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Abstract

We consider the problem of testing linear hypotheses under a multivariate re-
gression model with a high-dimensional response and spiked noise covariance. The
proposed family of tests consists of test statistics based on a weighted sum of pro-
jections of the data onto the estimated latent factor directions, with the weights
acting as the regularization parameters. We establish asymptotic normality of the
test statistics under the null hypothesis. We also establish the power characteristics
of the tests and propose a data-driven choice of the regularization parameters under
a family of local alternatives. The performance of the proposed tests is evaluated
through a simulation study. Finally, the proposed tests are applied to the Human
Connectome Project data to test for the presence of associations between volumetric
measurements of human brain and behavioral variables.
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1 Introduction

Large dimensional factor models are ubiquitous in econometrics and various branches of
science. See, for example, Bai and Ng (2002); Bai (2003); Pesaran (2006); Price et al.
(2006); Abraham and Inouye (2014); Zheng et al. (2012); Viviani et al. (2005); Andersen
et al. (1999). In many applications, we are able to observe a group of explanatory variables
that can be treated as observed factors, while the remaining factors are latent or unobserved.
See for example, Fama and French (1992, 1993). In this paper, we are interested in testing
for effects of observed factors in the presence of latent factors. Specifically, we consider a
latent factor linear regression model with high-dimensional responses. We are interested in
testing linear hypotheses on the regression coefficients of the observed factors (predictors).
The problem is of statistical importance and can be used for many purposes, for example,
testing significance of predictors, testing of linear trends or seasonal cycles, two-sample
tests, MANOVA and others. We assume that the p-dimensional responses y;’s can be

expressed as

yvi=Bx;+e;, i¢=1,...,N, where (1.1)

sZ:Dfﬁ—ael, Z:]_,,N (12)

We make the following structural assumptions:

(a) X =[x1,...,xy] is an m X N known deterministic predictor matrix of rank m (< N);
(b) B is a p x m unknown parameter matrix;
(c) Dis a p x K unobserved matrix of loadings of rank K (< p);

(d) F=If},...,fy]is a K x N (unobserved) random matrix of independent latent factors;



(e) E=leq,...,ex]|is apx N (unobserved) random matrix of i.i.d. entries with mean 0

and variance 1;
(f) F and E are independent and normally distributed;

(g) Ef; =0, Cov(f;) = I and the matrix D7D is diagonal with distinct diagonal elements.

The condition is to ensure the identifiability of F and D (see Anderson (1958)).

We are interested in testing general linear hypotheses under (1.1)-(1.2) of the form

Hy: BC =0 against H,: BC # 0. (1.3)

Here, C is an arbitrary m x g pre-specified matrix of fixed dimensions (¢ < m), subject
to the requirement that BC is estimable. Without loss of generality, C is taken to be
of rank ¢q. With appropriate specifications of X and C, the above testing formulation
encapsulates a broad range of inferential questions, including the ones mentioned above
(1.1). For example, the two-sample test corresponds to the case when the y;’s are sampled
from two populations and B consists of the corresponding population means, while the x;’s
are group membership indicators. Of interest is to test whether the means are equal, which
can be formulated as (1.3) by selecting C = [1,—1]T, m =2, ¢ = 1.

The px 1 vectors g; = Df;+0e; represent the observational noise and has zero mean and
covariance ¥, = DD” +021,. Notice that the noise covariance ¥, has the so called “spiked
eigenvalue” structure under which the spectrum, i.e., the ordered sequence of eigenvalues of
3,, is of the form (¢4, ..., 0k, 0% -+ ,0%) where {; > - -+ > {j are the K spikes and 0*(< ()
represents the variance of background (idiosyncratic) noise. Henceforth, we denote by h;
the eigenvector associated with ¢;. Throughout, we assume m and K to be fixed even as p

and N diverge to infinity. Moreover, denote by n = N — m the effective sample size. The



spiked covariance model has been extensively studied in the context of high-dimensional
principal components analysis (PCA) (Johnstone, 2001; Baik and Silverstein, 2006; Paul,
2007; Onatski, 2012; Paul and Aue, 2014; Johnstone and Paul, 2018).

In classical multivariate analysis, such problems are typically addressed within the
framework of likelihood ratio tests (LRT) (see Section 2.1). The LRT test statistic is
computed based on the maximum likelihood estimates of 3, under the null and alternative
hypotheses, given that p < n. The LRT performs well when n is much larger than p. How-
ever, when p is comparable to (but smaller than) n, the MLEs are inconsistent causing the
performance of the LRT to deteriorate. Moreover, the computation of the null distribution
of the LRT requires complex analytic approximations that are feasible only in moderate
dimensions (He et al., 2021).

To the best of our knowledge, the question of linear hypothesis testing in such high-
dimensional latent factor regression models is relatively unexplored in the statistical litera-
ture. The main focus of this paper is to demonstrate that significant performance enhance-
ments over LRT can be made by implementing appropriate regularization that takes into
account both the spiked covariance structure and the dimensionality of the response. The
major goal here is to address the testing problem involving linear functions of the regression
coefficients when the dimension p of the response and the number of observations N are of
comparable size, so that p/N — v € (0,00) as N — oc.

To position our work in the literature, the question of testing general linear hypothesis
has been explored when in (1.1), the response has an arbitrary covariance matrix ¥,,. In the
special case of two-sample tests, in a seminal work, Bai and Saranadasa (1996) proposed to
replace 2Full (unrestricted MLE of 3,; see Section 2.1 for details) with the identity matrix

I,. Significant extensions were proposed by Chen and Qin (2010). In the past few years,



the general linear hypothesis problem has also been studied. For example, Bai et al. (2013)
corrected the scaling of the LRT when m (rank of X) and ¢ (number of hypotheses) are
proportional to p (dimension of the responses). Li et al. (2020a) and Li et al. (2020b)
addressed the problem by applying spectral shrinkage to . He et al. (2021) proposed
to reduce the dimensionality of the response and then apply a corrected likelihood ratio
test on the reduced observations.

