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Two-dimensional Josephson junction arrays frustrated by a perpendicular magnetic field are predicted to
form a cascade of distinct vortex lattice states. Here, we show that the resistivity tensor provides both
structural and dynamical information on the vortex-lattice states and intervening phase transitions, which
allows for experimental identification of these symmetry-breaking ground states. We illustrate our general
approach by a microscopic theory of the resistivity tensor for a range of magnetic fields exhibiting a rich set
of vortex lattices as well as transitions to liquid-crystalline vortex states.
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Introduction.—Josephson junction arrays display a fas-
cinating variety of classical and quantum phases [1,2].
In the absence of charging effects, the system undergoes
a temperature-driven Berezinskii-Kosterlitz-Thouless tran-
sition between a superconducting and a resistive phase.
When the charging energy becomes large, quantum fluc-
tuations destroy coherence between the superconducting
islands already at zero temperature, inducing a super-
conductor-insulator transition. Particularly rich phase struc-
ture appears in a perpendicular magnetic field, even in the
classical limit [3–6]. The magnetic field results in a cas-
cade of vortex-lattice ground states, which spontaneously
break the lattice symmetry of the array [7,8]. While their
equilibrium properties have been widely studied numeri-
cally [7–16], experimental studies have been lagging in
identifying and probing these vortex-lattice states and
little is known theoretically about their transport properties
[17,18].
Here, we show that the resistivity tensor is a powerful

tool to probe these vortex-lattice phases. Measurements of
the longitudinal and transverse resistivity of Josephson
junction arrays reveal a dramatic sensitivity to the
perpendicular magnetic field [4,19,20]. This dependence
reflects the sensitive dependence of the ground state on the
ratio f of the magnetic flux ϕ per plaquette and the
superconducting flux quantum ϕ0 ¼ h=2e. Our principal
observations are twofold. First, the spontaneous breaking
of the lattice symmetry generally makes the resistivity
tensor anisotropic, with the anisotropy encoding structural
information on the vortex lattice. Second, phase transitions
from vortex lattices to liquid-crystalline states [13,21] are
signaled by the temperature dependence of the resistivity
tensor. Importantly, full information is revealed only when
measuring the entire resistivity tensor, which has not yet
been done in experiments.

Our work is motivated by recent advances in nano-
fabricating Josephson junction arrays using semiconductor-
superconductor hybrids [22]. These arrays are exceptionally
flexible in their lattice geometry and have outstanding
tunability of the junction properties [23–25]. Work to
date has focused on the Berezinskii-Kosterlitz-Thouless
transition [23,24] and vortex dynamics [25]. This generation
of devices should readily admit measurements of the entire
resistivity tensor, significantly advancing the experimental
study of vortex lattices in Josephson junction arrays.
Model.—We describe the superconducting islands of the

array as classical xy spins. Neighboring spins are subject to an
effective ferromagnetic interaction due to the Josephson
coupling of strengthEJ between islands and the perpendicular
magnetic field introduces frustration into the xy model,

H ¼ −EJ

X
hiji

cosðφi − φj þ 2πaAij=ϕ0Þ: ð1Þ

We note that we neglect self-inductance effects [26–30],
which can be estimated to be weak for the arrays studied
inRefs. [23–25].Wealso assume that charging energies canbe
neglected, so that finding the equilibrium state of the array
(lattice constant a) is a problem of classical statistical
mechanics. The magnetic field is accounted for by the vector
potential Aij, with the flux

ϕ ¼ fϕ0 ¼
X

plaquette

aAij; ð2Þ

per plaquette in units of the superconducting flux quantum
ϕ0 ¼ h=2e defining the frustration f.Without magnetic field,
it is energetically favorable for the phases φi of all super-
conducting islands to align.

PHYSICAL REVIEW LETTERS 131, 206001 (2023)

0031-9007=23=131(20)=206001(5) 206001-1 © 2023 American Physical Society

https://orcid.org/0000-0003-2868-6553
https://orcid.org/0000-0002-2537-7256
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.131.206001&domain=pdf&date_stamp=2023-11-14
https://doi.org/10.1103/PhysRevLett.131.206001
https://doi.org/10.1103/PhysRevLett.131.206001
https://doi.org/10.1103/PhysRevLett.131.206001
https://doi.org/10.1103/PhysRevLett.131.206001


