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EVOLUTIONARY BIOLOGY

Genome and life-history evolution link bird
diversification to the end-Cretaceous mass extinction
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extinction limit our understanding of the early evolutionary history of modern birds. Here, we analyzed patterns
of avian molecular evolution and identified distinct macroevolutionary regimes across exons, introns, untrans-
lated regions, and mitochondrial genomes. Bird clades originating near the K-Pg boundary exhibited numerous
shifts in the mode of molecular evolution, suggesting a burst of genomic heterogeneity at this point in Earth'’s
history. These inferred shifts in substitution patterns were closely related to evolutionary shifts in developmental
mode, adult body mass, and patterns of metabolic scaling. Our results suggest that the end-Cretaceous mass ex-
tinction triggered integrated patterns of evolution across avian genomes, physiology, and life history near the

dawn of the modern bird radiation.

INTRODUCTION
Over 40 ago, Alvarez et al. (1) provided chemical evidence indicating
that the Cretaceous-Paleogene (K-Pg) mass extinction was associat-
ed with an extraterrestrial impact. Subsequent research has refined
our understanding of how this cataclysmic event influenced biodi-
versity [e.g., (2, 3)]. Mounting evidence suggests that the K-Pg ex-
tinction event triggered convergent patterns of life-history evolution.
For example, some lineages may have experienced a transient “Lilli-
put effect” in which average body sizes became smaller, likely through
faunal sorting, dwarfing, or miniaturization (4, 5). While great effort
has been devoted to investigating extinction patterns among various
groups across the K-Pg boundary [e.g., (6-8)], the impact of the
end-Cretaceous mass extinction on the genomes of surviving lin-
eages has received less attention.

Given that life-history traits such as body mass, generation
length, and metabolic rates are linked to different aspects of molecular
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evolution (9), it is plausible that convergent patterns of life-history
evolution across extinction boundaries impart distinct signatures in
the genomes of surviving lineages (10-12). For example, in plants,
repeated evolution of polyploidy may be associated with the K-Pg
transition (13). Similarly, increased avian substitution rates may re-
flect extinction-related size-selectivity (11, 12). Still, only a few stud-
ies have attempted to investigate how the aftermath of the K-Pg mass
extinction shaped genome evolution [e.g., (11, 13-16)]. We generally
expect life-history evolution to influence phylogenetic patterns [e.g.,
(17)] because factors like effective population size (N¢) and body
mass are linked through environmental carrying capacity (18, 19).
The phenomenon of GC-biased gene conversion also appears to have
an important role in driving patterns of avian base composition (20,
21), but this has never been directly linked to the K-Pg transition.
Such a link might be expected, however, because of the relation-
ships among life history, N, recombination, and the efficacy of gene
conversion (21, 22).

Many studies attempting to connect events in Earth’s history to
patterns of genome evolution rely on inferences from molecular
clock analyses [e.g., (11, 13)]. These approaches can reveal heteroge-
neous patterns in the tempo of molecular evolution [e.g., (10, 23)]
but typically assume that the underlying sequence data evolved ac-
cording to the expectations of a homogeneous nucleotide substitu-
tion model. If this assumption is violated, time-homogeneous models
may obscure important evolutionary patterns [e.g., (17)]. Neverthe-
less, techniques that enable substitution models to vary across a
clade’s evolutionary history have not yet seen widespread adoption in
the macroevolution literature [e.g., (24-26)]. Detecting where one
model has shifted to another on a phylogeny may provide evidence of
evolutionary transitions in the “mode” or process that generated the
observed data (23, 27-29). Thus, investigating patterns of model
shifts across both genome and life-history traits may reveal unknown
links among Earth’s history and evolutionary processes.

Here, we combine approaches from molecular systematics and
phylogenetic comparative methods to investigate molecular model
heterogeneity across the avian tree of life. We apply a novel step-
wise approach to estimating the phylogenetic position of shifts in
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molecular substitution model parameters, implemented in Janus
(Materials and Methods) (30). Our approach relaxes the assump-
tion that the sequence data-generating process has remained con-
stant through evolutionary time, enabling us to test the hypothesis
that the radiation of birds near the end-Cretaceous extinction was
accompanied by concurrent diversification in the mode of molecu-
lar evolution. Specifically, our phylogenomic analysis focused on
evolutionary shifts in base composition, a well-established proxy of
avian genome architecture (21, 30-32). After inferring molecular
shifts, we applied a random forest machine learning classifier to sur-
vey the organismal traits associated with inferred shifts. We also
applied multivariate Ornstein-Uhlenbeck (OU) models (27-29)
to investigate the hypothesis that molecular shifts co-occur with
changes in the adaptive landscape or evolutionary allometries of key
traits. We assessed aspects of breeding ecology, development, senes-
cence, and metabolism that may have undergone intense selection
or relaxation of evolutionary constraints during the K-Pg transition

[e.g., (10, 11, 33-35)]. Model shifts across many dimensions of bio-
diversity were constrained to clade originations temporally associ-
ated with the K-Pg transition, linking patterns of genomic variation
to life history, physiology, and macroevolutionary patterns detected
from the fossil record.

RESULTS

Molecular model shifts

Using a dataset spanning 198 avian lineages and 910 loci across cod-
ing and noncoding regions (Supplementary text), we inferred 17 mo-
lecular model shifts on 12 phylogenetic edges. Of these, 15 shifts
were very close to the K-Pg boundary (Fig. 1 and figs. S1 and S7, A
to D) (Materials and Methods) (36-39). Considering multiple shifts
detected on the same edges, Janus inferred 13 phylogenetic regimes
(one ancestral + 12 derived) are required to explain heterogeneity in
sequence composition across exons, introns, untranslated regions
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Fig. 1. Inferred model shifts across phylogenomic and life-history data. Thirteen phylogenetic regimes encompassing 17 molecular model shifts were required to
explain heterogeneity in equilibrium base frequencies across genetic data types (branches with distinct colors). Fifteen shifts were inferred at nodes with stem ages
within ~5 Ma of the K-Pg boundary (39). (Top) The aggregate signal of molecular model shifts across nuclear and mitochondrial data types identified by Janus, mapped
onto the MRL3 supertree, with the ancestral regime “0”in black [*Otidae = Otidimorphae + Strisores, (150)]. Patterns of molecular model shifts across phylogenetic edges
are summarized as 2 X 2 grids (see legend above; figs. S3 and S7). Numeric labels at each grid position correspond to a molecular shift in a specific data type. Pie charts
summarize the detection rate (“P”) for shifts in trait optima 6(t) across eight life-history traits relative to a simulated null false-positive (“FP”) rate {e.g., £1ou detection rate
/ [€1ou detection rate + false-positive rate] (statistical precision), under AICc; see fig. S4A}. (Below) Estimated magnitude of shifts in equilibrium base frequencies relative
to the empirical base frequencies for a given taxon partition for each data type, ordered by dataset size (Discussion and fig. S7, A to D). Edges with well-supported shifts
in metabolic allometry are labeled with an asterisk, with the most substantial support observed for Coraciimorphae (pp = 98%, Fig. 3).
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(UTRs), and mitochondrial DNA (mtDNA), relative to the reference
topology [“MRL3” in Kimball et al. (39); Fig. 1]. We emphasize that
Janus does not rely on information about the absolute timing of di-
vergence events (Materials and Methods); it is, therefore, notable that
shifts cluster in close temporal proximity on a well-justified time-
calibrated phylogeny (Fig. 1 and fig. S1) (39). Extensive simulations
(n = 9200) conditioned on the shape of the avian phylogeny show
low false-positive and false-negative rates (Materials and Methods
and fig. S9).

