orbital stability of kink solutions arising in nonlinear scalar field theories on
the line for a large class of scalar double-well potentials was established by Henry,
Perez, and Wreszinski [31]. The asymptotic stability of (moving) kinks was proved by
Kopylova and Komech [38], [39] for a certain class of nonlinear scalar field models
under a sufficient flatness assumption on the double-wells of the scalar potential and
under suitable spectral assumptions (no threshold resonances, possibility of a posi-
tive gap eigenvalue). Kowalczyk, Martel, and Mufioz [40] established the asymptotic
stability (in a local energy decay sense) of the kink in the ¢* model under odd per-
turbations. A key difficulty in the analysis of the dynamics of perturbations of the ¢*
kink is a positive gap eigenvalue (often called internal mode) of the linearized oper-
ator around the ¢* kink (see Sigal [68] and Soffer and Weinstein [69] for pioneering
works in this direction). Delort and Masmoudi [17] proved L$° decay estimates for
odd perturbations of the ¢* kink up to times ¢4, where 0 < & < 1 measures the size
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of the perturbation in a weighted Sobolev norm. As an application of general results
on the decay of solutions to one-dimensional quadratic Klein—Gordon equations with
potentials described further below, Germain and Pusateri [24] obtained the asymptotic
stability under odd perturbations of kinks that occur in the double sine-Gordon theory
within a certain range of the deformation parameter. A general sufficient condition for
asymptotic stability (in a local energy decay sense) of moving kinks under arbitrary
small perturbations was found by Kowalczyk et al. [43] under certain spectral assump-
tions (no threshold resonances, no internal modes). As already emphasized earlier, the
asymptotic stability of the sine-Gordon kink under arbitrary small perturbations, and
more generally the soliton resolution for the dynamics of the sine-Gordon model, was
established by Chen, Liu, and Lu [9] using inverse scattering techniques. Asymptotic
stability of the sine-Gordon kink (in a local energy decay sense) for perturbations with
symmetry had previously been proved by Alejo, Mufioz, and Palacios [3].

Similar (conditional) asymptotic stability questions for solitons in focusing non-
linear Klein—Gordon models in one space dimensions have been addressed by Bizon,
Chmaj, and Szpak [5], by the second author in joint work with Krieger and Nakanishi
[46], and by Kowalczyk, Martel, and Mufioz [42].

We also refer to the works of Alejo, Mufioz, and Palacios [2] on the stability of
sine-Gordon breathers, to Mufioz and Palacios [59] on the stability of 2-solitons in the
sine-Gordon equation, and to Jendrej, Kowalczyk, and Lawrie [34] on the dynamics
of kink-antikink pairs.

Finally, we refer to the surveys [41], [73] and references therein for results
on closely related asymptotic stability questions for solitary waves in nonlinear
Schrodinger equations, generalized KdV equations, and other nonlinear wave equa-
tions.

In a perturbative approach to the asymptotic stability problem for kinks in one-
dimensional scalar field models one needs to prove that small perturbations of kinks
decay to zero in a suitable sense. Omitting modulation theory aspects, the evolution
equation for a perturbation of a static kink is a one-dimensional nonlinear Klein—
Gordon equation of the general schematic form

(07 — 02 + V(x) + m*)u = a(x)u® + Bou>, (1,x) eR xR, (1.3)

where V(x) is a smooth localized potential, 2 > 0 is a mass parameter, «(x) is a
smooth variable coefficient, and B¢ € R is a constant coefficient. Despite the apparent
simplicity of the Klein-Gordon model (1.3), the analysis of the longtime behavior of
small solutions to (1.3) features a surprising number of interesting difficulties. Due to
the slow dispersive decay of Klein—Gordon waves in one space dimension, quadratic
and cubic nonlinearities exhibit long-range effects that lead to modified asymptotics
of small solutions in comparison to the free Klein—-Gordon flow. Moreover, the vari-
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able coefficient or(x) and the potential V(x) in (1.3) cause a decorrelation of (dis-
torted) input and output frequencies in the nonlinear interactions, which may lead to
the occurrence of delicate resonance phenomena in the quadratic nonlinearity. In addi-
tion, the linear operator in (1.3) may exhibit a threshold resonance, which is respon-
sible for slow local decay properties of the solutions that can significantly complicate
the analysis of the longtime behavior of solutions to (1.3). The linearized operators
around the sine-Gordon kink and the ¢* kink both have threshold resonances. It is
worth pointing out a peculiar feature in one space dimension: in contrast to higher
odd space dimensions, the flat linear Klein—Gordon operator (with V(x) = 0) exhibits
a threshold resonance, namely the constant function 1. Finally, the linearized opera-
tor may possess a positive gap eigenvalue (internal mode). The prime example for
this phenomenon is the ¢* model. At the linear level, such a positive gap eigenvalue
would be an obstruction to decay. However, at the nonlinear level a coupling of the
oscillations of the internal mode to the continuous spectrum may occur through the
so-called nonlinear Fermi golden rule (see [68], [69]), leading to the attenuation of
the internal mode.

The investigation of the decay of small solutions to nonlinear Klein—Gordon
equations in higher space dimensions was pioneered by Shatah [67] and Klainerman
[37].

The seminal work of Delort [14] established sharp decay estimates and asymp-
totics for small solutions to one-dimensional nonlinear Klein—Gordon equations of
the form

(8,2—8)26 + l)u:a0u2+ﬂ0u3, ag, Bo € R. (1.4)

See Lindblad and Soffer [53], [54], Hayashi and Naumkin [29], [30], Delort [15],
Stingo [71], and Candy and Lindblad [7] for subsequent results in this direction.'
Due to the slow dispersive decay of Klein-Gordon waves in one space dimension,
the quadratic and cubic nonlinearities produce long-range effects in the sense that
small solutions to (1.4) have the same L{° decay rate =% as free Klein-Gordon
waves, but exhibit logarithmic phase corrections with respect to the free flow. An
intriguing number of different techniques have been devised in order to capture this
modified scattering behavior. Oversimplifying slightly, one generally combines an
ODE argument with the derivation of slowly growing energy estimates for a Lorentz
boost Z = td, + x0d; (or the closely related operator L = (D)x —itd,) applied to the
solution.

The first results on the longtime behavior of small solutions to the following
Klein—Gordon equation with an additional variable coefficient cubic nonlinearity

'The papers [14] and [71] pertain to more general quasilinear nonlinearities. With an eye toward the model (1.3)
for the kink stability problem, here we only discuss their applicability to (1.4).
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were obtained by Lindblad and Soffer [56] and Sterbenz [70]:
(@2 — 92 + Du = aqu® + Bou® + B)u’,  ap.fo €R. B €SR).  (L5)

The new difficulty caused by the variable coefficient S(x) is related to the need for
deriving slowly growing energy estimates for a Lorentz boost of the solution. Indeed,
when the vector field Z falls onto the variable coefficient, it produces a strongly diver-
gent factor of ¢ that can be difficult to counteract. In [56] and [70], the authors devised
a variable coefficient cubic normal form to overcome this issue. More recently, the
first author in joint work with Lindblad and Soffer [51] introduced the use of local
decay estimates as a robust way to handle this difficulty.

The study of Klein—Gordon equations with variable coefficient quadratic non-
linearities was recently initiated by the first author in joint work with Lindblad and
Soffer [52], where the following model is considered:

(8t2 - 8}26 + Du=ax)u?, o) e S[R). (1.6)

Due to the spatial localization of the variable coefficient «(x), the asymptotic behav-
ior of small solutions to (1.6) is governed by the local decay properties of the solu-
tions. Already in the linear case, the local decay of free Klein-Gordon waves in one
space dimension is slow and only of the order of =2 owing to the threshold reso-
nance of the flat linear Klein—Gordon operator in one space dimension. This results
in the dynamic formation of a source term of the schematic form o (x)e?"t~! on the
right-hand side of (1.6), which exhibits a striking resonant interaction between the
temporal oscillations 2 and the frequencies § = £+/3 of the coefficient a(x). The
latter leads to a logarithmic slowdown of the decay rate along the associated rays
X = ??t, so that the free L$° decay rate ¢~ 2 is not propagated by the nonlinear
flow. (See Section 1.4 in [52] and [50] for a more detailed heuristic explanation of
this phenomenon.) This type of resonance can present a fundamental difficulty in the
analysis of the longtime behavior of small solutions to quadratic Klein—-Gordon equa-
tions of the form (1.3). The possibility of a logarithmic slowdown of the free decay
rate due to the presence of a space-time resonance had been demonstrated by Berni-
cot and Germain [4] in the context of analyzing bilinear interactions of free dispersive
waves in one space dimension. (See also Deng, Ionescu, and Pausader [18] and Deng
et al. [19] for higher-dimensional examples, where the free decay rate cannot be prop-
agated by the nonlinear flow.)

The analysis of (1.6) in [52] crucially relies on the spatial localization of the
coefficient (x), and it is not straightforward to include a constant coefficient cubic
nonlinearity or more ambitiously, a coefficient «(x) with nonzero limits as x — 300,
if no symmetry assumptions are made. In the special case where @(+ V3) =0 and

the above resonance phenomenon is correspondingly suppressed, [52, Theorem 1.7]
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. . 1 . N N
establishes L$° decay estimates at the rate 1~ 2 with logarithmic phase corrections in
the asymptotics for small solutions to

(02— 8% + Du=a(x)u® + pou®, a()eSR).aA(£vV3)=0, (1.7)

via the introduction of a variable coefficient quadratic normal form. The latter also
plays a key role in this work.

Delort and Masmoudi [17] studied the longtime behavior of odd perturbations of
the ¢* kink and obtained LS decay estimates up to times ~ ¢~#, where 0 < ¢ < 1
measures the size of the perturbation in a weighted Sobolev norm. Odd perturbations
of the ¢* kink satisfy the following nonlinear Klein—-Gordon equation:

(8?—8§—3se0h2<i> +2)u:—3tanh(i>u2—u3. (1.8)

V2 V2
The linear operator on the left-hand side of (1.8) has an even zero eigenfunction and
an even threshold resonance (which are not relevant due to the odd parity assumption),
but also an odd internal mode. Thus, the evolution equation (1.8) in fact becomes a
coupled system of a nonlinear Klein—Gordon equation for the projection of u(¢) onto
the continuous spectral subspace and an ODE for the projection of u(¢) onto the inter-
nal mode. The analysis of this involved coupled PDE/ODE system in [17] includes,
among other aspects, the use of the wave operator of the linearized Klein—Gordon
operator to conjugate to the flat linear Klein—-Gordon equation, new normal forms,
and an implementation of Fermi’s golden rule. It appears that the limitation up to
times ~ ¢~* in [17] stems from a source term that the internal mode creates in the
Klein—Gordon equation for the projection of u(¢) onto the continuous spectral sub-
space. To a certain extent, this source term bears a striking resemblance to the source
term created by the threshold resonance in the dynamics of the equation (1.6) (see
also (1.10) below). It could potentially lead to a logarithmic slowdown of the non-
linear solution along certain rays as well. It is worth noting that such a phenomenon
cannot be detected by the local-in-space analysis in Kowalczyk, Martel, and Mufioz
[40]. (We refer to Section 1.10 in [17] for a more elaborate discussion of this aspect;
see also Remark (x) on Theorem 1.1 in [50].)

The most general results on the longtime behavior of small solutions to Klein—
Gordon models of the form (1.3) were obtained by Germain and Pusateri [24] who
considered the equation

(07 — 02 + V(x) + )u = a(x)u?, lim a(x) ={i0 €R, (1.9)
x—=Fo00
where V(x) is a Schwartz class potential and where —32 + V(x) is assumed to have

no bound states. The key spectral assumption in [24] is that the distorted Fourier
transform of the nonlinear solution vanishes at zero frequency at all times, that is,
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7 [u(z,-)](0) = 0. This condition is automatically satisfied for generic potentials (no
threshold resonance) and can be enforced for nongeneric potentials by imposing suit-
able parity conditions. Under these assumptions, [24, Theorem 1.1] establishes that
small solutions to (1.9) decay in L$° at the free rate =% and exhibit logarithmic
phase corrections “caused by the nonzero limits” £4, of the coefficient a(x) as
Xx — Fo00. The approach in [24] is based on the distorted Fourier transform adapted
to the Schrodinger operator —92 + V(x) along with new quadratic normal forms and
a refined functional framework to capture the modified scattering behavior of small
solutions to (1.9). The work [24] further highlights that the abovementioned special
frequencies § = ++/3 are the (distorted) output frequencies of a nonlinear space-
time resonance, which is generally expected to occur for quadratic interactions in one
space dimension in the presence of a linear potential V' (x) and/or a variable coefficient
quadratic nonlinearity. We note that a slowdown of the decay rate of solutions to (1.9)
under the assumptions of [24, Theorem 1.1] does not occur because of the improved
local decay of the solutions due to the vanishing assumption 7 [u(z,-)](0) =0.

Finally, we mention the authors’ recent joint work with Lindblad and Soffer [50]
concerning the Klein—Gordon model

(07 — 02 + V(x) + u = Pe(a()u?), a() e 8(R), (1.10)

where the potential V' (x) is assumed to be nongeneric. In other words, the Schrodin-
ger operator —3% + V(x) is assumed to exhibit a threshold resonance, that is, a non-
trivial bounded solution to (=92 + V(x))g = 0 satisfying ¢(x) — 1 as x — oo.
Theorem 1.1 of [50] establishes an analogous modified scattering behavior to [52,
Theorem 1.1] for the special case (1.6), involving a logarithmic slowdown along
the rays x = :l:gt, if f};[wpz](:l: V/3) # 0. This further highlights the role that the
threshold resonances of the linear operator and the associated local decay proper-
ties of the solutions play for the longtime behavior of solutions to Klein—Gordon
models of the form (1.10). Moreover, [50, Remark 1.2] uncovered that for the lin-
earized equation around the sine-Gordon kink the remarkable nonresonance property
7 [2@?](£+/3) = 0 holds. A related observation plays a key role in this work.

The techniques that have been developed for the analysis of the longtime behav-
ior of solutions to Klein—Gordon equations such as (1.3) are of course closely related
to (and were at times preceded by) similar developments in the study of long-range
scattering problems for other nonlinear dispersive equations. We specifically men-
tion Hayashi and Naumkin [28], Lindblad and Soffer [55], Kato and Pusateri [35],
and Ifrim and Tataru [33] on the modified scattering of small solutions to the one-
dimensional cubic nonlinear Schrodinger equation. Moreover, we refer to the follow-
ing long-range scattering results for the one-dimensional cubic nonlinear Schrodinger
equation with a generic potential (or in some cases with a nongeneric potential under
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symmetry assumptions) by Naumkin [61], [62], Germain, Pusateri, and Rousset [26],
Delort [16], Masaki, Murphy, and Segata [58], and Chen and Pusateri [10]. (See also
[13], [20], [25], [48], [49], [60], [64] and references therein.)

Finally, we point the reader to the introductory chapter of the recent work of
Delort and Masmoudi [17] on the stability of the ¢* kink for a thorough overview
of, and historical perspective on, previous results on soliton stability and the longtime
behavior of small solutions to Klein—Gordon models related to (1.3).

1.3. Main result
We are now in the position to state the main result of this work.

THEOREM 1.1
The sine-Gordon kink K(x) = 4arctan(e*) is asymptotically stable under small odd
perturbations in the following sense. There exists a small constant 0 < g9 < 1 such
that for any odd initial data (ug,uy) with
&= ” (x)(uo,ul)“H’ng’g = &o,

the solution to

(0?2 — 9%)¢p = —sin(p), (1,x) e RxR,

(¢.0:9)|r=0 = (K + uo,uy),

satisfies

£
(1)?

Moreover, there exist an even asymptotic profile W € L* and a small constant 0 <
8 K 1 such that the perturbation

u(t,x):=¢(t,x)— K(x)

l6G.) = KO e S —F. 1€R. (1.11)

exhibits the asymptotics

‘u(l x) +2Re(€lZ /x Meipe—iw(%mg(z)ﬁ/(X)ﬂ(_l 1)(X) dy)‘
’ t3 Jo cosh(x) 0 AN

&
S5
1378

1>1, (1.12)

VE) =670 +38) T E)
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An analogous expression for the asymptotics of u(t,x) holds for negative times t <
—1.

As noted above, the restriction to odd perturbations in Theorem 1.1 does not
bypass the effects of the odd threshold resonance of the linearized operator around
the sine-Gordon kink. The oddness assumption prevents the translational mode of
the kink from entering the dynamics. We expect to be able to prove the asymptotic
stability of the sine-Gordon kink under arbitrary small perturbations by incorporating
modulation theory.

Remark 1.2
Our proof of Theorem 1.1 relies in a crucial way on a remarkable factorization prop-
erty of the linearized Klein—Gordon operator

— 92 —2sech?(x) + 1 (1.13)

around the sine-Gordon kink. Its potential belongs to the family of reflectionless
Poschl-Teller potentials in [63]. Introducing the first-order differential operator

D := 0, — tanh(x)
and its adjoint
D* := -0, — tanh(x),
we may write
DD* = —02 —2sech?(x) + 1.
It turns out that the conjugate operator is just the flat linear operator
D*D=-3+1. (1.14)

Thus, upon differentiating by £D* the Klein—-Gordon equation (1.2) for the pertur-
bation u of the sine-Gordon kink, we obtain a new evolution equation with a flat
Klein—Gordon operator for the new dependent variable D*u. Observe that the lin-
earized operator (1.13) exhibits the odd threshold resonance ¢(x) = tanh(x), while
(1.14) has the even threshold resonance ¢(x) = 1.

Such factorization ideas have, for instance, previously been used in the study of
blowup for energy-critical wave maps by Rodnianski and Sterbenz [66], Raphaél and
Rodnianski [65], Krieger and Miao [44], and by the second author in joint work with
Krieger and Miao [45].
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In the context of studying the conditional asymptotic stability of solitons in one-
dimensional focusing nonlinear Klein—Gordon equations by Kowalczyk, Martel, and
Muiioz [42] and of kinks in scalar field theories by Kowalczyk et al. [43], such fac-
torization ideas have been key for the derivation of local energy decay estimates. (See
also Chang et al. [8].)

In fact, it follows from Section 5.2 in [43] that among all scalar field theories on
the line with double-well potentials supporting kink solutions, up to invariances, the
sine-Gordon model is unique with the property that the conjugate of the linearized
operator around its kink is just the flat linear Klein—Gordon operator.

To the best of our knowledge, our proof of Theorem 1.1 appears to be the first
instance where such factorizations are used to derive sharp L$° decay estimates and
asymptotics for solutions in the context of a long-range scattering problem. Our
approach has applications to soliton stability questions for several well-known non-
integrable models, where the linearized operators feature Poschl-Teller potentials.
Examples include the asymptotic stability problem for the kink of the ¢* model as
well as the conditional asymptotic stability problem for the solitons of the focusing
quadratic and cubic Klein—Gordon equations in one space dimension.

1.4. Proof ideas and overview
In this subsection we describe the main ideas that enter the proof of Theorem 1.1 and
we provide an overview of the structure of this paper.

We show in Section 3.1 that the evolution equation for an odd perturbation

u(t5 x) = ¢(ts x) - K(X)
of the static sine-Gordon kink K(x) = 4 arctan(e”) is given by
(97 — 92 —2sech®(x) + 1)u

= —sech(x) tanh(x)u? + (é - %sechz(x)>u3 + {higher order}.  (1.15)
This is a one-dimensional nonlinear Klein—-Gordon equation featuring a linearized
operator that has an even zero eigenfunction Y (x) := sech(x) and an odd threshold
resonance ¢(x) := tanh(x). In (1.15) only the quadratic and cubic nonlinearities are
displayed, and we ignore the contributions of the milder higher order nonlinearities
in this discussion. Since odd perturbations u(z, x) automatically belong to the con-
tinuous spectral subspace of L2 relative to the linearized operator, the proof of the
asymptotic stability of the sine-Gordon kink under odd perturbations therefore con-
sists in establishing the decay to zero of small solutions to (1.15).

