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ABSTRACT

Pathwise coordinate descent algorithms have been used to compute entire solution paths for lasso and
other penalized regression problems quickly with great success. They improve upon cold start algorithms
by solving the problems that make up the solution path sequentially for an ordered set of tuning parameter
values, instead of solving each problem separately. However, extending pathwise coordinate descent
algorithms to more the general bridge or power family of £4 penalties is challenging. Faster algorithms for
computing solution paths for these penalties are needed because £ penalized regression problems can
be nonconvex and especially burdensome to solve. In this article, we show that a reparameterization of £
penalized regression problems is more amenable to pathwise coordinate descent algorithms. This allows us
to improve computation of the mode-thresholding function for £ penalized regression problems in practice
and introduce two separate pathwise algorithms. We show that either pathwise algorithm is faster than the
corresponding cold start alternative, and demonstrate that different pathwise algorithms may be more likely
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to reach better solutions. Supplemental materials for this article are available online.

1. Introduction

Consider the problem of computing regression coefficients sub-
ject to an £, penalty, sometimes called a bridge or power penalty,
which minimizes

1
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with respect to 8, where y is an n x 1 response vector, X is an
n x p matrix of covariates, § is a p x 1 vector of regression
coeflicients, and A is a tuning parameter (Frank and Friedman
1993). The £, penalty includes the £ ridge, £ best subset, and
£1 lasso penalties as special cases. When g < 1 the £, penalty is
nonconvex and multiple minimizers of (1) may exist, however ¢,
penalties are nonetheless valued because they can yield sparser
solutions with less bias (Huang, Horowitz, and Ma 2008). It can
be difficult to compute a value of B that minimizes (1), especially
when q < 1 (Mazumder, Friedman, and Hastie 2011). This
is often magnified by the need to find minimizers of (1) for a
collection of values of A and g, because a single optimal choice
of A and q is rarely known and often data dependent (Griffin and
Hoff 2020).

Pathwise coordinate descent algorithms have been one
popular approach to overcoming the computational challenges
encountered when solving penalized regression problems.
Coordinate descent algorithms provide a method for solving (1)
for fixed A and q that compute a solution to (1) by iteratively
minimizing with respect to one coordinate of f§ at a time,
holding the rest fixed. This corresponds to iteratively computing

the mode-thresholding function, g (A, g; b), which minimizes

1
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with respect to B, where B corresponds to the coordinate §; that
(1) is being maximized with respect to and the values of b and A
are determined by the data and the remaining coordinates of 8.
Pathwise algorithms build on methods that solve (1) for fixed A
and g to solve (1) for a collection of values of A and q. Although
not inextricably linked, pathwise algorithms are often built on a
foundation of coordinate descent algorithms.

Coordinate descent algorithms which solve (1) by iteratively
solving (2) are provided in in Fu (1998) for ¢ > 1 and Mar-
janovic and Solo (2014) for g < 1. Marjanovic and Solo (2014)
also provide conditions on X that guarantee convergence to
a local optimum and verifiable conditions for local optimality
of a coordinate descent solution. Fu (1998) provides verifiable
optimality conditions for g > 1. In the case of lasso penalized
regression, which corresponds to the special case of (1) when
q = 1, pathwise coordinate descent methods have been devel-
oped (Friedman et al. 2007).

These pathwise coordinate descent algorithms solve (1) for
a specific value of the tuning parameter A* by finding a value
Ao that ensures that the minimizing B is exactly equal to zero,
and then solving (1) along a path of tuning parameter val-
ues Ag,...,A" using coordinate descent, using the minimiz-
ing B for one problem as a starting value for the next. This
works well when g = 1 because X is easy to determine from
the data, and because mode-thresholding function, f (A;b) =
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argming (b — B)* + A |B, is nested in A, that is, iff ()J; b) =0
and € > 0, thenf (A" + €;b) = 0.