Inferred molecular shifts were largely concordant with the ori-
gins of diverse ancient clades previously recognized as ordinal or
superordinal taxonomic ranks. These include Notopalacognathae,
Tinamiformes, the unnamed sister clade to Tinamiformes (in the
MRL3 tree; Rheiformes, Casuariiformes, and Apterygiformes), Ne-
ognathae, Columbea, Passerea, Otidae [i.e., Otidimorphae + Stri-
sores, sensu (36)], the unnamed sister clade to Otidae (in the MRL3
tree: other Neoaves), Aequornithes, Coraciimorphae, Psittaciformes,
and Passeri [table S1; also see (12, 32) with respect to Passeri]. For
every case, our approach inferred molecular shifts with 100% model
weight when considering a shift’s existence and phylogenetic posi-
tion, indicating that shifts have a strong statistical signal. Inferred
molecular shifts often fall on the GC-AT axis (Fig. 1 and fig. S7, A to
D) of nucleotide compositional variation, with most shifts occurring
in our large exon dataset, followed by introns, UTRs, and mtD-
NA. There was no trend relating dataset size to the magnitude of
inferred substitution parameters (Fig. 1, bottom). Sequence type
best explains the relative deviation between estimated equilibrium
and empirical base frequencies (e.g., coding versus noncoding; Fig. 1
and Discussion). We also find strong correspondence between a
proxy of Ne and GC content across groups identified by Janus
(fig. S8), similar to Weber et al. (21). These patterns appear robust to
variation at individual codon positions in exons (Materials and
Methods).

Life-history evolution
We applied a random forest machine learning approach to predict
phylogenetic regimes inferred by Janus using a suite of candidate
traits (Fig. 2 and Materials and Methods). Developmental mode (40),
followed by adult body mass, were consistently the most impor-
tant traits [area under the receiver operating characteristic curve
(AUC) = 0.94] associated with estimated molecular shifts. Traits re-
flecting substrate or dietary preferences were relatively unimportant,
except for granivory, which ranked fourth after average clutch size
(Fig. 2 and figs. S5 and S6). In parallel, we explored the hypothesis
that molecular model shifts coincide with shifts in the evolutionary
optima of life-history traits (Materials and Methods and Figs. 1 and
2) using multi-optimum OU models (28). Under this framework,
modeled optima [0(#)] represent equilibrium points that a lineage’s
traits evolve toward under the combined influence of stabilizing se-
lection and genetic drift. For OU models that considered molecular
shift points as candidates for 6(¢) shifts, model precision was consis-
tently high (Fig. 1 and fig. S4A): All molecular shift points were as-
sociated with optima shifts under alternative information criteria
(e.g., 76.2 to 87.2%; see Supplementary text). Unconstrained analyses
were also closely congruent with molecular shift points (Supplemen-
tary text and fig. S4B).

Molecular model shifts were broadly associated with 6(¢) shifts
toward increased altriciality at hatching or decreased adult body
mass relative to O,y the ancestral optimum (within Neoaves, 7 of 7
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and 6 of 7, respectively; Fig. 2). Aequornithes and Psittaciformes
showed derived increases in body mass optima, along with derived
shifts toward increased altriciality (Fig. 2, right) while also indicating
an overall lower optimum than 0,,.. Outside Neoaves, developmen-
tal mode optima within Palaeognathae were not clearly associated
with molecular model shifts. For body mass, however, 6(f) for Tin-
amiformes was similar to 0,,., while its unnamed sister clade (Rhe-
iformes, Casuariiformes, and Apterygiformes) showed a marked
increase in 0(f) relative to O,pc, (Fig. 2). An alternative set of analyses
estimating 0(t) separately for Struthio + root suggested all molecular
shifts, including those within Palaeognathae, were associated with
derived decreases in body mass or increases in altriciality (fig. S6 and
Supplementary text).

Metabolic allometry

Across the Tree of Life, organism mass and metabolic rate broadly
follow a three-fourth power scaling law [e.g., (41)]. We applied a
Bayesian model of metabolic scaling [Materials and methods; (29)]
and found that deviations from three-fourth scaling are associated
with inferred molecular model shifts close to the K-Pg boundary.
Modal estimates for slope (Pmass) ranged from 0.65 (~%) to 0.84
(~%) and intercept (fo) from —4.25 to —3.13 (Fig. 3 and table S1),
similar to estimates for avian and mammalian subclades (42, 43).
Compared to () for life-history traits like mass or developmental
mode (Fig. 2 and figs. S5 and S6), metabolic scaling parameters have
more uncertainty [e.g., Palacognathae; Fig. 3 and fig. S10]. Modal
posterior estimates (Fig. 3) indicate that the origins of K-Pg-associ-
ated subclades within Neoaves coincide with a shift toward overall
lower body mass (Fig. 2 and figs. S5, S6, and S10), as well as lower
slope and higher intercept terms [Fig. 3 and fig. S10; e.g., under 10 kg
as noted in (42, 44)]. Derived shifts in metabolic scaling followed
patterns we identified for body mass (Fig. 2 and fig. S10), with de-
creased mass leading to weaker metabolic scaling (29, 45). Seven
edges detected at a 10% posterior probability cutoft reflect K-Pg-
associated clade originations (Fig. 3 and table S1). Under a more
conservative threshold, only three candidate edges were detected
with moderate to strong support, including the unnamed sister
clade of Otidae (pp ~ 38%), Columbea (pp ~ 39%), and Coraciimor-
phae (pp ~ 98%) (Fig. 1). Notably, the diverse clade Coraciimorphae
was the only group for which molecular model shifts were detected
across all nuclear genetic data types. Overall, metabolic parameter
estimates were consistent with the hypothesis that allometric shifts
in avian metabolism are associated with molecular model shifts near
the K-Pg boundary.

DISCUSSION

Unraveling interactions among significant events in Earths history
and macroevolutionary patterns is a fundamentally important yet
persistently challenging goal in evolutionary biology. Here, we first
investigated how the adaptive radiation of birds near the K-Pg bound-
ary is linked to patterns of molecular evolution. We show that tempo-
ral proximity to the K-Pg boundary increases the probability of
molecular model shifts (Fig. 1 and fig. S1, A to D), linking a major
mass extinction to macroevolutionary changes in the mode of avian
genome evolution. By anchoring a series of phylogenetic comparative
models with shifts in nucleotide composition, we then find evidence
that shifts in genome evolution were likely concurrent with shifts in
the evolutionary optima 6(t) of important avian life-history traits
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Variable importance

Shifts in optima (8) associated with molecular model shifts
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Fig. 2. Life-history traits associated with inferred molecular model shifts. (Left) Permutation-based variable importance for life-history traits (40, 59). With a random
forest classifier, we identified variation in avian developmental mode [ChickPC1 in (47)] and adult body mass (a proxy of N¢) as closely associated with taxon partitions
recognized by Janus in an analysis of exon data (Materials and Methods). (Right) Estimates of trait optima 6(t) constrained to molecular model shift points from nuclear
genetic data (OUM model, 100 parametric bootstraps; colors and labels match; Fig. 1). Background distributions (light gray) indicate simulated trait values at the present
(e.g., expected values under the fitted model; diagnostic of model adequacy). Vertical bars (right) mark phylogenetic groups within Neoaves temporally associated with the
K-Pg extinction (72, 37, 39). Molecular model shifts are generally associated with shifts toward increased altriciality or decreased adult body mass (also see figs. S5 and S6).