A magnetic field introduces vortices, which have a
natural inclination to order. The vortex lattice is a sensitive
function of the magnetic field, reflecting the competition
between the intrinsic tendency of vortices to order into a
triangular structure and pinning by the lattice (which we
take to be a square array). This is exemplified in Fig. 1 for
simple rational frustrations. For f ¼ 1=2, the vortices form
a checkerboard, breaking the discrete translation symmetry
of the array, but leaving its C4 rotation symmetry intact
[Fig. 1(a)]. For f ¼ 1=3, the vortices occupy plaquettes
along every third diagonal, which also breaks the rotation
symmetry down to C2 [Fig. 1(b)]. At other frustrations such
as f ¼ 1=5, the principal axes of the vortex lattice do not
align along the diagonals of the square array [Fig. 1(c)].
Resistivity tensor.—For a square junction array, the

resistivity is isotropic as long as the ground state respects
the underlying fourfold symmetry, e.g., at f ¼ 1

2
. More

generally, however, the formation of a symmetry-breaking
vortex lattice will be signaled by an anisotropic resistivity
tensor. The resistivity tensor is a sum of symmetric and
antisymmetric contributions,

ρ ¼
�
ρxx ρsxy

ρsxy ρyy

�
þ
�

0 ρH

−ρH 0

�
: ð3Þ

The symmetric contribution describes the dissipative resis-
tivity with eigenvalues ρ1 and ρ2. The antisymmetric
contribution is invariant under changes of the coordinate
system and describes the Hall resistivity ρH. Because of the
Onsager relation ρxyðBÞ ¼ ρyxð−BÞ, the two contributions
ρsxy and ρH to the transverse resistance ρxy can be separated
by their behavior under reversal of the perpendicular
magnetic field B. While the Hall resistivity ρH is odd
under reversal of the magnetic field, ρHðBÞ ¼ −ρHð−BÞ,
the transverse resistivity ρsxy is even, ρsxyðBÞ ¼ ρsxyð−BÞ.
This is in line with the fact that the eigenvalues ρj (with
j ¼ 1, 2) are even in B.
It follows from this discussion that measurements of the

full resistivity tensor reveal rich information on the vortex-
lattice states. The eigenvalues ρ1 and ρ2 encode the density
of mobile vortices and their mobility, while the principal
axes contain structural information about the vortex
lattice. In particular, the observation of a transverse
resistivity that is symmetric under reversal of the B field
is a direct indication of spontaneous breaking of
rotation symmetry by the vortex lattice. Interestingly, a

B-symmetric transverse resistivity has been observed in
experiments on vortex lattices [4,20].
We illustrate these general ideas by the rich set of vortex

lattice states for frustrations 1=3 < f < 1=2. In this range,
the vortex lattices are composed of a regular sequence of
completely and partially filled as well as empty diagonals,
see Figs. 2(a)–2(e) [13,15]. Apart from the frustration f, we
characterize the states by the fraction p of partially filled
diagonals as well as their filling ν. The structure of the
vortex lattices is simplest for 5=14 < f < 8=21 [region II
in Fig. 2(f)], where p ¼ 1=7 and f − pν ¼ 2=7 is the
fraction of completely filled diagonals. However, our
considerations below directly apply to any of the structures
in Fig. 2.
The basic process governing the resistivity tensor is

vortex hopping along the partially filled diagonals
(Fig. 3). Stable vortex-lattice states have partially filled
diagonals, which are at least half filled, ν > 1=2 (see
Ref. [31]). At low temperatures and for ν ¼ 1=2, the vortices
organize into a regular array of alternating occupied
and empty sites. Vortex motion becomes possible for
ν > 1=2, for which there is a finite density of occupied
nearest-neighbor sites (heavy domain walls). Starting with
a minimal-energy configuration of Eq. (1) with a heavy
domain wall, we systematically search for adjacent
saddle points (using the climbing-string method [31,32]).
Subsequently, we search for new minima adjacent to the
saddle point, in which the domain wall has moved by two
sites. As illustrated in Fig. 3, we find that the basic process is
a direct jump of the heavy domain wall along the diagonal.
The saddle-point configuration has one vortex on a neigh-
boring empty diagonal. We have not found a process with a
final minimum-energy state, in which a vortex is located in
an adjacent empty diagonal. From this calculation, we
extract the activation barrier for a hop of a heavy domain
wall. For ν ≃ 1=2, we find EB ≃ 0.83EJ. For larger ν, the
barrier increases slightly. For example, for f ¼ 13=35
(ν ¼ 3=5), one finds an energy barrier of EB ≃ 1.01EJ.
The thermally activated hopping rate of a heavy domainwall
along the partially filled diagonal is Γ ∝ expf−EB=Tg.
Since hopping of vortices is constrained to occur along

the partially filled diagonals, the resistivity tensor will be
strongly anisotropic, with principal axes aligned along and
perpendicular to the partially filled diagonals. In the
absence of vortex hopping out of the partially filled
diagonals, there is no voltage drop along the diagonals
and the resistivity eigenvalue ρ2 for currents applied along
the diagonals vanishes, ρ2 ¼ 0. In contrast, current applied
perpendicular to the diagonals of the vortex lattice induces
vortex motion along the diagonals. This generates a voltage
drop along the current direction, resulting in a nonzero
resistivity eigenvalue ρ1.
To compute ρ1, we consider an applied current jc

flowing perpendicular to the diagonals of the vortex lattice.
Provided that current flow is uniform, this induces potential