When the covariance of the response X, has spiked eigenvalues, to the best of our
knowledge, the linear hypothesis problem is only studied in the literature for the special
case of two-sample tests. Aoshima and Yata (2018) suggested applying the test in Bai
and Saranadasa (1996) when the spikes are mild (/; = o(,/p)). When the spikes are
strong (liminf, .o ¢1/1/p > 0), they proposed a test by projecting the responses onto the
estimated eigensubspace associated with the idiosyncratic noise. A similar approach was
taken by Wang and Xu (2018).

The testing problem (1.3) has not been studied in its fully generality when X, has
spiked eigenvalues. In particular, the presence of such structures opens up the possibility
of adopting regularization schemes to mitigate the effects of high dimension, which is the
central topic here. The main contribution of this paper is to propose a class of rotationally
invariant regularized tests, introduced in Section 2, for the general linear hypothesis (1.3)
under model (1.1)—(1.2), when the response dimension p and sample size N are comparable.
We then investigate the power characteristics of the tests under a class of local alternatives
in Section 3 and choose the regularization parameter using decision-theoretic principles
with the aim of maximizing the local power in Section 4.

Note that the proposed tests, like most of the well-known classical tests for linear

hypotheses including the likelihood ratio test, are rotationally invariant. Indeed, invariance



with respect to a group action as a guiding principle for designing statistical tests has a long
and successful history. For a comprehensive discussion see Eaton and George (2021). A
particularly desirable feature of rotationally invariant tests is that they do not depend on the
coordinate system. This is in contrast with some other principles such as sparsity. Under
the spiked covariance model, it also implicitly conducts dimension reduction by reducing the
analytical properties of the test to that of a lower dimensional object, namely the spiked
eigenvalues, the variance associated with the background noise, and certain projections
of the spiked eigenvectors. Moreover, when there is a large-number of coordinates with
small-sized signals, the proposed tests have the benefit of combining information across
coordinates.

The finite sample properties of the proposed test are discussed in Section 5, where we
report empirical performance of the tests through a simulation study, and in Section 6,
where we apply the proposed test to a Human Connectome Project data set. In Section 7,
we discuss the possibility of generalizations to non-Gaussian data. Additional details of the

simulation study and proofs of the main results are deferred to a Supplementary Material.

2 Testing general linear hypothesis

In this section, we first present a classical ANOVA decomposition of the total variability
in the response under the unrestricted model when the observation error has arbitrary
covariance that forms the backbone of classical inference procedures including the likelihood
ratio test. Next, we propose a family of regularized tests that is built upon the structure
of the classical testing procedure, but uses alternative scaling strategies for measuring the
departure from the null hypothesis. This proposal also takes into account the factor model

structure (1.2). Throughout, we assume that K, the number of latent factors, is known.



Data-driven selections of K are discussed in Section S.3 of the Supplementary Material.
Define the residual covariance matrix under the full model and the hypothesis sums of

squares and cross-products matriz, respectively, as
1 1
Skt = — Y (Iy — XH(XX") ' X)Y? and Sy=-YQnQLY", (2.1)
n n

where Qy = XT(XX")~'C[CT(XX?)~1C]~/2. Note that QnQ% is the projection matrix
onto the space of the null hypothesis and Sy quantifies the degree of departure of the
observations from the null hypothesis. The residual covariance matrix under the reduced
model Hy: BC = 0 can be defined following the additive relationship Sgreq = Sgun + Su-
Note that (n/N)Sgm and (n/N)Sgeq are, respectively, MLEs of ¥, under the full model
and the reduced model when Y, is unrestricted and allowed to be a general nonnegative
definite matrix. Moreover, Ty = log[det(SreaSpy)] is the log-likelihood ratio test statistic,
and Ty has an asymptotic x? limit under the null hypothesis when n > p (see Fujikoshi
(2016) for details). The matrix SgreaSpy can be seen as a generalized F-ratio statistic
measuring the relative magnitude of the “regression sum-of-squares-and-product” matrix
Sgrea and the “within sample variance” matrix Sgy.

Classical methods such as the likelihood ratio test described above perform well when n
is much larger than p. However, when p is comparable to n, the MLE of X, is inconsistent
even under the correct factor structure. Consequently, the performance of the LRT for

unrestricted X, and for factor models (see Section 2.1) suffer from poor power properties.

2.1 LRT under factor model

In this subsection, we describe a version of the likelihood ratio test (LRT) that takes into

account the structure of ¥, imposed by (1.2). Let 4 > --- > 7, > 0 be the ordered



eigenvalues of Sgy and p;’s be the associated eigenvectors. Further, let oy > -+ > o, > 0

be the ordered eigenvalues of Sgreq and q;’s be the associated eigenvectors. Define

~2
Opull =
] K+1
URed E ;.
] K+1

Note that, after the scaling of (n/N), 7;’s, p;’s and o5, respectively, are the MLEs of ¢;’s,
h;’s and ¢? under the full model. Correspondingly, after the scaling of (n/N), a;’s, g;’s

and 0% 4 are the MLEs under the reduced model. Further, define

Sral = ZTJPJPJ + T Z Pyp]> (2:2)
j=K+1

Yhed = Z%qjqj + Oed Z ;9] - (2.3)
j=K+1

Then, the MLE of X, are (n/N)Zpy and (n/N)Xged, respectively, under the full model and
the reduced model Hy: BC = 0, when X, = DD? + ¢2[,,. For more details see Anderson

and Rubin (1956). The log-likelihood ratio test statistic for the hypothesis (1.3) is then

Tirr = log det(ZreaXp,)- (2.4)

The y2-approximation of the LRT, derived under the fixed-dimensional setting, involves
rejecting the null hypothesis at asymptotic level « if NTyrr > X7, (pq), where x3__(pq)
is the 1 — o upper quantile of the x? distribution with pg degrees of freedom. He et al.
(2021) indicate that the y?-approximation fails when the dimension p is comparable to the

effective sample size n = N — m.