(Fig. 2 and fig. $4, A and B), as well as shifts in metabolic allometric
slope Pmass and intercept f (Fig. 3). Broadly, our estimates of model
shifts in genomic sequences coincided with shifts toward increased
altriciality or smaller adult body mass, consistent with the hypothesis
of a K-Pg-associated Lilliput effect [e.g., (4, 8, 11, 12)].

Our examination of metabolic allometry provides insights into
the consequences of size evolution. Transitions toward smaller sizes
are correlated with weaker scaling relationships between metabolic

Berv et al,, Sci. Adv. 10, eadp0114 (2024) 31 July 2024

rate and body mass [e.g., along the Neoaves-Passerea topology; Fig. 3
and fig. S10; (11)]. This pattern implies that the energetic costs of
evolutionary increases in size are reduced in clades with a smaller
average body mass. In the aftermath of the K-Pg extinction, in which
networks of ecological competition were reset, the survivorship of
clades with smaller body sizes—and weaker associations between
metabolic rate and body mass—may therefore have facilitated the
evolution of variable physiological strategies in the early Cenozoic
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Fig. 3. Inferred molecular model shifts are associated with a range of avian metabolic allometries. We analyzed metabolic data under a Bayesian framework to
generate posterior estimates of intercept (Bo) and slope (Bmass) coefficients from an evolutionary allometric regression model. Here, we depict the posterior estimates for
slope and intercept across a fixed allometric shift model recapitulating molecular model regimes across all data types (single branch internodes reflecting Passerea and
Notopalaeognathae not shown; see table S1 and fig. S10). Modal parameter estimates are indicated with white dots. Horizontal dashed lines indicate the prior mean;
dotted lines indicate the range of modal parameter estimates. On the right axis, we show 95% (for slope) and 50% (for intercept) prior density intervals. Our results show
that a shift toward a lower slope and higher intercept characterizes lineages originating near the end-Cretaceous transition (e.g., Passerea).

[e.g., (46, 47)]. This deduction is consistent with theoretical and em-
pirical advances that predict that transitions toward harsher environ-
ments with increased extrinsic mortality drive the evolution of lower
slope values in metabolic scaling relationships (41). These phenom-
ena are associated with earlier maturation and faster growth (41),
aligning with our inference of increased altriciality associated with
the K-Pg extinction [e.g., (40, 48)].

Recognizing early bursts

Lineages can enter novel adaptive zones during diversification if eco-
logical, geographic, or phenotypic opportunities arise [e.g., (49, 50)].
The aftermath of mass extinctions, especially those of short duration,
may present all three classes of opportunities, resulting in recovery
faunas that experience “early bursts” of lineage and character diversi-
fication (51, 52). If diversification becomes constrained as niches fill

Berv et al,, Sci. Adv. 10, eadp0114 (2024) 31 July 2024

[e.g., (53)], rates of morphological evolution and lineage accumula-
tion should decline, with the fastest rates of change restricted to a
short interval following the mass extinction event (54, 55). Accord-
ingly, we expect initially high rates of evolution to generate outsized
disparity (e.g., trait variance or heterogeneity) early in post-extinction
adaptive radiations.

An exclusive focus on rates of change, however, [e.g., (56)] may
obscure other kinds of early burst patterns [e.g., (57)]. Our approach
diagnoses a “molecular early burst” in which disparate patterns of
nucleotide sequence evolution arose within a relatively short interval
near the K-Pg boundary. Conceptually, this approach is more similar
to paleontological approaches [e.g., (57, 58)] than it is to techniques
that estimate rates of change in quantitative or molecular charac-
ters [e.g., (11, 56)]. While many studies have quantified early bursts
through patterns of morphological evolution or rates of lineage
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diversification, we show that ancient diversification events may im-
part a signature of increased genomic disparity that remains detect-
able in surviving lineages for tens of millions of years. In this context,
the molecular model shifts we infer may represent “genomic fossils”
associated with canalized macroevolutionary regimes.

A novel dimension of avian adaptive radiation

Our inference of numerous model shifts within an ~5 Ma interval of
the K-Pg boundary (Fig. 1) supports an “early burst” mechanism in
which ecological and lineage disparity accumulated rapidly in the
early history of crown birds. Given that the uncertainty in estimated
molecular divergence times typically exceeds 5 Ma (11, 36-39), a
conservative interpretation of available divergence time estimates
does not reject the hypothesis that these events were closely linked
(Fig. 1 and fig. S1).

Consistent with this pattern, models of quantitative trait evolu-
tion estimate short phylogenetic half-lives [(f;, = In(2)/a, e.g., t1/2
body mass ~0.18 (0.17 to 0.52) Ma; Fig. 2]. Such short intervals imply
rapid character change followed by a relatively stationary process [a
median generation length of 3 years (59) suggests a t;, of ~60,000
generations]. This interpretation is consistent with our current un-
derstanding of the avian fossil record, which indicates only limited
crown bird diversification in the Late Cretaceous [e.g., (10, 11, 38)].
Our results, therefore, support the hypothesis that developmental
and life-history traits were canalized early in crown bird evolutionary
history (60), partitioning higher-taxa into distinct types [e.g., (57, 61,
62)]. Considering the association between inferred molecular model
shifts and shifts in the evolutionary optima of life-history traits (e.g.,
fig. S4, A and B), both patterns indicate integrated evolutionary
changes [e.g., (57)] to the post-Cretaceous adaptive landscape and
permanent shifts to new adaptive zones arising in the early Cenozoic
[e.g., (50)].

While many mechanisms link substitution rates to the life-history
spectrum (9), we have less intuition about how the mode of molecu-
lar evolution may relate to life-history variation. One idea proposed
to explain variation in DNA compositional heterogeneity links the
recombination process of GC-biased gene conversion to generation
length, N, and covarying life-history traits [e.g., (21, 22, 30, 63, 64)].
Post-Cretaceous increases in Ne (12, 14) and decreased generation
lengths (11) may, therefore, contribute to the patterns we observe, as
higher N is predicted to increase the efficacy of GC-biased gene con-
version (fig. S8) (21). Further, most inferred substitution model shifts
occur in exon data, a pattern consistent with the hypothesis that tran-
scriptionally active regions with elevated rates of recombination may
be more subject to GC-biased gene conversion. Birds lack the DNA
binding protein PRDMY, which, in mammals, directs recombination
away from transcriptionally active regions (65). Thus, our observa-
tion that coding regions show greater deviations between estimated
equilibrium and empirical base frequencies could be influenced by
model fit related to functional constraints, codon usage bias, recom-
bination, or selection (see supplementary analysis of codon usage;
figs. S2 and S7, A to D).

Notably, our study suggests model heterogeneity as a mechanism
to explain the “data type” effect (12, 36, 66-68), in which phylogenetic
analyses of coding or noncoding sequence data recover conflicting
signals of avian phylogeny. A recent analysis of whole genomes (12)
did not recover several clades on which we detect shifts in base
frequencies (e.g., Columbea and Passerea), suggesting that model
heterogeneity may have important consequences for phylogenetic
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topology inference. We also expect that, in cases where homogeneous
models are used, shifts in substitution parameters could lead to biased
estimates of branch lengths, potentially contributing to older esti-
mates of divergence dates inconsistent with the fossil record [e.g., (10,
11)]. Nevertheless, our results support recent inferences (12, 66, 67)
that noncoding introns or intergenic regions may be preferable for
inferring avian phylogeny because exons exhibit more heterogeneous
evolutionary dynamics.