FIG. 1. Vortex-lattice ground states for frustrations (a) f ¼ 1=2,
(b) f ¼ 1=3, and (c) f ¼ 1=5.
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drops for vortices on neighboring sites in the horizontal (x̂)
and vertical directions (ŷ) direction, which are equal
to [33]

ΔU ¼ h
2e

1ffiffiffi
2

p jca: ð4Þ

Equation (4) follows from the potential UðφÞ ¼
−EJ cosφ − ðℏ=2eÞibφ of a single junction with Josephson
energy EJ, phase difference φ, and bias current ib. A vortex
hopping between two neighboring plaquettes leads to a
phase slip of the intermediate junction by 2π, which
changes the potential by ðh=2eÞib. Alternatively, Eq. (4)
can be viewed as a manifestation of the Magnus force that
the current exerts on the vortices.
For ν > 1=2, there are two heavy domain walls for each

additional vortex. Thus, the areal density of domain walls is
equal to 2pðν − 1

2
Þð1=a2Þ. When ν is not too much larger

than 1=2, the domain walls are dilute and the probability of
two directly adjacent domain walls can be neglected.
Accounting for the potential drop of 2ΔU between initial
and final state of the vortex hop in linear response, a vortex
in a heavy domain wall has an effective hopping rate of
ð2ΔU=TÞΓ. As a result, we find an areal vortex current
density of

jv ¼ 2p

�
ν −

1

2

� ffiffiffi
2

p

a
Γ
2ΔU
T

ð5Þ

along the diagonals of the vortex lattice. We finally relate
the vortex current density to the voltage drop in the
perpendicular direction [33],

E ¼ h
2e

jv: ð6Þ

FIG. 2. (a)–(e) Vortex patterns for frustrations 1=3 < f < 1=2. The patterns are built from a set of elementary units: a = 1=3 (filled
diagonal enclosed by empty diagonals on both sides), b = 2=5 (two filled diagonals enclosing an empty diagonal and enclosed by an
empty diagonal on both sides), c¼ 5=14 (channel consisting of two 1=3 structures enclosing a partially filled diagonal), d¼ 9=22 (thick
channel consisting of two 2=5 structures enclosing a partially filled diagonal). Additional vortices are accommodated into the partially
filled diagonals, changing the frustration f by 1=N2. (f) Energy E per lattice site of various vortex lattice structures vs f, computed by
gradually filling the channels with vortices. There are five color-coded regions I–V, separated by dashed lines (with the corresponding f
indicated). Results are limited to short periods between channels. This masks the transition at f ¼ 2=5, which occurs in the limit of large
periods.

FIG. 3. Hopping process of heavy domain wall in a c structure
(blue region in Fig. 2). The initial vortex configuration (dark full
circles) contains a heavy domain wall (see partially filled
diagonal highlighted in orange). In the adjacent saddle-point
configuration, a vortex (empty circle) of the heavy domain wall
hopped out of the partially filled diagonal. In the new adjacent
minimum, the vortex (gray circle) returned to the partially filled
diagonal, moving the heavy domain wall by two sites. We do not
find minimum-energy configurations with vortices in empty
diagonals.
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The electric field E points in the direction perpendicular to
the vortex motion and thus perpendicular to the partially
filled diagonal. Combining Eqs. (4)–(6), we find the
nonzero resistivity eigenvalue

ρ1 ¼ 4p

�
ν −

1

2

��
h
2e

�
2 Γ
T

ð7Þ

in the limit of dilute domain walls.
While the partially filled diagonals order at low temper-

atures, numerical results indicate that these ordered arrays
melt prior to the melting transition of the entire 2D vortex
lattice [13]. If the interaction between vortices is suffi-
ciently short ranged due to screening, the coupling between
diagonals is weak for small p. Without coupling, the
partially filled diagonals are expected to melt at any
nonzero temperature by the Landau-Peierls argument. At
weak coupling (small p), ordered states of the partially
filled diagonals melt far below the melting temperature of
the entire vortex lattice. In the intermediate regime between
these melting transitions, the vortex state is akin to a
smectic liquid crystal.
Well above the melting transition, we can assume that the

vortex occupations become uncorrelated along the partially
filled diagonals. Vortex motion along the diagonals can
then be characterized by a diffusion constant D ¼ 2a2=τ
and the vortex current becomes

jv ¼ pνð1 − νÞ 1

a2

ffiffiffi
2

p
a

τ

2ΔU
T

; ð8Þ

so that

ρ1 ¼ 2pνð1 − νÞ
�
h
2e

�
2 1

Tτ
: ð9Þ

Unlike in the low-temperature phase, the hopping rate 1=τ
is no longer activated, so that the melting transition is
signaled by a substantial increase in resistivity.
We now consider the resistivity tensor for currents

applied along the lattice directions of the underlying square
array. Rotating the resistivity tensor, we find