A major difficulty in the analysis of (1.15) is to capture the long-range effects of
the quadratic and cubic nonlinearities in the presence of the linearized operator, whose
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odd threshold resonance cannot be avoided by considering only odd perturbations.
To our knowledge, no general techniques have yet been developed to study long-
range scattering problems with linear operators that feature nontrivial, nongeneric
potentials (without imposing symmetry constraints to avoid the threshold resonance).
Our solution tailored to (1.15) is to exploit a specific factorization property of the
linearized operator, which allows us to transform the equation (1.15) into a more
favorable form. Specifically, introducing the first-order differential operator O :=
dx — tanh(x) and its adjoint D* := —d, — tanh(x), the linear operator on the left-
hand side of (1.15) factorizes as

DD* = —09% —2sech?(x) + 1.
It turns out that its conjugate operator
D*D=-9+1

is just the flat linear Klein—Gordon operator (which exhibits the even threshold res-
onance 1). Thus, upon differentiating (1.15) by D*, we find that the new dependent
variable w := D*u satisfies the following nonlinear Klein—-Gordon equation with the
flat linear Klein—Gordon operator on the left-hand side

(02 — 02 + )w = Q(w) + €(w) + {higher order}, (1.16)
and with quadratic and cubic nonlinearities given by
Q(w) = (—2sech(x) + 3sech’(x)) (4 [w])2 — 2 sech(x) tanh(x)d [w]w,

€(w) = %(J[w])zw + %tanh(x)(] [w])’
- g sech? (x) tanh(x) (4 [w])® — sech®(x) (4[w])*w,
where
(9]0 = —seeh) [ cosh(r)we. ). (1.17)

See Section 3.2 for details of the derivation of the transformed equation (1.16) for w.
There we use that the odd dependent variable u(#, x) can be expressed in terms of
w(t, x) via the integral expression

u(t,x)=J[w(t,-)](x). (1.18)

In fact, 4[] is a right-inverse operator for H* and the kernel of D* is spanned by the
even zero eigenfunction Y (x).
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At this point, our task is to deduce decay and asymptotics for the solution w(¢)
to (1.16), from which we can then infer the desired decay and asymptotics for the
original variable u(¢, x) via (1.18). Observe that all quadratic nonlinearities on the
right-hand side of (1.16) are spatially localized, while the cubic nonlinearities have
both localized and nonlocalized parts. In view of the general discussion in the preced-
ing Section 1.2, the most problematic contributions could in principle stem from the
quadratic nonlinearities. Due to their spatial localization, the local decay of the solu-
tion w(¢) is decisive for their analysis. Recall that u(z, x) is odd, whence w(¢, x) =
(D*u)(t, x) is an even function. We therefore cannot hope for improved local decay
of w(t), because the threshold resonance of the flat linear Klein—-Gordon operator
is also even. However, we can expect (d,w)(¢) to have better local decay since the
derivative cancels the effect of the threshold resonance. This leads us to integrate by
parts in the definition of the integral operator (1.17) and to correspondingly rewrite
the quadratic nonlinearities as

Qw) =Q;(w) + Q2 (w) + Q3(w),
where

Q1(w) 1= o (x)w?,

@2 (w) := ez (x)[Bxw]w,
Q3(w) = a3 (x) (I[0w])’,

for some spatially localized coefficients o1, @2, @3 € §(R), and where

I[axw(t)](x) = sech(x)/0 sinh(y)(d,w)(t, y)dy.

Thus, the critical quadratic contribution now comes from @;(w), while the contri-
butions of @,(w) and @3(w) are less severe due to the improved local decay of
(0xw)(?). In Lemma 3.1 we make the key observation that the Fourier transform of
the coefficient or; (x) vanishes at the frequencies £ = £+/3. This suppresses the occur-
rence of a resonant interaction in @1 (w) and we are in the position to use a variable
coefficient quadratic normal form introduced in [52] to recast the quadratic nonlinear-
ity @ (w) into a better form. The fundamental nonresonance property @1 (£+/3) =0
is a remarkable feature of the sine-Gordon model. In fact, in view of [52, Theorem 1.1]
we would not expect to be able to propagate the L$° decay rate =2 for the pertur-
bation of the sine-Gordon kink if @; (++/3) = 0 did not hold. We then arrive at the
following first-order nonlinear Klein—Gordon equation for the renormalized variable
v+ B(v,v):
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(0 —i(D))(v + B(v.v))
1

= 2—1.(D)_1 (Qren(v,v) + € (v + ) + {higher order}), (1.19)

where we set v(t) := w(t) —i (D)1 (d;w)(¢), the variable coefficient quadratic nor-
mal form B(v,v)(¢) is defined in (3.32), and the renormalized quadratic nonlinearity
@en(v,v) is defined in (3.34). See Section 3.3 for details of the derivation of (1.19).

At this point, we follow the general approach of the space-time resonances
method by Germain, Masmoudi, and Shatah [21]-[23] and Gustafson, Nakanishi,
and Tsai [27] to infer sharp decay estimates and asymptotics for small solutions to
(1.19). Specifically, we seek to obtain via a continuity argument an a priori bound on
the quantity

N(T):= Os?pT{m% [o@)] 10 + O PP 0O 12 + ()P [(DYLO (@) | 12

07 v 2 + 162 0.0 o).

where f(t) := e ™Ply(¢) is the profile of the solution v(¢) to (1.19) on some time
interval [0, T'], L := (D)x —itdyx, and 0 < § < 1 is a small absolute constant. In view
of the asymptotics for the linear Klein—-Gordon evolution from Lemma 2.1, the main
components of N(T') are a slowly growing bound for ||{(D)Lv(¢)| 2 and a uniform-
in-time bound for || (&) 3 fa, $)||Lgo.

In Section 4 we carry out the energy estimates for all Li-based norms in N(T).
The derivation of the slowly growing estimate for [|{(D)Lv(7)]| 2 is the most delicate
task in this part. Here the contributions of all spatially localized nonlinearities with
cubic-type decay (t)_(%_s) can be handled using a version of an argument from [51]
and [52] based on local decay (see Proposition 4.9). All renormalized quadratic non-
linearities and all spatially localized cubic nonlinearities fall into that category. The
nonlocalized cubic nonlinearities also exhibit favorable structures to close the energy
estimate for (D) Lv(t) (see the treatment of (4.42) in Proposition 4.10 in conjunction
with the identity (4.19) from Lemma 4.5 and the bound (4.28) from Corollary 4.6).

In Section 5 we perform a stationary phase analysis of the Duhamel expression
for the Fourier transform f (z,&) to derive a differential equation that governs the
asymptotic behavior of f (¢,&). From the latter we infer the uniform-in-time bound
on ||(§) 3 f @8 L via an ODE argument. The Fourier analysis of the nonlinearities
on the right-hand side of (1.19) is complicated by the nonlocal character of the integral
operator d[-] defined in (1.18). However, their analysis can be carried out explicitly
(see Section 5.2).

Finally, in Section 6 we tie together all the preceding steps and conclude the proof
of Theorem 1.1.
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2. Preliminaries

2.1. Notation and conventions

We denote by C > 0 an absolute constant whose value may change from line to line.
For nonnegative X, Y, we write X <Y if X < CY and we use the notation X < Y
to indicate that the implicit constant should be regarded as small. We write X ~ Y
if X SY < X. Moreover, for nonnegative X and arbitrary Z, we use the shorthand
notation Z = O(X) if | Z| < CX. Throughout we use the Japanese bracket notation

1) =2 +1)2, () =(2+ D)2, (£):= (24 1)2.

We denote by 1 () the characteristic function of an interval I C R.
Our conventions for the Fourier transform of a Schwartz function g € 8 (R) are

Flgl€) =) = g (x)dx,

e

) 2.1
a—1 —_ — l‘xé
7 = 80 = = /R ¢ g(£) de.

Then the convolution laws are given by

N 1 N
Flgxh]=2ngh, ?[gh]:\/T_ng*h

for all g,h € 8(R). We use standard notation for the Lebesgue spaces LY as well as
the Sobolev spaces H¥ and WP,

We set D := —id, and define the operator (D) in terms of its symbol
FUD) f1(¢) = (&) f (). Similarly, we introduce the Klein—-Gordon propagator
D) via F[eP) £](£) = ™) £ (€). Finally,

L:={(D)x —itdy,

D) in the sense that

which conjugates to (D)x via e{
L= (D)x —itdy = e"PV(D)xe P} = F71E) (£} g e 1E) 7 (2.2)
The closely related Lorentz boost is denoted by Z = 19, + x0;.
We will repeatedly use the following commutator identities

[x,(D)¥] = k(D)*23,, keZ,

=—(D)7" 8,9, (2.3)
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2.2. Decay estimates for the linear Klein—-Gordon evolution
In this subsection we recall decay estimates and asymptotics for the linear Klein—
Gordon evolution. For the convenience of the reader, we provide complete proofs.

LEMMA 2.1
We have for all t > 1 that

1P £)(x) — z' —e' T (g0 o) 1enn (T )l = 5 Sl wp (24
> 3
where p = p(t,x) = V12— x2 and % = —7, or equivalently, § = —7, (o) = ;

Proof
We write
™ f(§)dE =

(@) £)(x) = f SO0 feyde (25)

7= Jee =

with

oG u):=(§) +us.  u:

and note that the phase ¢ (&, u) satisfies
fepu) =€) +u,  Fow =()7
Thus, if |x| > ¢ > 1, then
e (5. )| = [€E) ™! +u| = 1 [E[(E) ! = (£)72/2. (2.6)

We break up the integration in (2.5) by means of the smooth partition of unity 1 =
x1(E2/t) + yo(£2/t), where xo(-) is a smooth cutoff to the interval [—1, 1], and inte-
grate by parts in the latter integral. Using (2.6) yields

1) )| < / 1 E2/0| £ €)] dé
R

1326 (€]
z“/R Tep e €/ ©) ag

+t_1A|Bs¢(é,u)|_l|3s(X0(52/t)f(5))|dg
(@2 @1+ €)% 7 )] 2) 7
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which is better than (2.4). Now suppose that |x| < z. The phase ¢ (&o, #) has a unique
stationary point at

u
Vi—u?
One has ¢ (&g, u) = ~/1 —u?, which implies that 1¢ (&g, u) = V% — x% = p.

We now claim that the bound (2.6) continues to hold (up to multiplicative con-
stants) for all £ e R\ 1(&y), where

1(&0) := [£0 — (£0) /100, & + (§0)/100].

£ = —(€o)u, orequivalently, & =—

In fact,
|96 (5,0)| = |9 (&, u) — g (o, u) |
= [5(6) 7" —o(60) "
_ €2 — &5
((6)(Eo))?IEE) " + &0 l60) I

Without loss of generality, we assume that & > 0. Then, on the one hand, if & >
&o + (£0) /100, (2.8) implies that

|0 (E.u)| = (80) 2 2 (6) 72

This follows from & > max(1, 101&,)/100, which ensures that the absolute value in
the denominator is ~ 1, while the numerator is > (£)2. On the other hand, if § <
€0 — (£0)/100, then we claim that |0g¢p (&, u)| > (§) 2. Indeed, consider first the case
g€ < 0. Then from the first line of (2.8), |3 (&, u)| > &o(£o) "' which is > 1 unless
0 <&y < 1. In that latter case, however, £ < & — (&9)/100 implies that & < —1/200,
say. In that case, the first line of (2.8) implies that [dg¢p(§,u)| 2 1. If 0 <& <& —
(£0)/100, then &y = 1 and the absolute value in the denominator is again ~ 1, while
the numerator is > (£9)2. In summary, the claim holds. Setting

0u(€) := x0(Co(€ —&0)(50) ")

for some large constant Cy and repeating the arguments leading to (2.7) therefore
yields

(2.8)

it(D) _ L it (,u) 2
\<e 2)£)(x) ﬂ_/ 60, (6) /6 |
erie 2 + 160/ @] 2). 2.9)

which holds uniformly in # > 1 and x € R. To analyze the main term here, which we
denote by W(¢) f, we write
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¢ (&, u) —po,u) = (§) +u& — (§o) —uéo

_ (6 —&)? =,
(§o) (1 + &80 + (§)(50))
The change of variables £ — 7 is a diffeomorphism on the support of w,, (§) given by
§—6o dn 3 _3
TERmEy #S0h Fe-eriv
Hence we have
oiP L oiP oi% 2=
(W) f)(x) = Wor /Re’"’ G(n;t,x)dn = NN IR{e"ﬂG(y;t,X) dy,
where we write
_ o dE
G(n:t,x) = wu(S)f(%‘)d—n-
Note that
—— [Gri0dy = GO0 = 60 f ) G E0) = V20 o)
\/E R dn
which further implies that
(@) f)(x)
e’pe I

2 _1
(603 760 + 05 (1F [ 175 18 0ir 0] dy). 210
The integral in the last line is estimated as follows:

/|e ‘ﬁt 1||G(y t, x)|dy

N

_1 -~ ~
r / |y||G(y:r,x>1dy+/ 1G(yit.x)|dy
{ly|2=t} {ly|2>t}

<G
S0, G 0.2 5.

By definition,

[ a6 an= [ |5 oe(onerf @ ) 0t

< [Jos(@ri©F)| @
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Now we note that by complex interpolation of the preceding bound with

/RIG(n;I,X)}Zdn</ ac 2

wu(E)f(S)— (£)72 de,
we obtain that for all % <p <1,

. p2 ~
A|e—’%—1||G(y;t,x>|dy

N\’:b

1_
[4

[P0 5

~
4;|~
wlm

2= 82)2G(77 £ 2

g(/ )t (e fO ) rar)

AN
4>\~

t
On the one hand,
([ F© %] a)" <([1F@fera)’
and, on the other hand,

([ (e iof) &) < ([(Fore +1afole)e)"

In conclusion, we can bound with 8 = %,

N—=

/Rle‘”“ —1|G(y;1,x)|dy 5z—é(/R(|f<s>|2 +[oe f @) ©)*dg)". @11
Combining (2.7), (2.9), (2.10), and (2.11) yields

@ f)(x) - L%e"%e"”@o)%f Cotenn (7))

2

SO F @l + 1460 £ @) 12). 2.12)

which holds uniformly in # > 1 and x € R. O

Next, we establish a pointwise bound on the evolution for all energies.

LEMMA 2.2

Fix p > 0. Then we have for all t > 0 that

¢ (u) Wy p
2

le™ P £l Lo < VEHL | 2.13)
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Proof
Let y be a bump function compactly supported on R\ {0}, and fix any A > 1. Consider
the evolution

(P y(D/2) f)(x) = «/% Aei('(5>+x5)x(§/k)f(§) dg

= | Katex =)y 2.14)
with
Ka(t.0) = [ MO0y ag =2 [ eHOTTBATED 1(6) g
R R

We have the bound | K (¢, x)| < CA uniformly in x € R, 7 >0,and A > 1. If r > A,
then we claim the stronger bound

|Ko(t,x)| < CA312, (2.15)
We write

K(t,x) =2 / e oA &0 (&) dE (2.16)
R

with s := A~!¢ and phase @; (§:1,x) := A2(A"1(AE) + £x/t). Then

) _ AE X
35@,1(5,1‘,)6)—)&2(@4-?),
> A’
dza(Est,x) = 0 1, (2.17)
A€ ~1

93¢ (81, 3)] = 3

(g

on the support Iy C [—&,—&1] U [€1,&] C R\ {0} of y (recall that A > 1). Without
loss of generality, we assume that /o C [£], &), the reflected part being symmetric.
We distinguish the following two cases, for fixed x, 7, A as above:

(@)  min|dgpa(§;t,X)] 2 s™% on 1o,

(b)  min|dgpa(§;1,x)| K 572 on Io.

In case (a), we deduce from the second derivative in (2.17) that

|06a (&:1,)| = 572 + minf{|€ — &1, [E— &}, VE€ .

Integrating by parts once in (2.16) yields
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(Iaém(é;t,X)l N 1
(Oepa(E:1,x))%  [0gpa (&1, x)]

as claimed by (2.15). On the other hand, in case (b) suppose that the minimum of

|KA(t,x)| < C/XS_I/

)dg <Chs2,
Io

min |0gpy (§;7,x)| is attained at &« € Jp. Then we infer from the second derivative
that

|06i(§:1,%)| 2 1§ — £ onEelo, £ & =572

Let ¥ be a smooth bump function that equals 1 on [—1, 1]. Then with £ := iag;mas,
we write
© . 1
|Ka(1,x)| < A(/ e R ELD) Y ()Y (6 — Ex)57) dé‘
0
*© : . 1
2| [ e ()1 - v (6 - 60sh)))
0
1
<)Ls_7+/\s_2/ﬂ 1 (JE—E ™ + & — & 725)d
~ Io [\E—E*lzs_il(lg §*| |§ E*| ) 5
< )Ls_%,
which establishes the claim (2.15). In summary, for all A > 1 and ¢ > 0,
[PV (D/A) f | oo < C172A3| £ 1. (2.18)

Let yo be a bump function supported near 0. Then by essentially the same analysis as
above (albeit with s = ¢ and A = 1) we obtain

; 1
||e”(D)X0(D)f{|L§o <Ct72| fl - (2.19)
Performing a dyadic decomposition of energies, and adding up all contributions from

(2.18) and (2.19) yields

||€it(D)f||L§° < C[‘% (”XO(D)f”L}C + 223j/2i|X(D/2j)f||L})

Jj=0

o0
=73 (a0 f |y + 227w (DIDEf 1) (220)
j=0
with p > 0 arbitrary and

¥, (D) :=26+Wi|p|=3=1y(D/27),  j 0.

Summing up (2.20) will complete the proof provided that we have the operator bounds
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[ro@) Iy S0F 0y swplvs (D) f oy S0 0ey. @21

as desired. (]
Finally, we derive local decay estimates for the linear Klein—Gordon evolution.

LEMMA 2.3
Leta > % and b > 0. We have uniformly for all t € R that

” (x)"%(D)"beit(P) (x)~a HL%_)L% < (;)%’ (2.22)
[(x) 1720, (D)t P (x) 714 HL§—>L§ S (tig’ (2.23)
_ i 1
[ ) 0x(D) e P ) T a2 S S (2.24)
[ ) (=1 (D)D) P ) o, <L (2.25)

™)

Proof

By unitarity of the flow, it suffices in all of these estimates to take ¢ > 1. We begin
with the proof of (2.22). Let yo(D) be a smooth cutoff to frequencies in [—1, 1], say.
Since a > %, we obtain from Lemma 2.2 that

[(x)=(D) 72 P xo (DY)~ f || 2 S 172 (DY 4o (DY (x) ™ £ 1
<172 £l

On the other hand, with y; =1 — y,,

<D>—be”<D>xl(D)f(x>

== [Pt @ f €0
i ey, () e b o 7
== /R (T e ©) 220

By inspection,
[ (x)_l(D)_be”(D)Xl(D)f”Lg SI_IHJ;”HS1 ~17 () f ] 22

whence by complex interpolation
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[(0)2 (DY PPl (D) f ] 15 S22 ]2

Next, we prove (2.23). For the contribution of the small frequencies to (2.23), we
write as in (2.26)

DD M) (D) f () = = [ e ertee) ro(e) f (6
V2r Jr
i
- V2nt
Applying Lemma 2.2 as before to the right-hand side implies (2.23) with a yo(D)
inserted. Note that i d¢ f &) = )’c}” (&) leads to a %-l— weight by Cauchy-Schwarz as
stated. On the other hand, for the large frequencies we insert y1(D) into this expres-
sion and apply integration by parts twice as in (2.26).