2.2 Regularized tests

Our proposal is built upon the observation that the likelihood ratio statistic in the general
setting can be expressed as Ty = logdet(, + SHSE&11)~ Note that the classical testing
procedures for Hy are all based on appropriate linear functionals of the eigenvalues of the
matrix SHSE}H. Here, Sy captures the signal magnitude, i.e., the degree of departure from
the null hypothesis, while SE\}H is an estimator of X ! which sets the scale of individual
coordinates. However, in high-dimensional regimes, Sgulu either does not exist or is a poor
estimator of L. Therefore, we replace SE&H with a regularized version. Specifically, our
approach is to exploit the factor model structure (1.2) to come up with a flexible class of

“scaling matrices” that replace ngu in the test statistics with

K
Q(A) =) Npip; + Aol (2.5)

j=1

where p; is the eigenvector corresponding to the j-th largest eigenvalue of S, and A =
(Mo A, ..., Ak) € Ry x RE is a vector of regularization parameters. Note that we do
not restrict the A\;’s to be nonnegative. Indeed, setting \; = —Xg, 7 = 1,..., K, leads to
Q(A) = Xo(L, — % p,;p?) and the resulting test statistic involves projecting Si onto the
p j=1YJjt;

estimated eigensubspace associated with the idiosyncratic noise. The proposals of Aoshima
and Yata (2018) and Wang and Xu (2018) are along this line.

The regularized replacement of SySp, is Sy (A). For mathematical convenience, we

work with the symmetrized version,
1
M(A) = gQ%YTQ(A)YQN, (2.6)

since M(A) has the same nonzero eigenvalues as (p/n)Sp€2(A) by (2.1). Note that, the



scaling factor 1/p in the expression of M(A) is to assure the elements of the matrix are
neither diverging nor vanishing as p,n goes to infinity simultaneously at the same rate.

We propose three families of statistics

TLR(A) = log [det(]q + M(A))} . TM(A) =T [M(A)} ,

TPV (A) = T [M(A){L, + M(A)} .

that generalize the classical likelihood ratio (LR), Lawley—Hotelling trace (LH) and Bartlett—
Nanda—Pillai’s normalized trace (BNP) tests.

The proposed families of tests are rotation-invariant, which means if an orthogonal
transformation is applied to the observations, the test statistics remain unchanged. It is a
desirable property in the absence of other structural constraints such as sparsity. Moreover,
even though under a high-dimensional regime the sample eigenvectors p;’s are biased, the
proposed tests only involve projection to a lower dimensional space which is a good proxy
of its population counterpart as shown in Section 3.

The proposed test statistics are also connected with the LRT (2.4) under the factor
model since the matrices ©(A) have the same eigen-subspace as Sp. Indeed, M(A) is
expressible as a weighted sum of the projections of the signal-bearing component of the
response Y (in reference to Hy) onto the eigensubspaces of ﬁ)pull, while the regularization

parameters A act as weights.

3 Asymptotic analysis

In this section, we first introduce some results in the Random Matriz Theory literature in

Section 3.1 associated with a spiked covariance model. The asymptotic null distribution

10



of the proposed tests is derived in Section 3.2. In Section 3.3, we compute the asymptotic
power of the proposed tests under a class of local alternatives. In Section 3.4, we derive
empirically normalized tests and determine their critical values at any significance level.

Besides Assumptions (a)—(g) stated in Section 1, the following assumptions are made.

A1l Asymptotic regime: n,p — oo simultaneously such that v, = p/n — v € (0, 00)

and /n|y, — | — 0.

A2 Significant spike: The number of spikes K is fixed, and ¢; > --- > { are fixed as

n,p — oo, and all spikes are significant in the sense that {x > o(1 + V)

A3 Asymptotically full rank: X is of full rank and n~'XX” converges to a positive

definite m x m matrix.

A4 Asymptotically estimable: liminf,,_.. pmin(CT(n 'XX?)~1C) > 0, where puin(-)

is the smallest eigenvalue of a symmetric matrix.

Condition A1 indicates that the dimensions of the response and sample size grow at
the same rate. The o(n~'/?) convergence rate of 7, to 7 is a technical condition needed
to ensure the distributional convergence of the appropriately normalized test statistics.
Condition A2 guarantees that the spiked eigenvalues are detectable from the observed
data. Condition A3 is used to eliminate any redundancy in the specification of the model.

Condition A4 is to ensure that the parameter of interest BC is estimable.

3.1 Asymptotics of eigenvalues and eigenvectors of ﬁlFuH

In this subsection, we present an important result on the behavior of the eigenvalues and
eigenvectors of the MLE g of the covariance matrix under the spiked model (1.1)—(1.2).

Since the eigensubspaces of (A) and SFull are the same, these results have a direct bearing

11



on the asymptotic behavior of the proposed tests. First we define two auxiliary functions

Loz = 1
1+v/(z—1)

Y(z,y) =2+

ze(1,00); C(z,7)= [ Lz €147, 00). (3.1)

r—1
The following theorem combines results in Paul (2007), Onatski (2012) and Passemier et al.

(2017). Let =% denote almost sure convergence and = weak convergence.

Theorem 3.1 Suppose that Model (1.1)- (1.2), Conditions (a)-(g) and A1-A3 hold.

(1) The leading sample eigenvalues are biased upwards as follows:

VL

i Gt =l ey =L
J

K. (3.2)
(2) The angle between a sample eigenvector and a population eigenvector is such that
|<p.77h1>| = |pfhl‘ ﬁ} 10(9 - i)C(gj/0277)7 1< 1,7 < K7

where 1o(z) =1 if 2 = 0 and 1o(x) = 0 otherwise.
(3) The following decomposition of p; holds. Recall Hx = [hy,--- ,hg|. Denote H, to be

the orthogonal complement of Hg. We have

1
p; =w;h; + ——w;Hgv; + /1 —w? Hju;, j=1,...,K, where (3.3)

vn

(1) v; is a K-variate random vector such that

g' 2 1 2 glg
vy = N(0,%5(¢4))),  where $;(6;) = (gj(/;/;_ 1)2)—7 > moiof.

