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1 Introduction

Large dimensional factor models are ubiquitous in econometrics and various branches of

science. See, for example, Bai and Ng (2002); Bai (2003); Pesaran (2006); Price et al.

(2006); Abraham and Inouye (2014); Zheng et al. (2012); Viviani et al. (2005); Andersen

et al. (1999). In many applications, we are able to observe a group of explanatory variables

that can be treated as observed factors, while the remaining factors are latent or unobserved.

See for example, Fama and French (1992, 1993). In this paper, we are interested in testing

for effects of observed factors in the presence of latent factors. Specifically, we consider a

latent factor linear regression model with high-dimensional responses. We are interested in

testing linear hypotheses on the regression coefficients of the observed factors (predictors).

The problem is of statistical importance and can be used for many purposes, for example,

testing significance of predictors, testing of linear trends or seasonal cycles, two-sample

tests, MANOVA and others. We assume that the p-dimensional responses yi’s can be

expressed as

yi = Bxi + εi, i = 1, . . . , N, where (1.1)

εi = Dfi + σei, i = 1, . . . , N. (1.2)

We make the following structural assumptions:

(a) X = [x1, . . . ,xN ] is an m×N known deterministic predictor matrix of rank m (< N);

(b) B is a p×m unknown parameter matrix;

(c) D is a p×K unobserved matrix of loadings of rank K (< p);

(d) F = [f1, . . . , fN ] is a K×N (unobserved) random matrix of independent latent factors;
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(e) E = [e1, . . . , eN ] is a p ×N (unobserved) random matrix of i.i.d. entries with mean 0

and variance 1;

(f) F and E are independent and normally distributed;

(g) Efi = 0, Cov(fi) = IK and the matrix DTD is diagonal with distinct diagonal elements.

The condition is to ensure the identifiability of F and D (see Anderson (1958)).

We are interested in testing general linear hypotheses under (1.1)–(1.2) of the form

H0 : BC = 0 against Ha : BC 6= 0. (1.3)

Here, C is an arbitrary m × q pre-specified matrix of fixed dimensions (q ≤ m), subject

to the requirement that BC is estimable. Without loss of generality, C is taken to be

of rank q. With appropriate specifications of X and C, the above testing formulation

encapsulates a broad range of inferential questions, including the ones mentioned above

(1.1). For example, the two-sample test corresponds to the case when the yi’s are sampled

from two populations and B consists of the corresponding population means, while the xi’s

are group membership indicators. Of interest is to test whether the means are equal, which

can be formulated as (1.3) by selecting C = [1,−1]T , m = 2, q = 1.

The p×1 vectors εi = Dfi+σei represent the observational noise and has zero mean and

covariance Σp = DDT +σ2Ip. Notice that the noise covariance Σp has the so called “spiked

eigenvalue” structure under which the spectrum, i.e., the ordered sequence of eigenvalues of

Σp, is of the form (`1, . . . , `K , σ
2, · · · , σ2) where `1 ≥ · · · ≥ `K are theK spikes and σ2(< `K)

represents the variance of background (idiosyncratic) noise. Henceforth, we denote by hj

the eigenvector associated with `j. Throughout, we assume m and K to be fixed even as p

and N diverge to infinity. Moreover, denote by n = N −m the effective sample size. The
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spiked covariance model has been extensively studied in the context of high-dimensional

principal components analysis (PCA) (Johnstone, 2001; Baik and Silverstein, 2006; Paul,

2007; Onatski, 2012; Paul and Aue, 2014; Johnstone and Paul, 2018).

In classical multivariate analysis, such problems are typically addressed within the

framework of likelihood ratio tests (LRT) (see Section 2.1). The LRT test statistic is

computed based on the maximum likelihood estimates of Σp under the null and alternative

hypotheses, given that p < n. The LRT performs well when n is much larger than p. How-

ever, when p is comparable to (but smaller than) n, the MLEs are inconsistent causing the

performance of the LRT to deteriorate. Moreover, the computation of the null distribution

of the LRT requires complex analytic approximations that are feasible only in moderate

dimensions (He et al., 2021).

To the best of our knowledge, the question of linear hypothesis testing in such high-

dimensional latent factor regression models is relatively unexplored in the statistical litera-

ture. The main focus of this paper is to demonstrate that significant performance enhance-

ments over LRT can be made by implementing appropriate regularization that takes into

account both the spiked covariance structure and the dimensionality of the response. The

major goal here is to address the testing problem involving linear functions of the regression

coefficients when the dimension p of the response and the number of observations N are of

comparable size, so that p/N → γ ∈ (0,∞) as N →∞.

To position our work in the literature, the question of testing general linear hypothesis

has been explored when in (1.1), the response has an arbitrary covariance matrix Σp. In the

special case of two-sample tests, in a seminal work, Bai and Saranadasa (1996) proposed to

replace Σ̂Full (unrestricted MLE of Σp; see Section 2.1 for details) with the identity matrix

Ip. Significant extensions were proposed by Chen and Qin (2010). In the past few years,
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the general linear hypothesis problem has also been studied. For example, Bai et al. (2013)

corrected the scaling of the LRT when m (rank of X) and q (number of hypotheses) are

proportional to p (dimension of the responses). Li et al. (2020a) and Li et al. (2020b)

addressed the problem by applying spectral shrinkage to Σ̂Full. He et al. (2021) proposed

to reduce the dimensionality of the response and then apply a corrected likelihood ratio

test on the reduced observations.

When the covariance of the response Σp has spiked eigenvalues, to the best of our

knowledge, the linear hypothesis problem is only studied in the literature for the special

case of two-sample tests. Aoshima and Yata (2018) suggested applying the test in Bai

and Saranadasa (1996) when the spikes are mild (`1 = o(
√
p)). When the spikes are

strong (lim infp→∞ `1/
√
p > 0), they proposed a test by projecting the responses onto the

estimated eigensubspace associated with the idiosyncratic noise. A similar approach was

taken by Wang and Xu (2018).

The testing problem (1.3) has not been studied in its fully generality when Σp has

spiked eigenvalues. In particular, the presence of such structures opens up the possibility

of adopting regularization schemes to mitigate the effects of high dimension, which is the

central topic here. The main contribution of this paper is to propose a class of rotationally

invariant regularized tests, introduced in Section 2, for the general linear hypothesis (1.3)

under model (1.1)–(1.2), when the response dimension p and sample size N are comparable.

We then investigate the power characteristics of the tests under a class of local alternatives

in Section 3 and choose the regularization parameter using decision-theoretic principles

with the aim of maximizing the local power in Section 4.

