

KDD ’23, August 6ś10, 2023, Long Beach, CA, USA. Dongxia Wu et al.

the simulation by guiding a surrogate model to learn the input-
output map between parameters and future states, hence bypassing
numerical integration.

The deep surrogate model of INP is built upon Neural Process
(NP) [13], which lies between Gaussian process (GP) and neural net-
work (NN). NPs can approximate stochastic processes and therefore
are well-suitable for surrogate modeling of stochastic simulators.
They learn distributions over functions and can generate predic-
tion uncertainty for Bayesian active learning. Compared with GPs,
NPs are more flexible and scalable for high-dimensional data with
spatiotemporal dependencies. We design a novel Spatiotemporal
Neural Process model (STNP) by introducing a time-evolving latent
process for temporal dynamics and integrating spatial convolution
for spatial modeling.

Instead of learning passively, we design active learning algo-
rithms to interact with the simulator and update our model in
łreal-timež. We derive a new acquisition function, Latent Informa-
tion Gain (LIG), based on our unique model design. Our algorithm
selects the parameters with the highest LIG, queries the simulator
to generate new simulation data, and continuously updates our
model. We provide theoretical guarantees for the sample efficiency
of this procedure over random sampling. We also demonstrate the
efficacy of our method on large-scale spatiotemporal epidemic and
reaction diffusion models. In summary, our contributions include:

• Interactive Neural Process: a deep Bayesian active learning
framework for accelerating large-scale stochastic simulation.
• New surrogatemodel, Spatiotemporal Neural Process (STNP),
for high-dimensional spatiotemporal data that integrates
temporal latent process and spatial convolution.
• New acquisition function, Latent Information Gain (LIG),
based on the inferred temporal latent process to quantify
uncertainty with theoretical guarantees.
• Real-world application to speed up complex stochastic spa-
tiotemporal simulations including reaction-diffusion system,
heat flow, and age-structured epidemic dynamics.

2 RELATEDWORK

Bayesian Active Learning and Experimental Design. Bayesian
active learning, or experimental design is well-studied in statistics
and machine learning [4, 6]. Gaussian Processes (GPs) are popu-
lar for posterior estimation e.g. [17] and [56], but often struggle
in high-dimension. Deep neural networks provide scalable solu-
tions for active learning. Deep active learning has been applied to
discrete problems such as image classification [12] and sequence
labeling [46] whereas our task is continuous time series. Our prob-
lem can also be viewed as sequential experimental design where
we design simulation parameters to obtain the desired outcome
(imitating the simulator). Foster et al. [9] propose deep design net-
works for Bayesian experiment design but they require a explicit
likelihood model and conditional independence in experiments.
Kleinegesse and Gutmann [22] consider implicit models where
the likelihood function is intractable, but computing the Jacobian
through sampling path can be expensive and their experiments
are mostly limited to low (<=10) dimensional design. In contrast,
our design space is of much higher-dimension and we do not have
access to an explicit likelihood model for the simulator.

Neural Processes. Neural Processes (NP) [13] model distribu-
tions over functions and imbue neural networks with the ability
of GPs to estimate uncertainty. NP has many extensions such as
attentive NP [19] and functional NP [28]. However, NP implicitly
assumes permutation invariance in the latent variables and can be
limiting in modeling temporal dynamics. Singh et al. [47] proposes
sequential NP by incorporating a temporal transition model into NP.
Still, sequential NP assumes the latent variables are independent
conditioned on the hidden states. We propose STNP with tempo-
ral latent process and spatial convolution, which is well-suited for
modeling the spatiotemporal dynamics of infectious disease. We
apply our model to real-world large-scale Bayesian active learning.
Note that even though Garnelo et al. [13] has demonstrated NP for
Bayesian optimization, it is only for toy 1-D functions.