Unfortunately, pathwise coordinate descent algorithms have
been more challenging to develop for £, penalties (Mazumder,
Friedman, and Hastie 2011). There are three main challenges
that arise in the development of pathwise coordinate descent
algorithms for the bridge/power family of penalties, all of
which are related to properties of the mode-thresholding
function, g (A,q; b). First, the mode-thresholding function is
only available in closed form in special cases. When g = 1,
h (A,q =1; b) = sign (b) (|b] — 1), where (x) . = max {x, 0}.
When g = 2, h(hq=20b) = (1+21)"'b. Otherwise, a
closed-form solution is not available. This means that initializing
a pathwise coordinate descent algorithm for fixed values of
q < 1by finding a value of the tuning parameter Ao that ensures
that the solution to (1) is exactly equal to the zero vector can
require additional iterative computation, which is possible but
can be inconvenient in practice. Second, the mode-thresholding
function has two solutions at a single value of b when q < 1.
Third, the mode-thresholding function is not nested in g for
fixed A, that is, if g (A',q’;b) = 0and 0 < € < ¢/, it may not be
true that g (A',q' — €;b) = 0. This can be observed in the left
panel of Figure 1, in which the tuning parameter A is fixed at 1.
For a small range of values of b = 1.5, the mode-thresholding
function returns zero when g = 0.5 but not when g = 0.05. This
is counterintuitive. As q decreases, the corresponding penalty is
expected to encourage sparsity more aggressively.

The first two challenges have been addressed by Marjanovic
and Solo (2014), who introduced a coordinate descent algorithm
for solving (1) for ¢ < 1 which includes a method for computing
the mode-thesholding function g(A,q,b), instructions for
choosing a single solution to the mode-thresholding function
when multiple exist in the context of coordinate descent,
and conditions for when the mode-thresholding function
g (A, 9 b) = 0. In this technical note, we show that a simple
reparametrization of (1) eliminates the second challenge for
0<g<2,
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in which the tuning parameter X is replaced by the tuning
parameter . We emphasize that we use this reparameterization
to provide new pathwise coordinate descent algorithms with
desirable properties that can make use of existing coordinate
descent algorithms for fixed q and w, as opposed to new coor-
dinate descent algorithms for solving (1) for fixed q and w.

The right panel of Figure 1 shows the mode-thresholding
function corresponding to (3), i (, g; b), which minimizes

2—q
%(b—ﬂ)ﬂ(“’q )W. (4)

In Figure 1, the mode-thresholding function appears to be
nested in g for fixed w, that is, if h (/,¢q’;b) = 0and 0 <
€ <q <1,thenh (a/ ,q — € b) = 0. Furthermore, for fixed o
there appears to be a unique value b} of b for which all nonzero
values of the mode-thresholding function are equal regardless
of g and for which nonzero values of the mode-thresholding
function are increasing in g for all b < b} and decreasing in g
forall b > b}

In what follows, we derive properties of the mode-thresholding
function & (o, q; b). Specifically, we derive a minimum value o,
which satisfies i (w, g; b) = 0 for all > w,. We also prove that
h (w,q;b) is nested in  for fixed q and derive b, the value
of b for which all nonzero values of the mode-thresholding
function are equal regardless of q. Last, we prove that sparsity
of h (w, g; b) is nested in q for fixed w that the nonzero values
of h (w, g b) are increasing in q for b < b¥ and decreasing in
q for b > b} . All proofs are provided in an appendix. We then
show how this knowledge can be used to improve computation
of h (w,q;b) in practice and introduce two different pathwise
coordinate descent algorithms for solving (3). One is similar to
the pathwise coordinate descent algorithm for solving the lasso
penalized regression problem, insofar as it computes a sequence
of solutions for fixed g starting from the a value of w that yields
an optimal value of 8 that is exactly equal to the zero vector for
q < 1. The other computes a sequence of solutions for fixed w
starting from g = 2. Because (3) is nonconvex when g < 1, we
compare not only timing of the two algorithms relative to their
cold start alternatives and each other, but also the potential for
each algorithm to reach a better mode.