Note that the proposed tests, like most of the well-known classical tests for linear

hypotheses including the likelihood ratio test, are rotationally invariant. Indeed, invariance

5



with respect to a group action as a guiding principle for designing statistical tests has a long

and successful history. For a comprehensive discussion see Eaton and George (2021). A

particularly desirable feature of rotationally invariant tests is that they do not depend on the

coordinate system. This is in contrast with some other principles such as sparsity. Under

the spiked covariance model, it also implicitly conducts dimension reduction by reducing the

analytical properties of the test to that of a lower dimensional object, namely the spiked

eigenvalues, the variance associated with the background noise, and certain projections

of the spiked eigenvectors. Moreover, when there is a large-number of coordinates with

small-sized signals, the proposed tests have the benefit of combining information across

coordinates.

The finite sample properties of the proposed test are discussed in Section 5, where we

report empirical performance of the tests through a simulation study, and in Section 6,

where we apply the proposed test to a Human Connectome Project data set. In Section 7,

we discuss the possibility of generalizations to non-Gaussian data. Additional details of the

simulation study and proofs of the main results are deferred to a Supplementary Material.

2 Testing general linear hypothesis

In this section, we first present a classical ANOVA decomposition of the total variability

in the response under the unrestricted model when the observation error has arbitrary

covariance that forms the backbone of classical inference procedures including the likelihood

ratio test. Next, we propose a family of regularized tests that is built upon the structure

of the classical testing procedure, but uses alternative scaling strategies for measuring the

departure from the null hypothesis. This proposal also takes into account the factor model

structure (1.2). Throughout, we assume that K, the number of latent factors, is known.
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Data-driven selections of K are discussed in Section S.3 of the Supplementary Material.

Define the residual covariance matrix under the full model and the hypothesis sums of

squares and cross-products matrix, respectively, as

SFull =
1

n
Y(IN −XT (XXT )−1X)YT and SH =

1

n
YQNQ

T
NYT , (2.1)

where QN = XT (XXT )−1C[CT (XXT )−1C]−1/2. Note that QNQ
T
N is the projection matrix

onto the space of the null hypothesis and SH quantifies the degree of departure of the

observations from the null hypothesis. The residual covariance matrix under the reduced

model H0 : BC = 0 can be defined following the additive relationship SRed = SFull + SH.

Note that (n/N)SFull and (n/N)SRed are, respectively, MLEs of Σp under the full model

and the reduced model when Σp is unrestricted and allowed to be a general nonnegative

definite matrix. Moreover, T0 = log[det(SRedS
−1
Full)] is the log-likelihood ratio test statistic,

and T0 has an asymptotic χ2 limit under the null hypothesis when n � p (see Fujikoshi

(2016) for details). The matrix SRedS
−1
Full can be seen as a generalized F -ratio statistic

measuring the relative magnitude of the “regression sum-of-squares-and-product” matrix

SRed and the “within sample variance” matrix SFull.

Classical methods such as the likelihood ratio test described above perform well when n

is much larger than p. However, when p is comparable to n, the MLE of Σp is inconsistent

even under the correct factor structure. Consequently, the performance of the LRT for

unrestricted Σp and for factor models (see Section 2.1) suffer from poor power properties.

2.1 LRT under factor model

In this subsection, we describe a version of the likelihood ratio test (LRT) that takes into

account the structure of Σp imposed by (1.2). Let τ1 ≥ · · · ≥ τp ≥ 0 be the ordered
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eigenvalues of SFull and pj’s be the associated eigenvectors. Further, let α1 ≥ · · · ≥ αp ≥ 0

be the ordered eigenvalues of SRed and qj’s be the associated eigenvectors. Define

σ̃2
Full =

1

p−K

p∑
j=K+1

τj,

σ̃2
Red =

1

p−K

p∑
j=K+1

αj.

Note that, after the scaling of (n/N), τj’s, pj’s and σ̃2
Full, respectively, are the MLEs of `j’s,

hj’s and σ2 under the full model. Correspondingly, after the scaling of (n/N), αj’s, qj’s

and σ̃2
Red are the MLEs under the reduced model. Further, define

Σ̂Full =
K∑
j=1

τjpjp
T
j + σ̃2

Full

p∑
j=K+1

pjp
T
j , (2.2)

Σ̂Red =
K∑
j=1

αjqjq
T
j + σ̃2

Red

p∑
j=K+1

qjq
T
j . (2.3)

Then, the MLE of Σp are (n/N)Σ̂Full and (n/N)Σ̂Red, respectively, under the full model and

the reduced model H0 : BC = 0, when Σp = DDT + σ2Ip. For more details see Anderson

and Rubin (1956). The log-likelihood ratio test statistic for the hypothesis (1.3) is then

TLRT = log det(Σ̂RedΣ̂
−1
Full). (2.4)

The χ2-approximation of the LRT, derived under the fixed-dimensional setting, involves

rejecting the null hypothesis at asymptotic level α if NTLRT > χ2
1−α(pq), where χ2

1−α(pq)

is the 1 − α upper quantile of the χ2 distribution with pq degrees of freedom. He et al.

(2021) indicate that the χ2-approximation fails when the dimension p is comparable to the

effective sample size n = N −m.
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2.2 Regularized tests

Our proposal is built upon the observation that the likelihood ratio statistic in the general

setting can be expressed as T0 = log det(Iq + SHS−1
Full). Note that the classical testing

procedures for H0 are all based on appropriate linear functionals of the eigenvalues of the

matrix SHS−1
Full. Here, SH captures the signal magnitude, i.e., the degree of departure from

the null hypothesis, while S−1
Full is an estimator of Σ−1

p , which sets the scale of individual

coordinates. However, in high-dimensional regimes, S−1
Full either does not exist or is a poor

estimator of Σ−1
p . Therefore, we replace S−1

Full with a regularized version. Specifically, our

approach is to exploit the factor model structure (1.2) to come up with a flexible class of

“scaling matrices” that replace S−1
Full in the test statistics with

Ω(Λ) =
K∑
j=1

λjpjp
T
j + λ0Ip, (2.5)

where pj is the eigenvector corresponding to the j-th largest eigenvalue of SFull and Λ =

(λ0, λ1, . . . , λK) ∈ R+ × RK is a vector of regularization parameters. Note that we do

not restrict the λj’s to be nonnegative. Indeed, setting λj = −λ0, j = 1, . . . , K, leads to

Ω(Λ) = λ0(Ip−
∑K

j=1 pjp
T
j ) and the resulting test statistic involves projecting SH onto the

estimated eigensubspace associated with the idiosyncratic noise. The proposals of Aoshima

and Yata (2018) and Wang and Xu (2018) are along this line.