1<iAj <K

Here, o; is the ith canonical vector of dimension K with 1 in the ith coordinate and

12



0 elsewhere.

(it) w; = C(L/0%, ) + Op(n~1/2).

(1) w; is such that

1 2
+5HV1H ),

2
%Ujj

where vj;; s the j-th element of v;. Without loss of generality, we can set w; > 0.
w; = wj + Op(n_l/z) = C(Ej/UQa Vn) + Op(n_l/Q)‘

(i) u; is a (p — K)-variate random vector following the uniform distribution on the unit

(p — K — 1)-sphere.
(4) The MLE G, of noise variance is biased downwards as

K

P (B — o) + 00" = N(0.1). b0 = VOTD{K + 3 (1,/° - 1)},

j=1

Theorem 3.1 shows that 7; and p; are biased systematically and o7, underestimates
o?. Furthermore, (3.3) gives a characterization of the bias in the sample eigenvector p; as

an estimator of h;. Here, we assume without loss of generality that (p;,h;) > 0.

3.2 Asymptotic null distribution

In this subsection, we first present a useful representation of the matrix M(A) under the
null hypothesis for any fixed A. Denote L = diag({y,..., k) and A, = diag(Ay, ..., k).
Further, define (; = ((¢;/0% 7v,) with v, = p/n, and ¥; = diag((i,...,Ck), Yo =

diag(m,...,m).

13



Theorem 3.2 (Representation of M(A)) Suppose that Model (1.1)~(1.2) ,Conditions

(a)-(g) and A1-A4 hold. Then, for any fized A, under Hy: BC = 0,

M(A) = M, (A) + My(A) + O,(n~%?), where (3.4)
1 2
My (4) = Vi (ol + A BHLV) + "—V?(AOIK + AL TRV, (3.5)

T
+ VTA+\IJ W12V, 4+ 2 ; (VTA+\I/ WL /2V2> ,

2)\0 T
V3 V. (3.6)

My(A) =

Here, Vi, V4 and V3 are, respectively, K x q, K X q and (p—2K) X q independent matrices

with i.i.d. N(0,1) entries. Notably, M;(A) is independent of May(A).

Corollary 3.1 (First and second moments of M(A)) Suppose that Model (1.1)—(1.2)

and Conditions (a)-(g) and A1-A4 hold. Denote the (i,7)-th element of M(A) as m;;(A).

E[mi;(A)] = Lo(i — §){O1,(A) + O(n*?)},

1+ 1o(i —j)

Var[m;;(A)] = )

Ony(A) + O(n %),

Covlmi;(A), may (N)] = O(n=>?), ifi#4 orj#j', where,

K
elp(A)Z%ZAJW (- ) AO(Ze (- K)o?),
j=1
K
O2,(8) = 3~ [RG + (1= Q)oF + 200 {8 + (1= o'}
j=1
Pr
+ =2 G+ (p— K)o*
53 )

We then derive the asymptotic null distribution of M(A) when n, p — oo simultaneously

as in Condition A1l. We use W = [w;;]{ ,_; to denote the Gaussian Orthogonal Ensemble

14



(GOE) characterized by (1) w;; = wy;; (2) wy ~ N(0,1), wi; ~N(0,1/2), i # j; (3) wy;’s

are jointly independent for 1 <1 < j <gq.

Theorem 3.3 (Asymptotic null distribution of M(A)) Suppose that Model (1.1)(1.2),
Conditions (a)—(g) and A1-A4 hold. Then, for any fized A with \g # 0, under Hy: BC =

0, we have

VP{Ma(A) — O, (M)}
M (A) = O,(1/p) and {209, (A)}172 = W,

where ©F,(A) = (1 — 2(K/p))Aoo® and ©F,(A) = (1 — 2(K/p))Ajo*. Consequently,

VPAM(A) = ©1,(A) 1o}
{20 (A)}1/2

— W.

The following corollary follows immediately from Theorem 3.3 and the J-method.

Corollary 3.2 Suppose that Model (1.1)—(1.2), Conditions (a)-(g) and A1-A4 hold. Then,
for any fired A with Ay # 0, under Hy: BC = 0, the appropriately normalized versions of

TER(A), TH(A) and TPNY(A) are asymptotically normal:

T"Y(A) = \{{2‘;1@;(@/\1;’&2} [TOLR(A) — qlog{1 + @1,,(/\)}} = N(0, 1),
LH — \/2_9 LH
() = st T (T3 = 01,(A)| = N (0, 1), (3.7)

14 O1,(A)}? 401,(A)
ToNP () = YPUL+ O TN (M) = 5| = N(0,1),
W= Tge, e 1N e ) — MY
Remark 3.1 Theorem 3.2 indicates that for finite n and p the distribution of the eigen-
values of M(A) is skewed, especially when Ay is relatively small compared to the elements

of Ay. Indeed, the eigenvalues of Mi(A) have the same distribution as the non-zero eigen-

15



values of a mixture of Wishart matrices of degrees of freedom K, resulting in a skewness

in the null distributions of the proposed test statistics.

3.3 Power under local alternatives

In this subsection, we investigate the power characteristics of the proposed regularized tests
under a class of local alternatives. The alternatives are selected such that the asymptotic
power under which is non-trivial and can be decomposed into the contributions of the signal
BC projected onto eigen-subspaces of the latent factors (spikes) and the idiosyncratic noise.
The results presented here hold true for all three types of tests, namely, TV®(A), TH(A)
and TBNP(A). Hence, we use the unifying notation T'(A) and denote the power function of
T(A) with critical value &, given BC, as T(BC,A) = P(T(A) > ¢|BC).
Recall Hi = [hy, - -+, hg| are the spiked eigenvectors of ¥, (1.2). Denote

7j = VnhjBCR,'C'B'hy, j=1,.. K, (38)

7o = V/nTr[(I — HxH},)BCR,'C"B"],

where R, = CT(n"'XX”)~1C. Note that BCR,"/? is the noncentrality parameter of YQy
when BC is nonzero, 7; (1 < j < K) represents the \/n-scaled signal strength associated
with the subspace corresponding to the j-th eigenvector h; of ¥, and 7y is the y/n-scaled
contribution of the signal strength associated with the subspace orthogonal to the spiked
eigenvectors. Thus, 7y can be seen as the scaled contribution to the signal strength by the
subspace associated with the idiosyncractic noise in (1.2). Clearly, 7; > 0 for all j.