In conclusion, although high-throughput sequencing has clarified
the evolutionary history of many vertebrate clades, the early diversifi-
cation history of crown birds—a group comprising more than 10,000
extant species—continues to provoke debate. Here, we used nonho-
mogeneous models of sequence evolution to investigate how the diver-
sification of modern birds was marked by shifts across many axes of
natural variation. Our results suggest that directional selection on key
parameters across the end-Cretaceous mass extinction event—favor-
ing traits such as increased altriciality or reduced adult body mass—
may have shifted patterns of genome evolution through their linkages
with population-level and demographic processes. Overall, our find-
ings support the hypothesis that one of the most significant events in
the history of life on Earth-the Chicxulub bolide impact and its associ-
ated mass extinction at the end of the Cretaceous Period-catalyzed an
integrated evolutionary response within surviving lineages, ultimately
giving rise to the spectacular diversity of living birds.

MATERIALS AND METHODS
Nuclear sequence data collection and processing
We reassembled an existing short-read sequence targeting 394 gene
regions across 198 bird species and two crocodilian outgroups from
Prum et al. (37). These data were initially collected using target-
capture of anchored hybrid enrichment loci (69), a set of single-copy
regions semiconserved across vertebrates. We analyzed the existing
raw sequencing reads with a common pipeline designed to extract
phased exons. First, we removed low-quality regions and adaptor
sequences using Trimmomatic v0.36 (70) and merged overlapping
reads using FLASH v1.2.11 (71). We assembled reads for each sam-
ple using Trinity v2.11 (72). We then annotated assemblies by com-
paring assembled contigs to target loci using blat v36x2 (73). To
ensure that we annotated orthologs, we retained only contigs with a
reciprocal best-hit match to a target locus. To identify intron-exon
boundaries, we used exonerate 2.4.0 to compare the nucleotide se-
quences of annotated loci to the protein sequences for the exons of
each locus based on protein-coding data and annotations from the
zebra finch (Taeniopygia guttata, genome assembly bTaeGutl_v1).
This approach assumes that intron-exon boundaries are conserved
across the avian radiation. Occasionally, mapping of the exon se-
quence to the nucleotide sequence was discontinuous, suggesting
the presence of an intervening noncoding region. In such cases, we
retained the highest-scoring contiguous stretch of sequence only.
To identify variable sites, we mapped cleaned reads back to an-
notated contigs using bwa v0.7.17-r1188 (74) and used GATK v4.1.8
to mark duplicates (75). We called variants on this alignment using
GATK HaplotypeCaller and filtered it to only retain variants with
coverage >20x and quality >20. Using this high-quality variant set,
we recalibrated the base quality scores in the alignment files using
GATK. We then called the variants and phased them using Haplot-
ypeCaller. Last, we exported diplotypes and phased haplotypes per
intron and exon in a coding region, masking any sites with coverage
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<2x. Ultimately, we captured 453 exons, 573 introns, and 213 UTRs.
Before alignment, we applied a series of sequential filtering steps to
remove the remaining short or low-quality fragments. We removed
(i) leading and trailing N characters from each fragment and the re-
sulting sequences that were zero length (see locus-filtering.R script),
(ii) fragments with >40% N characters, (iii) fragments that were <50—
base pair (bp) long, and (iv) whole loci that lacked coverage for at
least 10% of the taxa in the dataset.

We aligned phased exon sequences with the Multiple Alignment
of Coding Sequences (MACSE) ALigning, Filtering, and eXporting
pipeline (ALFIX) (76). MACSE-ALFIX chains together several pro-
grams that perform reading frame aware alignment with MACSE and
subsequent alignment filtering with HmmCleaner (77) to remove
nonhomologous sequence fragments. We aligned phased noncoding
sequences with Fast Statistical Alignment (FSA) (78). We calculated
alignment statistics using AMAS (79). We used trimAl (80) to evalu-
ate the effect of 5 to 30% alignment column occupancy filtering on
alignment length and the loss of parsimony informative sites. We ulti-
mately filtered our noncoding alignments to require a minimum col-
umn occupancy of 5% (i.e., 95% of the sequences in an alignment are
allowed to contain a gap for a given site). This procedure, which we
believe is conservative, increased the signal-to-noise ratio in these
data by removing stretches of unaligned nucleotides (characteristic of
FSA alignments) while retaining most of the informative data (81,
82). Unfiltered alignments and the final filtered dataset are provided
as Supplementary Data.

Mitochondrial sequence data collection and processing

We ran Mitofinder 1.4 (83) to identify the mitochondrial regions from
the previously assembled contigs. For reference mitogenomes, we
used complete mitogenomes available in GenBank (table S3). When
available, we used a reference from the same order [although for Pas-
seriformes, we used different references for oscines (Passeri) and sub-
oscines (Tyranni)]; in a few cases, it was necessary to use a reference
from a closely related order (table S3). We then extracted the 13
protein-coding genes and 2 ribosomal RNAs (rRNAs) from the mito-
finder output (final_genes.fasta file). In some cases, limited mito-
chondrial data were recovered (table S3). In those cases, we searched
GenBank for the same or a phylogenetically equivalent species that
could be substituted. When no suitable alternative was available from
GenBank, we also used mitogenomes assembled from the raw data
collected as part of other studies (84-88). To increase data coverage in
five cases, we generated chimeric sequences using available GenBank
data from multiple individuals of the same species (table S3).

Once a set of sequences had been assembled, we performed an
initial analysis using these data, combined with a larger set of mitoge-
nomes to ensure sequences were correctly identified (placed phylo-
genetically with expected relatives) and did not exhibit unusually
long-branch lengths, which might suggest assembly errors. To do
this, we ran an initial alignment using MAFFT 7.294b (89) using de-
fault parameters. This alignment was then analyzed in IQ-TREE
2.1.2 (90) using the GTR + I + G4 substitution model with 1000 ul-
trafast bootstrap replicates (91). Last, we regenerated alignments for
the present study using the same procedure described above for nu-
clear coding and noncoding data.

Phylogenetic frameworks
To avoid issues of circularity related to inferring molecular patterns
and phylogenetic topology from the same molecular dataset and to
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control for stochastic resolutions of Neoaves [e.g., (92)], our focal
analyses use the MRL3 supertree [“MRL_3backbone”] (39) as a topo-
logical constraint. This topology balances the signal of phylogeny
among several recently published avian genomics datasets and re-
solves the seven major higher-level clades identified by Reddy et al.
(66), as well as the most robustly supported intraordinal clades (12,
37). Itis also in line with a growing number of studies that have sug-
gested that early diversification events within the avian crown group
were associated with the K-Pg boundary (12, 36-39). As inference of
avian phylogeny is an active area of research (67), we explored how
patterns of gene-tree discordance [e.g., (36)] may confound infer-
ence of molecular model shifts or potential statistical associations
with the K-Pg boundary (Supplementary text and fig. S1B).