Values of q

2,q;b)

h(

Figure 1. The left panel shows the thresholding function for the parameterization considered in Mazumder, Friedman, and Hastie (2011). The right panel shows the

thresholding function for the parameterization given in (4).
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2. Properties and New Pathwise Algorithms

Combining the results from Marjanovic and Solo (2014) for g <
1 with what is known for 1 < g < 2, the mode-thresholding

function h (a), g b) defined in (4) satisfies,

0 qg<1land |b\<ot(a),q)
h (a),q; b) = {O,sign )y (a), q)} g<land |b| =« (a),q)
sign (b) ¢ (. q) q>1lorq<1land |b| > a(w.q),
(5)
where
1
1 1—g 2—q
,q) = — 21 —— 6
o= () (7)) g
q-1 1
o (@q) =0 (2(1-q)"7 (2-q)q7 )

and ¢ (»,q) > 0 is the larger of at most two values that satisfy

¢ (@, q) +w(@)q = || (8)

when g > 1orq < 1and |b| > & (w,q). These properties allow
us obtain a condition for w that ensures h (w,g;b) = 0 when
9=1

q 1

o> (ﬂ) (2(1—q))F g7, ©)

2—q

As suggested by Figure 2, the mode-thresholding function
h (w, g; b) is nested in @ and g. Proofs of the following specific
claims are provided in an appendix. Focusing on the left panel
of Figure 2, we see evidence that sparsity of h (w, g; b) is nested
in w for fixed g < 1.

Theorem 2.1. For fixed q and h(w,q;b) defined in (5), if
h(a),q;b) =0and o > wthenh(w',q;b) =0.
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The left panel of Figure 2 also suggests that all nonzero mode-
thresholding function values for fixed w are equal when w =

|b] /2, with ¢ (o = |b] /2,q) = |b] /2.

Theorem 2.2. For h (», q; b) defined in (5) and g satisfying g > 1
org <1land

-9 1
27

(2/(2-9) (2(1-q)7 977 > 1,
h (a) =1bl/2,q; b) =b/2.

(10)

The left panel of Figure 2 also suggests that nonzero values of
h (w, g; b) are nested in w for fixed g.

Theorem 2.3. For fixed g, if |h (»,q;b)| > 0and ' < o then
|h (o, q:b)| = |h (w,q;b)| > 0.

Turning to the right panel of Figure 2, we see evidence that
sparsity of 1 (w, g; b) is nested in g for fixed w.

Theorem 2.4. For fixed @ and h(a), g b) defined in (5), if
h(w,q:b) =0andq’ < q < 1thenh(w,q;b) = 0.

The right panel of Figure 2 also shows evidence that nonzero
values of h (a), g b) are nested in ¢ for fixed w.

Theorem 2.5. For fixed w > 0, define

1
Gy =inflg:q=1 land [ ——
qo/lp] = in {q q=1lorg<lan (2_q>

x (2(1-q) T g7 >w/|b|}-

N‘
s

Ifw < |bl/2and g > g > Gup)> then |h(a),q;b)} >
h(w,q;b)| > 0.Ifw > |b|/2and ¢ > q > Gu/p)» then
h(w,q';b

> |k (w,q;b)| > 0.
These properties motivate two pathwise coordinate descent
algorithms. The first computes a sequence of solutions for fixed

ﬁ =ming(1 - B)?/2+ (mz'q[qlﬁ[‘
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Figure 2. The left panel shows the thresholding function for the parameterization given in (4) as a function of w for fixed g, the right panel as a function of g for fixed w.



q and varying values of @. The second computes a sequence
of solutions for fixed w for varying values of g. We refer to
Algorithms 1 and 2 as warm start algorithms, as both repeatedly
solve (3) starting from initial values obtained by solving a similar
problem previously.

3. Demonstrations

To demonstrate the utility of Algorithms 1 and 2, we consider
five simulation settings and applications to five datasets of vary-
ing size and structure. For all simulated and real datasets, the
response y and covariates X are centered and scaled.

In all simulation settings, we assume y = AV + z, where V
and A are n X p matrix and p x p matrices, z is a 11 x 1 noise vector,
and nonzero elements of @, elements of V, and elements of z are
independent, identically distributed standard normal random
variables. Specification of #, p, A, and the number of nonzero
elements of B depends on the simulation setting as described in
Table 1. We simulate four datasets per setting.