Finally, the estimates (2.24) and (2.25) follow by integration by parts as in (2.27),
exploiting the vanishing of the symbol D (resp., of —1 + (D)) at zero frequency. [

/R g (e 1o®) f©)de.  (227)

3. Setting up the analysis

3.1. Evolution equation for a perturbation of the sine-Gordon kink

The goal of this subsection is to derive an evolution equation for odd perturbations
of the static sine-Gordon kink. Recall that the equation of motion for the scalar field
¢(t, x) in the sine-Gordon model is given by

(07 —02)p =—W'($), (t.x) eRxR, G.1)
where
W(g) =1—cos(e).
In what follows, we consider small odd perturbations of the sine-Gordon kink
K(x) = 4arctan(e™)
in the sense that we decompose the scalar field as
¢(t,x) = K(x) +u(t,x). (3.2)

By Taylor expansion, we have

3
—W/ (K +u)=-W(K)->_ %W(k“)(l()uk + Ri(u) + Ro(v),  (3.3)
k=1~

where we use the shorthand notation
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1
Ri(u) = - WO (K,

Ro(u) = —%([1(1 — WO K + ru) dr)u5.
Mo

Inserting the decomposition (3.2) and the expansion (3.3) into the equation of motion
(3.1) for the scalar field, and using that the static kink satisfies —8)2€K =-W/(K), we
obtain the following evolution equation for the perturbation

(07 — 2 + W"(K))u
1 1
= = WOEW? — WKW + Ri @) + Ra(w), (3.4)
or equivalently,

(97 — 02 + cos(K))u = %sin(K)uz + écos(K)Lﬂ + Ri(u) + Ry(u),  (3.5)

where we have

1
Ri(u)= ~u sin(K)u*,

1 1
Ry(u) = _Z(/ (1 —r)*cos(K + ru) dr)us.
‘Mo
Finally, observing that

cos(K) =1 —2sech?(x),
(3.6)
sin(K) = —2sech(x) tanh(x),

we may write (3.5) more explicitly as
(07 — 92 — 2sech®(x) + 1)u
1 1
= —sech(x) tanh(x)u? + 8u3 —3 sech>(X)u® + Ri(u) + Ro(u).  (3.7)

Only the quadratic and the cubic nonlinearities require a careful treatment in the study
of the longtime behavior of small solutions to (3.7). We will see that the spatial local-
ization of the quartic nonlinearities R (1) allows for a particularly simple analysis of
their contributions, and the quintic remainder terms R;(u) can then be dealt with in a
crude manner.

3.2. Supersymmetric factorization and the transformed equation
The linearized operator in (3.7) admits the factorization
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DD* = —3% —2sech?(x) + 1 (3.8)
in terms of the first-order differential operator £ and its adjoint D* given by
D := 0, — tanh(x), D* := -0, — tanh(x).
It turns out that the conjugate operator to (3.8) is just the flat linear operator
D*D=-02+1. (3.9)

Upon differentiating the Klein—Gordon equation (3.5) by £*, we therefore find that
the dependent variable D*u satisfies the nonlinear equation

(0% — 92 + 1)(D*u) = @*(% sin(K)uz) + i)*(écos(K)zﬁ)
+ D*(R1(w)) + D*(R2(w)), (3.10)

which just features the flat linear Klein—Gordon operator on the left-hand side. In the
remainder of this subsection we rewrite (3.10) as a nonlinear Klein—Gordon equation
for the new dependent variable

w(t, x):= (D*u)(t, x). (3.11)

Observe that w(z, x) is even since u(z, x) is odd. To this end, we first need to detail
how to pass back and forth between the variables ¥ and w. The linearized operator
around the sine-Gordon kink has the even zero eigenfunction

Y (x) = sech(x).

Indeed, one readily verifies that D*Y = 0. Correspondingly, the integral operator
y -1
el =¥ [ (r) ey

X
= —sech(x) / cosh(y)g(y)dy (3.12)
0
is a right-inverse operator for D*, that is,

D*(J[g]) =g

We will occasionally use that integration by parts in the definition of J[g] gives the
identity

J[g](x) = —tanh(x)g (x) + I[dxg](x),
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where
Tioglo)i= sech(x) [ sinh(1)0,)()dy. (3.13)

Moreover, integrating by parts in the integral expression d[D*g], we obtain for any
sufficiently regular function g(x) that

g(x) =J[Dgl(x) + g(O)Y (x).

Since in this work we only consider odd perturbations u(, x), whence u(t,0) = 0,
we can simply express u(¢, x) in terms of the new variable w(¢, x) via

u(t,x) =J[w)](x). (3.14)

Inserting the preceding relation (3.14) into (3.10), we now pass to the following non-
linear Klein—Gordon equation for the new variable w,

(02 — 02 + Dw = Q(w) + E(w) + Ry (w) + R2(w), (3.15)
with initial data

(W, 0;w)|r=0 = (wo, w1) := (D*ug, D*uy),

and where
Q(w) = so*(% sin(K)u?).
1
C(w):= :D*(g cos(K)u3), (3.16)
R1(w) := D*(R1(n)),
Ra(w) := D*(R2(u)).

In the remainder of this subsection we use (3.14) to express the nonlinearities (3.16)
in terms of w.

3.2.1. Transformed quadratic nonlinearity
We begin by computing that
D*(sin(K)u?) = (—d, — tanh(x)) (sin(K)u?)
= —(0K) cos(K)u? + sin(K)2u(—d,u) — tanh(x) sin(K)u?
= (—(0x K) cos(K) + tanh(x) sin(K))u? + 2 sin(K)u(D*u).
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In view of (3.6) and the fact that (0, K)(x) = 2sech(x), it follows that
D* (% sin(K)u2> = (—2sech(x) 4 3sech®(x))u? — 2sech(x) tanh(x)u (D*u).
Passing to the new variable w = D*u and using that u = J[w], we obtain
D* (% sin(K)uz) = (—2sech(x) + 3sech®(x)) (4 [w])2 — 2sech(x) tanh(x)d [w]w.

Since all coefficients on the right-hand side of the preceding line are spatially local-
ized, it is useful to insert the relation

J[w] = —tanh(x)w + I[axw],
so that we can exploit the expected improved local decay of dxw. We find that
D* (% sin(K)uz)
= (—2sech(x) + 3sech?(x))(—tanh(x)w + I[axw])z
— 2sech(x) tanh(x) (— tanh(x)w + I[0x w])w
= 3sech?(x) tanh? (x)w? + (2sech(x) — 6sech?(x)) tanh(x)d[9 w]w
+ (—2sech(x) + 3sech?(x)) (ﬂaxw])z.

In conclusion, we obtain
* 1 . 2
Qw)=D (5 sin(K )u ) — @ () + @ (w) + Q3(w),

where we set
Q1 (w) == ay (x)w?,
Qr(w):= az(x)’f[axw]w, (3.17)
Q3(w) := a3 (x) (A[0xw]),
for spatially localized coefficients o1, o2, @3 € 8 (R) that are explicitly given by
a1 (x) := 3sech®(x) tanh?(x),
az(x) := (2sech(x) — 6 sech? (x)) tanh(x),
a3(x) := —2sech(x) + 3sech®(x).
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3.2.2. Transformed cubic nonlinearity
Passing to the new variable w = D*u and using that u = J[w], we first compute

D*(u?) = 3u?(D*u) + 2tanh(x)u’ = 3(J[w])2w + 2tanh(x)(Jl[w])3
as well as
D*(sech?(x)u?) = 4sech?(x) tanh(x)u> + 3sech®(x)u*(D*u)
= 4sech?(x) tanh(x) (4 [w])3 + 3sech?(x)(4 [w])zw.
Thus, we find that
C(w) = i)*(é cos(K)u3)
= %G‘D*(tﬁ) - %@*(seehz(x)zf)
- %(J[w])zw + %tanh(x)(J[w]f
— g sech?(x) tanh(x) (J([w])3 —sech?(x) (J[w])zw.

In order to distinguish those parts of the cubic nonlinearities that exhibit obvious
spatial localization and those that do not, in what follows we will use the notation

C(w) =TCu(w) + C(w),
where
Cu(w) := %(J([w])zw + %tanh(x)(& [w])3, (3.18)

C(w) = —g sech?(x) tanh(x) (J?[w])3 — sech?(x) (J[w])zw. (3.19)

3.2.3. Transformed quartic nonlinearity
Here we compute

D*(sin(K)u*)
= (—(3xK) cos(K) + 3tanh(x) sin(K))u* + 4sin(K)u>(D*u)

= (—8sech(x) + 10sech?(x))(4 [w])4 — 8sech(x) tanh(x) (4 [w])3w.

Correspondingly, we arrive at the expression
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Ri(w) = :o*(—l sin(K)u4>
= 41
1
=05 (4sech(x) — 5sech®(x))(4 [w])4
1

+3 sech(x) tanh(x) (4 [w])3 w. (3.20)

3.2.4. Transformed quintic nonlinearity

Finally, analogous computations as in the preceding subsections yield that the quintic
remainder term can be written as

Ra(w) = D* (R (u))
2 ! . 5
= sech(x) (/ (1—r)*sin(K + rd[w]) dr) (4[w])

! 0

1 ! 4 . 5
+ E(./o (1=r)*rsin(K + rd[w]) dr) (d[w])”w

1 ! 4. 6
+ tanh(x) (/0 (1=r)*rsin(K + rd[w]) dr) (d[w])
— 4%(/01(1 —r)*cos(K + rd[w]) dr) (J[w])4w

1 ! 4 5
_ 5tamh(x)( /0 (1—r) cos(K—i—rJ[w])dr)(J[w])

5
=3 Rox(w). (3.21)
k=1

3.3. Normal form transformation
We now pass to the variable

1
v(t) = 5(w(z) —i(D) '3, w(t)), (3.22)
which satisfies the first-order nonlinear Klein—Gordon equation

(3, —i{D))v
=5 (D) QO+ 1) +CW+0)+Ri(v+10)+ Ro(v+1)), (323
v(0) = vo,

with initial datum
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Note that v(z, x) is even since w(t, x) is even. In order to derive decay and asymp-
totics of the solution w(t) to the flat nonlinear Klein—-Gordon equation (3.15), it suf-
fices to deduce these for the variable v(#), because we have

w(t) = v(t) + (). (3.24)

We will frequently use (3.24) as a convenient shorthand notation.

Before we begin with the analysis of the longtime behavior of the solution v(¢)
to (3.23), we need to examine the quadratic nonlinearities on the right-hand side of
(3.23), whose coefficients are spatially localized. Since @,(v + v) and @3(v + )
feature at least one factor of d,v, we expect these quadratic contributions to be better
behaved due to the expected improved local decay of 0, v and the spatial localization
furnished by the coefficients o, (x) and a3(x). In contrast, the quadratic contribution
of @1 (v + v) = a;(x)(v + ©)? appears more problematic at first sight. However, it
turns out that the coefficient o1 (x) exhibits the miraculous nonresonance property
@1(£+/3) = 0 as the next lemma shows.

LEMMA 3.1
The Fourier transform of

o1(x) = 3sech®(x) tanh?(x) (3.25)

is given by

- 1
@) =—¢ \/g(sz —3)(E + 1)sech(”7é). (3.26)
In particular, it follows that
@1(£+3) =0, (3.27)

and that 2 — (D)) oy € 8(R) is a Schwartz function.

Proof
By direct computation, we find that

(0% 4 202 — 3) sech(x) = —24sech®(x) tanh?(x).

Using that

sgal(é) = \/gsech(%s),

we correspondingly obtain
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&1(6) =~ F[(0% + 202 — 3)(sech())](®)

8
1 3 Fi43
=5 -282-3),/% sech(T)

1 |m Fi43
= \/;(52 32+ 1)sech(7>.

Clearly, we have @; (++/3) = 0. Moreover, although 2 — (§) = 0 for £ = ++/3, it
follows that (2 — (D)) 'a; € 8(R) is still a Schwartz function. O

This observation allows us to recast the worst parts of @ (v + v) into a better
form by implementing a variable coefficient quadratic normal form introduced in [52].
To this end, it is useful to consider the equation satisfied by the Fourier transform of
the profile f(t) = e~ Ply(t) of the solution v(¢) to (3.23) given by

9/ (1.6) = %@rle—”@)?[a(v +0)(0)] )

507 O e+ 90]®)
+ zil_(g)—le—”@)?[ﬁl(v +0)(t) + Ro(v + D)(0)]E). (328
Then we decompose the delicate quadratic contribution @4 (v + ¥) into
Q1 (v + D)(t, x) = a1 (x) (v(t, x) + 5(1,x))°
= o, (x)(v(t,0) + 5(2,0))
+ a1 () (v, x) + 5(1,x))% = (v(2,0) + 5(2,0)%).  (3.29)

The second term on the right-hand side of (3.29) is of the schematic form xa(x) X
(0xv)(¢)v(?) by the fundamental theorem of calculus, and is therefore expected to be
better behaved due to the improved local decay of d,v(?). In order to further analyze
the contribution of the first term on the right-hand side of (3.29) to (3.28), we insert
v(t,0) = e (e "v(t,0)) to obtain

2 ) (0(0.0) + 5.0))°
= 5D ()1 @) (e, 0)°

+ lle—”@ (&)7'@1(E) (e v (2, 0)) (e~ v(t,0))

+ zi,-e—ff@“é”(srlal &) (.0)”. (3.30)
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Exploiting the oscillations and the crucial nonresonance property @;(£+/3) = 0
established in Lemma 3.1, we recast (3.30) as

e OO (0,0) +5,0))°

= 0, (— e 2 (8) (. 07?)
4 omil®) @)—1 (2— (€)' @1(€)e> 3, (e v (r,00) (e v (z,0))
+ 3 (e7E) 2@ () |v (. 0))
ittt >(§)‘2&1 () Re(d; (¢ ~"v(t,0)) (e=v(z,0)))

+ at(%e‘”@’ '+ E) o (5)5(,,0)2)
—eEE T2 4 (8) T @) 0 (e0(.0) (¢Tu(E.0). (33D

Upon defining

@(®) = 567 2 6) @),
@12(8) == —(&) @ (),
G1s() = —5(6) 2+ €)' T©)
we introduce the variable coefficient quadratic normal form
B(v,v)(1) := a1 (x)v(7,0)* + a2(x) |v(2, 0)|2 + a13(x)0(2,0)2, (3.32)
Then we conclude from (3.31) that

3 (f(t.6) + e—f’@?[B(v, V) (0)](®))

- %@)—1 =18 £ [ Qpen (0. 0) ()] ()
| ‘ (3.33)
+ 5<s>-1e—"<5>?[€(v +0)(0)]¢)
1

+ 2—i<s>—1e—"<5>$[ﬂ1(v +0)(1) + Ra(v + D)(1)](E),

where the renormalized quadratic nonlinearity is given by (see (3.17))
Qren(v,0) 1= Q11 (v,v) + Q12(v,v) + Q13(v, V)
+ @14(0 + 17) + @2(1) + 17) + @3(1) + 17)

(3.34)
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with
Q11(v,v)(t,x) =2((D)ar1) (x)e*"d, (e 7"v(2,0)) (e "v(z,0)),
Q12(v,v)(, x) = 2({D)a12) (x) Re(d; (e ""v(t,0)) ("5 (2, 0))),
Q13(v,v)(t,x) = 2({D)a13) (x)e "3, ("5 (2,0)) (e"5(z,0)),

Q1a(v + 0)(1,x) = a1 (x) ((v(1, %) + B(t, %)) = (v(1,0) + (2,0))).

(3.35)

Moreover, it follows that the renormalized variable v + B(v, v) satisfies the equation

(8: —i(D))(v + B(v,v))

- %(D>_1(Qren(v, V) +C€W+0)+ R (v+70)+ R2(v+10)).  (3.36)

The latter can be written in Duhamel form as
v(t) = e"P) (vo + B(v.v)(0)) — B(v.v)(1)

| R
top [ €I D) Q0. 0)(5)
0

1 [t
+ Z/o DY DYTIe (v + §)(s) ds

1 [,
+ E/ e IPHDYTLR (v 4 T)(s) ds
0

1 [,
+ 2—1/ DN PYTIR, (v + T)(s) ds. (3.37)
0

Having recast the quadratic nonlinearity into a more favorable form via the vari-
able coefficient quadratic normal form, we are now prepared to determine the decay
and the asymptotics of small solutions v(¢) to (3.23). By time-reversal symmetry, it
suffices to consider only positive times. We seek to establish an a priori bound on the
quantity

N(TY:= sp {0 o) e + 7 [(DP00] 15
+ (O P DYLv()] 12
OOl @ o]l 639

where T > 0 is arbitrary and where 0 < § < 1 is a small absolute constant whose size
will be specified later. In Section 4 we derive bounds on the L2-based norms of v(z),
and in Section 5 we control the weighted Lg"—norm of the Fourier transform of the



ASYMPTOTIC STABILITY OF THE S-G KINK UNDER ODD PERTURBATIONS 2749

profile f(¢) of v(z). We then combine these estimates in the proof of Theorem 1.1
in Section 6 to infer the desired a priori bound on N(7T') via a standard continuity
argument. This gives a sharp decay estimate and asymptotics for v(¢), which in turn
imply the asserted decay estimate and asymptotics for the perturbation u(¢, x) of the
sine-Gordon kink. Since we only consider small initial data for v(¢), throughout we
may freely assume that 7 > 1 and that N(T') < 1, which simplifies the bookkeeping
of some of the estimates.

4. Energy estimates
In this section we derive a priori estimates for all L2-based norms that are part of the
bootstrap quantity (3.38).

4.1. Preparations

Before we turn to the proofs of the main energy estimates, we first need to make sev-
eral technical preparations. We begin with several L°- and L2-bounds on quantities
involving the integral operators 4 and Ideﬁned, respectively, in (3.12) and (3.13).

LEMMA 4.1
Let T > 0, and let N(T) be defined as in (3.38). Then we have uniformly for all
0<t=<T that

O + [0 O] 0 S [v0)] o SN2 @D
[7[0:0(0)]] oo < [0@)] oo S N2, 42)

[2[vO]] 2 + |0xa[vO]| 2 < [v@)] 2 £ NTDHEY. (4.3)
[#[0xv ][ 12 < [0 12 SN D). (44)
[[0x0:0®)]| 12 S 00 @) 2 S NTH), (4.5)

[ [v@]] 2 S [v@] 2 SNTE', @46)

|00 O] 12 S [0 @) 2 S NTEH. @)

Proof

The asserted bounds all follow in a straightforward manner from the exponential
localization of the kernels in the definition of the integral operators J[v(?)](x) (resp.,
I[axv(t)](x)). We remark that for the proofs of (4.2), (4.4), (4.5), and (4.7), we first
integrate by parts. Moreover, the asserted bound [|0, v (¢) | .2 < N(T)(t)? on the right-
hand side of (4.5) follows from (4.8) below. U
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On occasion we will also need the following auxiliary slow growth estimates.