Stochastic Simulation and Dynamics Modeling. Stochastic
simulations are fundamental to many scientific fields [42] such as
epidemic modeling. Data-driven models of infectious diseases are
increasingly used to forecast the evolution of an ongoing outbreak
[1, 7, 29]. However, very few models can mimic the internal mech-
anism of a stochastic simulator and answer łwhat-if questionsž.
GPs are commonly used as surrogate models for expensive simula-
tors [15, 18, 31, 39], but GPs do not scale well to high-dimensional
data. Likelihood-free inference methods [30, 34, 38, 52] learn the
posterior of the parameters given the observed data. They do neu-
ral density estimation, but require a lot of simulations. For active
learning, instead of relying on Monte Carlo sampling, we directly
compute the information gain in the latent process. Qian et al. [39]
use GPs as a prior for a SEIR model for learning lockdown policy
effects, but GPs are computationally expensive and the simple SEIR
model cannot capture the real-world large-scale, spatiotemporal
dynamics considered in this work. We demonstrate the use of deep
sequence model as a prior distribution in Bayesian active learning.
Our framework is also compatible with other deep sequence models
for time series, e.g. Deep State Space [40], Neural ODE [5].

3 METHODOLOGY

Consider a stochastic process {𝑋1, · · · , 𝑋𝑇 }, governed by time-
varying parameters 𝜃𝑡 ∈ R𝐾 , and the initial state 𝑥0 ∈ R𝐷 . In
epidemic modeling, 𝜃𝑡 can represent the effective reproduction
number of the virus at a given time, the effective contact rates
between individuals belonging to different age groups, the people’s
degree of short- or long-range mobility, or the effects of time vary-
ing policy interventions (e.g. non-pharmaceutical interventions).
The state 𝑥𝑡 ∈ R𝐷 includes both the daily prevalence and daily inci-
dence for each compartment of the epidemic model (e.g. number of
people that are infectious and number of new infected individuals
at time 𝑡).

Stochastic simulation uses a mechanistic model 𝐹 (𝜃 ; 𝜉) to simu-
late the process where the random variable 𝜉 represents the ran-
domness in the simulator. Let 𝜃 := (𝑥0, 𝜃1, · · · , 𝜃𝑇) represent the
initial state and all the parameters over time. For each 𝜃 , we obtain
a different set of simulation data {(𝑥1, · · · , 𝑥𝑇)𝑚}𝑀𝑚=1. However,
realistic large-scale stochastic simulations require the exploration
of a large parameter space and are extremely computationally in-
tensive. In the following section, we describe the Interactive Neural

2560

Deep Bayesian Active Learning for

Accelerating Stochastic Simulation KDD ’23, August 6ś10, 2023, Long Beach, CA, USA.

Figure 1: Illustration of the interactive Neural Process (INP). Given simulation parameters and data, INP trains a surrogate

model (e.g. STNP) to infer the latent process. The inferred latent process allows prediction and uncertainty quantification. They

are used to calculate the acquisition function (e.g. LIG) to select the next set of parameters to query, and simulate more data.

Process (INP) framework to proactively query the stochastic simu-
lator, generate simulation data, in order to learn a fast surrogate
model for rapid simulation.

3.1 Interactive Neural Process

INP is used to train a deep surrogate model to mimic the stochastic
simulator. As shown in Figure 1, given parameters 𝜃 , we query the
simulator, i.e., the mechanistic model to obtain a set of simulations
{(𝑥1, · · · , 𝑥𝑇)𝑚}𝑀𝑚=1. We train a NP based model to learn the prob-
abilistic map from parameters to future states. Our NP model can
be spatiotemporal to capture complex dynamics such as the disease
dynamics of the epidemic simulator. During inference, the model
needs to generate predictions (𝑥1, · · · , 𝑥𝑇) at the target parameters
𝜃 corresponding to different scenarios.

Instead of simulating at a wide range of parameter regimes,
we take a Bayesian active learning approach to proactively query
the simulator and update the model incrementally. Using NP, we
can infer the latent temporal process (𝑧1, · · · , 𝑧𝑇) that encodes the
uncertainty of the current surrogate model. Then we propose a
new acquisition function, Latent Information Gain (LIG), to select
the 𝜃★ with the highest reward. We use 𝜃★ to query the simulator,
and in turn generate new simulation to further improve the model.
Next, we describe each of the components in detail.