When implementing Algorithm (1) for fixed g, we consider
20 values of w that are equally spaced on the log-scale from
wgmin) to 10720, where a)gmin) is determined from the data.
When implementing Algorithm (2) for fixed w, we consider
k; = 20 equally spaced values g = {2,...,0.1}. For each
simulated dataset, we implement Algorithms 1 and 2 and their

Algorithm 1 Fixed g.

1. Based on (9), define

1—q 1

= (| g 1
i) _ max; (x}xj) - <2]q> (2 (1 — q))z—q qT
o) =

. /
max; 1]

ifg<1
otherwise.

For g < 1, this is the smallest value of w that yields an exactly
zero solution for B.
2. Fix a sequence of k, strictly decreasing w values, @ =

{a)l, .. ,wkm} where w1 = wémm). Let B refer to the p x k,,
array of solutions.

3. Solve for w = w; starting from B = 0, and set the first column
of B, by, to the solution.

4. Forl=2,...,k,,solve for = wj starting from the solution
for w;_1, bj_1, and set the Ith column of B, b, to the solution
for wy.

5. Return the p X k,, solution array B.

Algorithm 2 Fixed w.

1. Fix a sequence of k; decreasing g values g = {ql, - gk, },

where q; = 2. Let B refer to the p x [ array of solutions.

2. For ¢ = ¢qi, set the first column of B to the closed-form
solution b; = (X’X + I)_1 X'y.

3. Forl = 2,...,ky, solve for g = g starting from the solution
for gj—1, bj—1, and set the Ith column of B, by, to the solution
for gq;.

4. Return the p x k; solution array B.

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS . 313

cold start alternatives for 10 randomly selected unique orderings
of the p covariates.

Figure 3 depicts timing comparisons for Algorithms 1 and 2
relative to cold start alternatives for simulated data. We compare
Algorithm 1 to a cold start alternative that minimizes (3) starting
from B = 0, and we compare Algorithm 2 to a cold start alterna-
tive that minimizes (3) starting from 8 = X'X + I p)_lX’ y. In
general, both warm start algorithms provide substantial timing
gains relative to their cold start alternatives, especially when the
number of covariates p is large. The relative gains of Algorithm 1
compared to its cold start alternative are greater than the relative
gains of Algorithm 2 compared to its cold start alternative, how-
ever Algorithm 2 is often faster than Algorithm 1 when consider-
ing time needed to compute solutions for all g and w, especially
when covariates are correlated or the dimension is greater.

Table 2 summarizes the number of observations #, the
number of covariates p, and the average absolute correlation
between covariates. Citations for where each dataset has
previously appeared in the penalized regression literature are
also provided.

When implementing Algorithm (1) for fixed g, we consider
20 values of w that are equally spaced on the log-scale from
a)gmm) to 107, where a)gmm) is determined from the data. When
implementing Algorithm (2) for fixed w, we consider k; = 20
equally spaced values ¢ = {2,...,0.1}. For each dataset, we
implement Algorithms 1 and 2 and their cold start alternatives
for 100 randomly selected unique orderings of the p covariates.

Figure 4 depicts timing comparisons for Algorithms 1 and 2
relative to cold start alternatives. We compare Algorithm 1 to a
cold start alternative that minimizes (3) starting from g = 0,
and we compare Algorithm 2 to a cold start alternative that
minimizes (3) starting from g = (X'X + Ip)_lX/ y. Again, both
warm start algorithms provide substantial timing gains relative
to their cold start alternatives, especially when the number of
covariates p is large. Perhaps due to the substantial correlations
across covariates in all five of the real datasets, speed advantages
of using Algorithm 2 over Algorithm 1 to compute solutions for
all g and w are more pronounced. To assess the extent to which

Table 1. Simulation settings used to demonstrate pathwise coordinate descent
Algorithms 1 and 2 for £4 regression. A p x p identity matrix is denoted by I,.