Substitution model shift analysis with Janus takes a rooted input
phylogram with branch lengths in substitution units [details below;
(30)]. To generate starting trees for Janus, we used our reprocessed
datasets and estimated maximum likelihood branch lengths with IQ-
TREE v 2.1.1 (90, 93). For each data type, we applied an optimal parti-
tion model selected with the MFP+MERGE approach in IQ-TREE
(94, 95), with each locus defined as the unit for partitioning. We esti-
mated molecular branch lengths separately for exons, introns, UTRs,
and mtDNA, but kept the topology fixed across datasets.

The Janus algorithm fits models that describe patterns of substitu-
tions irrespective of the absolute timing of divergence events (below).
Therefore, temporal patterns must be evaluated on a reference time-
line. To interpret our model-shift results on a time-calibrated phylog-
eny, we used congruification (96) with treePL (97) to apply the
divergence date estimates from the reduced taxon set analysis pre-
sented in (39) to the phylogenetic branch length estimates derived
from the present study. The well-constrained divergence estimates
from (39) are broadly congruent with those reported across several
phylogenomic analyses of independent datasets (12, 36-38). These
estimates reject the hypothesis that many modern avian clades origi-
nated in the Cretaceous and center the diversification of most super-
ordinal variation within ~+5 Ma of the K-Pg boundary (Fig. 1).
Therefore, our interpretations are conditional on this general diver-
gence time scenario, an area of active research [e.g., (10, 11, 38)] (see
Discussion).

Fitting time-heterogeneous models to avian
phylogenomic data
For nuclear genomic data, we considered the signal across three con-
catenated datasets (exons, introns, and UTRs). For mitochondrial
data, we considered three alternative datasets (all data combined,
protein-coding genes combined, and rRNAs combined). Our focus
on data type mirrors recent developments implicating this axis of ge-
nomic variation as a primary source of phylogenetic incongruence
(12, 36, 66, 67). We fit time-heterogenous substitution models to
each dataset using Janus (commit 8952e31d, https://git.sr.ht/~hms/
janus). Although Janus can search for shifts in base frequencies as
well as the substitution rate matrix, initial explorations of our data
indicated that shifts in the substitution rate matrix were negligible,
suggesting that the primary axes of model heterogeneity in these data
are related to base frequencies. Enabling a free rate matrix also dra-
matically increased the number of parameters and computing time.
As a result, we only considered shifts in base frequencies for subse-
quent analyses.

We set each search to accommodate rate heterogeneity across
sites according to a discretized gamma distribution (-g) and to assess
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model weights for the existence (-u) and location (-1) of model shifts.
Simulations indicate that this combination of parameter options has
high power (e.g., a negligible false-positive rate) to detect the phylo-
genetic position of molecular model shifts [details below; (30)]. Con-
sidering our genetic dataset’s taxonomic sample, we set the minimum
clade size to >| = 4 (-m 4). Thus, the set of possible shift configura-
tions reflects 101 internal nodes spanning ~77 Ma [square markers in
Fig. 1; e.g., with postorder traversal, any node (excluding the root)
with >| = 4 descendant edges].

Implementation of Janus and the greedy search algorithm
Janus has been implemented in both Golang and C, and the source
code is available at https://git.sr.ht/~hms/janus and https://git.
srht/~hms/hringhorni. The algorithm to detect shifts in stationary
frequencies follows a stepwise procedure similar to Alfaro et al. (98)
and Mitov et al. (99) and requires a rooted tree and matching align-
ment as input: 1) estimate a maximum likelihood root composition;
2) traverse the tree in postorder fashion (i.e., from the tips to the root)
and estimate maximum likelihood compositions for subtrees with a
minimum number of tips specified by the user; 3) take the subtree
composition and the root composition for the remainder of the tree
and estimate a likelihood and then a Bayesian Information Criterion
(BIC) score (100); 4) order these compositional shift models for every
eligible subtree by BIC; 5) initiate the final model configuration with
the root model; then, in a greedy manner, add a shift to the root mod-
el based on the previously ordered subtrees, estimate a new BIC, and
add the submodel to the set of models if the new BIC is lower; and 6)
discard a submodel if the updated BIC score is increased. Then, using
two approaches, we assess the relative support for shifts both with re-
spect to a shifts existence and its location. First, we assess shift exis-
tence (-u flag) by evaluating BIC weights for alternative models that
include or exclude each proposed shift. Next, we assess the location of
proposed shifts (-1 flag) by estimating the BIC weights of a proposed
shift at the focal node and its two daughters.

Statistical performance of Janus

Other work by the authors showcases a range of simulated conditions
under which we evaluate Janus’s performance (30). We previously ob-
served that Janus is conservative, with negligible false-positive rates
after removing poorly supported shifts under the BIC (i.e., with the
“-u” and “-I” flags). When configured to estimate uncertainty, Janus is
also robust to phylogenetic inference error (30). Simulations in the
noted companion paper find a slightly higher rate of false negatives
(0.03 to 0.05) for datasets up to 1000 bp and 250 tips (30). Thus, previ-
ous simulations showed that the false negative rate is low for shifts
positioned randomly across simulated trees and datasets (30).

While our previous study showed acceptable false-positive and
-negative rates for random trees simulated under a constant birth-
death process (30), here, we evaluate performance with respect to the
avian phylogeny. Specifically, the molecular phylogeny of Aves is char-
acterized by an overall rapid and early pattern of speciation, in which
many super-ordinal clades simultaneously experience early bursts of
lineage accumulation (12, 36-38). Our simulations are designed to
assess how an extinction-driven bottleneck, followed by rapid clado-
genesis, might affect the inference of molecular model shifts with Ja-
nus. To accomplish this, we developed a comprehensive approach
starting with the phylogenetic frameworks used in this study: phylo-
grams that reflect the variation in relative and total branch lengths
across exon, intron, UTR, and mtDNA datasets. A complete pipeline
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(in R) for reproducing similar simulations with arbitrary topologies is
provided as supplementary material, which will be helpful for other
researchers undertaking similar studies. We suggest that users of Ja-
nus may use this pipeline to evaluate the performance of the method
for their data.

Considering the focal phylograms, we first developed several
strategies for sampling nodes to simulate nonhomogeneous substitu-
tion models. We assess three general scenarios: 1) no shifts, 2) phylo-
genetically independent shifts, and 3) nested shifts. The latter two
scenarios are simulated according to five main parameters in a func-
tion we provide called annotate_branches (in shift_model_sims.R): a
minimum clade size, a maximum clade size, the total number of
shifts, a buffer constraint that maintains a minimum phylogenetic
distance between selected nodes, and whether shifts should be nested
or independent. For nested shifts (nested = T), the process starts
with randomly sampling an initial node from a pool defined by min-
imum clade size. Subsequent samples are made from a pool of this
nodes descendants and ancestors. Each sampled node must be a
specified minimum number of steps away from any previously sam-
pled node in terms of the number of branch paths (“buffer”). If no
suitable nodes are found, the process restarts with a new initial node,
repeating until the requirements are satisfied. For independent shifts
(nested = F), once an initial node is selected, its lineage (descendants
and ancestors) is excluded from future selections. This is repeated for
a specified number of shifts, generating phylogenetically indepen-
dent configurations.