The regularized replacement of SHS−1
Full is SHΩ(Λ). For mathematical convenience, we

work with the symmetrized version,

M(Λ) =
1

p
QT
NYTΩ(Λ)YQN , (2.6)

since M(Λ) has the same nonzero eigenvalues as (p/n)SHΩ(Λ) by (2.1). Note that, the
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scaling factor 1/p in the expression of M(Λ) is to assure the elements of the matrix are

neither diverging nor vanishing as p, n goes to infinity simultaneously at the same rate.

We propose three families of statistics

T LR
0 (Λ) = log

[
det(Iq + M(Λ))

]
, T LH

0 (Λ) = Tr
[
M(Λ)

]
,

TBNP
0 (Λ) = Tr

[
M(Λ){Iq + M(Λ)}−1

]
,

that generalize the classical likelihood ratio (LR), Lawley–Hotelling trace (LH) and Bartlett–

Nanda–Pillai’s normalized trace (BNP) tests.

The proposed families of tests are rotation-invariant, which means if an orthogonal

transformation is applied to the observations, the test statistics remain unchanged. It is a

desirable property in the absence of other structural constraints such as sparsity. Moreover,

even though under a high-dimensional regime the sample eigenvectors pj’s are biased, the

proposed tests only involve projection to a lower dimensional space which is a good proxy

of its population counterpart as shown in Section 3.

The proposed test statistics are also connected with the LRT (2.4) under the factor

model since the matrices Ω(Λ) have the same eigen-subspace as Σ̂Full. Indeed, M(Λ) is

expressible as a weighted sum of the projections of the signal-bearing component of the

response Y (in reference to H0) onto the eigensubspaces of Σ̂Full, while the regularization

parameters Λ act as weights.

3 Asymptotic analysis

In this section, we first introduce some results in the Random Matrix Theory literature in

Section 3.1 associated with a spiked covariance model. The asymptotic null distribution
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of the proposed tests is derived in Section 3.2. In Section 3.3, we compute the asymptotic

power of the proposed tests under a class of local alternatives. In Section 3.4, we derive

empirically normalized tests and determine their critical values at any significance level.

Besides Assumptions (a)–(g) stated in Section 1, the following assumptions are made.

A1 Asymptotic regime: n, p → ∞ simultaneously such that γn = p/n → γ ∈ (0,∞)

and
√
n|γn − γ| → 0.

A2 Significant spike: The number of spikes K is fixed, and `1 > · · · > `K are fixed as

n, p→∞, and all spikes are significant in the sense that `K > σ2(1 +
√
γ).

A3 Asymptotically full rank: X is of full rank and n−1XXT converges to a positive

definite m×m matrix.

A4 Asymptotically estimable: lim infn→∞ ρmin(CT (n−1XXT )−1C) > 0, where ρmin(·)

is the smallest eigenvalue of a symmetric matrix.

Condition A1 indicates that the dimensions of the response and sample size grow at

the same rate. The o(n−1/2) convergence rate of γn to γ is a technical condition needed

to ensure the distributional convergence of the appropriately normalized test statistics.

Condition A2 guarantees that the spiked eigenvalues are detectable from the observed

data. Condition A3 is used to eliminate any redundancy in the specification of the model.

Condition A4 is to ensure that the parameter of interest BC is estimable.

3.1 Asymptotics of eigenvalues and eigenvectors of Σ̂Full

In this subsection, we present an important result on the behavior of the eigenvalues and

eigenvectors of the MLE Σ̂Full of the covariance matrix under the spiked model (1.1)–(1.2).

Since the eigensubspaces of Ω(Λ) and Σ̂Full are the same, these results have a direct bearing
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on the asymptotic behavior of the proposed tests. First we define two auxiliary functions

ψ(x, γ) = x+
γx

x− 1
, x ∈ (1,∞); ζ(x, γ) =

[1− γ/(x− 1)2

1 + γ/(x− 1)

]1/2

, x ∈ [1 +
√
γ, ∞). (3.1)

The following theorem combines results in Paul (2007), Onatski (2012) and Passemier et al.

(2017). Let
a.s.−→ denote almost sure convergence and =⇒ weak convergence.

Theorem 3.1 Suppose that Model (1.1)– (1.2), Conditions (a)–(g) and A1–A3 hold.

(1) The leading sample eigenvalues are biased upwards as follows:

τj
a.s.−→ σ2ψ(`j/σ

2, γ) = `j +
γ`j

`j/σ2 − 1
, j = 1, . . . , K. (3.2)

(2) The angle between a sample eigenvector and a population eigenvector is such that

|〈pj,hi〉| = |pTj hi|
a.s.−→ 10(j − i)ζ(`j/σ

2, γ), 1 ≤ i, j ≤ K,

where 10(x) = 1 if x = 0 and 10(x) = 0 otherwise.

(3) The following decomposition of pj holds. Recall HK = [h1, · · · ,hK ]. Denote H⊥ to be

the orthogonal complement of HK. We have

pj = wjhj +
1√
n
wjHKvj +

√
1− w̃2

j H⊥uj, j = 1, . . . , K, where (3.3)

(i) vj is a K-variate random vector such that

vj =⇒ N (0,Σj(`j)), where Σj(`j) =
(`j/σ

2 − 1)2

(`j/σ2 − 1)2 − γ
∑

1≤i 6=j≤K

`i`j
(`i − `j)2

oio
T
i .

Here, oi is the ith canonical vector of dimension K with 1 in the ith coordinate and
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0 elsewhere.

(ii) wj = ζ(`j/σ
2, γn) +Op(n

−1/2).

(iii) w̃j is such that

w̃2
j = w2

j (1 +
2√
n
vjj +

1

n
‖vj‖2),

where vjj is the j-th element of vj. Without loss of generality, we can set w̃j ≥ 0.

w̃j = wj +Op(n
−1/2) = ζ(`j/σ

2, γn) +Op(n
−1/2).

(iv) uj is a (p−K)-variate random vector following the uniform distribution on the unit

(p−K − 1)-sphere.

(4) The MLE σ̃2
Full of noise variance is biased downwards as

p−K
σ2
√

2γ

(
σ̃2

Full − σ2
)

+ b(σ2) =⇒ N (0, 1), b(σ2) =
√

(γ/2)
{
K +

K∑
j=1

(`j/σ
2 − 1)−1

}
.