Simulation n p % Zle 1(=0) A

1 100 1,000 1 I

2 (Sparse B) 100 1,000 0.1 Ip

3(Correlated X) 100 1,000 1 075 (1,1)
+(1—075) I,

4 500 1,000 1 I

5 100 2,000 1 I,

Table 2. Features of datasets used to demonstrate pathwise coordinate descent
Algorithms 1 and 2 for £4 regression.

Dataset n p ﬁ iz Source

|cor (xi, ;)|
Prostate 97 8 0.295 Tibshirani (1996)
Diabetes 442 64 0.150 Efron et al. (2004)
Glucose 68 72 0.174 Priami and Morine (2015)
Housing 506 104 0.360 Polson, Scott, and Windle (2014)
Motif 287 195 0.641 Biihlmann and van de Geer (2011)
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Figure 3. The left and center panels show the mean ratio of time needed to complete Algorithms 1 and 2 compared to their cold start alternatives across 100 randomly
selected orderings of the p covariates. The right panel shows the ratio of time needed to complete Algorithm 2 relative to Algorithm 1 for all g and w for each of the 100

randomly selected orderings of the p covariates.
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Figure 4. The left and center panels show the mean ratio of time needed to complete Algorithms 1 and 2 compared to their cold start alternatives across 100 randomly
selected orderings of the p covariates. The right panel shows the ratio of time needed to complete Algorithm 2 relative to Algorithm 1 for all g and w for each of the 100

randomly selected orderings of the p covariates.

speed advantages of Algorithm 2 are driven by performance
when g > 1, which is less often of interest in practice, we
have comparisons of a variation of Algorithm 2 that considers
only g < 1 to its cold start alternative and Algorithm 1 in the
appendix. We find that speed advantages of Algorithm 2 are only
slightly diminished.

A natural question given the favorable timing results for
warm start algorithms shown in Figure 4 is whether or not
timing gains come at the cost of poorer solutions when q < 1
and (1) is nonconvex. Figure 5 compares the rate at which each
algorithm reaches an objective value within 1072 of the lowest
objective value obtained using the same ordering of covariates.
We do not observe that the timing gains associated with Algo-
rithms 1 and 2 relative to their cold start algorithms come at the
cost of poorer solutions. Algorithm 1 tends to provide compa-
rable solutions to its cold start alternative for all five datasets.
Algorithm 2 tends to provide comparable solutions to its cold
start alternative for the prostate and diabetes datasets and better
solutions for the glucose, housing, and motif datasets. In general,
Algorithm 2 tends to provide the best solutions.

4. Discussion

In this article, we have demonstrated that a new reparameter-
ization of the ¢; penalized regression problem is well-suited

to pathwise coordinate descent algorithms. There are several
potential areas of improvement. One is to explicitly examine
which algorithms return solutions that satisfy the conditions
provided for local optimality in Marjanovic and Solo (2014)
when g < 1, instead of considering which algorithms tend to
return solutions with the lowest value of the objective function.
Another is consideration of the number and spacing of values
of w and q for Algorithms 1 and 2, respectively, which may
determine the extent of Algorithms 1 and 2’s gains relative to
cold start alternatives. A third is consideration of the ordering
of covariates in coordinate descent. It is known that flexibility
with respect to the ordering of covariates is a specific advantage
of coordinate descent methods, and it is possible that gains from
Algorithms 1 and 2 relative to their cold start alternatives could
be enhanced by certain choices of covariate order such as the
ordering used by the active shooting algorithm described in
Peng et al. (2009) and the orderings discussed in Chartrand and
Yin (2016). A fourth is use of alternative methods for solving
(1) for fixed values of g and w, for example, the local quadratic
approximation approach of Fan and Li (2001), the modified
Newton-Raphson approach for 1 < g < 2 described in Fu
(1998), or other alternatives reviewed in Chartrand and Yin
(2016). Last, further work may consider the choice of a single
solution to (1) when multiple exist.
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fixed g corresponds to Algorithm 1, cold fixed g corresponds to Algorithm 1's cold start alternative, warm fixed w corresponds to Algorithm 2, and cold fixed w corresponds

to Algorithm 2's cold start alternative.
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