The pipeline (for nested or independent shifts) starts by sampling
eligible nodes based on a specified minimum clade size. In our case,
we specify a minimum clade size of four (as in analyses of empirical
data) and a maximum clade size set to ~3/4 of the total number of tips
(~150). We also set a buffer of two. For nested shifts, this buffer setting
means that sampled nodes are separated by at least one intermediate
node. For independent shifts, sister clades (separated by two paths) or
those more distantly related can be sampled. This set of parameters is
very conservative in that it enables the pipeline to sample from a wide
array of potential model parameters and shift configurations. How-
ever, our pipeline is flexible and allows a user to easily specify a more
restrictive sample space if desired.

We evaluated scenarios of up to four phylogenetically indepen-
dent shifts (i.e., up to five models, including the root model). In the
case of nested shifts, we evaluated cases of two nested shifts (i.e.,
three models, including the root model). After our pipeline samples
a configuration of shift nodes, they are annotated with strings of
user-specified model definitions. We defined HKY models with the
transition: transversion rate set to 2:1, base frequencies randomly
sampled from a uniform Dirichlet distribution for each model re-
gime (and starting root condition), and uniform site-rate patterns.
For each data type (exon, intron, UTR, mtDNA) and configuration
scenario (none, nested, or independent), we repeated the entire node
selection process 100 times.

The outputs from our pipeline are annotated Newick strings that
describe evolutionary patterns of nonhomogeneous model parame-
ters. These strings are formatted to be parsed by the AliSim program
(101) in 1Q-Tree 2.2.2.6 (90) to generate simulated sequence align-
ments of a specified length. We used this approach to simulate align-
ments of 2 to 50 kbp (in the case of independent shifts or no shifts)
and 2 to 100 kbp (in the case of nested shifts). In total, we generated
9200 simulated alignments to assess the performance of our approach
with respect to variation in the shape of the Avian phylogeny induced
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by analyses of different genetic data types and shift configuration sce-
narios. We analyzed these simulated sequence alignments with Janus,
as specified for our primary analyses; however, we omitted the -u and
-1 steps (for post-analysis uncertainty estimation) as well as the esti-
mation of site-rate heterogeneity (-g, which we do not simulate) to
speed up computation. These analyses required ~2 months of time
distributed across ~450 AMD Threadripper CPU threads.

We estimated the average false-positive (e.g., recovery of a non-
simulated shift) and false-negative (e.g., failure to recover a simulated
shift) rates for each data type (exon, intron, UTR, mtDNA) and con-
figuration scenario. Then, we computed one-sample ¢ and Z tests and
P values [adjusted to control for the false discovery rate due to multi-
ple tests (102)] reflecting the null hypothesis that a given average
false-positive or -negative rate is not greater than zero for a given
alignment length, data type, and shift configuration (nested or inde-
pendent). These simulations encompass a wide array of model shift
scenarios and are, therefore, intended to provide useful baseline ex-
pectations of our model and algorithm performance. Our results are
reported as Supplementary text (fig. S9, A to F).

Assessing the coincidence of substitution model shifts with
the K-Pg boundary

Although we detected that only a small proportion of assessed nodes
exhibit substitution model shifts (~10%), most of these are detected
on nodes for which the K-Pg boundary is included within recently
estimated ranges of divergence date uncertainty (36-38). In the pres-
ent case, this is almost exclusively <5 to 10 Ma relative to the K-Pg
boundary in the MRL3 supertree (Fig. 1 and fig. S1, A and B). To as-
sess this hypothesis quantitatively, we modeled the Bernoulli proba-
bility of a model shift as a function of time distance to the K-Pg
boundary, considering potential confounding effects of phylogenetic
nonindependence, tree shape, and phylogenomic discordance.

We coded a binary dependent variable representing the presence
or absence of a novel macroevolutionary regime identified by mo-
lecular model shifts and assigned 1/0 to each node using the proce-
dure described below. This strategy is conservative, as multiple shifts
in distinct genetic data types can occur along a single edge (e.g., our
approach models the minimum number of implied macroevolution-
ary regimes). We then coded the time distance to the boundary as an
independent variable, defined as the stem age for a given focal node
minus 66 Ma (testing indicated a negligible impact of using stem or
crown ages). These values were log-transformed after taking their ab-
solute values, which defines our investigation in terms of proportion-
al proximity to the K-Pg boundary. We fit models of this type with
the maximum likelihood “phyloglm” approach in the phylolm R
package (103-105) and compared models using the helper functions
available at https://github.com/mrhelmus/phylogeny_manipulation.
We additionally estimated 1000 bootstrap replicates for each data
type to assess the uncertainty around model parameters.

Typically, phylogenetic regressions are applied to datasets associ-
ated with contemporary tips on a phylogeny. In our case, we assessed
the probability of regime shifts tagged to internal nodes on the phy-
logeny (e.g., the presence or absence of a model shift in any data type).
Because phylogenetic regression techniques use a variance-covariance
(VCV) matrix describing shared path lengths proportional to the
phylogenetic covariances of trait values (106), these methods are valid
for phylogenies with noncontemporaneous tips. We apply this logic
and assign molecular model shifts as binary states characterizing
negligible-length terminals grafted to each internal node. With this
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“trick,” we can extend phylogenetic regression techniques to evaluate
properties or states measured for internal nodes (107). Our overall
regression strategy, therefore, relies on a modified phylogeny that in-
cludes 197 noncontemporaneous, negligible-length terminals grafted
to each internal node (Supplementary R code).

Last, we investigated whether or not patterns of phylogenomic
conflict hypothesized to be associated with the K-Pg boundary [e.g.,
(36, 108)] could confound statistical associations between the prob-
ability of a novel molecular model regime and the time distance to
the K-Pg boundary. This consideration serves two purposes: 1) We
sought to understand how the detection of a molecular model shift
may be related to potentially covarying patterns of phylogenomic
discordance, which we also expect to be somewhat correlated with
proximity to the K-Pg boundary (108), and 2) we sought to account
for the fact that branch lengths estimated from concatenated datasets
can contain artifacts derived from model-misspecification related to
gene-tree/species tree discordance [e.g., (109)]. To address these pos-
sibilities, we quantified patterns of phylogenomic discordance across
each data type and included a metric of discordance as an additional
covariate in logistic regression models. We processed each gene tree
(910 separate loci) to collapse nodes with less than 95% ultrafast-
bootstrap support (110). We then coded each node’s percentage of
discordant gene trees relative to the fixed MRL3 topology for each
data type (Supplementary R Code). We applied a variance-stabilizing
transformation by taking the arcsine-square root of the percentage
discordance values; this transformation recognizes the biological
limits on the concept of discordance while spreading out the weight
of extreme values. Last, we excluded extant terminals when running
logistic regression models because discordance cannot be measured
for these edges. We then compared the results from alternative mod-
els considering different levels of phylogenomic discordance as a co-
variate (fig. S1, A to D). We depict alternative analyses considering
low (mean-1 SD), mean, and high (mean + 1 SD) levels of dis-
cordance.

Functional dimensions of sequence variation

Estimates of the optimal configuration of molecular model shifts sug-
gested equilibrium base frequencies differed substantially across the
identified regimes in each data type (Fig. 1 and fig. S7, A to D). Al-
though our dataset was not originally conceived to examine function-
al characteristics of the genome (37), our new assembly and annotation
into distinct data types (exons, introns, UTRs, and mtDNAs) presented
us with the opportunity to perform a preliminary assessment of func-
tional variation. As noted in Smith ef al. (30), compositional shifts
may result from nondemographic processes such as selection on co-
don usage for translation accuracy or even gene expression [e.g., (111,
112)]. Therefore, we estimated nucleotide-based metrics to quantify
the degree of codon usage bias. Further, as we generated phased hap-
lotype data, we explored whether patterns of allelic variation in this
dataset might be related to compositional shifts at the macroevolu-
tionary scale.