Theorem 3.1 shows that τj and pj are biased systematically and σ̃2
Full underestimates

σ2. Furthermore, (3.3) gives a characterization of the bias in the sample eigenvector pj as

an estimator of hj. Here, we assume without loss of generality that 〈pj,hj〉 > 0.

3.2 Asymptotic null distribution

In this subsection, we first present a useful representation of the matrix M(Λ) under the

null hypothesis for any fixed Λ. Denote L = diag(`1, . . . , `K) and Λ+ = diag(λ1, . . . , λK).

Further, define ζj = ζ(`j/σ
2, γn) with γn = p/n, and Ψ1 = diag(ζ1, . . . , ζK), Ψ2 =

diag
(√

1− ζ2
1 , . . . ,

√
1− ζ2

K

)
.
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Theorem 3.2 (Representation of M(Λ)) Suppose that Model (1.1)–(1.2) ,Conditions

(a)–(g) and A1–A4 hold. Then, for any fixed Λ, under H0 : BC = 0,

M(Λ) = M1(Λ) + M2(Λ) + Op(n
−3/2), where (3.4)

M1(Λ) =
1

p
VT

1 (λ0IK + Λ+Ψ2
1)LV1 +

σ2

p
VT

2 (λ0IK + Λ+Ψ2
2)V2 (3.5)

+
σ

p
VT

1 Λ+Ψ1Ψ2L
1/2V2 +

σ

p

(
VT

1 Λ+Ψ1Ψ2L
1/2V2

)T
,

M2(Λ) =
σ2λ0

p
VT

3 V3. (3.6)

Here, V1, V2 and V3 are, respectively, K×q, K×q and (p−2K)×q independent matrices

with i.i.d. N(0, 1) entries. Notably, M1(Λ) is independent of M2(Λ).

Corollary 3.1 (First and second moments of M(Λ)) Suppose that Model (1.1)–(1.2)

and Conditions (a)–(g) and A1–A4 hold. Denote the (i, j)-th element of M(Λ) as mij(Λ).

E[mij(Λ)] = 10(i− j){Θ1p(Λ) + O(n−3/2)},

Var[mij(Λ)] =
1 + 10(i− j)

p
Θ2p(Λ) + O(n−5/2),

Cov[mij(Λ),mi′j′(Λ)] = O(n−5/2), if i 6= i′ or j 6= j′, where,

Θ1p(Λ) =
1

p

K∑
j=1

λj[ζ
2
j `j + (1− ζ2

j )σ2] +
λ0

p

( K∑
j=1

`j + (p−K)σ2
)
,

Θ2p(Λ) =
1

p

K∑
j=1

[
λ2
j{ζ2

j `j + (1− ζ2
j )σ2}2 + 2λ0λj{ζ2

j `
2
j + (1− ζ2

j )σ4}
]

+
λ2

0

p

( K∑
j=1

`2
j + (p−K)σ4

)
.

We then derive the asymptotic null distribution of M(Λ) when n, p→∞ simultaneously

as in Condition A1. We use W = [wij]
q
i,j=1 to denote the Gaussian Orthogonal Ensemble
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(GOE) characterized by (1) wij = wji; (2) wii ∼ N (0, 1), wij ∼ N (0, 1/2), i 6= j; (3) wij’s

are jointly independent for 1 ≤ i ≤ j ≤ q.

Theorem 3.3 (Asymptotic null distribution of M(Λ)) Suppose that Model (1.1)–(1.2),

Conditions (a)–(g) and A1–A4 hold. Then, for any fixed Λ with λ0 6= 0, under H0 : BC =

0, we have

M1(Λ) = Op(1/p) and

√
p{M2(Λ)−Θ0

1p(Λ)Iq}

{2Θ0
2p(Λ)}1/2

=⇒W,

where Θ0
1p(Λ) = (1− 2(K/p))λ0σ

2 and Θ0
2p(Λ) = (1− 2(K/p))λ2

0σ
4. Consequently,

√
p{M(Λ)−Θ1p(Λ)Iq}

{2Θ2p(Λ)}1/2
=⇒W.

The following corollary follows immediately from Theorem 3.3 and the δ-method.

Corollary 3.2 Suppose that Model (1.1)–(1.2), Conditions (a)–(g) and A1–A4 hold. Then,

for any fixed Λ with λ0 6= 0, under H0 : BC = 0, the appropriately normalized versions of

T LR
0 (Λ), T LH

0 (Λ) and TBNP
0 (Λ) are asymptotically normal:

T LR(Λ) :=

√
p{1 + Θ1p(Λ)}
{2qΘ2p(Λ)}1/2

[
T LR

0 (Λ)− q log{1 + Θ1p(Λ)}
]

=⇒ N (0, 1),

T LH(Λ) :=

√
p

{2qΘ2p(Λ)}1/2

[
T LH

0 (Λ)− qΘ1p(Λ)
]

=⇒ N (0, 1), (3.7)

TBNP(Λ) :=

√
p{1 + Θ1p(Λ)}2

{2qΘ2p(Λ)}1/2

[
TBNP

0 (Λ)−
qΘ1p(Λ)

1 + Θ1p(Λ)

]
=⇒ N (0, 1).

Remark 3.1 Theorem 3.2 indicates that for finite n and p the distribution of the eigen-

values of M(Λ) is skewed, especially when λ0 is relatively small compared to the elements

of Λ+. Indeed, the eigenvalues of M1(Λ) have the same distribution as the non-zero eigen-

15



values of a mixture of Wishart matrices of degrees of freedom K, resulting in a skewness

in the null distributions of the proposed test statistics.

3.3 Power under local alternatives

In this subsection, we investigate the power characteristics of the proposed regularized tests

under a class of local alternatives. The alternatives are selected such that the asymptotic

power under which is non-trivial and can be decomposed into the contributions of the signal

BC projected onto eigen-subspaces of the latent factors (spikes) and the idiosyncratic noise.

The results presented here hold true for all three types of tests, namely, T LR(Λ), T LH(Λ)

and TBNP(Λ). Hence, we use the unifying notation T (Λ) and denote the power function of

T (Λ) with critical value ξ, given BC, as Υ(BC,Λ) = P(T (Λ) > ξ|BC).