3.2 Spatiotemporal Neural Process

Neural Process (NP) [13] is a type of deep generative model that
represents distributions over functions. It introduces a global latent

variable 𝑧 to capture the stochasticity and learns the conditional dis-
tribution 𝑝 (𝑥1:𝑇 |𝜃) by optimizing the evidence lower bound (ELBO):

log 𝑝 (𝑥1:𝑇 |𝜃) ≥ E𝑞 (𝑧 |𝑥1:𝑇 ,𝜃)
[
log𝑝 (𝑥1:𝑇 |𝑧, 𝜃)

]
− KL

(
𝑞(𝑧 |𝑥1:𝑇 , 𝜃)∥𝑝 (𝑧)

)
(1)

Here 𝑝 (𝑧) is the prior distribution for the latent variable. We use
𝑥1:𝑇 as a shorthand for (𝑥1, · · · , 𝑥𝑇). The prior distribution 𝑝 (𝑧) is
conditioned on a set of context points 𝜃𝑐 , 𝑥𝑐

1:𝑇
as 𝑝 (𝑧 |𝑥𝑐

1:𝑇
, 𝜃𝑐).

However, the global latent variable 𝑧 in NP can be limiting for
non-stationary, spatiotemporal dynamics in the epidemics. We pro-
pose Spatiotemporal Neural Process (STNP) with two extensions.
First, we introduce a temporal latent process (𝑧1, · · · , 𝑧𝑇) to rep-
resent the unknown dynamics. The latent process provides an ex-
pressive description of the internal mechanism of the stochastic
simulator. Each latent variable 𝑧𝑡 is sampled conditioning on the
past history. Second, we explicitly model the spatial dependency in
𝑥𝑡 ∈ R𝐷 . Rather than treating the dimensions in 𝑥𝑡 as independent
features, we capture their correlations with regular grids or graphs.
For instance, the travel graph between locations can be represented
as an adjacency matrix 𝐴 ∈ R𝐷×𝐷 .

Given parameters {𝜃 }, simulation data {𝑥1:𝑇 }, and the spatial
graph 𝐴 as inputs, STNP models 𝑝 (𝑥1:𝑇 |𝜃,𝐴) by optimizing the
following ELBO objective:

log𝑝 (𝑥1:𝑇 |𝜃,𝐴) ≥ E𝑞 (𝑧1:𝑇 |𝑥1:𝑇 ,𝜃,𝐴) log𝑝 (𝑥1:𝑇 |𝑧1:𝑇 , 𝜃, 𝐴)
− KL

(
𝑞(𝑧1:𝑇 |𝑥1:𝑇 , 𝜃, 𝐴)∥𝑝 (𝑧1:𝑇)

)
(2)

2561

KDD ’23, August 6ś10, 2023, Long Beach, CA, USA. Dongxia Wu et al.

Algorithm 1 Interactive Neural Process

Input: Initial simulation dataset S1
Train the model NP(1) (S1);
for 𝑖 = 1, 2, · · · do
Learn (𝑧1, 𝑧2, · · · , 𝑧𝑇) ∼ 𝑞 (𝑖) (𝑧1:𝑇 |𝑥1:𝑇 , 𝜃,S𝑖);
Predict (𝑥1, 𝑥2, · · · , 𝑥𝑇) ∼ 𝑝 (𝑖) (𝑥1:𝑇 |𝑧1:𝑇 , 𝜃,S𝑖);
Select a batch of data:
{𝜃 (𝑖+1) } ← argmax𝜃 E𝑝 (𝑥1:𝑇 |𝑧1:𝑇 ,𝜃) [𝑟 (𝑥1:𝑇 |𝑧1:𝑇 , 𝜃)];
Simulate {𝑥 (𝑖+1)1:𝑡 } ← Query the simulator 𝐹 (𝜃 (𝑖+1) ; 𝜉);
Augment training set S𝑖+1 ← S𝑖 ∪ {𝜃 (𝑖+1) , 𝑥 (𝑖+1)1:𝑇

};
Update the model NP(𝑖+1) (S𝑖+1);

end for

where the distributions 𝑞(𝑧1:𝑇 |𝑥1:𝑇 , 𝜃, 𝐴) and 𝑝 (𝑥1:𝑇 |𝑧1:𝑇 , 𝜃, 𝐴) are
parameterized with neural networks. The prior distribution 𝑝 (𝑧1:𝑇)
is conditioned on a set of contextual sequences 𝑝 (𝑧1:𝑇 |𝑥𝑐1:𝑇 , 𝜃

𝑐 , 𝐴).
Figure 2 visualizes the graphical models of our STNP, the original
NP [13] model and Sequential NP [47]. The main difference between
STNP and baselines is the encoding procedure to infer the temporal
latent process. Compared with STNP which directly embeds the
history for 𝑧 inference at the current timestamp, NP ignores the
history and SNP only embeds the partial history information from
the previous 𝑧.