LEMMA 4.2 (Auxiliary slow energy growth bounds)
Let T > 0, and let N(T) be defined as in (3.38). Then we have uniformly for all
0<t<T that

(D)) 2 < N(THE)’, (4.8)

[(D)YZv(@)| 2 S N, (4.9)

Proof
We first prove the estimate (4.8). Writing d;v =i {D)v + (9; —i (D))v and inserting
the equation (3.23) for v(¢), we obtain

[(PYov )] 5 S [(PYv (O] 12 + [(D) (3 =i (DY) 1
SN + Q@+ D)D) 2 + €@+ D)D) 12
+ [ R+ D)0 12 + [R2(v + D)D) 12

The contributions of the nonlinearities on the right-hand side can now be estimated
quite crudely. Using (4.2), we may bound the quadratic nonlinearities by

3
@@+ D)0 2 S D llesll 2 [v®)] 7o S NTYe)
ji=1

Then owing to (4.1) and (4.3), the cubic nonlinearities can be estimated by

[€@w+D)D)] 2 S [v®)] 2] < N(T)3(r)~0-9),

and the contributions of the quartic and quintic nonlinearities can be treated in a sim-
ilar manner. Combining the preceding estimates establishes (4.8).
Next, we deduce the estimate (4.9). To this end, we write

(D)Z =i(D)L +idy — (D) '9x(3; —i(D)) + x(D)(0, —i (D))
and then insert the equation (3.23) to find that
(DY Zv @ 12 S [(DYLv@) ]| 12 + 30O 12 + [(x)(DY (@ =i {DY)v ()] 2
SN ()% + | (x )@ +0)(1)] 2 + |} e +0)(0)] 2
+ [ R + ) O] 12 + () R0 + B O] 12

Using (4.2), we bound the quadratic nonlinearities by



ASYMPTOTIC STABILITY OF THE S-G KINK UNDER ODD PERTURBATIONS 2751

3
[)@@+9®)] 2 S DI | v e S NTP 0,
Jj=1

and invoking (4.1) as well as (4.6), we estimate the cubic nonlinearities by

[+ )0 12 < [ 2 v S NI (1),

Finally, the quartic and quintic nonlinearities can be treated analogously. Putting
together the preceding bounds yields the estimate (4.9) and thus finishes the proof
of the lemma. O

The following improved local decay estimates for the solution v(¢) to (3.23) play
a key role in multiple places in the derivation of the main energy estimates.

LEMMA 4.3 (Improved local decay)
Let T > 0, and let N(T) be defined as in (3.38). Then we have uniformly for all
0<t<T that

()10 (@) || 11 SN ()=, (4.10)
|| 2
[ ) =1+ (D)@ | 1 S N(TH ()™, (4.11)
[ ) 0] 2 S NP, (4.12)
()L d[0xv()]]| ;2 S N(T) ()", (4.13)
H [0 0] 2
|02 (e x)? = w(2.0%) | 2 < N(TY* ()G, (4.14)

Proof

We begin with the proof of (4.10). Writing the solution v(z) in terms of its profile and
using the improved local decay estimate (2.24) for the linear Klein—Gordon evolution,
we find uniformly for all 0 <7 < T that

[0 axv @) |y = () 05" P) £ (O] 1y
S )05 (D) e PN T Lo 2 [NDY S O] 12
SOTHHUD»e@] 2 + [(PYLvO) ] 1)
SN ()~0.

The proof of (4.11) proceeds analogously using the improved local decay estimate
(2.25) for the linear Klein—Gordon evolution.
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To prove (4.12), we write

X
(x) {8 v(0)](x) = /0 (x)™" () sech(x) sinh(y){y) " (9xv) (2, y) dy.
Then the estimate (4.12) follows from (4.10) and Schur’s test for the kernel

K(x,y) := (L{0,00) (*)Ljo,x] (¥) — L(=00,0)(*)Lpx,01 (1)) {x) ™" () sech(x) sinh(y).
For the proof of (4.13), we first compute that
3y ([ 8xv(1)](x)) = — tanh(x)d[xv(r)] (x) + tanh(x)dxv(t, x),

whence (4.13) is an immediate consequence of the estimates (4.10) and (4.12).
Finally, see [52, Lemma 4.3] for the proof of the estimate (4.14). O

The following improved decay estimates of the solution v(z) to (3.23) at the
origin x = 0 are crucial for estimating the renormalized quadratic nonlinearities as
well as for obtaining a slow energy growth estimate for the action of a Lorentz boost
on the integral operator I[a +V(#)] in Corollary 4.6 below.

LEMMA 4.4 (Improved decay at the origin)
Let T > 0, and let N(T) be defined as in (3.38). Then we have uniformly for all
0<t<T that

|0xv(2,0)| S N(T)(r) 09, (4.15)
|9 (e7"v(2.0))| S N(T)(r) "9, (4.16)

Proof
The estimate (4.15) is just a consequence of Sobolev embedding and the improved
local decay estimate (4.10).

In order to deduce the estimate (4.16), we proceed as in the proof of [52,
Lemma 4.1]. We write

3 (e "v(r,0)) =ie™"((—=1+ (D))v)(1.0) + e "((8; —i (D))v)(z,0). (4.17)

Then the desired bound [((—1 + (D))v)(¢,0)| < N(T){t)~1=9 for the first term on
the right-hand side of (4.17) is a consequence of Sobolev embedding and the improved
local decay estimate (4.11). For the second term on the right-hand side of (4.17), we
obtain the desired improved decay easily by inserting the equation (3.23) for v(¢) and
using the estimates (4.1) and (4.2). O
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In the next lemma we determine how a Lorentz boost Z acts on the integral
operators d and J defined, respectively, in (3.12) and (3.13).

LEMMA 4.5
The following identities hold:

Z(3[v()](x)) = —1sech?* (v (r. x) + /0 T K@) y) dy
+/ Ka(x, ) (0,0)(1, y) dy, @.18)
0
Z(I[va(t)](x)) =t sech(x) tanh(x)(d,v)(,0)

+[ K3(x,y)(Zdyv)(t,y)dy
0

X
—|—/ Ka(x,y)(0:0,v)(t, y)dy, 4.19)
0
with smooth kernels K ; (x, v), 1 <j <4, satisfying
!Kj(x,y)lfCe_c‘x_y‘ for0<y<xorx<y=<0 (4.20)

for some absolute constants C,c > 0.

Proof
We begin with the proof of the identity (4.18). To this end, we compute

Z(J[v(®)](x)) (tax—l—x('),)(—sech(x)/o cosh(y)v(t,y)dy)

—tv(t,x) + t tanh(x) sech(x) /x cosh(y)v(z, y)dy
0

— x sech(x) /: cosh(y)(d;v)(t, y)dy. 4.21)

Then we integrate by parts in the second term on the right-hand side

t tanh(x) sech(x) /x cosh(y)v(t, y)dy
0

= ¢ tanh?(x)v(¢, x) — tanh(x) sech(x) /-x sinh(y)t(d,v)(¢, y)dy,
0

and use that tanh?(x) = 1 — sech?(x) in order to rewrite (4.21) as
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Z(d[v()](x)) = — 1 sech?(x)v(r, x)
— tanh(x) sech(x) [0 " inh(3)1(3,v)(t, ) dy
= sech(n) [ cosh)y 3r0) 1. 3) dy
—sech(e) [ oosh(n)(x Gy @2)
Finally, inserting the relation £ (3, v)(1, ) = (Zv)(, ) — y (31v) (1, y) in the integrand

of the second term on the right-hand side of (4.22) and using the subtraction formula
for the hyperbolic cosine function to combine terms, we conclude that

Z(@[v()]x)) = —tsechz(x)v(t,x)—l—/0 Ki(x,y)(Zv)(t,y)dy

X
+ [ Kabey) @)y
0
with smooth kernels K; (x,y), j = 1,2, defined by

K1 (x,y) := —tanh(x) sech(x) sinh(y),

(4.23)
K»(x,y) := —sech?(x) cosh(x — y)y — sech(x) cosh(y)(x — ).
Next, we establish the identity (4.19). We begin by computing
Z(I[8xv(t)](x)) = (tdx + x0;) (sech(x) / sinh(y)(dyv)(7, y) dy)
0
= — ¢ sech(x) tanh(x) /x sinh(y)(d,yv)(t, y)dy
0
+ ¢ tanh(x) (0, v)(2, x)
+ x sech(x) / sinh(y)(9;0,v)(¢,y)dy. (4.24)
0

Proceeding analogously to the preceding derivation, we integrate by parts in the first
term on the right-hand side, namely,

— t sech(x) tanh(x) /x sinh(y)(d,yv) (¢, y)dy
0
= —ttanh(x)(d,v)(¢, x) + t sech(x) tanh(x)(d,v)(z,0)

+ t sech(x) tanh(x) [x cosh(y)(ai v)(t,y)dy,
0
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to rewrite (4.24) as

Z (I[axv(t)](x)) = t sech(x) tanh(x)(dxv)(z,0)

+ sech(x) tanh(x) /x cosh(y)t(aiv)(t, y)dy
0

+ x sech(x) /x sinh(y)(9;0,v)(¢,y)dy. (4.25)
0

Then we use the relation t(8§,v)(l, y) =(Z0,v)(t,y) — y(9:0,v)(t, y) and the sub-
traction formula for the hyperbolic sine function in order to further rewrite the last
two terms on the right-hand side of (4.25) as

sech(x) tanh(x) /0 ’ cosh(y)t(83v)(z. y)dy
+ xsech(x) /0 ’ sinh(y)(3;9,v)(z, y) dy
= sech(x) tanh(x) /0 ) cosh(y)(Zd,v)(t,y)dy
— sech(x) tanh(x) /0 ) cosh(y)y(3,8,v)(t, y) dy
+ xsech(x) /0 ’ sinh(y)(3;9,v)(z, y) dy
= /O " sech(x) tanh(x) cosh(y)(Zd,v)(t, y)dy
= [ sinhr = ) sect 1y 33,01, 0y

X
+ [ sech(a)sinh(3) (e = 301,001 ) .
0
In this manner we arrive at the identity

Z(A[8:v(1)](x)) = £ sech(x) tanh(x) (3 v) (#, 0)

4 / K3(x. y)(Zdyv)(t. y) dy
0

+ / Ka(x. y)(0,0,0)(t. y) dy.
0

with smooth kernels K; (x,y), j = 3,4, defined by
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K;5(x,y) :=sech(x)tanh(x) cosh(y), 16
K4(x,y) := —sinh(x — y) sech?(x)y + sech(x) sinh(y)(x — y). *:20)

Clearly, in view of the definitions (4.23) and (4.26) of the kernels K (x, y), there
exist absolute constants C, ¢ > 0 such that for 1 < j <4 we have

|Kj(x,y)| < Ce Xl for0<y<xorx<y=<0.

This finishes the proof of the lemma. ([

As a consequence of the identities (4.18) and (4.19), we obtain the following
growth estimates for the L2-norm of a Lorentz boost Z applied to J[v(¢)] (resp., to

J[0xv ().

COROLLARY 4.6
Let T > 0, and let N(T) be defined as in (3.38). Then we have uniformly for all
0<t<T that

|Z(@[v®])] 2 S N2, 4.27)
|Z(#[axv@])] 2 S NTDe). (4.28)
Proof

From the identity (4.18), the kernel bounds (4.20), and the auxiliary bounds from
Lemma 4.2, we conclude for any time 0 <7 < T that

[ZU0OD i St + 1270 13 + 20 15 SN,

This proves (4.27). Similarly, we deduce (4.28) from the identity (4.19), the kernel
bounds (4.20), the improved decay at the origin (4.15), as well as the auxiliary bounds
from Lemma 4.2. Specifically, we obtain for any 0 <¢ < T that

[Z(@ 00D 2 S @) @O+ [ 2000 1 + %000 12
<1000+ [ ((D)Z0)O)] 12 + [ (D)D)
SN,
as desired. O
4.2. Main energy growth estimates

We are now prepared for the proofs of the main energy estimates. We begin with the
derivation of a slow growth estimate for the H f-norm of the solution v(¢) to (3.23).



ASYMPTOTIC STABILITY OF THE S-G KINK UNDER ODD PERTURBATIONS 2757

PROPOSITION 4.7
Let v(t) be the solution to (3.23) on the time interval [0, T]. Let N(T) be defined as
in (3.38), and assume that N(T) < 1. Then we have

sup 07 (DY e 12 Sllvoll g2 + Ivoll3y + N(T)?. (4.29)
0 7 X

Proof
From the Duhamel representation (3.37) of v(¢), we obtain for any 0 < < T that

(Do)
< ool gz + [ (D12 B@. O 12 + (DB, 0)0)] 12

+f0 (D) Qren(v.0)(5) | 2 ds—l—/o [(DYE@ +D)()| 2 ds

+/0 ||(D):Rl(v+17)(s)}|L%ds—|—/0 H(D)ﬁz(vw)(s)HL%ds. (4.30)

The contributions of the variable coefficient quadratic normal form B(v,v) to the
right-hand side of (4.30) can be easily estimated by

[{D)?B(v,v)(0) “L% + H(D)ZB(v,v)(t)HLgc
3
S 20 e 2 (Jv©.0)" + v 0))
k=1
Slvolldee + 0] 7

S Ivollfyy + N(T*n) ™" 4.31)

Next, we estimate the contributions of all nonlinear terms to the right-hand side of
(4.30). In what follows, we always consider times 0 <s <t <T.

Renormalized quadratic nonlinearities
In view of the definitions (3.35) of @, 1 <k < 4, we have by the improved decay
estimate (4.16) that

w

ZH )@, 12 S 21DV ek 7]05 (7 v(5.0) [o(s. 0)

< N(T)?(s) "G,

Moreover, using the improved local decay estimates (4.10) and (4.14), we obtain
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[{D)@1a +B)(5)] 12 S (D) (01 () (w(s)” = w(s,00%))] .
S e oo ()72 (w()* = w(s, 00%) | 12
+ (02 0wen | oo | ()7 (w(s)” —w(5.0%) | 12

[ e e [0 920(s)

21v() “Lgo
SN s)~G70,

Similarly, in view of (3.17), by invoking the improved local decay estimates (4.12)
and (4.13) along with the estimate (4.2), we find that

(D)@ (v + 8)(5) | 12 S (D) 2 (VI [dxw () ]w(s)] .2
S DY x)ea| oo [ (1) T[B:0)] ] 12 [0) | oo
+ )z 2 [ () ded (0] 12
+ [z oo [ I[85 0] oo | () Bxv ()] 2

SN (s)" G,

”(S)”Lsf

In an analogous manner, we derive that
[(D)@s(v + B)(s)] 2 < N(T)?(s) =G0,

Putting together the preceding bounds, we conclude that the quadratic contributions
can be estimated by

/ , (D) Qren(v. v)(5) | ;2 ds < / W (T2(s) G Dds SNT2. (432)
0 x 0

Cubic nonlinearities

The contributions of the cubic nonlinearities defined in (3.18) and (3.19) can all
be estimated in a straightforward manner using the following bounds established in
Lemma 4.1:

[4[0®)]] oo S N(T)s) 72
and
[1[vO]] 2 + [0 [v®)]| 12 £ N(THs)°.
We obtain that

[Py + D)) 12 £ [1PW 12 [v6) 1 S NI ()70,
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which implies that
t
/ [(DYE@ + D) (5)] 2 ds < N(T)3(1)°. (4.33)
0

Quartic and quintic nonlinearities
We proceed analogously to the treatment of the cubic terms to bound the contributions
of the quartic and quintic remainder terms (3.20) and (3.21) by

[D)Ry @+ D)) 2 < [0 [ (DY) 2 S NTYH5) G,
[(D)R2w + 0)5) | 13 < [0 [ [(LI )| 13 S NTYHs) 7,

which implies that

t t
/OH(D)J%I(v—i-ﬁ)(s)HL%ds—i—A [{D)YR2(v +0)(9) | .2 ds
SN(T)* + N(T)°.

Putting all of the preceding estimates together and recalling that we assume that
N(T) <1, we obtain for any 0 <¢ < T that

[(DY2 (@) 12 < llvoll g2 + llvoll 7,y + N(TY* (1),

This finishes the proof. O
Next, we deduce a growth estimate for the L2-norm of xv(z).

PROPOSITION 4.8
Let v(t) be the solution to (3.23) on the time interval [0, T]. Let N(T) be defined as
in (3.38), and assume that N(T) < 1. Then we have

sup ()7 xv(@)| 12 S [{x)vo | 12 + lvoll,, + N(T)?. (4.34)
0<t<T -’ ] X

Proof
Starting from the Duhamel representation (3.37) for v(¢) and using that

xeP) = ¢"P) (x 1 i1d, (D)),
we obtain for any time 0 <t < T that
HXV(I)HL% S lxvoll 2 +tllvoll 2 + [ xB(v,v)(0) ||sz

+t H B(v,v)(0) HL% + HxB(v, v)(¢) ”L%
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t .
+/ [xe? = PH DY Qren (v, v) (5] ;2 ds
0 X
t .
+ / er’(’_s)(D)(D)_l‘C(v +0)(s)| 2 ds
0 X
t .
+ / [xe?CXPHUDY R (v + D)(5) || 2 ds
0 X

t
+ / er’(z_s)(D)(D)_lﬂz(v +0)(s)| ;2 ds.
0 X
For the contributions of the initial data and of the normal form, we have
lxvollL2 +tllvoll 2 + HxB(v,v)(O)HL;

+t”B(v, v)(0) HL2 + HxB(v, v)(t)HL§

3
(O] (xyo 2 + 0 E:H o] 12 |v©.0)7 + 3 llxernell 2 v, 0)]

k=1
|| Uo||L2+ )||U0||H)1C‘FN(T)ZW_1

Next, we estimate the contributions of all nonlinearities. Throughout we only consider
times0<s <t <T.

Renormalized quadratic nonlinearities
Here we first crudely bound

/t”xei(’_s)(D)(D)_I(Qren(v,v)(s) ”L2 ds
0 X
5/0 [ (x +i(t = 5)0:(D) " ){D) ™ Qren(v,0) ()] 12 ds

) [ 10)@uav.0)0)] 3 05

Then we exploit the spatial localization of all quadratic nonlinearities together with
the improved decay estimate (4.16), the estimate (4.2), and the improved local decay
estimates from Lemma 4.3, to obtain

” (%) @ren(v,v)(5) H L%

3
S (DY | 12105 (€7 v(s.0))||v(s. 0|

k=1
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)P @) | Lo (07 (w(s)* —w(s.0%)] 2
+ [P @) oo [ 0) T 050 ] 12 [0 )] oo
+ 230 oo [ 0007 I[0x0@ ][ 2 [A[0x 0] Lo

SN (5) G,
Thus, we find that
/ [xe" I PHD) T Qren (v, v)(5) | 12 ds S / N(T)?(s)"G~) ds
SN(T)*(r).

Cubic nonlinearities
We begin by estimating the contributions of the cubic nonlinearities by

/ |xet =P D)"N€(w +0)(s) | 12 ds
S f [ (x +i( =9)3:(D) ") D)€W + 0)(5) | 2 ds
0

< / [ e+ m)(s)] 2 ds + (1) / [e+ 5] 2 ds.
0 0
Using the bounds
[ [v]] 2 S [(Dv©)] 2 S N(T)(s)"*?,

[4lv)] e = |

established in Lemma 4.1, we can then estimate all cubic terms in the same manner
by

o SN(T)(s)™

[ye@ +9)®)] 2 S [ ]| 2 [06)] o0 S NI s)?
as well as
[ew@+9)) 2 < v 2 [v@ 7 S NT) 5)70.

Hence, we obtain that

/ ||xe’(’ HD 1‘€(v—|—v)(s)||L2 ds

3 § ! 3 —(1=9)
SJ/(; N(T) (s) ds+(t)[0 N(T)>(s) ds
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< N(T)3 ()18, (4.35)

Quartic and quintic nonlinearities
Proceeding as in the treatment of the contributions of the cubic terms, we find that

/Hw“” DY Ry (v +)(s)| 2 ds

—I—/ ||xei(t_s)(D)(D)_1{Rz(v +0)(s)|| 2 ds
0 X
SN (1) 2 4 N (e,

Collecting all of the preceding estimates and recalling that we assume that
N(T) <1, we conclude for any time 0 <t < T that

[ov@) ] 2 < O (o] 12 + ) lvollFyy + N T o)+,

which proves the asserted bound (4.34). Ul

Finally, we turn to the most delicate energy estimate, namely, the derivation of
a slow growth estimate for the Li-norm of the operator (D)L applied to the solu-
tion v(t) to (3.23). A key ingredient for the proof is the following proposition that
establishes a slow growth estimate for the contribution of any spatially localized non-
linearity with at least cubic-type decay (t)_(%_g). The idea of the proof is a version
of an argument used in [51] and [52]. It crucially relies on improved local decay
estimates for the Klein—-Gordon propagator.