Recall HK = [h1, · · · ,hK ] are the spiked eigenvectors of Σp (1.2). Denote

π̃j =
√
nhTj BCR−1

n CTBThj, j = 1, . . . , K,

π̃0 =
√
nTr[(I −HKHT

K)BCR−1
n CTBT ],

(3.8)

where Rn = CT (n−1XXT )−1C. Note that BCR
−1/2
n is the noncentrality parameter of YQN

when BC is nonzero, π̃j (1 ≤ j ≤ K) represents the
√
n-scaled signal strength associated

with the subspace corresponding to the j-th eigenvector hj of Σp, and π̃0 is the
√
n-scaled

contribution of the signal strength associated with the subspace orthogonal to the spiked

eigenvectors. Thus, π̃0 can be seen as the scaled contribution to the signal strength by the

subspace associated with the idiosyncractic noise in (1.2). Clearly, π̃j ≥ 0 for all j.

To achieve non-trivial asymptotic power, we consider the sequence of BC to be local in

the sense that

π̃j → πj, j = 0, 1, . . . , K, as n→∞, (3.9)
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where πj’s are finite, nonnegative deterministic constants. Notice that it implies that

Tr[BCR−1
n CTBT ] = O(1/

√
n). Let Π = (π0, π1, . . . , πK).

Theorem 3.4 (Asymptotic power under local alternatives) Suppose that Model (1.1)–

(1.2) ,Conditions (a)–(g) and A1–A4 hold. If under Ha, BC satisfies (3.9), then the power

of the test T (Λ) satisfies

Υ(BC,Λ)− Φ
(
− ξ +

H(Λ, γn; Π)

{2γnqΘ2p(Λ)}1/2

)
−→ 0, where (3.10)

H(Λ, γn; Π) =
K∑
j=1

πjλjζ
2(`j/σ

2, γn) + λ0

K∑
j=0

πj. (3.11)

3.4 Empirically normalized tests and critical values

In order to make use of the normalized test statistics given in Corollary 3.2, we need

consistent estimators of Θ1p(Λ) and Θ2p(Λ). In Algorithm 1, we first propose consistent

estimators of `j and σ2 by adjusting for the bias in the MLEs τj and σ̃2
Full presented

in Theorem 3.1. We then use these estimates through a simple plug-in strategy to get

estimators of Θ1p(Λ) and Θ2p(Λ).

Algorithm 1 (Adjusted estimation of spikes and noise variance)

Step 1 Utilizing (3.2), calculate a first-iteration estimator of `j, say ˆ̀ (1)
j , by solving

the following equation

τj = σ̃2
Fullψ(ˆ̀ (1)

j /σ̃2
Full, γn) = ˆ̀ (1)

j

(
1 +

γn
ˆ̀ (1)
j /σ̃2

Full − 1

)
,

with γn = p/n. The equation has two real-valued roots if τj/σ̃
2
Full ≥ (1 +

√
γn)2 and

two complex-valued roots if otherwise. Take ˆ̀ (1)
j = max{Re(r1),Re(r2)}, where r1
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and r2 are the two roots of the above equation and Re(r) is the real part of r.

Step 2 Denote b0 = K +
∑K

j=1(σ̃−2
Full

ˆ̀ (1)
j − 1)−1. The adjusted estimator of σ2 is

σ̂2 = σ̃2
Full

(
1 +

γnb0

p−K

)
. (3.12)

Notably, σ̂2 is the bias-corrected estimator of σ2 proposed by Passemier et al. (2017).

Step 3 Replace σ̃2
Full with σ̂2 and repeat Step 1 to solve for the second-iteration

estimator ˆ̀ (2)
j of `j. In case τj/σ̂

2 < (1 +
√
γn)2, set ˆ̀ (2)

j = σ̂2(1 +
√
γn) which is the

proposed adjusted estimator of `j. For simplicity, we shall use ˆ̀
j to denote ˆ̀ (2)

j .

The following proposition describes consistency of the adjusted estimators, while (3.13)

is proved in Passemier et al. (2017).

Proposition 3.1 Suppose that (1.1)– (1.2), Conditions (a)–(g) and A1–A4 hold. Then,

p−K
σ2
√

2γn
(σ̂2 − σ2) =⇒ N (0, 1), (3.13)

ˆ̀
j − `j = Op(n

−1/2), for j = 1, . . . , K. (3.14)

We then construct plug-in estimators of Θ1p(Λ) and Θ2p(Λ), denoted by Θ̂1p(Λ) and

Θ̂2p(Λ), through substituting `j’s and σ2 in their definitions (Corollary 3.1) by the adjusted

estimators ˆ̀
j’s and σ̂2, respectively.

Proposition 3.2 Suppose that (1.1)– (1.2), Conditions (a)–(g) and A1–A4 hold. Then,

Θ̂1p(Λ)−Θ1p(Λ) = Op(n
−1),

Θ̂2p(Λ)−Θ2p(Λ) = Op(n
−1).
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The empirically normalized tests are denoted by T̂ LR(Λ), T̂ LH(Λ), and T̂BNP(Λ), where

Θ1p(Λ) and Θ2p(Λ) are replaced by Θ̂1p(Λ) and Θ̂2p(Λ) in (3.7). Proposition 3.2 indicates

that with the empirically normalized tests, both the asymptotic normality under the null

hypothesis (Theorem 3.3) and power characteristics (Theorem 3.4) still hold.

Theorem 3.2, Corollary 3.2 and Proposition 3.2 suggest two ways of determining the

critical values for any of the proposed tests at a given significance level α.

1. Asymptotic normal quantiles: The null hypothesis is rejected at asymptotic level α, if

T̂ (Λ) > ξ(α), where ξ(α) is the (1− α) quantile of the standard normal distribution.

2. Parametric bootstrapped quantiles: With estimated L, Ψ1 and Ψ2 replacing the true

quantities in (3.5) and (3.6), we obtain bootstrap replicates of M1(Λ) + M2(Λ) by

generating V1, V2, V3 as independent matrices of i.i.d. N(0, 1) entries. We then

approximate the null distribution of T̂ (Λ) by replacing M(Λ) with bootstrapped

M1(Λ) + M2(Λ). The null hypothesis is rejected at asymptotic level α if T̂ (Λ) >

ξboot(α), where ξboot(α) is the (1− α) quantile of the bootstrap samples of T̂ (Λ).

Both procedures require consistent estimators of `j’s and σ2
0, presented in Section 3.4.

Simulation studies suggest that normal quantiles lead to well controlled empirical sizes

when λ0 is comparable to λj’s, j ≥ 1. When λ0 is relatively small, due to pronounced

skewness of the sampling distributions of the regularized test statistics, the parametric

bootstrap procedure provides better approximations to the null distributions.