We implement STNP following an encoder-decoder architec-
ture. The encoder parametrizes the mean and standard deviation of
the variational posterior 𝑞(𝑧1:𝑇 |𝑥1:𝑇 , 𝜃, 𝐴) and the decoder approxi-
mates the predictive distribution 𝑝 (𝑥1:𝑇 |𝑧1:𝑇 , 𝜃, 𝐴). To incorporate
the spatial graph information, we use a Diffusion Convolutional
Gated Recurrent Unit (DCGRU) layer [25] which integrates graph
convolution in a GRU cell. We use multi-layer GRUs to obtain
hidden states from the inputs. Using re-parametrization [20], we
sample 𝑧𝑡 from the encoder and then decode 𝑥𝑡 conditioned on
𝑧𝑡 in an auto-regressive fashion. To ensure fair comparisons, we
adapt NP and SNP to graph-based settings and use the same archi-
tecture as STNP to generate the hidden states. Noted if the spatial
dependency is regular grid-based, then the DCGRU layer is replaced
to Convolutional LSTM layer [27, 45, 51, 53, 54], and there is no
adjacency matrix 𝐴 in Equation 2.

3.3 Bayesian Active Learning

Algorithm 1 details a Bayesian active learning algorithm, based on
Bayesian optimization [11, 44]. We train an NP model to interact
with the simulator and improve learning. Let the superscript (𝑖)

denote the 𝑖-th interaction. We start with an initial data set S1 =

{𝜃 (1) , 𝑥 (1)
1:𝑇
} and use it to train our NP model and learn the latent

process. During inference, given the augmented parameters 𝜃 , we
use the trained NP model to predict the future states (𝑥1, · · · , 𝑥𝑇).
We evaluate the current models’ predictions with an acquisition
function 𝑟 (𝑥1:𝑇 |𝑧1:𝑇 , 𝜃) and select the set of parameters {𝜃 (𝑖+1) }
with the highest reward. We query the simulator with {𝜃 (𝑖+1) } to
augment the training data set S𝑖+1 and update the NP model for
the next iteration.

The choice of the reward (acquisition) function 𝑟 depends on
the goal of the active learning task. For example, to find the model

that best fits the data, the reward function can be the log-likelihood
𝑟 = log𝑝 (𝑥1:𝑇 |𝜃,𝐴). To collect data and reduce model uncertainty
in Bayesian experimental design, the reward function can be the
mutual information. In what follows, we discuss different strategies
to design the reward/acquisition function. We also propose a novel
acquisition function based on information gain in the latent space
tailored to our STNP model.

3.4 Reward/Acquisition functions

For regression tasks, standard acquisition functions for active learn-
ing include Maximum Mean Standard Deviation (Mean STD), Max-
imum Entropy, Bayesian Active Learning by Disagreement (BALD)
or expected information gain (EIG), and random sampling [12]. We
explore various acquisition functions and their approximations in
the context of NP. We also introduce a new acquisition function
based on our unique NP design called Latent Information Gain
(LIG). The details of Mean STD and Maximum Entropy are shown
in the Appendix C.

BALD/Expected Information Gain (EIG). BALD [17] quan-
tifies the mutual information between the prediction and model
posterior 𝐻 (𝑥1:𝑇 |𝜃) − 𝐻 (𝑥1:𝑇 |𝑧1:𝑇 , 𝜃), which is equivalent to the
expected information gain (EIG). Computing the EIG for surrogate
modeling is challenging since 𝑝 (𝑥1:𝑇 |𝑧1:𝑇 , 𝜃) cannot be found in
closed form in general. The integrand is intractable and conven-
tional MC methods are not applicable [10]. One way to get around
this is to employ a nested MC estimator with quadratic computa-
tional cost for sampling [35, 49], which is computationally infeasible.
To reduce the computational cost, we assume 𝑝 (𝑥1:𝑇 |𝑧1:𝑇 , 𝜃) fol-
lows multivariate Gaussian distribution. Each feature of 𝑥1:𝑇 can
be parameterized with mean and standard deviation predicted from
the surrogate model, assuming output features are independent
with each other. This distribution assumption can be limiting in the
high-dimensional spatiotemporal domain, which makes EIG less
informative.