PROPOSITION 4.9
Let T >0and0 < § <« 1. Assume that

sup ()27 ()X (D) N (1)] 2 < A (4.36)
0<t<T

for some A > 0. Then we have

L SA (4.37)

t
sup (1)~° H(D)L/ ¢ E=P) (Dy=1 N (5) ds
0<t<T 0

Proof
By Plancherel’s theorem and (2.2), we have for any 0 <¢ < T that

H(D)L/tei(’_s)<D)(D)_ld\/(s) ds
0

L%
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") (€)% 0 / te—”%)—‘ﬁ(s,s)ds(
0

2
Ly

2
Ly

=| /0 5(6) e (0 R 5,635

] [ e erin(6 T W) as (439)

3

The second term on the right-hand side can be bounded uniformly forall 0 <z <T
by

|/ e 020, () ¥ 5. ) s

2
Lg

/ e (£)2i 0 (E)_lﬁ(s,"g'))”Lgds
< /0 [/ DN )] 2 ds

t
A
<[ Sgesa (4.39)
0 (s)278

In order to estimate the growth in time of the first term on the right-hand side of
(4.38), we compute

)

Lt

o
=2Re [ ([ S0 OG5, 805 )i ) (17,6 d

| /0 ()6 (67 (5.6 ds

—2Re/ st /g VLol =) E) (£)N (s, E)EN (¢, g)dg)ds.

Using Parseval’s theorem, the Cauchy—Schwarz inequality, and the improved local
decay estimate (2.23), we obtain uniformly for all 0 <¢ < T that

g )

&

[ ettt fo. o

< /O”H<x>‘28x< D)l CIPUD)N ()] 12 | ()20 N ()] 7 s

5/0 st—2 T DHDIN @) 12| (x)*0:N )] 2 ds.
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Invoking the assumption (4.36), we may further estimate the last line by

! 1 A A A2 t 1 1
st 5 3 —ds S : 5 —ds
0 (r—s5)2 (s)270 (1)27F (027 Jo (1 —s)2 (5)27¢

Integrating in time, we infer uniformly for all 0 <7 < T that

| el e @) s pyas | 420, (4:40)

L

2
£
Combining the bounds (4.39) and (4.40) yields the asserted slow growth estimate
(4.37). O

PROPOSITION 4.10
Let v(t) be the solution to (3.23) on the time interval [0, T]. Let N(T) be defined as
in (3.38), and assume that N(T) < 1. Then we have

sup (1) [(D)Lv(®)] 12 S [[(¥)vo 2 + lvoll Gy + N(TY2 (44D)

0<t<T

Proof
Our strategy is to use the slow growth estimate from Proposition 4.9 to estimate the
contributions of all spatially localized nonlinearities that exhibit (at least) cubic-type
decay (t)_(%_‘;). All renormalized quadratic nonlinearities fall into this category as
well as all quartic nonlinearities and those parts of the cubic nonlinearities that are
spatially localized. Thus, only the nonlocalized cubic nonlinearities and the quintic
remainder terms require a more specific treatment.

To this end, we first examine the structure of the cubic nonlinearities a bit more
and peel off further spatially localized cubic terms. It will turn out that the remaining
nonlocalized cubic nonlinearities have a favorable structure. Using the identity

J[w(t)](x) = —tanh(x)w(z, x) + I[axw(t)](x),

we can rewrite the (not obviously localized) cubic nonlinearities €, (w) defined in
(3.18) and peel off a few more localized cubic terms. Specifically, we find that

C(w) = %(J[w])zw + %tanh(x)(J[w]f

- %(— tanh(x)w + (3 w]) *w + %tanh(x)(_ tanh()w + (o w])’

1 ~ ~
= ng — %(J[E)xw])zw + %tanh(x)(dl[wa])3
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1 2 3 1 4 3
+ 3 sech”(x)w> — 3 sech™ (x)w

— sech?(x) t21nh(x):!7[8xw]w2 + sech?(x) (Zf[axw])zw.

Clearly, the last four terms are spatially localized. Within this proof, we therefore use
the following decomposition of the cubic nonlinearities into

e (w) = Cu(w) + € (w)
with
~ 1 1 ~ 2 1 ~ 3
Cu(w) := gw3 — E(J[axw]) w + gtanh(x)((ﬂ[axw]) (4.42)
and

~ 1 1 ~
€ (w) = 3 sech?(x)w? — 3 sech*(x)w? — sech?(x) tanh(x)d [0, w]w?

+ sech?(x) ([0 w]) *w — g sech?(x) tanh(x) (4 [w]) (4.43)
— sech?(x) (J[w])zw.

The last two terms in the preceding definition of ‘gl(u}) stem from €;(w) defined in
(3.19). We write the Duhamel representation (3.37) of the solution v(z) to (3.23) as

v(t) = P (vy + B(v,v)(0)) — B(v,v)(r)
+ V@, (1) + vg, (1) + vg, (1) + vg, (1) + VR, (7).

where we denote the contributions of the nonlinearities by

1 [,
_'/ PN DY@ (v, v)(s) ds,

V@, (1) = 2/,

| R =
g, =57 [ IPUDY Byt + s s
0

1 rt . ~

ig ) =5 [ IPUDITIE @+ o) ds
1 r

vﬂ_/(t)=2—i/0 S TIPNUDYTIR (v + D) (s)ds,  j =1,2.

Throughout this proof we only consider times 0 <s <t < T. We have

[(DYLv(@)| 2 S | (D)L(e"P)(vo + B(v,v)(0)) — B(v,v)(t)) .2
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+ (D) Lve., ] 12 + [{PYLvg, ()] 2
+ [(D) Lvg, 1) 2
+ [{D)Lvg, ()| 2 + [(D)Lvg, (1) - (4.44)

Using the identity (D)Le™P) = ¢P)(D)2x and recalling that (D)L = (D)?x —
it{D)dy, we can easily bound the first term on the right-hand side of (4.44) by

[{D)L("P) (vg + B(v,v)(0)) = B, 0)(1) | 1
3

Slhovoll gz + ) Ixaul g2 llvoll7 o0
X X X
k=1

3
+ 3 (renell gz + el g2) [0 oo
k=1

< lxvoll 2 + w0l + N(T)2.

The main work now goes into estimating the contributions of the nonlinearities on the
right-hand side of (4.44).

Renormalized quadratic nonlinearities

To bound the contributions of the renormalized quadratic nonlinearities using the key
slow growth estimate from Proposition 4.9, we only have to verify that the assumption
(4.36) in the statement of Proposition 4.9 is satisfied. We have

H (X>2@ren(v’ U)(l) ”H}
3
S Y2 Qu @, 0) )| g1 + [(¥)2Qua(w + )0
=1

¢
k
+ [[(x)2@Q2(v + 0) ()] 1 + [(x)?Q3 (v + D)D) - (4.45)

Then we use the improved decay estimate (4.16) to bound the first term on the right-
hand side of (4.45) by

3 3
Y@@ O] g1 £ D1 ek 1] (7 v, 0))] v (2, 0)]
k=1 k=1

<N {(t)~G9, (4.46)

For the second term on the right-hand side of (4.45), we invoke the improved local
decay estimates from Lemma 4.3 to obtain
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[(x)?@ua +8) (@) | g1 S ()21 () (w(t)” = w(7,0)%) | 1
S e e[ ()72 (w(®)* —w(r, 0) | 15
+ [P en | oo [ )T 00 2 [0 O] Lo
< N(T)2(t)~GD. 4.47)

Similarly, the third term on the right-hand side of (4.45) can be bounded using the
improved local decay estimates from Lemma 4.3 as well as (4.2) by

[ (@20 + )0 1 S [[(x) 22 I[dxw ) ]w ()] 1
SN ] e [0 050 O] 12 [0 ] oo
+ [ oo | (1) 1A [0:0 O] 12 [0 O] oo
+ [z o [A[8x0 O] oo [ () 00 12
S N(TY*He) "G,
(4.48)

and proceeding analogously, we obtain

[()2@30 + 5)@) ]| g1 S ()23 () (A[0x])* | 1
V 3 (4.49)
SN )~67.

Thus, we have

sup [ (x)2Quen(v. ) (1) ;11 S N(TY2 (1)~
T x

0<t=<

and Proposition 4.9 yields the desired slow growth estimate for the contributions of
all renormalized quadratic nonlinearities

sup (1) [(D)Lva,, (@) 12 SN

0<t<T

Localized cubic nonlinearities ‘gl v+ )
Here we again only need to verify that the assumption (4.36) in the statement of
Proposition 4.9 is satisfied by all localized cubic nonlinearities. We have

[ () E @+ D)) 1

< H (x)zsechz(x)w(t)3“H} + H (x)? sech4(x)w(t)3HH;
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+ | {x)? sech?(x) tanh (x) [ w(t) |w(r)?|| a1

+ ()2 sech® (o) (A[axw®]) *w ()] 0

+ [[(x)? sech? (x) tanh(x) (4w ()])° | 111

+ [[{x)2 sech?(x) (4 [w(z)])zw(z)HHé. (4.50)

Using the improved local decay estimate (4.10), the first term on the right-hand side
of (4.50) can then be bounded by

H (x)zsechz(x)w(t)3HH} < ” (x)? sech?(x) H ! Hv(t)”i@o
+ || (x)3 sechz(x) ||L2° H (x)_laxv(t)”L% ”v(t)”i%o
SN(T) 1),

The bound for the second term on the right-hand side of (4.50) is the same. Simi-
larly, using (4.2) as well as the improved local decay estimates (4.12) and (4.13), we
estimate the third term on the right-hand side of (4.50) by

()2 sech? (x) tanh (x) [ 3w (1) Jw(2)? a0l

< [[w)? sech® (o tanh () | 1 [T[8,x0 0] o [0 [0
+ [ (x)? sech? (x) tanh(x) | o [ () 9 A[0x0 ()] | 12 [0(0) | oo
+ [ {x)? sech?(x) tanh(x) | oo [ A[0x0(1)] | oo [ ()7 B0 (0)]

SN(THr)"GD,

12 ”(t)HLgo

In a similar manner we can derive the desired bounds on the remaining three terms on
the right-hand side of (4.50). By the slow growth estimate from Proposition 4.9, we
therefore obtain the desired bound

sup ()7 (D) Lvg, (1) | 2 S N(T). 4.51)

0<t<T

Nonlocalized cubic nonlinearities aﬂ(v + v)
In order to bound the contributions of the nonlocalized cubic nonlinearities, we
express the nonlocal operator L in terms of Z. Specifically, we write

(D)L =—i(D)Z — 3x + ix(D)(0; —i (D)) —i(D)~'9x(3; —i (D)).

The Lorentz boost Z satisfies a product rule, which allows us to easily compute its
precise action on the nonlocalized cubic nonlinearities. We have
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[(D)Lvg, )] 12 < (D) Zve, )] 12 + [xve, )] 2

+ [¥Cu@ + DO 12 + [Cav + DO 2. 452)

The main work goes into estimating the first term on the right-hand side of (4.52). We
begin by dispensing with the other easier terms. In view of the definition of aﬂ(v +
v)(2) in (4.42), using (4.2) and (4.7), we may bound the third term on the right-hand
side of (4.52) by

[ ¥+ 0)(®) 12
S (Jov@) | 2 + ¥ [0v O] 12) (0O [0 + [ T[22 ][ 200)
SN(T)3r)P.

Similarly, invoking (4.2) and (4.4), we estimate the last term on the right-hand side of
(4.52) by

[€uw + 17)(1)HL§
S (o] 2 + [0 O] 2) ([ |0 + [0 00)
SN ()09,

which additionally gives rise to the following bound on the second term on the right-
hand side of (4.52):

|0xve, ] 2 S /O |8 + 0)() 2 ds

< ' 37\ —(1-5)
< /0 N(T)3(s) ds
SN ().

Thus, we can now turn to estimating the first term on the right-hand side of (4.52). By
the standard energy estimate, we have

t
[(0)Zve,0]3 5 [ 1(@:=i(0)(D)Zv, )0 13 5.
Using the commutators (2.3), we compute

(9 —i(D))((D)Zvg,)
=(D)Z (3, —i(D))vg, + (D)[(3: —i(D)). Z]vg,
1

= 3280 +9) + 5 [(D). Z)(D) Bt + )
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(D) (0~ (D). Zvg,

1 = 1 =
= _—Z€,(v+ 1) — —(D) 20,0, Cu(v + 1)
2i 2i
1 ~
+ =0, (D) ey (v + 1), (4.53)

2

whence

[{D)Zve, )] .5
< [ IZ8a + )6 g as+ [ @8+ )] 5 ds
0 0 :

t ~
+ / €@ +0)(s)] 2 ds. (4.54)
0

In view of the definition (4.42) of aﬂ(v + v)(s), using (4.2), (4.4), and (4.5) along
with the auxiliary slow growth estimate (4.8), we may bound the last two terms on
the right-hand side of (4.54) by

t — t
[ 108+ )6 |35+ [ [t + 9105 3 08
0 l 0 :
< [ ol + lor ) o [ as
0

< / tN(T)3(s)_(1_8) ds < N(T)3(1)°. (4.55)
0

Finally, we can turn to the heart of the matter, namely, the estimate of the first term
on the right-hand side of (4.54). To this end, we compute that

Z(Baw) = 0*@0) — wilbeulz (Toew)) - 5 (TTaew]) @)
+ %t sech?(x) (J~[8x w])3 + tanh(x) (I[wa])ZZ(I[wa]). (4.56)

Invoking the crucial slow growth bound (4.28) from Corollary 4.6 along with the
improved local decay estimate (4.12), the decay estimate (4.2), and the auxiliary slow
growth bound (4.9), we then infer that

[(Z€uw +9) )] 2
S @726 12 + [v@) ] oo |00 0] oo | 2 (P50 )] | 2

+ [oxv )]0 295 12
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5] o) seeh® (@) | o | (0) 7[00 ()] 1 [ T80 ()] [
S OO PN A RO ) P
SN(T)(s)"070.

It follows that the first term on the right-hand side of (4.54) satisfies the desired bound

/t ” (Z(é;ﬂ(v + l_)))(S) ||L2 ds S /t N(T)3<s)_(1—3) 5 N(T)3([)8
0 * 0

Combining all of the preceding estimates, we arrive at the desired slow growth esti-
mate

sup (1)~ (D) Lvg, ()] 2 S N(T)*, (4.57)

0<t<T

Quartic nonlinearities

Here we again only have to verify that the assumption (4.36) in the statement of
Proposition 4.9 is satisfied by the quartic nonlinearities. Proceeding analogously to
the treatment of the localized cubic nonlinearities, we find that

|2 R1 (v + 5) @) gy S N2,
Correspondingly, Proposition 4.9 gives the desired bound

sup (1) °[(D)Lvg, ()] 12 SN (4.58)

0<t<T

Quintic nonlinearities

Finally, we estimate the contributions of the quintic nonlinearities by proceeding anal-
ogously to the preceding treatment of the nonlocalized cubic nonlinearities. Here we
only describe how to obtain the desired bound on the crucial contribution of

/0 [(ZRa(v + ) (5) | 2 ds,

which is the analogue of the first term on the right-hand side of (4.54). The treatment
of all other terms is analogous to, and in fact even simpler than in the case of the
nonlocalized cubic nonlinearities. Recall from (3.21) that

5
Ro(v +70) =Y Rosev + ).
k=1

We consider in detail the contribution of the first quintic nonlinearity R ;(v + V)
and compute
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!

5 (ZR21(w))(s)

= —stanh(x) sech(x) (/1(1 —r)*sin(K + rd[w(s)]) dr) (4 [w(s)])5
0
1
+ sech(x) (/ 1—r)* cos(K + rJ[w(s)])
0
x (s(3xK) + rZ(d[w(s)])) dr) (4 [w(s)])5
+ sech(x) (/1(1 —r)*sin(K + rd[w(s)]) dr)
0

5(8[w($)])* Z (I [w(s)])- (4.59)

Hence, without relying on any spatial localization properties, we can just use the
growth bound (4.27) from Corollary 4.6 along with the estimates (4.1) and (4.3) to
crudely estimate

1Z(Ra1 (v + 5)(5) ] 12
sl 2 14
H1Z @Dz (@] + 4[] )
SSN(T)(s) N(T)*(s) 2
+ N(T){s) 2 (N(T)3(s)72 + N(T)*(s)2)
SN (s)"07D, (4.60)

which suffices to obtain the desired bound
t
/ [(ZRoa v + D)) 2 ds S NT)>(1)°.
0

A careful examination of the structure of the other quintic nonlinearities R, x (v +
v)(t), 2 < k <5 shows that those can all be estimated in the same manner. This
concludes the treatment of the quintic nonlinearities and thus finishes the proof of the
proposition. ([

5. Pointwise estimates for the profile
In this section we establish an a priori bound on the Lg"-norm of the Fourier transform

of the profile f(¢) := e~ "{P)y(r) of the solution to (3.23).
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PROPOSITION 5.1

Let f(t) := e ™Ply(t) be the profile of the solution v(t) to (3.23) on the time interval
[0, T] for some T > 1. Let N(T) be defined as in (3.38), and assume that N(T) < 1.
We have

swp 63706, SO FA.D] 0+ NP G)

Moreover, we obtain for arbitrary times 1 <t; <t, <T that

1)} (2,011 %29 — ()3 F0, 00D SNETPTL 52)

where
L7 N R SR 2
00.6)= 1670 +38) [ @i fcoles. 1= 6

The main part of the proof of Proposition 5.1 consists in deriving the following
differential equation that captures the asymptotic behavior of the Fourier transform of
the profile of the solution.

PROPOSITION 5.2

Assume that T > 1. Let f(t) := e~ Ply(t) be the profile of the solution v(t) to
(3.23) on the time interval [0, T]. Let N(T') be defined as in (3.38), and assume that
N(T) < 1. Then we have forall £ e Rand all 1 <t <T that

0:((€)3 £ (1.8) + 7(2.6))
UG LANCER DY R Y

1364/3 3 3
1 3 2 3 2
+ ;O @ o) o)
e R0 438 f-0 f )
LR ST N S PR L 27, &Y
T D) e+en/(n3)
+0p (N(T)2t=$+3%), (5.4)

where

~

P19 oo S NP0
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Proposition 5.2 implies Proposition 5.1 by a standard argument, which we briefly
sketch next. The remainder of this section is then devoted to the proof of Proposi-
tion 5.2.

Proof of Proposition 5.1

The basic idea is to just integrate the differential equation (5.4) in time. Among the
four terms on the right-hand side of (5.4) that have nonintegrable 1 ! decay, all but the
second (resonant) term exhibit additional oscillations in time that allow for uniform-
in-time bounds. The second term on the right-hand side of (5.4) can be removed via
an integrating factor, which leads to logarithmic phase corrections in the asymptotics
of v(t). Correspondingly, we multiply (5.4) by the integrating factor ¢! ®®£) with
®(z, ) defined in (5.3) to obtain that

0, ((6)2 £ (1.6)e" 9 1 7(1,6)e 0D

= 23: Gr(t.§) + Org (N(T)2t~3+3%), (5.5)
=
where
G e e o
Gatt.5) = gz 061 4389 Ft -5 e,
Gﬂis>———;555;eﬁ“9+“§”@y%§)*<3+52xfc,§)if¢m8.