4 Selection of regularization parameter

Our objective in this section is to propose a data-driven choice for the regularization pa-

rameter Λ, under a class of local alternatives as described in Section 3.3, that leads to
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nontrivial local power. Here, the guiding principle is to select the minimax test among the

class of tests {T (Λ) : Λ ∈ R+ × RK}. Note however that we are not aiming to derive the

optimal test among all possible tests. For this purpose, we rely on the expression of the

local power in terms of the vector Π = (π0, π1, . . . , πK), as stated in Theorem 3.4. Note

that the proposed tests have the same asymptotic power under any two sequences of alter-

natives that lead to the same Π. Consider all alternatives with the same overall limiting

signal strength such that
∑K

j=0 πj = lim
√
nTr[BCR−1

n CTBT ] = 1. Therefore, with the

normalization
∑K

j=0 πj = 1, we can treat Π as an equivalence class of priors on the param-

eter space. This interpretation is helpful since it allows us to borrow the techniques from

classical decision theory, in terms of deriving a minimax procedure as a Bayes procedure

under a least favorable prior corresponding to an associated Bayes risk.

The following results hold equally for T̂ LR(Λ), T̂ LH(Λ) and T̂BNP(Λ). The unifying

notation T̂ (Λ) is used to refer to any of the test statistics. Notice that T̂ (Λ) = T̂ (Λ/‖Λ‖2)

for any non-zero Λ. Therefore, for the purpose of selecting Λ, it suffices to restrict Λ to the

set S = {d ∈ RK+1 : ‖d‖2 = 1}.

For each equivalence class of prior Π, the associated (Bayes) risk is defined as the

asymptotic Typer II error rate under the corresponding alternatives.

Definition 4.1 (Risk) Consider a proposed test δ(α,Λ) = 1(T̂ (Λ) > ξ(α)) at asymptotic

level α where ξ(α) is the critical value at level α determined as in Section 3.4. Given the

prior Π, we define its Bayes risk function corresponding to the prior Π as

Rp(δ(α,Λ),Π) = 1− Φ
(
− ξ(α) +

H(Λ, γn; Π)

{2γnqΘ2p(Λ)}1/2

)
. (4.1)

Definition 4.2 (Bayes procedure) Given the prior Π, a proposed test δ(α,ΛB(Π)) =

1(T̂ (ΛB(Π)) > ξ(α)) at asymptotic level α is said to be the Bayes test with respect to Π, if
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the minimum of Rp(δ(α,Λ),Π) is obtained at ΛB(Π). We call ΛB(Π) the Bayes selection

of Λ ∈ S with respect to prior Π, i.e.,

ΛB(Π) = arg min
Λ∈S

Rp(δ(α,Λ),Π) = arg max
Λ∈S

H(Λ, γn; Π)

Θ
1/2
2p (Λ)

. (4.2)

Proposition 4.1 For a given Π, the Bayes selection of Λ is

ΛB(Π) =
Λ̃B

‖Λ̃B‖2

, where Λ̃B = G−1b(Π), (4.3)

with G and b(Π) defined as

b(Π) = (
K∑
j=0

πj, ζ
2
1π1, . . . , ζ2

KπK)T ,

a =
(1

p
{ζ2

1`
2
1 + (1− ζ2

1 )σ4}, . . . ,
1

p
{ζ2

K`
2
K + (1− ζ2

K)σ4}
)T
,

J = Diag
(1

p
{ζ2

1`1 + (1− ζ2
1 )σ2}2, . . . ,

1

p
{ζ2

K`K + (1− ζ2
K)σ2}2

)
,

G =

 c aT

a J

 , with c =
1

p

K∑
j=1

`2
j +

p−K
p

σ4.

The risk at the Bayesian selection ΛB(Π), henceforth referred to as the optimal Bayes

risk with respect to Π, is

Rp(δ(α,ΛB(Π)),Π) = 1− Φ
(
− ξ(α) +

1

(2γnq)1/2

[
bT (Π)G−1b(Π)

]1/2)
. (4.4)
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4.1 Minimax selection of Λ

Consider a family of priors Π as

P(%) =
{

Π:
K∑
j=0

πj = 1, 0 ≤ π0 ≤ %, and 0 ≤ πj ≤ 1, j = 1, . . . , K
}
,

where % is the maximum fraction of the signal strength associated with the orthogonal

complement to the subspace of spiked eigenvectors (i.e., associated with the idiosyncratic

noise). The user-specified parameter % can be seen as a hyperparameter that imposes

restrictions on the class of alternatives. A larger value of % leads to a bigger class of

alternatives, and the value % = 1 makes the class of alternatives unrestricted in terms of

how much of the signal resides in the subspace associated with idiosyncratic noise.

Definition 4.3 (Minimax selection) For a given 0 < % ≤ 1, a proposed test δ(α,Λ∗(%)) =

1(T̂ (Λ∗(%)) > ξ(α)) at asymptotic level α is said to be minimax within the class {δ(α,Λ): Λ ∈

S} with respect to the prior family P(%) if the minimum value of maxΠ∈P(%) Rp(δ(α,Λ),Π)

is obtained at Λ∗(%), that is, Λ∗(%) = arg minΛ∈S maxΠ∈P(%) Rp(δ(α,Λ),Π). We call Λ∗(%)

the minimax selection of Λ ∈ S with respect to P(%).

Using Sion’s Minimax Theorem (Sion, 1958), we have the following proposition.

Proposition 4.2 For a given 0 < % ≤ 1, the minimax risk is obtained at (Λ∗(%),Π∗(%)),

where Π∗(%) is the least favorable prior defined as Π∗(%) = arg maxΠ∈P(%) minΛ∈S Rp(δ(α,Λ),Π).

And the minimax selection Λ∗(%) is the Bayes selection with respect to Π∗(%), i.e., Λ∗(%) =

ΛB(Π∗(%)) = arg minΛ∈S Rp(δ(α,Λ),Π∗(%)).

Proposition 4.2 suggests that to solve for the minimax selection Λ∗(%), we could first find

the least favorable prior Π∗(%). Λ∗(%) is then the Bayes selection with respect to Π∗(%). A

22



detailed proof is presented in the Supplementary material. Motivated by this, and using

(4.4), we have the following algorithm.

Algorithm 2 (Minimax selection of Λ) Given 0 < % ≤ 1:

Step 1. Least favorable prior: The least favorable prior Π∗(%) is the solution of the fol-

lowing quadratic programming problem.

Minimize bT (Π)G−1b(Π) with respect to Π, subject to Π ∈ P(%). (4.5)

Step 2. Minimax selection: The minimax choice of Λ with respect to P(%) is Λ∗(%) =

ΛB(Π∗(%)), where ΛB(Π∗(%)) is the Bayes selection with respect to Π∗(%) as in (4.3).