For nuclear coding sequences, we evaluated three metrics of codon
usage bias: synonymous codon usage order (SCUO) (113), effective
number of codons (N.) (114), and a modified version of effective
number of codons, or N, (115). SCUO measures the nonrandomness
in synonymous codon usage and ranges from 0 (totally random) to 1
(totally biased) and is derived from Shannon information theory
(116). N, measures the effective number of codons and ranges from 20
(one codon per AA) to 61 (alternative synonymous codons equally
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likely). N', additionally accounts for variation in background nucleo-
tide composition. We, therefore, expected N', to be the least sensitive
to variation in patterns of synonymous codon usage concerning bi-
partitions identified partly on the basis of compositional variation.
We also assessed nucleotide diversity 7, as approximated by the sum of
the branch lengths separating phased alleles. As with life-history
traits, we log-transformed metrics of codon bias before comparative
phylogenetic analysis. We estimated whether or not variation in these
statistics was different across taxon partitions identified by Janus, us-
ing phylogenetic analysis of variance (ANOVA) assuming a Brownian
model of trait evolution (117, 118), with 10,000 simulations (119) to
assess significance (fig. S2). Lastly, we checked to see how GC content
variation at individual codon positions may contribute to macroevo-
lutionary regimes identified by Janus in the analysis of the whole exon
dataset. Taking a similar approach as above, we estimated whether or
not variation in GC content was different across taxon partitions
identified by Janus using phylogenetic ANOVA assuming a Brownian
model of trait evolution (117, 118), with 10,000 simulations (119) to
assess significance. These supporting analyses are reported in the Sup-
plementary text.

Life-history and metabolism datasets

To assess how the configuration of molecular model shifts detected
with Janus may be related to life-history variation, we considered
how life history varies across numerous dimensions [e.g., (11, 120)].
We assembled two life-history datasets to minimize the amount of
missing data in each downstream analysis. The first dataset focused
on quantitative life-history traits and was compiled from Bird et al.
(59). These data include body mass; modeled generation length; lati-
tude centroid; mean clutch size; annual adult survival; age at first
breeding; maximum longevity; and categorically coded variables for
diet, habitat, diurnality, and migratory status. We also included a
metric of avian developmental mode (“ChickPC1”) that describes
variation in hatchling state along an altricial to precocial spectrum
(40). These data reflect exact species matches relative to those in the
reassembled nuclear genetic dataset.

The second dataset reflects energetic constraints on life-history
variation and includes basal metabolic rates (BMR) expressed in watts
and associated body masses. Metabolic rates broadly scale as a ~3/4
power law function of organism mass and reflect rates of energy flow
in and through organisms (41, 121-124). Uyeda et al. (29) previously
considered the hypothesis that allometric scaling parameters relating
BMR and body mass have evolved across the vertebrate tree of life. We
apply the same general approach to our sample of avian metabolic
diversity (below). We first collected available BMR records from the
AnAge senescence database Build 14 (125). For most of the exact spe-
cies in the present dataset (and most avian species in general), conspe-
cific BMR data have not been measured. Therefore, we conducted an
extensive literature search for each avian family in the molecular data-
set and filled in many missing entries by identifying phylogenetically
equivalent matches (e.g., at the genus level) for which BMR and mass
data were available.

Several downstream analyses required complete datasets, so we
used two methods to generate unbiased estimates of missing values
under a multivariate Brownian motion process (mvBM). In the case
of the larger eight-dimensional breeding ecology dataset, we used
Rphylopars (126) to fit a VCV matrix and to estimate values for miss-
ing entries. In the case of the two-dimensional metabolic scaling data-
set, we used mvMORPH (127) to compare the fit of alternative
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multi-regime, mvBM models based on the model shift points identi-
fied by Janus. In the latter case, the values of the imputed data were
virtually identical across alternative models (e.g., R* > 0.98), so we
selected the model with the lowest Akaike information criterion
(AIC) score to use for downstream analyses.

Analysis of life-history data

Using multiple approaches, we investigated the degree to which pat-
terns of life-history variation reflect distinct evolutionary regimes
that coincide with molecular model shifts. Several methods have
been developed to automatically generate evolutionary hypotheses
by identifying an optimized configuration of evolutionary models
describing variation in the process of trait evolution [e.g., (99, 128)],
but few are expressly multivariate [e.g., (28, 129)]. We investigated
model heterogeneity across our high-dimensional life-history datas-
et with the bootstrapping approach implemented in the software
L1lou (28). L1ou uses a phylogenetic lasso method to identify points
on a phylogeny where a trait’s optimum value 6(¢) has shifted, assum-
ing o (the “pull” toward the optimum or adaptation rate) and o (the
Brownian diffusion rate parameter) are fixed across the tree. The
L1ou approach is extended to multiple traits by assuming that traits
shift their optimum simultaneously and in the same location on the
tree (28).

Conveniently, £1ou allows the researcher to specify a set of candi-
date edges for the lasso approach to consider for shifts in (). This
attribute allows us to articulate the specific models we want to com-
pare. We ran {1ou with a constrained set of candidate edges reflecting
the 12 candidate shift edges identified across analyses of different mo-
lecular data types (Fig. 1 and table S1). Thus, for a given £1ou analysis
of this type, {1ou can infer 0 to 12 shifts in 6(f). We repeated this pro-
cedure with the AICc and pBIC information criteria, as recommend-
ed by Khabbazian et al. (28), and used 100 bootstrap replicates to
assess the positive detection rate for each candidate edge. In these
analyses, our intention is not to identify every case where a life-history
shift may have occurred across avian phylogeny; our goal is to assess
how much statistical support exists for shifts in life-history trait opti-
ma that coincide with shifts identified in our analysis of molecular
data. We validated these results by comparing them to a null distribu-
tion of shift detections reflecting the false-positive rate under multi-
variate Brownian motion [e.g., without shifts in 6(f)]. Using the
eight-dimensional VCV matrix estimated by RPhylopars (126), we
simulated 500 null datasets using the function simRatematrix in the R
package ratematrix (130). We then analyzed each simulated dataset
with £1ou as previously specified. For each candidate edge, we used
Fisher’s exact test (131) to assess whether the frequency of positive
shift detections in the empirical dataset was significantly greater (one-
tailed P value = 0.05) than the null false-positive rate observed across
simulated datasets. Tables of P values and odds ratios are reported as
Supplementary material (fig. S4A and table S2). Last, we investigated
which life-history traits were most closely associated with molecular
model shifts using a machine-learning approach implemented in the
tidymodels framework (below) (132).

We performed additional, unconstrained analyses with £lou to
evaluate how well the £1ou framework detected shifts in 6(¢) that cor-
respond with those identified by Janus. Taking our eight-dimensional
dataset, we ran £1ou under default search parameters with three avail-
able information criteria (AICc, BIC, and pBIC). These additional
tests were set to consider the same candidate nodes in analyses of mo-
lecular data (i.e., all edges with >4 descendant lineages). We visually
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assessed the temporal sequence of resultant £1ou shifts with two ap-
proaches. First, we visualized the relative density of {1ou shifts through
time, using the generic Kernel density estimator built into R (133), to
examine whether {1ou detected any shifts far from the K-Pg bound-
ary. Next, we wrote new R functions to identify which set of reference
shifts (identified by £1ou) was closest to a given target shift (identified
by Janus) and to return their path distance (in nodes). Taking these
path distances as discrete data for each target shift (i.e., number of
nodes), we visualized density plots using the estimator for discrete
data in the R package kdeld (134). These supporting analyses are re-
ported as Supplementary text (fig. S4B).