To achieve non-trivial asymptotic power, we consider the sequence of BC to be local in
the sense that

7, =7, 7=0,1,..., K, as n — oo, (3.9)

16



where 7;’s are finite, nonnegative deterministic constants. Notice that it implies that

Tr[BCR;'CTBT] = O(1/+/n). Let Il = (mo, 1. .., 7K).

Theorem 3.4 (Asymptotic power under local alternatives) Suppose that Model (1.1)-
(1.2) ,Conditions (a)-(g) and A1-A4 hold. If under H,, BC satisfies (3.9), then the power

of the test T(A) satisfies

HA, 7 11
T(BC,A) - @ — ¢+ o ;@27([\)}?1/2) —0, where (3.10)
H(A, v, 1T Zﬂ'])\ ()0, ) —|—>\OZ7T] (3.11)

3.4 Empirically normalized tests and critical values

In order to make use of the normalized test statistics given in Corollary 3.2, we need
consistent estimators of ©,(A) and O4,(A). In Algorithm 1, we first propose consistent
estimators of ¢; and o® by adjusting for the bias in the MLEs 7; and 0%, presented
in Theorem 3.1. We then use these estimates through a simple plug-in strategy to get

estimators of ©1,(A) and Oy, (A).

Algorithm 1 (Adjusted estimation of spikes and noise variance)

Step 1 Utilizing (3.2), calculate a first-iteration estimator of {;, say gj(l), by solving

the following equation

o~ 0 1 - ) 1 /yn
T = Ol (fj( )/U%ulh%) - gj( )(1 " /—>
UFun

with v, = p/n. The equation has two real-valued roots if 7;/oay > (1 + /7n)? and

two complex-valued roots if otherwise. Take éj(l) = max{Re(ry), Re(ry)}, where r

17



and ro are the two roots of the above equation and Re(r) is the real part of r.

Step 2 Denote by = K + Zﬁl(ggjléj(l) — 1)t The adjusted estimator of o* is

(3.12)

Notably, 62 is the bias-corrected estimator of o* proposed by Passemier et al. (2017).

Step 3 Replace o3, with 6% and repeat Step 1 to solve for the second-iteration
estimator gj(Q) of U;. In case 7;/62% < (14 \/7m)?, set gj(Q) = 6*(1+ \/7n) which is the

proposed adjusted estimator of £;. For simplicity, we shall use lfj» to denote éj(z).

The following proposition describes consistency of the adjusted estimators, while (3.13)

is proved in Passemier et al. (2017).

Proposition 3.1 Suppose that (1.1)- (1.2), Conditions (a)—-(g) and A1-A4 hold. Then,

p—K

~2 2
0-2 /Q,Vn (0 o ) = N(07 1)7 (313)
l;—t;=0,(n"Y?), forj=1,... K. (3.14)

We then construct plug-in estimators of ©1,(A) and ©,,(A), denoted by ©1,(A) and

~

O, (A), through substituting ¢;’s and ¢ in their definitions (Corollary 3.1) by the adjusted

estimators ¢;’s and 62, respectively.

Proposition 3.2 Suppose that (1.1)- (1.2), Conditions (a)-(g) and A1-A4 hold. Then,

O1,(A) = O1(A) = Op(nh),

é2p(A) —Oy(A) = Op(n_l)-
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The empirically normalized tests are denoted by TR(A), T¥(A), and TPNP(A), where
O1,(A) and Oy, (A) are replaced by ©1,(A) and ©,,(A) in (3.7). Proposition 3.2 indicates
that with the empirically normalized tests, both the asymptotic normality under the null
hypothesis (Theorem 3.3) and power characteristics (Theorem 3.4) still hold.

Theorem 3.2, Corollary 3.2 and Proposition 3.2 suggest two ways of determining the

critical values for any of the proposed tests at a given significance level a.

1. Asymptotic normal quantiles: The null hypothesis is rejected at asymptotic level «, if

T(A) > &(a), where £(«) is the (1 — ) quantile of the standard normal distribution.

2. Parametric bootstrapped quantiles: With estimated L, ¥; and ¥, replacing the true
quantities in (3.5) and (3.6), we obtain bootstrap replicates of M;(A) + Ma(A) by
generating Vi, Vy,, V3 as independent matrices of i.i.d. N(0,1) entries. We then
approximate the null distribution of 7' (A) by replacing M(A) with bootstrapped
M, (A) + My(A). The null hypothesis is rejected at asymptotic level o if T(A) >

Eboot (@), Where Epoot () is the (1 — &) quantile of the bootstrap samples of T'(A).

Both procedures require consistent estimators of ¢;’s and o3, presented in Section 3.4.
Simulation studies suggest that normal quantiles lead to well controlled empirical sizes
when Ag is comparable to A;’s, 7 > 1. When ) is relatively small, due to pronounced
skewness of the sampling distributions of the regularized test statistics, the parametric

bootstrap procedure provides better approximations to the null distributions.