In closing, we make the following interesting connection with a natural generalization

of the test proposed by Bai and Saranadasa (1996) in the context of two-sample test for

equality of population means. Note that the test proposed by Bai and Saranadasa (1996)

replaces the estimator of Σp by the identity matrix in the likelihood ratio test.

Proposition 4.3 The test proposed by Bai and Saranadasa (1996) is equivalent to the

minimax selection of Λ when we restrict the space of the normalized regularization parameter

Λ to be all unit vectors with nonnegative coordinates, denoted by S+ and when % = 1, so

that the space of priors Π is the entire K-dimensional unit simplex.

As a remark, the parameter space S+ excludes tests proposed by Aoshima and Yata

(2018) and Wang and Xu (2018), both of which allow negative values of λj, j = 1, . . . , K.

We present a detailed analysis of the dependence of the regularization parameter Λ on

% in Section S.2 of the Supplementary Material in the single spike (K = 1) case.
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5 Simulation study

The performance of the proposed tests is examined numerically through an extensive simu-

lation study. Due to limited sapce, we only highlight key results here and defer the detailed

simulation settings and additional results to Section S.4 of the Supplementary Material.

5.1 Empirical null distribution

The empirical null distributions of T LR are shown in Figure 5.1 – 5.3. Corresponding figures

for T LH and TBNP are included in the Supplementary Material. These figures indicate

that the null distribution of the proposed tests are robust to the noise distribution. The

distributions are mildly skewed when % is relatively large, but significantly so when % is

small.
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Figure 5.1: Empirical null distribution of T LR with % = 0.2 when (N1, N2) = (40, 60)
for the following noise settings: Normal (red solid), t(4) (blue solid), t(5) (black solid),
t(6) (purple solid). From left to right: p = 50, 200, 1000. The standard normal p.d.f.
(theoretical limiting null distribution) is depicted as black dashed line. The oracle bootstrap
null distribution when M(Λ∗) is approximated by M1(Λ∗) + M2(Λ∗) is depicted in green
dashed line.

Critical
p

% = 0.2 % = 0.5 % = 0.8
LRT

value BNP LH LR BNP LH LR BNP LH LR

ξnorm

50 3.55 6.41 4.90 2.93 5.70 4.30 2.93 5.70 4.30 8.20
200 5.82 6.79 6.28 4.54 6.22 5.38 4.23 6.02 5.08 12.8
1000 5.78 5.97 5.88 5.09 5.47 5.32 4.60 5.23 4.96 29.1

ξboot

50 4.80 4.80 4.80 4.42 4.42 4.42 4.40 4.40 4.40 8.20
200 4.68 4.68 4.68 4.84 4.84 4.84 4.80 4.80 4.80 12.8
1000 3.70 3.70 3.70 3.68 3.68 3.68 3.84 3.84 3.84 29.1

Table 5.1: Empirical Sizes ×100 at 5% nominal significance level under the normal noise
setting when (N1, N2) = (40, 60), with normal critical values ξnorm and bootstrapped critical
values ξboot, respectively.
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Figure 5.2: Same as Figure 5.1 but with % = 0.5.

The empirical sizes under the normal noise setting are shown in Table 5.1 when the

normal critical values and the bootstrapped critical values are used, respectively. The sizes

when the observational noise is student-t distributed are reported in the Supplementary

Material Tables S.4.1–Table S.4.12. These tables indicate that the empirical sizes of the

proposed tests are reasonably controlled at the significance level 5% by both methods of

choosing critical values. On the other hand, the sizes of LRT are inflated especially when p

is large. As for the comparison among T LR, T LH and TBNP, the results suggest that BNP

is more conservative in terms of type I error rate, while LH is more liberal.
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Figure 5.3: Same as Figure 5.1 but with % = 0.8.

Figure 5.4: Size-adjusted empirical power when p = 50 and (N1, N2) = (40, 60). From
left to right: πtrue

0 = 0, 0.5, 0.8, 1. LRT (Green), T LR with % = 0.2 (Red), % = 0.5 (Blue),
% = 0.8 (Black).
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5.2 Empirical power

The empirical power curves against the signal strength s are shown in Figures 5.4–5.6. To

better compare the power across different tests, we utilize the size-adjusted critical values

based on the Monte-Carlo null distribution computed on 10,000 independent replicates.

The LR, LH and BNP tests behave similarly across simulation settings, as predicted by

Theorem 3.4. So only the power of T LR(Λ) is displayed for ease of visualization.

Figures 5.4–5.6 indicate that the power of the proposed tests is not too sensitive to

the selection of %, except when πtrue
0 is large. This means that unless the signal associated

with the departure from the null hypothesis has little contribution from the leading eigen-

directions of the noise covariance matrix Σp (i.e., πtrue
0 ≈ 1), the minimax test is robust

to the choice of %. When πtrue
0 is small and for larger dimension p, the proposed tests

have significantly higher power than the LRT. On the other hand, when πtrue
0 is large, i.e.,

when a large portion of the signal is along the idiosyncratic noise eigen-directions, then

the (size-adjusted) LRT outperforms the proposed tests. However, in practice LRT is only

applicable when p� n due to the lack of an approximation of its null distribution when p

is comparable to or larger than n. Furthermore, the power of the proposed tests tends to

improve if the specified % is close to πtrue
0 .

In Section S.4.5 of the Supplementary Material, we consider two additional settings

(1) when the leading spike is diverging and (2) when there are undetectable spikes. The

settings are beyond A2. The reported results demonstrate that the proposed tests still

have reasonable power, while the empirical sizes are reasonably controlled.
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Figure 5.5: Same as Figure 5.4 but with p = 200.

Figure 5.6: Same as Figure 5.4 but with p = 1000.

6 HCP application

The NIH funded Human Connectome Project (HCP) targets the characterization of the

human connectome and its variability using cutting-edge neuroimaging technologies. As

part of HCP, a consortium led by the Washington University and University of Minnesota

aims to characterize human brain connectivity and functionality based on data collected

from N = 1113 healthy young adults and to enable detailed comparisons between brain

circuits, behavior, and genetics at the level of individual subjects. We refer to Van Essen

et al. (2013) for details. Among the publicly available data are cerebral volumetric mea-

surements and human behavior evaluation test scores. In this section, we use the proposed

tests to study the association between cerebral measurements and human behaviors, using

the aforementioned HCP young adults data.