Then upon showing for k = 1,2, 3 that uniformly forall 1 <# <t, <T,

the asserted estimates (5.1) and (5.2) follow from integrating (5.5) in time and taking

15 R
[ G o], s v 5.6)
1 tl

the Lgo-norm. We demonstrate in detail how to prove the bound (5.6) for k = 1. To

exploit the time oscillations in the term G1 (t,&), we rewrite it as
Gl (t ’ g)

_s, (: 3(6\1/)_ pit— (g)+3(§))<_(g) + 3<§>)_1(§)%<§>_3

x (34 Ez)f<t, %)361-@(,,5))
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L L ED i@+ (~&)+ 3<§>)_‘ (§>%(§>‘3

12364/3 3 3
x (34 Ez)f(l %)38‘1’(”5)
L e (S o )

<3, (1. E)erva

v AR SR ) IRCR S INCREY
x 4369 7(05) 0F F e,

Then using that (—(§) + 3(%))_1 ~ (&) and that (3.28) implies the crude estimate
2 _1
[0/ (. 6)| Lo SN2, 0<1=<T,

we conclude for 1 <t; <t, <T that

/: Gi(s,£)ds

|,
Lg

15 1
31

1 3 ) 5 .
Sy @3 0nl+ [ 5101 6ol

+ /tlz S%l—zs “ (E)%f(S»S)Hi?(S)%_ZS Hath(S,S)”LgO as

123 1 3 A
[ sleifeplsas

< 11
~ 328
Iy

N(T)3.

We remark that there is some room in the preceding estimate regarding the frequency
weights, and the stated upper bounds are not sharp. The bound (5.6) for k = 2,3 can
be derived in the same manner, which finishes the proof. O

5.1. The ODE for the Fourier transform of the profile

We begin with the proof of Proposition 5.2. In order to deduce the asserted differential
equation (5.4) for the Fourier transform of the profile f (¢, &) of the solution v(¢) to
(3.23), we multiply the differential equation (3.33) for f (t,&) by the weight (& )% to
obtain that
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0:((€)2 £ (1,6) + (1, 6))

= %@)%‘f”(é)?[fm(v +9)(1)](§) + E(t.§). (5.7)

Here we use the shorthand notation

F(,8) = (£) e O F[Bu,v)(1)] (),
1

E(1.8) = 2 (5)2¢ O F [Qa0.0) (0] ®)
5O O e+ 0)0]@) (538)
50 EF[R 0+ DO
50T OF[Reo + D)0 E).

The leading order contributions to the right-hand side of (5.7) stem from the non-
localized cubic nonlinearities €,;(v + v). All other nonlinearities contribute time-
integrable errors. They are correspondingly collected in the term 3 (¢, &) that satisfies
the following decay estimate.

LEMMA 5.3
Let v(t) be the solution to (3.23) on the time interval [0, T], and let N(T') be defined
as in (3.38). Assume that N(T) < 1. Then we have for all times 0 <t < T that

[€¢.) e < N(T)? (1) 33, (5.9)

The next proposition determines the leading order contributions of the nonlocal-
ized cubic nonlinearities to the right-hand side of (5.7).

PROPOSITION 5.4
Assume that T > 1. Let f(t) := e~ Ply(t) be the profile of the solution v(t) to (3.23)
on the time interval [0, T), and let N(T) be defined as in (3.38). Then uniformly for
all1 <t <T,
1 L _
5 ()ze " Feuw + 0)(1)]E)
1 1

= ?meit(_@)H(g»@)£<§>_3(3 + gz)fA(fv %)3

Loria )| feolfas

* i
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+ L i3 (14380 F )P e —b)

4it

LT s g 8V 2 7(; &Y
TN (3) G+ens(e3)

+ 010 (N(T)21~5+39), (5.10)

At this point, the proof of Proposition 5.2 is an immediate consequence of the
differential equation (5.7), Lemma 5.3, and Proposition 5.4 together with the obser-
vation that in view of the definition (3.32) of the variable coefficient quadratic normal
form, we easily obtain uniformly for all times 0 <¢ < T,

3
,ﬂh?SE:WQ%RL?hWAmzsNGFUYP (5.11)
k=1

We conclude this subsection with the proof of Lemma 5.3. The next subsections
are then devoted to the proof of Proposition 5.4.

Proof of Lemma 5.3
Throughout we only consider times 0 < ¢ < T. We start off by estimating the renor-
malized quadratic nonlinearities defined in (3.34),

[€)} 7 [@un(v. ) O]®)] .

< 22 F[Qu@)O)®) | 1o + )2 F Qs+ HO]E)|

k=1
+ )2 F[@20 + DO o + 62 F[@30 + DO]E) o

Recalling the definitions (3.35) of @1 (v,v)(¢), 1 < k < 3, we obtain from the
improved decay estimate (4.16) that

1

ZH )27 (@) O] )]

3
< D16 2au] e[ (00 0)) [0, 0)|
k=1

SN ()~ GD), (5.12)

Further, using the improved local decay estimates from Lemma 4.3, we conclude that
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[(6)2 7 [Que + DO]E)] 1
S e () (w)? = w(t, 0) | 1
S DY e | oo [ (¥) 7> (w0 = w(a. 07 1
6% | e [ )00 2 [0 ] 5o
SN (1) 70, (5.13)

Finally, combining the bound (4.2) with the improved local decay estimates from
Lemma 4.3, we find that

[(©)2 7 [@200 + D] ®)] o
S )2 () I[axw®)]w@)] 1
<[Py o] oo [0) T 00 O]] 12 [0 )] Lo
()| e [0 0xd 00 0] 12 [0 )] oo
+ [ (P02 o [I[0:0 O] oo [ (1) D0 )] 1
S N(TY (1)), (5.14)
and analogously, we infer that
[(©)2 F[@:00 + O] oo S NI ()G, (5.15)

Combining (5.12)—(5.15) yields the desired bound on the contributions of all renor-
malized quadratic nonlinearities

[(6)2 7 [Qen0. ) O] @) o < NTP40) "G,
Next, we estimate the localized cubic nonlinearities defined in (3.19),
[&2F[C0 + OO o < [ () seeh® () tanh ) (4w (®)]) | 1y
+ [ (x) sech? () (A[w(®)]) *w(®) | 1. (5.16)

Using (4.1), we can estimate the first term on the right-hand side of (5.16) in a simple
manner by

H (x) sech?(x) tanh(x) (4 [w(t)])3 ” H!

< | (x) sech?(x) tanh(x) | H) (v ]| Lo
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+ 94 [0@)]] o) [ [0 O] | o0
SN(T) (1) 73, (5.17)

For the second term on the right-hand side of (5.16), we use (4.1) and the local decay
estimate (4.10) to obtain that

[ ¢x) sech®() (A[w)])*w (@) 1
S [ sech@) | gy ([4@]] 5o
+ 92 O]l L) [ [ O] | oo [0 @] oo
+ [0 seet® @) oo [0 O] [ oo [ () 0500 12
<SN(T (1) 3. (5.18)

Combining (5.17) and (5.18) yields the desired bound on the contributions of all local-
ized cubic nonlinearities

[ 7 e+ D)) 0 S NTP )73
&

Since all quartic nonlinearities (3.20) are spatially localized, we can proceed anal-
ogously to the treatment of the localized cubic nonlinearities, to find that

[ 7 [Ri @ + DO]E) 1o S NDH*(1).

Finally, an inspection of the quintic nonlinearities (3.21) shows that they can all
be bounded using variants of the crude schematic estimate

[ # [([wOD’ 1@ 0 < HOUE[wOD)]
S O] g 14 0]

SN (1) 572,

12 J[v(t)]||i§o

whence
1€ F[Ratv + 0] oo S NP ()G,

This concludes the proof of the lemma. O

5.2. Fourier analysis of the nonlinearities

As preparation for the proof of Proposition 5.4, in this subsection we determine the
Fourier transform of the nonlocalized cubic nonlinearities that appears on the right-
hand side of the differential equation (5.7). In the next subsection we then compute
its leading order contributions.
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We begin by recalling the well-known fact that

sech(£) = \/gsech(%f;‘). (5.19)

In the next lemma we determine the Fourier transform of the integral operator J[g]
defined in (3.12).

LEMMA 5.5
The operator

J[g](x) = —sech(x) /0 cosh(y)g(y)dy

maps 8(R) — 8 (R) and we have

TTx1(6) = — 3 seen(3e) [ Zzenan

+Llpy / cosech( (£ — ))g 5 4, (5.20)
2 R (n)?

Proof

The fact that the linear operator d: §(R) — 8 (R) is elementary and is left to the
reader. For the Fourier transform, we compute

Tl©) = —= [ elooe as
1 X . .
= —— lim sech(rx)/ cosh(y)/gf(n)e’y” dne_”‘E dy dx
27 t—>1+
= —— //sech(rx)/ (e? UM 4 ey E1HIM) 4y~ dx g () dp
4w r—>1+
exX(+in) _ x(=1+in) _ |
= [fsech(rx) - + ¢ ; )
47Tr—>1+ 1+in —1+in
x e dxg(n)dn
= [ KEmeman
with
1— ex(1+i77) 1— e—x(l—in) )
K i h —~ g
&, n)= 1m Rsec (rx)( T+ i )e X
. 1— x(14in) )
= lim Im sech(tx)e%e_’xs dx.

27 t—>1+ R 1+in
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To pass to the second line, we substituted x +— —x in the second term inside the
parentheses on the first line. Hence,

sech(tx) _, o
K — 1 N7 ix€ ix(i+(E—1n)) d
(€1 = 5 Jim 1 [ ST e o
I SCCh(%S) . SeCh(T_l %(S —n+ l))
5 Im<7. — lim : )
2 1+ZT] T—>1+ .[(1_’_”7)
[ sech cosech(Z (£ —
= im(=—2- G | pycosechGE n))>
2 1 + lT’ 1 + lT}
i T .
= m(—n Sech(gf) + PV cosech(E(g - 7)))),
which finishes the proof. .

Next, we compute the Fourier transform of tanh(x).

LEMMA 5.6
In the sense of tempered distributions,
5.21
tanh(§) = \/: PV cosech( 5 E) (5.21)
Proof

We use Abel summation. In fact, since lim,_, o4 e ~¢"*! tanh(x) = tanh(x) in the sense
of 8’(R), and since the Fourier transform is continuous on §’(R), we compute the
usual Fourier transform of e~¢/* tanh(x) and then pass to the limit in §'(R). Fix
&> 0, and compute

. oo . 2
ix€ p—1x| ot () d :/ lx(§+t£)<_1 )d
/Re e anh(x) dx | e +1+e—2x X
0
—/ et E=ie) (—1 + 2 )dx
o 1+ e2x
1 S * ix(e+ie) -2
- = 2 —1" ix ie) p=2nx 4
E+io) + ’;( ) /0 e e X

m tx({-‘—is) mx
l(f;“ ZZ( 1) / e?™ dx

215
EZ_}_ 2

+2Z( )'2n+e—i§)!
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~2) (=D)"@m+e+iH)!

m=0

2i
= E 5 +4i gZ( D" (n+e)?+€3)7". (5.22)
The interchange between integration and summation is justified here by writing, for
the first integral over (0, co),

Z( l)n —2nx (— 1)N+le—2(N+1)x
1+ e—zx 1 +e72x '

which yields

/ooeix($+is)1+ — Z( 1y [ in(E+ie) yix(Etie) ,—2nx g
0

N /oo eix($+i£) (_1)N+1e—2(N+l)x i
0 1+ e—2x '

The error here is bounded by

N —2(N
’foo zx(S-‘rla)( 1) +1 2(N+1)x "
0 14+ €_2x

< /Oo e XER2NFED) 4y < 2N 4-2)71,
0
which allows us to pass to the limit N — oo. In particular, this proved convergence
of the infinite series. We leave the remaining details in justifying the interchange of
limits in (5.22) to the reader. Thus,
— — Hr
tanh(—£) = —tanh(£) = ) )

2PV +4$Z4 =

7=

On the other hand, as meromorphic functions,

T (=D* 2. (="
sinh(%z)_zzz—%[ Z Z z2 + 442

LeZ

and the lemma follows. |

We deduce a few more identities that will be needed in the sequel.
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COROLLARY 5.7
We have as equalities in 8 (R),

sech? (£) = \/g @ (523)
(sech(%-) * sech(%-))(é) = @, (5.24)
(sech(%') * PV cosech(%-))(é) =2¢ sech(%é), (5.25)

and as equalities in 8'(R),
tanhz(g)._ V2780 (£) — \/;;S hi Y (5.26)

(me@%Wmm(»@—M&HE%Q (5.27)
2

Proof -
We have tanh’(x) = sech?(x), and thus sech?(§) = tanh’ (£) = i Etanh(§). By the pre-
vious Lemma 5.6, this gives the first identity (5.23).

To prove the second identity (5.24), we observe that (5.19) implies

F [sech( )]( )= \/j sech(n),

and therefore

?[sech( 5 ) * sech( )](n) = 2\/jsech2(n)

Now the second identity (5.24) follows from (5.23).
To deduce the third identity (5.25), we use (5.19) and Lemma 5.6 to compute the
Fourier transform of the left-hand side of (5.25)

?[sech(%-) * PV cosech(%-)](n) =-2i \/gsech(n) tanh(7)
=2i \/Zsech/(r]),
g

(sech(% ) * PVcosech( ))(5) =2i \/7“ sech’](¢)

whence
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= 2ﬁss€&1@>
7
=2¢ sech(%é).

Next, the identity tanh?(x) = 1 —sech?(x) together with (5.23) implies the fourth
identity (5.26) in the sense of §’(R). Finally, by Lemma 5.6,

?[PV cosech(g-)](n) =—i \/gtanh(n),

[2
?[PV cosech(z-) * PV cosech(z-)](n) = —2,/ = tanh?(p),
2 2 b4

which leads from the fourth identity (5.26) to the fifth identity (5.27). Here the con-
volution in §’(R) on the left-hand side is well defined since

whence

T
w:=PV cosech(z-)

satisfies w * g € §(R) if g € §(R). Therefore, in the sense of the duality pairing
between §’(R) and §(R),

(w*w,g)=(w.0(—)*g)

and hence

—

(@*0.8) =(w*xw.8) =(v.o(—)*g)=(d.[o(—)* g]v) = V27 (d.dg),

as desired. O

Next, we take on the computation of the Fourier transform of the non-localized
cubic nonlinearities (3.18) that involve 4. To this end, we introduce more shorthand
notation. The following definitions of A, B are taken directly from (5.20) in the state-
ment of Lemma 5.5.

Definition 5.8
We define

__ &
o1() = 2sinh(5£) cS®).

W (E) 1= 2k sech(%é) e $(R),

Q= %PVCOSGCh(%-) € 8'(R),
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and

AE)(6) 1= 5PV [ coseeh(F6 = m) ()2 dn = (2 (1) ©).

LAY
B(h) := 2/R<n)2h(n)dn.

Moreover, we set
b4
Sech(§) := sech(ié),

Cosech(§) := cosech(%é).

With the aid of this shorthand notation, we may write (5.20) from Lemma 5.5
succinctly as

J[w](§) = Sech(¥) B(h) + A(D)(£). (5.28)
Now recall from (3.18) that the nonlocalized cubic nonlinearities are given by
1 2 1 3
Cu(w) = E(J[w]) w3 tanh(x)(4[w])". (5.29)

The next lemma determines the Fourier transform of the first cubic nonlinearity on
the right-hand side of (5.29).

LEMMA 5.9
For any w € $(R),

FIw)Pw] = %(Tl(w) + Ta(w) + T3(w)), (5.30)
where

Ti(w) = 4B(W)%w; * W,

To(w) = iB()ws * (D) 2w * 1,

T3(w) = (B0 — 1) * (D) 2w * (D) 2w % .
Proof

By (5.28), we have
2n(f‘[(ﬂ[w]2w] = m] * M] * W

= (Sech B(®) + A()) * (Sech B(W) + A()) * W
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= B()? Sech * Sech x1b + 2B(1) Sech x A (1) *

+ A(W) * A(W) * W
=:Ti(w) + T2 (w) + T5(w).
Then (5.24) implies that
Ti(w) = 4B(W)?w; * .

Similarly, we obtain from (5.25) that

—

T»(w) = i B(w) Sech *xPV Cosech *{D) 2w * w

o —

=iB(W)w;y * (D) 2w * W.

Finally, (5.27) gives

—

T3(w) = Q % Q % (D/)Ew * (D)72w x W

—_—

1
= —ZPVCOSCCh *xPV Cosech*(D)2w x (D) 2w x W

—

= (8o —w1) * (D/)zw x (D)72w x W,

as claimed.

O

Next we compute the Fourier transform of the second cubic nonlinearity on the

right-hand side of (5.29).

LEMMA 5.10
For any w € $(R),

4
F [tanh(-)(4 [w])3] = ﬁ Z S;(w).
j=1

where
S1(w) = —4iB(W)3w, * w,,

3 .
Sa(w) = 53(1@)2602 * Wy * (D) 2w,

S3(w) = 3i B()(—ws + w1 * w3) * (D)—2w * (D) 2w,

—_—

Sa(w) = =280 —2w1 + w1 * w1) * (D) 2w * (D) 2w * (D) 2w.

(5.31)
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Proof
By Lemma 5.6 and (5.28), we have

47137[tanh((l[w])3] = —iPV Cosech (Sech B(i) + A())
* (Sech B() + A(w)) * (Sech B(w) + A())
= —iB()>PV Cosech % Sech  Sech % Sech
— 3 B()*PV Cosech % Sech * Sech « A ()
— 3i B(w)PV Cosech * Sech x A () * A(W)
—iPV Cosech*A(W) * A(W) * A(W)
=:S1(w) + S2(w) + S3(w) + Sa(w).
Then (5.24) and (5.25) imply that

S1(w) = —i B(®)3PV Cosech * Sech * Sech * Sech = —4i B(0)>w; * w».

Similarly, we infer from (5.25) that

o —

3
S»(w) = = B(1)*PV Cosech * Sech #*PV Cosech * Sech * (D) 2w
2

3 —
= EB(lb)za)z * wy * (D) 2w,

and from (5.25) together with (5.27) that

o —

S3(w) = —3i B(i)PV Cosech S * % Sech %(D)~2w * (D)~2w

3 —
= ZiB(li))wz x (=480 + dw1) * (D) 2w x (D) 2w

=3iB(W)(—w2 + w1 * w2) * (D)72w * (D) 2w.

Finally, (5.27) yields

i\ 3
Sa(w) = —1i (%) PV Cosech *PV Cosech xPV Cosech PV Cosech

—

= —2(8p —2w1 + w1 * wy) * (D) 2w * (D) 2w * (D) 2w,

which concludes the proof. O
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5.3. Proof of Proposition 5.4

In this subsection we finally determine via a stationary phase analysis the leading
order behavior of the evolution of the Fourier transform of the nonlocalized cubic
nonlinearities asserted in (5.10).

We obtained the precise expression for the Fourier transform of the non-localized
cubic nonlinearities €, (v + v) in (5.30) and (5.31). In the next lemma we conclude
that all terms that involve the convolution with Schwartz functions only contribute
time-integrable errors. The dominant contributions to the Fourier transform of the
nonlocalized cubic nonlinearities are therefore obtained from the §y-convolutions in
T (resp., S4).

LEMMA 5.11
Assume that T > 1. Let v(t) be the solution to (3.23) on the time interval [0, T]. Then
we have uniformly for all £ € R and forall 1 <t <T that

(£)3e O F (v + 5)(1)] ()
1

= 2O (D)2w(0) * (D) Zw(n) * h(1)) @)

— &) O (D) Zw0) * (D) Fw() * (D) (1) €)

+ (9L§o(N(T)3t_%+%), (5.32)

where w(t) = v(t) + v(?).