4 Selection of regularization parameter

Our objective in this section is to propose a data-driven choice for the regularization pa-

rameter A, under a class of local alternatives as described in Section 3.3, that leads to
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nontrivial local power. Here, the guiding principle is to select the minimax test among the
class of tests {T'(A): A € R, x R¥}. Note however that we are not aiming to derive the
optimal test among all possible tests. For this purpose, we rely on the expression of the
local power in terms of the vector II = (mg, my,...,7k), as stated in Theorem 3.4. Note
that the proposed tests have the same asymptotic power under any two sequences of alter-
natives that lead to the same II. Consider all alternatives with the same overall limiting
signal strength such that ZJK:O m; = limy/nTr[BCR,'CTB’| = 1. Therefore, with the
normalization Z]K:o m; = 1, we can treat Il as an equivalence class of priors on the param-
eter space. This interpretation is helpful since it allows us to borrow the techniques from
classical decision theory, in terms of deriving a minimax procedure as a Bayes procedure
under a least favorable prior corresponding to an associated Bayes risk.

The following results hold equally for TVR(A), T"M(A) and TBNP(A). The unifying
notation T'(A) is used to refer to any of the test statistics. Notice that T(A) = T(A/||All)
for any non-zero A. Therefore, for the purpose of selecting A, it suffices to restrict A to the
set S={d € REFL: ||d||, = 1}.

For each equivalence class of prior II, the associated (Bayes) risk is defined as the

asymptotic Typer II error rate under the corresponding alternatives.

~

Definition 4.1 (Risk) Consider a proposed test §(a, A) = L(T'(A) > () at asymptotic
level o where &(«v) is the critical value at level o determined as in Section 3.4. Given the

prior II, we define its Bayes risk function corresponding to the prior I as

H(A, ;1) )

R,(0(ar, A),IT) =1 — CI)( —{(a) + (272003, () 172

(4.1)

Definition 4.2 (Bayes procedure) Given the prior 11, a proposed test 6(a, Ap(Il)) =

]l(T(AB(H)) > &(av)) at asymptotic level «v is said to be the Bayes test with respect to 11, if
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the minimum of R,(6(a, A),II) is obtained at Ap(Il). We call Ag(Il) the Bayes selection

of A € S with respect to prior 11, i.e.,

B . _ H(A, yn; )
Ap(Il) = arg min R,(0(a,A),II) = arg max W. (4.2)
Proposition 4.1 For a given 11, the Bayes selection of A is
A ~
Ag(Tl) = —2— where Ap = G 'b(Il), (4.3)
[Ag]l2

with G and b(I1) defined as

K
b<H> = (Z Ty, C127T17 SRR C%(WK)Tv
j=0

1 1 T
a=(AGE+ (=)'} o, (GG + (- )o"})
p p
J— Di 1 2 1 — (25212 1 24 1— (2)o212
= Lhag p{C11+( Go}, "‘>p{CKK+( Ck)o™}),
c al K _
G = ,withc:126j2+p KO'4.
b= p
a J j=1

The risk at the Bayesian selection Ag(IT), henceforth referred to as the optimal Bayes

risk with respect to II, is

1

R b ()G b (ID) Y 2). (4.4)

9, (8, Ap(I1)), T1) = 1 = @( = &(a) +
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4.1 Minimax selection of A

Consider a family of priors II as

Plo) = {I: D m =1, 0<m <o and 0<m <1, j=1,... K},

where o is the maximum fraction of the signal strength associated with the orthogonal
complement to the subspace of spiked eigenvectors (i.e., associated with the idiosyncratic
noise). The user-specified parameter ¢ can be seen as a hyperparameter that imposes
restrictions on the class of alternatives. A larger value of p leads to a bigger class of
alternatives, and the value p = 1 makes the class of alternatives unrestricted in terms of

how much of the signal resides in the subspace associated with idiosyncratic noise.

Definition 4.3 (Minimax selection) For a given 0 < o <1, a proposed test 6(a, A*(0)) =
L(T(A*(0)) > £(a)) at asymptotic level a is said to be minimaz within the class {0(c, A): A €
S} with respect to the prior family B (o) if the minimum value of maxmeyp(o) Rp(0(cr, A), IT)
is obtained at A*(o), that is, A*(9) = arg minyes maxmneyp(o) Rp(d(a, A), ). We call A*(p)

the minimaz selection of A € S with respect to B (o).

Using Sion’s Minimaxz Theorem (Sion, 1958), we have the following proposition.

Proposition 4.2 For a given 0 < ¢ < 1, the minimax risk is obtained at (A*(o),I1*(0)),
where I1*(0) is the least favorable prior defined as I1*(9) = arg maxpeyp (o) minaes Ry (6 (v, A), II).
And the minimazx selection A*(p) is the Bayes selection with respect to 11* (o), i.e., A*(o0) =

Ap(IT*(p)) = argminpes R, (6(a, A), I1*(0)).

Proposition 4.2 suggests that to solve for the minimax selection A*(p), we could first find

the least favorable prior IT*(g). A*(p) is then the Bayes selection with respect to 11*(g). A
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detailed proof is presented in the Supplementary material. Motivated by this, and using

(4.4), we have the following algorithm.
Algorithm 2 (Minimax selection of A) Given 0 < o < 1:

Step 1. Least favorable prior: The least favorable prior I1*(p) is the solution of the fol-

lowing quadratic programming problem.

Minimize b" (II)G'b(IT) with respect to 11, subject to 11 € P(o).  (4.5)

Step 2. Minimaz selection: The minimax choice of A with respect to B(o) is A*(0) =

Ap(IT*(0)), where Ap(I1*(0)) is the Bayes selection with respect to I1*(o) as in (4.3).

In closing, we make the following interesting connection with a natural generalization
of the test proposed by Bai and Saranadasa (1996) in the context of two-sample test for
equality of population means. Note that the test proposed by Bai and Saranadasa (1996)

replaces the estimator of ¥, by the identity matrix in the likelihood ratio test.

Proposition 4.3 The test proposed by Bai and Saranadasa (1996) is equivalent to the
minimaz selection of A when we restrict the space of the normalized reqularization parameter
A to be all unit vectors with nonnegative coordinates, denoted by ST and when o0 = 1, so

that the space of priors 11 is the entire K-dimensional unit simplexz.