ρ ¼
�

ρ1=2 �ρ1=2

�ρ1=2 ρ1=2

�
: ð10Þ

The sign of the transverse resistivities depends on the
direction of the diagonal vortex structure. We also use that
ρH ¼ 0within our rate-equation theory of vortex dynamics.
Because of the diagonal structure of the vortex lattice, the
diagonal resistivities ρxx and ρyy are identical. The for-
mation of the vortex lattice is still signaled by the nonzero
transverse resistivity. Since vortex motion is constrained to
be along the diagonal, a current applied, say, along the x
axis induces equal voltage drops along the x and y

directions. Thus, ρxx and ρsxy are equal in magnitude, which
directly correlates with the diagonal structure of the vortex
lattice.
Magnetic-field dependence.—There will also be sub-

stantial and characteristic variations with magnetic field.
These emerge from the intricate sequence of vortex lattices
for frustrations between f ¼ 1=3 and f ¼ 1=2 [13,15]. As
shown in Fig. 2, the vortex lattices are built from elemen-
tary units. There are units with only completely filled and
empty diagonals corresponding to the basic units of the
f ¼ 1=3 and f ¼ 2=5 vortex lattices. In addition, there are
units referred to as channels, which contain the partially
filled diagonals (see Fig. 2 and its caption for a detailed
description).
These structures were identified by Monte Carlo simu-

lations in Refs. [13,15]. We also find such structures using a
recently proposed annealing algorithm [16,31], which
computes the full phase configuration. We can further
confirm and extend these results using a vortex represen-
tation of the xy model [31,34,35]. Figure 2(f) compares the
energy of various structures, computed numerically as a
function of f by adding vortices one at a time to the
partially-filled diagonals. For a given regular pattern of
building blocks, we use a Metropolis algorithm to optimize
the vortex arrangement along and between partially filled
diagonals. Our results essentially reproduce the conclu-
sions of Ref. [15], but indicate the existence of an addi-
tional regime originating from the previously unnoticed
phase transition at f ¼ 9=22.

The structure of the vortex lattice remains unchanged
over a substantial range in magnetic field in regions II
(blue) and V (yellow). Here, p remains fixed and the
resistivity depends smoothly on magnetic field. In contrast,
the vortex-lattice structure, and hence p as well as the
resistivity tensor, depend sensitively on magnetic field in
regions I (red), III (green), and IV (purple). Note that in
these regions, there are more vortex-lattice states than
shown in Fig. 2(f), which includes only short-sequence
lattices.
Our vortex-lattice simulations use periodic boundary

conditions. Boundary effects as well as disorder may lead
to domains of different orientations of the vortex lattice.
This reduces the anisotropy of the resistivity and hence the
magnitude of ρsxy relative to ρxx and ρyy. The reduction is a
measure of the degree of domain formation of the vortex
lattice.
Conclusions.—We have shown that measurements of the

full resistivity tensor are a powerful tool to identify and
probe the rich set of symmetry-breaking vortex-lattice
states as a function of magnetic field, providing both
structural and dynamical information. This includes the
liquid-crystalline vortex states above the melting transition
of the partially filled diagonals, which have the remarkable
property of being resistive in one direction and super-
conducting in the other. We note that the signatures of
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symmetry-breaking ground states in the resistivity are
expected to persist beyond the assumptions made in
Eq. (1). Our general approach also carries over to other
(nematic) electronic states which break an underlying
rotational symmetry (for a very recent discussion,
see Ref. [36]).
We have focused on vortex configurations aligned along

the diagonal, which have particularly transparent vortex
dynamics. In principle, one expects anisotropic resistivity
tensors also for other symmetry-breaking vortex-lattice
states. This includes states such as the f ¼ 1=5 state
[see Fig. 1(c)], whose principal axes are rotated by other
angles, so that ρxx and ρyy are different from each other. In
this case, measurements of the full resistivity tensor may
also contribute to elucidating the underlying vortex
dynamics.
Our discussion neglected capacitive effects and was

limited to classical modeling. While our qualitative con-
clusions are expected to persist, it is an interesting question
for future work to relax these assumptions and account for
quantum fluctuations, which may, e.g., induce a nonzero
Hall resistivity ρH.
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