Proof

Throughout we only consider times 1 <z < 7. We be_gin by deriving a decay estimate
for B(W(¢)). Inserting w(t) = P} f(1) 4+ ¢~*P) £(¢) and integrating by parts, we
find that

B(ﬁ)(t))=—%(fR#e"(")f(t,n)dn+/R#e_”("’f(t,—n)dn)

= Im/ ize”(")f(t, n)dn
r (1)

1 ‘ A
= ;ReAe”(”)an((ﬂ)_lf(ts77)) dn,

whence by (2.2),
[B@O) =1 [ (2 ]+ 0~ |on Fem])

SISOy S N@HHE
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Then for 77 in Lemma 5.9 we bound
[(©)2 (@1 % D) o < |10y + |8 (@10 (D) | 1y
Slal gy [v@ ] oo + 6112 [9:0@)] 12
SN,
and thus,

[>T (b)) .o <[B@O)[] )

l
Hon  0(0) | o S NP2,

For 7, in that same lemma, we estimate

ez () % (D >2w<r>||Loo_ Baw(t)((D)2w) ()] 11
< N2l 1 [w @] oo | (DY 2w(0) | oo
S| S NI
and
[§(@2 % @) % (D) 2w(®)] oo = [0 (@20 ) (D) 2w) )] 1
< 0262112 |0 0| Lo | D) 2w ()] 12
+ a2l 1z [0xw®) ] 2 [ (D) 2w (@) | oo
+ a2 [wO ] o [ (D) Tw @) ] 12
< N(T)2t=2 5,
The conclusion is that
|62 T2 (w0)] o £ [B@O)|](8) (@2 % b(0) (D) Zw(®))] oo
< N(T)3=3+25,

Finally, for the part of T3 that involves convolution with the Schwartz function wy,
we bound, on the one hand,

o1 % b(e) (D) Zw(@) « (D) w0 < |a

(D) 2w (®)’]
< [(D)2w(®)] 7 o0

S o] S NT)3
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and, on the other hand,
(@1 % b(e) * (D) 2w(e) % (D) 2w(®)] o
< Jox (@@ (D) 2w®)) |
< laxdn 1 [w®)] Lo [ (DY 2w} oo
ol g [oswm] 4 [(P) w7
+2)l@1ll 1 [w @) oo [(PY WD) | oo [ (D) w0 ()| oo
< N(T)3—3ts,
Here we used the Gagliardo—Nirenberg—Sobolev bound
0w 4 < |20 | [0 | £
In summary,

[(€)(@1 % () % (D) 2w(e) * (D) 2w(®)) | o S NT)* 415,

(5.33)

This shows that all terms but the 8¢ in 75 contribute errors that have time-integrable

5.8 . . .
decay at least of the order 732, Arguing in an analogous fashion for the terms S,

1 <j <4,in Lemma 5.10, we arrive at the same conclusion.

O

It now remains to determine the leading order contributions of the first two terms

on the right-hand side of (5.32) via a stationary phase analysis. We treat the first term

in detail, the analysis of the second term being analogous. To this end, we define the

2-plane

3
Me={§:= (b8 eR: ) 6 =8 §eR

Jj=1

and introduce the shorthand notation

h(t,€) = (£)2f(1.8).

Denoting by J#? the two-dimensional Hausdorff measure, we write the first term on

the right-hand side of (5.32) in the form
6

4
j=

— ()27 ((D)2w(t) * (D) 2w(t) * D(1))(€) = ;Zm £),
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where
Ti(.6) = (§) [H E Ok, ENh(E, &) f (1, E) dHP(dE),
70,6 =206 [ RO .8 078,
respectively,
70,6 = @) [ R0 £ 8 0@,
Ta(r.§) = 2()} /H E FOf (1, (1.6 f(1.8) dH(d),
and, finally,
To(1.8) = (§)} /H E O £ (1. £t E2)h (1, E5) dI(dE).
To(t.§) = (§)} /H é SOt £ &) [ (1. &) AH ().

The phases are given by

$1(8) = —(8) + (&1) + (62) + (€3).
$2(8) = —(8) + (61) — (62) + (63).
(5.34)
$3(8) = —(8) + (&1) — (62) — (&3).
P4(§) = —(8) — (61) — (62) — (&3).

The critical points of the phases are characterized by dW¥;(£,) = 0, where ¥; is
the pullback of ¢; onto the plane IT¢ with global coordinates (&1,&2). The unique
solutions are given by

R
dWs(=£,6) =0, '

£ €
av(3.5) =0

with respective values
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0 (55 =@ +35) =

333 3
¢2(§’_§’§) = 07 (5 36)
$3(—£.£.6) = —2(£), '

£EE £
#(353) =0 -33)

and Hessians
£ e E\32 1
Hess i (5.3) =(3) [1 2]’
Hess a6, —6) = ()] (].
(5.37)

1 2

neswi(5.9) =171 o)

We now describe in detail how to extract the leading order term from 73 (z, £) via

Hess W (—£.£) = —(£) [O 1] ,

stationary phase. We introduce a Littlewood—Paley decomposition and write

(0,6 =2 Ju,

k4>0
Jeei= (€)} /[ ML (1 £ R (1, E) F (1. E — b1 — £2)dE1 ds. (5.38)

hie(t,E1) 1= Y (EDh(E, &),

where V¢ (£1) is supported on {|£;| ~ 2%} for k > 1 and on {|&;| < 1} for k = 0. We
only consider the case || ~ 2/ for j > 1, the case |§| < 1 being easier. Then we
decompose 75(z, §) into the high-low, low-high, high-high, and critical contributions,
namely,

72(1,6) = $n + Fin + Fnn + Ferits

= Y. >

k>j+100=<{<k—5

Jin = Z Z Jre, (5.39)

{>j+100<k<{-5

=D Y

k>j+10|¢—k|<5
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élcril = Z Jk€~

0<k,£<j+10

The final g gives the main contribution via stationary phase. We first show that the
first three are error terms.

LEMMA 5.12
Assume that T > 1. We have uniformly for all £ € R and all times 1 <t <T that

_3
Il + || + | Fon] S N(T)3e72+28,
In the proof of Lemma 5.12, we repeatedly use the following trilinear estimate.

LEMMA 5.13
Assume that m € L' (R?) satisfies

|| mar gremtiemeag agy (5.40)

=<
LY, x, ®2)

for some A > 0. Then we have for any exponents p,q,r, € [1, 00] with % + é + % =1
that

1 /R _m(E1.62) f (ED&Eh(~61 — £2) dy dsz\ SAIflellglpeliloy.  (5.41)

Proof
By direct computation, we find that

[ mter)f@niearin—a — ) diu de

= oy L ([t ag)

x f(x3 —x1)g(x3 —x2)h(x3)dx; dxs dxs.

Then (5.41) follows from (5.40) and Holder’s inequality. O
We are now prepared for the proof of Lemma 5.12.

Proof of Lemma 5.12
In the high-low case, we integrate by parts in &, and write, with &3 =& — & — &,

(£)?

it

Jke =—

i (1,62 L ; ;
[ e (g e i) F .6 ) d do
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We apply Lemma 5.13 to bound this in Lgo. The choices of m (&1, &,) in that lemma
are, respectively,

my(§1.62) = Yi(E)Ve(62)

1
022 (£1,62)

or my = d,m; depending on where 9, falls inside the integral. To verify the condi-
tions of Lemma 2.7, we compute

1 (62)(€3)(52(83) — §3(62))

0V2(E1.62) £-8
In the high-low regime, |&3| > |£1] =~ 2%, |&,| ~ 2¢ whence
1

Ly—n1k—nyt
8’1”8;2%’ < Cnl’n222 2 MikTn2 for alll’ll,l’lz 20 (542)

Thus, writing Y (§1) = ¥ (27%&;) for k > 1, we have for m = my,

HAZ el (181 +xz£2)m($1,§2) dt, d&’

LY, x, (®2)

. 1
— et x1m+x2n2) dni d ‘
H /R 2 g Ve |

<22 (5.43)

at least for k > 1 and £ > 1. In case k = 0, say, then a V¢ appears in the second
line and similarly with £. The corresponding bound for m = m, is by a factor of 2
smaller. To apply Lemma 5.13, we use that by (2.2),

16206/ 1.6)] 12 = DIV @) | 13-

Thus, by Lemma 5.13,

1

37
kel S 272%(2—‘”‘ (DY o) 2272 (D) L{D) 2o @) | L2 0] oo
+ 274 (DY) 227 v ()| L 2 (DY L) | 1

+ 27D o] 527 o ()] 27 (DY) 12)

1

237
< %282—4" N(T)?. (5.44)

~ 3

Note that we obtained better decay in frequency due to the (D)2

first two h-factors. However, the final bound in (5.44) does not require it. Moreover,
in the first line we carried out the commutator

smoothing in the
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—
=
=
|
N
[S—
Il
=
|
|8}
-
=
o
~
—_
=
|
[ S}
Il
=
L
-
=
. N
=
[A—
=
|
[ S}
Il

_28x<D>_37
and hence,
[(DYL(D)v(@) | 12 S [{D) T Lo@)] 12 + [9x(D) 20 (0)|| 12 S N(T)(1)°.

Localizing v(¢) to frequency 2¢ in the last line, we could gain another factor of 272¢.
But we do not exploit this extra gain here. Finally, summing over the parameters of
the high-low case yields

|l S N(T)* 32,
By an analogous argument, we arrive at the low-high bound
|l S N(T)* 32,

In fact, this follows by interchanging &; and &; in the high-low analysis.
In the high-high regime, we make the following claim:

(0192)% + (0,W,)2 > (&) 74, (5.45)

To see this, we note that if ;&3 < 0, then

|9102(51.6)| = \— - g\
On the other hand, if £;&5 > 0, then
1§ — &6 — (261 + &)
(E1)(€3)[61(83) + &3 (61
_ 1&2]1E — (261 + &)
B £7(€3)2

“F(E3)2)E - 281 + £2)].

|01W2(61.62)| =

Analogously, if £;,&3 > 0, then

10205 (81, £2)| = (—+5—3 >1.
(E3)

On the other hand, if £,&3 < 0, then

0205 (£1.862)| 2 275 (E3) 2|6 — 26, + &)

But in the high-high regime, one has
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1281 + & + |81 + 26| = 2F,
whence the claim. Define
-1
L= ((01%2)* + (02%2)%) " ((91W2)d; + (02%2)d>) (5.46)

so that £(e"¥2) = ire™¥2 and

s =51 /[ M) 2% (1, o1, £2) £ (1, £2)) dE ds

SEE Y [ oo g e /0. 60) de ey

! 0<n<k+10
= Y (5.47)
0<n<k+10

In the last line we introduced another dyadic frequency decomposition relative to £3.
One checks that

080 (£1.8)| S (&5) 1A

for any multi-index B = (81, B2) with |8] > 2. Then we apply Lemma 5.13 with the
following choices of m (&1, &5):

my(§1.6) == —((01¥2)* + (32‘112)2)_131‘1/2(51,52)Wk(51)‘ﬂ£(52)¢n(§3),
ma(§1.6) = —((01¥2)> + (32‘1’2)2)_132‘1‘2@1,52)%(51)%(52)% (&3). (543)

ms = 81m1 + 827?12.

Now, with the same conventions as in (5.43),

H/2 ei(X151+xz$2)m1($1’52) d& dgz‘
R

LY, 1, (R2)
— “/2ei(Xlnl+X27}2)((81\I;2)2 + (82‘112)2)_131‘112(2k711»26772)%”(771)1#(772)
R

x Y (27" — 251 — 2%92)) dipy dipa

LY @)
S 22n (2k 25 2—2n)% )

The % power here produces pointwise decay of the form ((xl)(xz))_%. The other

choices of m, that is, m, and ms3, satisfy the same bound. In analogy to (5.44), we
conclude that
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1

7
| ken] S 2723"2—" @ (Do) | 227 DYL(D)Y o) 1 [0 O oo
+ 274 (D@ 227 0| L2 (DY LV () 12

+ 27 (DY v ()] 227 o) | L2272 (DY) 12)
23]

~ [%—28

273k N(T)H3, (5.49)

Summing over the high-high parameter regime yields
|unl S N(T)* 352,

as claimed. O

It remains to consider the integral ., which contains the critical point
(&,—€,&). The region in question is of the form |&1| + |&2] < |&] and on the hyper-
plane IT¢ we have Z;Zl |€;] ~ |&|. The unique critical point is at (1, §>) = (§,=§),
and we denote

U :={(1.£2) € R? :max{|&) — £]. [£2 + £[} < culE]}.

For simplicity, we assume that £ >> 1. Here 0 < ¢, < 1 is a small absolute constant
that will be specified further below.

LEMMA 5.14
The neighborhood Uy is characterized by the property

|VW, (1. &) < |67
and in Uk,
|V (E + 1. —€ 4+ m2) | = €17 (Im ]| + |n21).- (5.50)
In region I := {£1&3 < 0} U {£263 > 0} we have |V, | >~ 1, while both in region

I :={& <0} N{& >0} N {& <0} as well as in region Il := {&; > 0} N {& <
0} N {&3 > 0}, but outside of Uy, we have

(VW (E1,62)| = (61) 72 + (82) 72 + (&3) 2 (5.51)

In Figure I, Region I is represented by the shaded areas, Region II is the upper blank
triangle, and Region IlI is the lower blank area which contains the disk depicting U.
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Figure 1. (Color online) Regions in the (§1,&2) plane, £ > 0.

Proof
The stated property in region I follows from

Ve = (o e T ) (5.52)

and max{|&;[, |&2|, |&3]} = |&] > 1.
To analyze the gradient near the critical point, we set £, =& + 1y, & = —£ + 12

and calculate

Vs (& + 71, —E + )|

)‘5—711—772 _E+m ‘2+‘ E-m-—m  §-m
(E=m—m2) (E+m) (E=mi—m) (E—n2)
= (201 + 12)*P*(§ + n1.2n1 + n2) + 1 P2 (E —n2. M), (5.53)

where we introduce

1
<I>(G,n):=/0 (0 —sn)~3ds.

Note that @ is even and ® (o, ) = ®(6 — n,—n) = ®(n — g, n). Next, we will show
that for o > 0, the function ® has the following shape:
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(n)~Ho)™2 if n < —o,
D(o,n) (0 Ho—n)"2 if —o<n<o, (5.54)
(! ifn>o.

In particular, if || > co (o) for some absolute constant 0 < ¢y < 1, then
[n|®(0.n) 2 cofo) 2. (5.55)

All implied constants are absolute. Since ® is even, (5.55) also holds for 0 < 0. To
verify (5.54), note that if n £ 0, then

®(o,n) =yt /n(a —o')3do’. (5.56)
0

Suppose that 0 < o < 100. Then (o — ¢’) >~ (0’) and by (5.56) we conclude that
®(0,1) ~ (n)~1, as claimed in (5.54). Henceforth o > 100. If n < —o, and ¢ is as in
(5.56), then {0 — ¢') = (0 + |o’|) and

[n]
®(0.n) =~ ! /0 (0 +8)73de = () ()2,

which gives the first line of (5.54). If —o <7 < %0, then (0 — o’) ~ (o), whence
®(0,7) ~ (o) 3. This agrees with the second line of (5.54). If 10 <7 < o, then
n=o0c—4Lwith0<{< %(7 and

o—{
®(o,n) =n"" / (0 —0")3do’
0

= ! L (&) dt

~ () O (o) o —n) 2
which concludes the proof of the second line of (5.54). Finally, if n > o, then we have

g

S =1~ [ (€73 de = (),

-1
as claimed.

Next, we characterize the region Us. By (5.53) and (5.55), if 1| > co{& — n2),
then with absolute implied constants,

|V“I'2(El’§2)} > co(E —n2) 7%

If |21 4+ n2| = co{& + n1), then similarly
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[VW(E1,62)| 2 col§ +m) 72
Note that

1211 + n2| + ml 2 (€ —n2) +(§ +m)

holds with a uniform constant in the region max{|n|,|n2|} > %(E). If |§] 2

max{|n1l, |n2]} > %|$|, one therefore has

El

[VWa(E1.£2)| =y min{(§ —n2) 72, (5 +m) 72} 2 €7 (5.57)

with an absolute constant ¢y > 0. Finally, if max{|n:|,n2|} < 15/€|, then from (5.53)
and the second line of (5.54),

|VWa(1.6)| = (12m + n2l + Im) €17,

which is the same as (5.50). This concludes our characterization of U..
To prove (5.51) in Region /I, we start from

|VWa(61.62)| ~ |&1 — &3] P(—E3. 61 — §3) + |61 — £ D(52.6 — &1). (5.58)

This follows from (5.53), &, =& 4+ 11, §E — 2 = =&, & =& — 1 — 12, and the
symmetries of ®. Note that the first arguments in both ® terms are nonnegative. Since
1 €& <§&—§& <& in 1, the final inequality here being due to &3 < 0, the second
line of (5.54) applies to the last term on the right-hand side of (5.58), whence

&1 — §|D(52.6 — &) ~ (&) 2

In total, we infer from (5.54) that in Region I

VW (E1. £2)| = €1 — E31((61) 72 (63) Mgy <ty —£32—8]
+ (€1 — &) (E3) P —g<ea)) + (E3) 72
~ &1 — E30(E1) T2 (E3) T gy <t~ <—g] + (£3) 72 (5.59)

where we absorbed the second term on the right-hand side of the first line into the
(£3)72. The first term of (5.59) is bounded above by

|61 = E1(ED) T E) TN S (B THE) T H(EDTE S (BT 4 (8)

The goal is therefore to show that the right-hand side of (5.59) is > (£;)72 + (&3)72
as then (5.51) follows easily since & =~ £ in II. The desired lower bound holds if
(&3) < (£1) so that only (&3) > (&) remains as a possible obstruction. However, in
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that case |&; — &3] 2 (&3) and &3 < & — &3 since &3 < 0, while & — &3 < —&3 holds
automatically in //. In summary,

61— E31(E1) T2 (63) T ez <ty —ta <31 2 (E1) 7

and we are done.
In Region III we modify (5.58) to ensure that the first argument of ® is nonneg-
ative, namely,

VW (61, 62)|
> [61 — &3] P(E3.63 —§1) + |61 — §[P(—52.61 - &)
2 (61— &51((83) 7 (61) Ly <gr—ea) + (63) 72 (61 — £3) T Lmgizts 1))
+ 1€ = E1((82) 7 (E3) P Ly, -1 + (62) {61 — §) Lo -41)-

In the first indicator, we automatically have &3 — & < &; due to &; > 0 and in the
third, & — & < —§&, holds due to &3 > 0. Figure 2 shows Region /Il in the fourth
quadrant, below the line £&3 = 0 (thus, we remove the triangle in the upper right-
hand corner). Also shown are subregions determined by the lines &; = &3 (resp., §; =
2&3) and £ = &) — &;. The critical point lies on the line &; = £3. We refer to the red
triangle in the upper left corner as A (it is § > & — &), and we denote the three
different colored regions in /II outside A as respectively B, C, D, moving from left

to right.

yyyyyyyyyyyyyyyyyyyyyy

Figure 2. (Color online) Region Il with Uy, £1 > £3, &1 <2&3,6 > &1 — &>
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If 52 < E] —%‘ and —%'3 < 4‘:-'3 —El, which is B U C, then 53 >~ —52 ’Zé
and

|VWa (€1, 62)| = |61 — E31(83) 71 (61) > + |E1 — §[(E2) 1 (E3) 2
~ & — & (E) T (E) T+ 16— EE) .

Outside of U, the last line is ~ (£;)72. Indeed, if |§; — &3] < &, thenin (BU C) \ Us
it follows that & ~ & and |&) — &| ~ &.