As a remark, the parameter space ST excludes tests proposed by Aoshima and Yata
(2018) and Wang and Xu (2018), both of which allow negative values of \;, j =1,..., K.
We present a detailed analysis of the dependence of the regularization parameter A on

o0 in Section S.2 of the Supplementary Material in the single spike (K = 1) case.
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5 Simulation study

The performance of the proposed tests is examined numerically through an extensive simu-
lation study. Due to limited sapce, we only highlight key results here and defer the detailed

simulation settings and additional results to Section S.4 of the Supplementary Material.

5.1 Empirical null distribution

The empirical null distributions of T"? are shown in Figure 5.1 — 5.3. Corresponding figures
for T" and TBYP are included in the Supplementary Material. These figures indicate
that the null distribution of the proposed tests are robust to the noise distribution. The
distributions are mildly skewed when p is relatively large, but significantly so when p is

small.

0.5
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0.4
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Figure 5.1: Empirical null distribution of T™"® with ¢ = 0.2 when (N, Ny) = (40, 60)
for the following noise settings: Normal (red solid), #(4) (blue solid), t(5) (black solid),
t(6) (purple solid). From left to right: p = 50,200,1000. The standard normal p.d.f.
(theoretical limiting null distribution) is depicted as black dashed line. The oracle bootstrap
null distribution when M(A*) is approximated by M;j(A*) + My(A*) is depicted in green
dashed line.

Critical 0=0.2 0=0.5 0=0.8 LRT
value p BNP LH LR BNP LH LR BNP LH LR

50 3.55 6.41 4.90 2.93 5.70 4.30 2.93 5.70 4.30 8.20

Enorm 200 5.82 6.79 6.28 4.54 6.22 5.38 4.23 6.02 5.08 12.8

1000 5.78 5.97 5.88 5.09 5.47 5.32 4.60 5.23 4.96 29.1

50 4.80 4.80 4.80 4.42 4.42 4.42 4.40 4.40 4.40 8.20

Eboot 200 4.68 4.68 4.68 4.84 4.84 4.84 4.80 4.80 4.80 12.8

1000 3.70 3.70 3.70 3.68 3.68 3.68 3.84 3.84 3.84 29.1

Table 5.1: Empirical Sizes x100 at 5% nominal significance level under the normal noise
setting when (N, N2) = (40, 60), with normal critical values &,orm and bootstrapped critical
values &po01, TESpectively.
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Figure 5.2: Same as Figure 5.1 but with o = 0.5.

The empirical sizes under the normal noise setting are shown in Table 5.1 when the

normal critical values and the bootstrapped critical values are used, respectively. The sizes

when the observational noise is student-t distributed are reported in the Supplementary

Material Tables S.4.1-Table S.4.12. These tables indicate that the empirical sizes of the

proposed tests are reasonably controlled at the significance level 5% by both methods of

choosing critical values. On the other hand, the sizes of LRT are inflated especially when p

is large. As for the comparison among T R, T™ and TBNP | the results suggest that BNP

is more conservative in terms of type I error rate, while LH is more liberal.
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Figure 5.4: Size-adjusted empirical power when p = 50 and (N, Ns)

left to right: 7{™® = 0,0.5,0.8,1. LRT (Green), T™® with o = 0.2 (Red
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5.2 Empirical power

The empirical power curves against the signal strength s are shown in Figures 5.4-5.6. To
better compare the power across different tests, we utilize the size-adjusted critical values
based on the Monte-Carlo null distribution computed on 10,000 independent replicates.
The LR, LH and BNP tests behave similarly across simulation settings, as predicted by
Theorem 3.4. So only the power of T*}(A) is displayed for ease of visualization.

Figures 5.4-5.6 indicate that the power of the proposed tests is not too sensitive to
the selection of g, except when 7{™® is large. This means that unless the signal associated
with the departure from the null hypothesis has little contribution from the leading eigen-
directions of the noise covariance matrix X, (i.e., 7{™® & 1), the minimax test is robust

true

to the choice of p. When 7j™"¢ is small and for larger dimension p, the proposed tests

have significantly higher power than the LRT. On the other hand, when 7™ is large, i.e.,
when a large portion of the signal is along the idiosyncratic noise eigen-directions, then
the (size-adjusted) LRT outperforms the proposed tests. However, in practice LRT is only
applicable when p < n due to the lack of an approximation of its null distribution when p
is comparable to or larger than n. Furthermore, the power of the proposed tests tends to
improve if the specified g is close to m§™e.

In Section S.4.5 of the Supplementary Material, we consider two additional settings
(1) when the leading spike is diverging and (2) when there are undetectable spikes. The

settings are beyond A2. The reported results demonstrate that the proposed tests still

have reasonable power, while the empirical sizes are reasonably controlled.
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Figure 5.5: Same as Figure 5.4 but with p = 200.

—

050 050

Figure 5.6: Same as Figure 5.4 but with p = 1000.

6 HCP application

The NIH funded Human Connectome Project (HCP) targets the characterization of the
human connectome and its variability using cutting-edge neuroimaging technologies. As
part of HCP, a consortium led by the Washington University and University of Minnesota
aims to characterize human brain connectivity and functionality based on data collected
from N = 1113 healthy young adults and to enable detailed comparisons between brain
circuits, behavior, and genetics at the level of individual subjects. We refer to Van Essen
et al. (2013) for details. Among the publicly available data are cerebral volumetric mea-
surements and human behavior evaluation test scores. In this section, we use the proposed
tests to study the association between cerebral measurements and human behaviors, using
the aforementioned HCP young adults data.

The behavior evaluation scores belong to various behavioral domains: alertness, cog-
nition, emotion, sensory and others. The alertness domain evaluates the cognitive status
and sleep quality of the subjects based on a mental status exam and the Pittsburgh Sleep

Quality Index. The cognition domain evaluates the subjects’ cognitive abilities on vari-
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ous aspects including episodic memory, cognitive flexibility, attention control and others.
The emotion domain consists of indices of the ability to recognize emotions, psychologi-
cal well-being, social relationships, stress and self efficacy. The motor domain measures
cardiovascular endurance, manual dexterity, grip strength, and gait speed. The sensory
domain includes auditive, olfaction, taste, and vision tests. After a pre-screening process
that filters out highly correlated variables, we select 127 representative behavior variables
and study whether the cerebral measurements are related to these variables.