Assessing feature importance with a random forest classifier
To identify which, if any, life-history traits may be good predictors of
molecular model shifts, we used an approach from the field of super-
vised machine learning known as random forests (135, 136). The ran-
dom forests approach generates a classification model based on a
population of decision trees (137) and can naturally assess the relative
importance of different features (138). Here, we focus on the predic-
tion of taxon partitions (groups of terminals) identified in analyses of
exon data, although alternative analyses of taxon partitions identified
in other data types generated similar results (not shown). Although it
may be possible to directly incorporate aspects of phylogenetic dis-
tance into these analyses (138, 139), nonparametric machine learning
methods like random forests make no assumptions about the distri-
bution of the underlying data and can handle skewed or multimodal
data as well as categorical data; thus, accounting for phylogenetic
nonindependence in the data is not expected in the same way as when
conducting, for example, a generalized least squares (GLS) analysis.
Nonetheless, we checked for the impact of phylogenetic signal by run-
ning a parallel analysis of phylogenetic residuals, assuming a Brown-
ian motion model (Y~1); ultimately, this did not affect our ranking of
feature importance and is not discussed further.

First, we split our life-history data into training and test datasets
with a 70/30 split, accounting for stratified sampling. We then used
tidymodels (132) to build a recipe for data preprocessing, specifying
several steps: 1) removing any variables correlated with others at a
Pearson correlation coefficient > 0.95, 2) normalizing (centering and
scaling), 3) creating dummy variables for categorical variables with
one hot encoding, and 4) generating synthetic positive instances us-
ing ADASYN algorithm (140) to increase the sample size of small
groups to at least 50% of the size of the largest group (setting the
number of neighbors to 2).

Next, we specified the structure of the model, including hyperpa-
rameters “mtry” (number of features to sample, set to tune automati-
cally) and “min_n” (minimum number of data points in a node to
allow further splitting, set to tune automatically). We set the number
of trees in a forest to 1000 and specified the “randomForest” engine
(141). To tune the hyperparameters, we used k-fold cross-validation
with 10 folds repeated 10 times. We selected the best model from the
hyperparameter tuning based on the AUC using the estimator from
Hand and Till (142) and fit it to the training set. The AUC can be
interpreted as the probability that a randomly chosen positive ex-
ample is ranked above a randomly chosen negative example and
ranges from 0 to 1, with values closer to 1 reflecting better model
performance. Last, we estimated permutation-based variable impor-
tance (143) using the VIP R package (144) with 500 simulations
(Fig. 2, left). See supplementary R script RandomForest_var_imp.R
for details.
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To further investigate these results, we fit fixed shift OUM [shift-
ing 6(t), with fixed o and o4 equivalent to that used by £1ou] models
using OUwie (27) to the two most important features identified by
the random forest classifier. This model is a much better fit to the data
than a single-peak OU model (e.g., AAIC s = 67.5). We used 100
parametric bootstrap replicates to estimate model parameter uncer-
tainty (Fig. 2, right). We also simulated 1000 datasets under each fit-
ted OUM model to visualize diagnostic distributions of expected
trait values at the present (e.g., tip data simulated under the fitted
model; Fig. 2, right). These models, therefore, indicate the expected
shifts in trait optima 6(f) that coincide with bipartitions identified in
the analyses of molecular data.

Analysis of metabolic rate data

To assess whether molecular model shifts may be associated with
shifts in patterns of metabolic scaling, we assessed support for coinci-
dent shifts in patterns of metabolic allometry. We used the Bayesian
phylogenetic framework implemented in the R package bayou 2.0 (29,
128). bayou applies a reversible jump Markov chain Monte Carlo ap-
proach to detect the magnitude, number, and phylogenetic position of
model shifts. Using bayou, we implemented an allometric regression
model that relates BMR and body mass logarithmically and for which
slope Pmass and intercept Py evolve under a multi-regime OU process.
Here, model shifts reflect shifts in the optimum of the evolutionary
allometry between BMR and body mass.

Using the rjMCMC approach in bayou, we estimated the posteri-
or probability of an allometric shift occurring along the 12 candidate
edges identified by Janus. Under a Poisson prior, we specified the
mean number of shifts across the phylogeny reflecting 2% of the total
edges in the tree (A = 8) with equal probability. In this context, max-
imal posterior probability indicates an increase over the prior prob-
ability by ~50%. We ran each analysis across three replicate chains for
10 million iterations, sampling every 1000 iterations. Given that we
did not have consistent estimates of measurement error, we followed
the approach of Uyeda et al. (29) and explored alternative analyses
assuming an SE of 0.1 or 0.01 for BMR and recovered a negligible
impact (not shown).

Our priors for o, o2 Bmass> Po reflect half-Cauchy or Gaussian
expectations:

o ~ half — Cauchy (scale = 0.1); myr™

62 ~ half — Cauchy (scale = 0.1); M
myr
p N ( —076—01)~M
mass p - o/ _ . > ln(body mass g)

In(B,) ~ N (p = —3.5,0 = 1.75); In(BMR watts)

Replicate analyses with rjMCMC identified numerous shifts in
the slope and intercept at a posterior probability cutoff of 0.1 after
discarding the first 40% of samples as burn-in. Following rjMCMC
runs, we reestimated model parameters on a fixed configuration
model reflecting all molecular shifts identified with Janus (Fig. 3). We
assessed model convergence by examining Gelman and Rubins R
statistic (145, 146) and effective sample sizes across chains and pa-
rameters (see table S1 and the BMR directory on the author’s GitHub
repository; https://github.com/jakeberv/avian_molecular_shifts/
tree/main/BMR). Last, we visualized how the estimated allometric
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slope and intercept parameters scale with the body masses of species
within the specified shift regimes (fig. S10).

Linkages among GC content, effective population size (N.),
and body mass

We checked to see whether the average clade body mass within
groups identified by Janus corresponded to average GC content or
estimated equilibrium GC content (fig. S8). We find strong negative
relationships consistent with a mechanism of GC-biased gene con-
version in each case, assuming that N, is broadly and negatively cor-
related with body mass. The relationship between N, and body mass
is generally accepted to result from the relationship between environ-
mental carrying capacity and body mass (e.g., there are fewer os-
triches than sparrows) (18, 19, 147-149). Here, we share the results
for exons and introns, which have a sufficient number of identified
regimes to perform this check, although the patterns were similar for
UTRs and mtDNA (fig. S8). These results recapitulate the patterns
shown in Fig. 1 (bottom), indicating a more significant deviation be-
tween empirical and estimated equilibrium base frequencies for cod-
ing than noncoding sequences. We speculate why these deviations
may be more pronounced for exons within the manuscript text (e.g.,
functional constraints, codon usage bias, recombination, selection,
or DNA polymerase function). These patterns are generally consis-
tent with those previously reported in the referenced literature (21,
64) and support GC-biased gene conversion as a mechanism driving
the patterns we detect (e.g., R? values >0.5).
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