If & <& — & and —£3 > & — £, whichis D, then §3 < —&2, &1 = &1 —§3 >~ §,
1§1 — &l < —§2, and

Vo (€1, 62)| = (11 — &3l(E1 — &) 7" + [E1 — E(E2) 1) (E3) 2~ (&3) 2
If & > & — &, whichis A4, then § — &) ~ &5 and

|VWa(E1,6)| = &1 — &l ((53) 7 (61) g <t5£)
+(63) 26 — 63) T I azs-t1)) (5.60)
+ 161 — E1(51 = £) 7 (62) 2 (5.61)
~ ((£2) 72 + (83) )L etazta-ta]
+ (6172 + (82) )Lty <t3-8)
~(E) T+ () (5) 2

To see this in more detail, let A7 =: AN {2&3 > &1} and A, := AN {285 < §&;}. Thus,
A corresponds to the first indicator in (5.60), whereas A, corresponds to the second
indicator. In the figure, A, is the small triangle in A above the line 2§35 = &;, whereas
A1 is the quadrilateral in A below that line. In A7, we have § — §; ~ & ~ &3 and in
view of (5.60) and (5.61),

|VW (1, 6)| > 61— &l(E) 716N T2+ (B2) 2 S )2+ (82) 2

The reverse inequality holds if (£1) = (&,). On the other hand, if (&) < (&,), then
|€1 — &3] ~ &, and we are again done.
In A,, we have |§; — &3] >~ £ and so (5.60), (5.61) imply that

|VWa(E1,62)| = (&) 72 + |61 —El(E1 — 6) 1 (E2) 2 S (E2) 2 + (E3) 2

The reverse inequality holds if (£3) < (&,). On the other hand, if {£5) > (&,), then
|E1 — &| ~ &3 ~ (£3), whence |§; — £|(€; — &)™ ~ 1, which concludes this analysis.
Finally, in all of these cases the (£;)72 absent from the final estimate give smaller
contributions. O
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Returning to the oscillatory integral J;;, we write

gcrit = gU* + g[c]*

with
Ju. = (£} f/ ML 1 ENR (1) (1. En) v, (61 Ea) dEr dEn. (5.62)

where yy, (£1,£>) is a smooth bump function adapted to U,. Next, we determine the
leading order behavior of Jy, .

LEMMA 5.15
Assume that T > 1. For any 0 < a < X, we have uniformly for all £ € R and all times
1<t <T that

Ju. =270 27 F @O F(.6) + Ope (N1 723) . (5.63)

Proof
We substitute

E1=6+(5)51, &S=-F+ (8,
in (5.62) and rescale the phase as follows:
Wa(61.62) = (6) 7' W (1. &)

Then 9z, ¥(0,0) = 9, ¥(0,0) = 0, ¥(0,0) = 0, and by (5.37),

Hess W(0,0) = ﬁ (1)j| .

Moreover, by Lemma 5.14 we have for |{1]| + |¢2] < 1 and all multi-indices 8 =

(B1.B2) with |8 = 1,
0P W(81,82)| < Cp.
We set
F(1.82) = hj (.60, (1.62) f (1. 83).

and A :=t(£)71, and yy, (£1.£2) = x0(£1.82), the latter being a smooth cutoff to a
neighborhood of (0, 0) of size ¢« < 1, which equals 1 near the origin. Then
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du. = (£)} // FMVELE) Yo (1 6 F(Er. £) A dE

= (2”)_1(5)%/ G1(21,22) F(21,22) dz; dza, (5.64)
where

Gi(z1,22) 1= // el'(ZlZl+22§2)eil‘1’(§1,§2)){0@-1’ &) déy dgy.

We conclude that
Ju. = (6)3G0.0F0.0+ (&3 (G2~ GrO.0)F ) (569
By stationary phase (see [32, Theorem 7.7.5]), we have for A > 1,
G;(0,0) =271+ O(172),

while trivially G (0,0) = O(1) for 0 < A < 1. Moreover, if R := |z1| + |z2| > CxxA,
then

|Ga(z1.22)| SRV SATITURY

by one integration by parts. Here 0 < ¢4« < 1 is a constant that can be taken to be a
multiple of ¢, in the definition of U,. Hence, for any o > 0, we have uniformly in
A>0,

[/ Ga(z1,22) — G1.(0,0)||F(z1,22)| dzy dz,
{R=cxx A}

<A (Iz1] + |z20)* F (21, 22) ey, - (5.66)

On the other hand, for R < c««A, we apply [32, Theorem 7.7.6] to G, with phase
function

V(1,8) = (2181 + 2280)A 7 + W(G1, ).
This phase has a unique critical point (¢}, ¢}) and for A > 1,
Lk s - _1
Gilz1,22) = 2 A~ MY ETE) detHess W(LT, 6|2 10 (T, 83) + O(A72),

where O is uniformin (z1, z2). It follows from | (¢}, ¢5)| S AR and /\|\if(§f, OIS
A1R? that for R<A, A >1,andany 0 <a < 1,
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o F ek sk ~ _1
A PET-82) | det Hess W(CT, £3)| 2 xo(CF. 3) — 1
SAND(F* ok ~ 1
S [ PERED) — 1| detHess U(T. 63|72 [xo (6. 83))

. 1
+ HdetHess‘lJ(ff,{;)‘ 2X0(§f7§;)—1‘
S A—otRZa + A—(IRO!'

Thus, we obtain uniformly for A > 1 that
// |GA(Zl,Z2)—GA(0,0)||F(21,22)|led22
{R<cxxA}

Sy [ETRNEN A CTeS | e

Using the trivial bounds |G (z1,22)| < 1, we infer that the preceding estimate con-
tinues to hold for A > 0. Returning to (5.65), we conclude that

Ju. =27 (E) 20 h,8)> F(1.6) + O ()37 |(|z1] + |22/ * F )

1
Lzl R-5)

where

Fer.z) = (6726 B0 [ it (1.6)12) 4 x)
R (5.67)

x (¢, () 2o + x3) £ (¢, x3) dx3.

In (5.67) we set § ~ 2/ and use that in U, we have |£;| ~ &. To bound the error in
(5.65), we compute

i}v fj(t)“L}c S27Y “fj(f)”z;’

1 S|P 0] /Oy

1Flzs < [hi@

|(121] + 1221)** F

and
|75 e 272 (KDY | 12 + (D) 1 2)
S22 (DY@ | 12 + (D)LY (@) 12)
S22V N,

1

as well as, with 0 <« < 7,

[P £ 0] 1y S 1) £ 12 < 0@ 12 + (D) Lo@)] 2 S NTHe).
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In summary,

{22 + |2l Fl L 27N> 0,
and (5.63) holds. O

By means of Lemma 5.14, we now show that the contribution of fr’lc]* is just an
error term. This completes the analysis of the oscillatory integral 75 (%, £).

LEMMA 5.16
Assume that T > 1. We have uniformly for all ¢ e Rand all 1 <t <T that

196 | S N(T)> = i+28,

Proof
We proceed as in the high-high case above, that is, with £ as in (5.46),

go.= D Jw

0<k,l,n<j+10

Jien = E2 [ e e e i e i

x (1= yu,)(€1.62)) dé1 d&s,

where £ ~ 2/, Expanding, we arrive at

Jien = E2 // M) i (6 )0, (i (1. E0)he(1, £2) fo(1. £3)) dEy dEs

i

L2 // 21 1 (6 E9)0 (i (1. £0)he(1. £2) fo (1. £3)) dEy 6
it
+ %// ei’q’z(&’&)m3(§1,éz)ﬁk(t,él)
X he(t, £2) fo (2, E5) dEy dE (5.68)

with (cf. (5.48))
i (1. 62) == —((01¥2)* + (32‘1’2)2)_131"1’2(51,52),
mi(§1,62) == 161, 62) Vi Ve (52)¥n (§3)(1 — xu.)(61.62).
ma(§1,62) = 251, 62) Vi )V e(52)¥n (§3)(1 — xu.)(61.62).

ms = 01my + 0,ms.

(5.69)
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Define
3

Aeen = plzy -
p=1

Then Lemma 5.13 implies as before (see (5.44) and (5.49)) that
[Jien] S 23727426700 4 N(T)P 13430, (5.70)

The only difference with (5.49) is that we invoke the estimate

[on®)] o0 < | ”n(’)H%go (273" (D)zvn(t)HL%)% <ominN(Ty S

in order to gain decay in |&3| >~ 2", if |&3] > 1. It remains to bound Ay, and to show
that (5.70) can be summed over 0 <k,{,n < j + 10. By Lemma 5.14, fori =1, 2,

i (E1.82)| < BT
|Vui(61.6)| < By Ba,
|V?ui(€1,6)| S BT B3 + B Bs,
|V3ui(61,6)| < Bi*B3 + By B2Bs + By * By,

(5.71)

with

. —i—1 .
B,~:=(1g1qlg3(gq)) , 1<i<4.

Therefore, for any multi-index 8 of length 1 < |B| < 3, we conclude from (5.71) that

0 i1, £2)] < ((min_(5)*". (5.72)

To bound ||#7i,];1  , we infer from the pointwise estimate, for 1 < p < 3,
plILY,

iy Cer )| S minfllmplpy (il beal) IVl )

that

1 2
P < 3 V3 3 .
lmplly S ||mp||Lél’g2 I mp”Lél.Ez (5.73)

From (5.69) and (5.72),

—1~k+4
”mp”Lé SJBl 2kt )
£1.&2

: —15k+¢
V3m < ( min PARRS
|| p”Lél’E2 ~ (15!153(511))
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The same bounds hold for m,. Thus by (5.73),
-~ o~ < nk+¢
AP A P
In view of the preceding, |73 || Ll satisfies a better bound, so that we have Agg, <
X1.22
2k+¢_ Finally, since max{2,2¢, 2"} ~ 27,

1. _Af_np_3
Z 2379 4k—24 4nAk(n S 1
k,t,n<j+10

uniformly in j. O

To summarize the results of Lemma 5.12, Lemma 5.15 (with the choice o = é),
and Lemma 5.16, we find that the leading order behavior of 75(z, §) is given by

T2(.6) = 64 F O] F (1.6 + 0 (NTPEP). 57

In an analogous fashion one shows that

2
t

T3(t.6) = S (6) 2| @O F(0.6) + O (N(T)*3+%), (5.75)

As far as the analysis of the remaining four oscillatory integrals 75 (¢, £) is concerned,
the phases in (5.34) satisfy

$3(51,82,83) = —2(8) — ¢2(62,61,83), $a = —2(8) — 1.

Therefore, the geometric Lemma 5.14 carries over to ¢ by interchanging &; with &;.

For the phase ¢, and thus also for the phase ¢4, the shaded regions in Figure 3
depict the area in which |[VWq (&1, &>)| 2~ 1. The oblique line corresponds to the equa-
tion §&3 = & — & — & = 0. The blank triangle contains a disk of size ¢« centered at
the critical point (§/3, £/3) (assuming as before that £ > 1). We again denote this disk
by Uk. Inside this triangle, but outside of U, similar arguments as in Lemma 5.14
lead to the conclusion that

VW1 (€L E2)| = (E1) 72+ (£2) 72+ (83) 7%

In fact, the following analogue of Lemma 5.14 holds.

LEMMA 5.17
The neighborhood Uy is characterized by the property

|V‘I’1(§1,$2)| < |EI72,
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Figure 3. (Color online) Regions in the (£1, £2) plane for the phases ¢1 and ¢4.

and in Uy we have

|VUL(E/3 4 n1.6/3 + n2)| = 1673 (In1| + [n2]). (5.76)

Outside of the white triangle in Figure 3, we have |VV1| >~ 1, while inside of it, but
outside of Uy, we have

(VW (E1.6)| = (1) 72+ (82) 2 + (&) 2 (5.77)

Proof
Outside of the white triangle, we have either £1&3 < 0 or £,&3 < 0. Thus,

(b b 6 &
VU (§1,62) = ((51) (&) (E2) (§3>)

satisfies |[VW;(£1,£5)| 2~ 1 in that region. Inside of it, we compute

|V (61, 6)|  [&1 — &3|D(E3. 6 — ED)| + &2 — &l P(E3.6 — &2)].  (5.78)
where ® satisfies (5.54). We divide the white triangle into the following four regions:

I:={£>0,8>0,8>0028>§,285>6),
II:={& >0,6>0,& > 0,265 < £1,263 < &),
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II:={§ > 0.6 > 0.6 > 0,265 < 1,26 > &},
IV:={£1>0,6>0,8 > 0,26 > §1,283 < &}

Region [ contains Uy and by (5.54), in I \ Ux we have £3 ~ & and

(VWL (€1, 62)| > 61 — &3l(E3) T (61) 72 + |62 — &3l (63) 1 (62) 2
~ (61) 72+ (52) 72

In region 11, we have

VW (E1.6)| > |61 — E31(E3) 2 (61— &3) " + |62 — &31(&3) (B2 —&3) !
~ (&) TP () TP+ () TP+ (E) 2

In region 111, £ ~ & and

|V (51.6)| ~ &1 — &1(E) (61— &) + 62— E3)(&3) 7" (E2) 2
~ (&) + |62 — &l(E3) T (&2) 2
~ (6) 72 4 (62) 72

while the assertion for region /V follows from region //I by symmetry. This shows in
particular that [VWy| > (£)72 outside of Uy. Finally, in Uy, by (5.78) and the second
case in (5.54),

(VW1(51,82)| > (161 — &3] + 162 — &3])E°,

which implies (5.76). O

To determine the leading order behaviors of the oscillatory integrals 75 (z, &),
j =1,4,5,6, we can carry out an analogous stationary phase analysis as above. We
use Lemma 5.14 for the phase ¢35 and Lemma 5.17 for the phases ¢; and ¢4. Then
we find that

+ 0L (N(T)*~$+3%),
Ta(t.6) = e ) fu -0 fu )
+ O (N(T)*1~5+%),

. (5.79)

Ts(.6) = =2 @)~ | fa - 0. -9)
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_6
+ 0L (N(T)* > +38),

Tatr. 6 = SO ()7 (1,5)

+ 012 (N(T)21~5%),

Finally, it remains to determine the leading order behavior of the second term on
the right-hand side of (5.32). We write it as

—é@)%e—”‘@(w) 2w(t) % {D)2w(t) * (D) ~2w(1)) () = ——ZJ,(t £).

where

T (t,6) = (£)? [ e Eh (1t ENh(t, E2)h(1, £3) AHP(E),
g

To(r.8) = 3()} /H O ENR (L ER (L, E5) AH(AE),
3

To(t,£) = 3(£) /H e £ )h(r, E2)h (1. E3) A (dE),
3

Toolt.£) = (€)% /H (1 V(1 (1. E) dI(dE),
3

and the phases ¢ (£), 1 < j <4 are the same as in (5.34). Then an analogous station-
ary phase analysis as above yields

’E(r,g)—zT”} e (S>+3(%))<E)%<§>_3f(;,%)3

+0pg (N(T)3—3+3%),
Ts(1.§) = 6771(5)_% ’fA(z,g)}ZfA(t’E) + O (N(T)3t_g+3a)’

To(t.£) = 6T”e‘2"’<5> (&) 3| F . -6 f (2. —¢) (5.80)

+ 0L (N(T)?1=5+%),

Tio(t.6) = 2 e OO (1,2

+ 0L (N(T)P1=5+%),
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In summary, by Lemma 5.11 and by (5.74), (5.75), (5.79), (5.80), we obtain uni-
formly forall £ e Rand all 1 <t <T that

e O F e+ O]
6
—SLZ Ti(t.6) — Zw £) + O (N(TV5+9)
J=
_L U @i 8V a ey AL E
T 136v3 ) <3> G+e )f(t’s)
F @038 feol o)
438 f -0 o)
LU @ gy (VP g e (Y
z36ﬁe RN <3> B+§ )f(”3)

+ 0100 (N(T)21=5+39),

This completes the proof of Proposition 5.4.

6. Proof of Theorem 1.1

In this final section we combine the results from Sections 3-5 to prove Theo-
rem [.1. By time-reversal symmetry, it suffices to consider only positive times.
Using a standard fixed-point argument, we construct a unique local-in-time solution
(u,0,u) € C([0,T); H2 x H2) on some time interval [0, T] to the Klein-Gordon
equation (3.5) for the odd perturbation u(¢) of the sine-Gordon kink with (odd)
initial data (u,d;u)|;=0 = (uo,u1). We can ensure that 7 > 1 for all sufficiently
small initial data ||(ug,u1)]|| H3xg2 < 1 with an absolute implied constant. In order
to conclude global existence of u(z), we seek to deduce an a priori estimate for the
quantity

M(T):= sup { 8“(”(0 3zu(t))||H3 H2+ 2H”(t)||L°<’}

0<t<

where 0 < § < 1 is a small absolute constant. To this end, we pass to the new depen-
dent variable

v(t) == w(t)—i (D) ,w(), w):=(D*u){),

introduced in (3.11) and (3.22), which is a solution to the transformed first-order
Klein—Gordon equation (3.23) on the time interval [0, 7] with initial datum
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v(0) = vo = (D*ug) —i (D)™ (D*uy).
Observe that v(z, x) is even since u(¢, x) is odd, and that

[ehvol 2 5 1) 0.0 gz =&

We now consider the bootstrap quantity

N(TY:= sup {02 [0 + O 10Oz + O (D) L0 12

T v 2 + 62700 ).

For sufficiently small data we can propagate bounds on all norms of the solution v(¢)
in N(T) for short times. Thus, we may assume that N (1) < & with an absolute implied
constant.

By the main energy estimates from Proposition 4.7, Proposition 4.8, and Propo-
sition 4.10 we have

5w {7 D00 1+ D L0 | + 07 o] )

S [x)voll gz + llvoll, + N(T)?
<e+ N(T)2,

and by Proposition 5.1 we have
sup [[(6)2 F(1.8)| oo S [6)2 £ (1.8 oo + N(T)? S &+ N(T)2.
1<t<T 3 3

Then the asymptotics for the linear Klein—-Gordon evolution from Lemma 2.1 further
imply that

1sup t2Hv(t)HLooN SUP ” (Z E)”LO"

+ sup ¢ 6(|| LU(I)||L§+”<D)2U(I)HL§)

1<t<T

<Se+ sup 76 (1) (e + N(T)?)
1<t<T

<e+ N(T)%
Combining the preceding estimates yields

N(T)<e+ N(T)>.
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By a standard continuity argument, we can now infer that there exists a small absolute
constant 0 < g9 < 1 such that if & < gg, then N(T') < ¢ independently of 7. In view
of the identity

u(r) =d[v(0)] + 4[o(1)] (6.1)

with the integral operator J[v(¢)] defined in (3.12), using Lemma 4.1 it is easy to
conclude the a priori bound

M(T) < N(T) <e.

This proves global existence of u(¢) and establishes the decay estimate (1.11) for the
perturbation of the sine-Gordon kink asserted in Theorem 1.1. Moreover, we obtain
that

sup{(6) | (- ) | g3z + 0 )2 [u )] o)
< sup{(0) o) oo + O DO 12 + OV DILVO 15
+ 07 o] + 162 0] )

<e. (6.2)

It remains to infer asymptotics for u(¢). From (5.2), (6.2), and the fact that v(z, x)
is even, we conclude that there exists an even profile V' € Lgo such that

1(6)2 £ (1,£)e" @D — V() = 2758 >, 6.3)

We then multiply the differential equation (5.4) for the Fourier transform of the profile
by the integrating factor e!¥@#) with

V0.6)= 5671 +36 [ PO ds= 3671+ 36| P log

Repeating the arguments in the proof of Proposition 5.1 and exploiting (6.3), we
obtain that there exists an even asymptotic profile W € Lg" with |W (&) = |V (§)]
such that

1(6)2 £ (1, 6)e’ Y@ — W (¢) = 275 > (6.4)

The asymptotics for the linear Klein—Gordon evolution from Lemma 2.1 then give
that

—

v(t,x) = —lei%ei”e_iw(t’&))(ééo)%W(So)]l( 1 1)( ) + O (1™ 548 g), t>1,

12
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with p = Vt2 —x2 and & = —%. This implies via (6.1) the asserted asymptotics
(1.12) for u(¢) and finishes the proof of Theorem 1.1.
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