For the cerebral measurements, we focus on cortcial surface regions that belong to 14
cerebral lobes symmetrically located on the two brain hemispheres, and 38 subcortical
anatomy structures. Figure S.5.2 of the Supplementary Material shows part of the gyral-
based regions. We refer to Desikan et al. (2006) for details. Our analysis is on the level
of cortical lobes and subcortical structures and focuses on lobe surface area, average lobe
thickness, lobe gray-matter volume, and subcortical structure volume.

Available demographics information includes the age and gender of subjects. Specifi-
cally, the subjects are divided into four age groups, namely 22-25, 26-30, 31-35, and 36+.
The data set is roughly balanced with respect to gender (606 females and 507 males).

The foregoing leads to the multivariate regression model

where (i) y; is the vector of 127 behavior scores of subject i ; (i) D; are age and gender group
dummy variables of subject i (4 in total); (iii) SA;, AT;, GV, are surface area, average
thickness, gray-matter volume variables of the 14 cortical lobes of subject i (14 x 3 = 42
in total); (iv) SC; are subcortical structure volume variables (38 in total); and (v) Lf;

and oe; are latent factors and idiosyncratic noise as in (1.1)-(1.2). The dimension of the
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explanatory variables (including the intercept) is m = 85, the dimension of response y; is
p = 127 and the sample size is N = 1113.

We use Method 2 (Kritchman and Nadler, 2008) described in the Supplementary
Material Section S.3.1 to determine K = 12 spikes. Figure S.5.1 shows the empirical
eigenvalues of the residual covariance matrix, estimated spike variance and estimated noise
variance with methods discussed in Section 3.4.

We test individually for the significance of the coefficients of lobe measurement variables
and subcortical variables. We consider T"®(A) with minimax selection of A and two choices
of p, namely, p = 0.001 and o = 1. The reason for considering two different and extreme
values of the hyper-parameter ¢ is to investigate robustness of its specification. Indeed,
for the estimated éj’s and 62, under the unrestricted condition (i.e., o = 1), the minimax
selection A* is obtained at where the associated least favorable prior II* is such that 7 =
0.014. Therefore, for o > 0.014, the restriction of my < g in P(p) is inactive. It implies
that the minimax selection A*(p) is identical for 0.014 < p < 1 and so would be the testing
results. As a comparison, we also consider the likelihood ratio test (LRT). The p-values
for the proposed method are calculated based on the asymptotic normal distribution. The
p-values for the LRT are calculated based on y?-approximation as described in Section 2.1.
The p-values under ¢ = 1 and o = 0.001 for the propose method and those for the LRT are
reported in Table S.5.1. For the proposed method, the results under o = 1 and ¢ = 0.001
are not greatly dissimilar.

Among the significant coefficients by the proposed tests at 10% level, some are associ-
ated with the volumes of left amygdala and right hippocampus. The Amygdala performs
primary roles in the formation and storage of memories associated with emotional events

(Maren, 1999). The hippocampus plays an important role in the formation of new memories
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about experienced events (Eichenbaum et al., 1993). Among the behavioral variables, there
are emotion processing tasks that may lead to activation of amygdala and hippocampus
(Barch et al., 2013). Among other significant regions, the medial temporal lobe contains
the parahippocampal and entorhinal cortices which are among the primary regions deemed
responsible for the formation of memories and spatial cognition. These cortices are anatom-

ically adjacent to, and also functionally communicates with, amygdala and hippocampus

(Koob et al., 2010).

7 Discussion

In this paper, we addressed the problem of testing general hypothesis in a high-dimensional
latent factor linear regression model. We proposed a family of regularized tests where the
signal is projected onto the estimated latent factor directions and the weights on these
directions act as regularization parameters. We studied their asymptotic null distributions
and the asymptotic power under a class of local alternatives. Taking this approach further,
we established a minimax criterion to select the regularization parameters by considering
an ensemble of priors.

Our asymptotic results rely on the Gaussianity mainly because that the decomposition
of the leading eigenvectors as in (3.3) of Theorem 3.1 is known to be valid for Gaussian
data in the literature, e.g., Paul (2007) and Onatski (2012), since Gaussianity encapsulates
a rotational invariance of the sample eigenvector. This invariance enables a transparent
asymptotic representation of the sample eigenvector associated with a spiked sample eigen-
value when the corresponding population eigenvalue is above the phase transition threshold.

Behaviors of both the spiked eigenvalues and the associated eigenvectors in non-Gaussian

settings have been studied in Bai and Yao (2008), Benaych-Georges and Nadakuditi (2012),
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Shi (2013), Bloemendal et al. (2016) and Bao et al. (2020). For non-Gaussian spiked mod-
els, Shi (2013) showed that when the first four moments of the data match the Gaussian
case, the second-order fluctuations of both spiked sample eigenvalues and certain projec-
tions of the associated sample eigenvectors also match the Gaussian case. Recently, Bao
et al. (2020) proved that (a, p;), for an arbitrary unit vector a, can be expressed up to sec-
ond order as a quadratic functional of a fixed number of asymptotically Gaussian random
variables. Moreover, if the first four moments of the observations match the Gaussian case,
the limiting behavior of (a, p,;) mathes the Gaussian case. This mean that the behavior
of sample spiked eigenvalues as well as linear functionals of the corresponding eigenvec-
tors is similar to that in the Gaussian case up to the second order and suggests that the

conclusions in this paper are likely to hold in non-Gaussian settings.

Supplementary material

Supplementary Material includes detailed proofs of the main theoretical results, additional

details of the procedure and of the simulation study and real data application.
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