The behavior evaluation scores belong to various behavioral domains: alertness, cog-

nition, emotion, sensory and others. The alertness domain evaluates the cognitive status

and sleep quality of the subjects based on a mental status exam and the Pittsburgh Sleep

Quality Index. The cognition domain evaluates the subjects’ cognitive abilities on vari-
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ous aspects including episodic memory, cognitive flexibility, attention control and others.

The emotion domain consists of indices of the ability to recognize emotions, psychologi-

cal well-being, social relationships, stress and self efficacy. The motor domain measures

cardiovascular endurance, manual dexterity, grip strength, and gait speed. The sensory

domain includes auditive, olfaction, taste, and vision tests. After a pre-screening process

that filters out highly correlated variables, we select 127 representative behavior variables

and study whether the cerebral measurements are related to these variables.

For the cerebral measurements, we focus on cortcial surface regions that belong to 14

cerebral lobes symmetrically located on the two brain hemispheres, and 38 subcortical

anatomy structures. Figure S.5.2 of the Supplementary Material shows part of the gyral-

based regions. We refer to Desikan et al. (2006) for details. Our analysis is on the level

of cortical lobes and subcortical structures and focuses on lobe surface area, average lobe

thickness, lobe gray-matter volume, and subcortical structure volume.

Available demographics information includes the age and gender of subjects. Specifi-

cally, the subjects are divided into four age groups, namely 22–25, 26–30, 31–35, and 36+.

The data set is roughly balanced with respect to gender (606 females and 507 males).

The foregoing leads to the multivariate regression model

yi = β0 +βT1 Di +βT2 SAi +βT3 ATi +βT4 GVi +βT5 SCi +Lfi +σei, i = 1, . . . , 1113, (6.1)

where (i) yi is the vector of 127 behavior scores of subject i ; (ii) Di are age and gender group

dummy variables of subject i (4 in total); (iii) SAi, ATi, GVi are surface area, average

thickness, gray-matter volume variables of the 14 cortical lobes of subject i (14 × 3 = 42

in total); (iv) SCi are subcortical structure volume variables (38 in total); and (v) Lfi

and σei are latent factors and idiosyncratic noise as in (1.1)-(1.2). The dimension of the
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explanatory variables (including the intercept) is m = 85, the dimension of response yi is

p = 127 and the sample size is N = 1113.

We use Method 2 (Kritchman and Nadler, 2008) described in the Supplementary

Material Section S.3.1 to determine K = 12 spikes. Figure S.5.1 shows the empirical

eigenvalues of the residual covariance matrix, estimated spike variance and estimated noise

variance with methods discussed in Section 3.4.

We test individually for the significance of the coefficients of lobe measurement variables

and subcortical variables. We consider T̂ LR(Λ) with minimax selection of Λ and two choices

of %, namely, % = 0.001 and % = 1. The reason for considering two different and extreme

values of the hyper-parameter % is to investigate robustness of its specification. Indeed,

for the estimated ˆ̀
j’s and σ̂2, under the unrestricted condition (i.e., % = 1), the minimax

selection Λ∗ is obtained at where the associated least favorable prior Π∗ is such that π∗0 =

0.014. Therefore, for % ≥ 0.014, the restriction of π0 ≤ % in P(%) is inactive. It implies

that the minimax selection Λ∗(%) is identical for 0.014 ≤ % ≤ 1 and so would be the testing

results. As a comparison, we also consider the likelihood ratio test (LRT). The p-values

for the proposed method are calculated based on the asymptotic normal distribution. The

p-values for the LRT are calculated based on χ2-approximation as described in Section 2.1.

The p-values under % = 1 and % = 0.001 for the propose method and those for the LRT are

reported in Table S.5.1. For the proposed method, the results under % = 1 and % = 0.001

are not greatly dissimilar.

Among the significant coefficients by the proposed tests at 10% level, some are associ-

ated with the volumes of left amygdala and right hippocampus. The Amygdala performs

primary roles in the formation and storage of memories associated with emotional events

(Maren, 1999). The hippocampus plays an important role in the formation of new memories
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about experienced events (Eichenbaum et al., 1993). Among the behavioral variables, there

are emotion processing tasks that may lead to activation of amygdala and hippocampus

(Barch et al., 2013). Among other significant regions, the medial temporal lobe contains

the parahippocampal and entorhinal cortices which are among the primary regions deemed

responsible for the formation of memories and spatial cognition. These cortices are anatom-

ically adjacent to, and also functionally communicates with, amygdala and hippocampus

(Koob et al., 2010).

7 Discussion

In this paper, we addressed the problem of testing general hypothesis in a high-dimensional

latent factor linear regression model. We proposed a family of regularized tests where the

signal is projected onto the estimated latent factor directions and the weights on these

directions act as regularization parameters. We studied their asymptotic null distributions

and the asymptotic power under a class of local alternatives. Taking this approach further,

we established a minimax criterion to select the regularization parameters by considering

an ensemble of priors.

Our asymptotic results rely on the Gaussianity mainly because that the decomposition

of the leading eigenvectors as in (3.3) of Theorem 3.1 is known to be valid for Gaussian

data in the literature, e.g., Paul (2007) and Onatski (2012), since Gaussianity encapsulates

a rotational invariance of the sample eigenvector. This invariance enables a transparent

asymptotic representation of the sample eigenvector associated with a spiked sample eigen-

value when the corresponding population eigenvalue is above the phase transition threshold.

Behaviors of both the spiked eigenvalues and the associated eigenvectors in non-Gaussian

settings have been studied in Bai and Yao (2008), Benaych-Georges and Nadakuditi (2012),
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Shi (2013), Bloemendal et al. (2016) and Bao et al. (2020). For non-Gaussian spiked mod-

els, Shi (2013) showed that when the first four moments of the data match the Gaussian

case, the second-order fluctuations of both spiked sample eigenvalues and certain projec-

tions of the associated sample eigenvectors also match the Gaussian case. Recently, Bao

et al. (2020) proved that 〈a,pj〉, for an arbitrary unit vector a, can be expressed up to sec-

ond order as a quadratic functional of a fixed number of asymptotically Gaussian random

variables. Moreover, if the first four moments of the observations match the Gaussian case,

the limiting behavior of 〈a,pj〉 mathes the Gaussian case. This mean that the behavior

of sample spiked eigenvalues as well as linear functionals of the corresponding eigenvec-

tors is similar to that in the Gaussian case up to the second order and suggests that the

conclusions in this paper are likely to hold in non-Gaussian settings.

Supplementary material

Supplementary Material includes detailed proofs of the main theoretical results, additional

details of the procedure and of the simulation study and real data application.
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