Latent Information Gain (LIG). To overcome the limitations
mentioned above, we propose a novel acquisition function by com-
puting the expected information gain in the latent space rather
than the observational space. To design this acquisition function,
we prove the equivalence between the expected information gain
in the observational space and the expected KL divergence in the
latent processes w.r.t. a candidate parameter 𝜃 , as illustrated by the
following proposition.

Proposition 1. The expected information gain (EIG) for Neural

Process is equivalent to the KL divergence between the prior and

posterior in the latent process, that is

EIG(𝑥1:𝑇 , 𝜃) := E[𝐻 (𝑥1:𝑇) − 𝐻 (𝑥1:𝑇 |𝑧1:𝑇 , 𝜃)]
= E𝑝 (𝑥1:𝑇 |𝜃)

[
KL

(
𝑝 (𝑧1:𝑇 |𝑥1:𝑇 , 𝜃)∥𝑝 (𝑧1:𝑇)

)]
(3)

See proof in the Appendix C. Inspired by this fact, we propose a
novel acquisition function computing the expected KL divergence
in the latent processes and name it LIG. Specifically, the trained NP
model produces a variational posterior given the current dataset S
as 𝑝 (𝑧1:𝑇 |S). For every parameter 𝜃 remained in the search space,
we can predict 𝑥1:𝑇 with the decoder. We use 𝑥1:𝑇 and 𝜃 as in-
put to the encoder to re-evaluate the posterior 𝑝 (𝑧1:𝑇 |𝑥1:𝑇 , 𝜃,S).

2562

Deep Bayesian Active Learning for

Accelerating Stochastic Simulation KDD ’23, August 6ś10, 2023, Long Beach, CA, USA.

NP SNP STNP

zt

xc
t−1 θc

t
xc

t xm
tθm

t

ht
ht+1

zt

xm
t

θm
t xm

t
θm

t

ht−1 ht
Ht−1 Ht

xc
t−1

θc
t

xc
t

xm
t−1

xm
t−1

xm
t−1

zt

xc
t−1

θc
t xc

t

Figure 2: Graphical model comparison: Neural Process, Sequential Neural Process and our Spatiotemporal Neural Process.

LIG computes the distributional difference with respect to the la-
tent process 𝑧1:𝑇 as E𝑝 (𝑥1:𝑇 |𝜃) [KL (𝑝 (𝑧1:𝑇 |𝑥1:𝑇 , 𝜃,S)∥𝑝 (𝑧1:𝑇 |S))],
where KL(·∥·) denotes the KL-divergence between two distribu-
tions.

In this way, conventional MC method becomes applicable, which
helps reduce the quadratic computational cost to linear. At the same
time, although 𝑧1:𝑇 are assumed to be multivariate Gaussian and
are parameterized with mean and standard deviation, they are only
in the latent space not the observational space. Moreover, LIG is
also more computationally efficient and accurate for batch active
learning. Due to the context aggregation mechanism of NP, we can
directly calculate LIG with respect to a batch of 𝜃 in the candidate
set. This is not available for baseline acquisition functions. They all
require calculating the scores one by one for all 𝜃 in the candidate
set and select a batch of 𝜃 based on their scores. Such approach is
both slow and inaccurate as acquiring points that are informative
individually are not necessarily informative jointly [21].

3.5 Theoretical Analysis

We shed light onto the intuition behind choosing adaptive sample
selection over random sampling via analyzing a simplifying situa-
tion. Assume that at a certain stage we have learned a feature map
Ψ which maps the input 𝜃 of the neural network to the last layer.
Then the output 𝑋 can be modeled as 𝑋 = ⟨Ψ(𝜃), 𝑧∗⟩ + 𝜖 , where 𝑧∗
is the true hidden variable, 𝜖 is the random noise.

Our goal is to generate an estimate 𝑧, and use it to make predic-
tions ⟨Ψ(𝜃), 𝑧⟩. A good estimate shall achieve small error in terms
of ∥𝑧𝑡 − 𝑧∗∥2 with high probability. In the following theorem, we
prove that greedily maximizing the variance of the prediction to
choose 𝜃 will lead to an error of order O(𝑑) less than that of random
exploration in the space of 𝜃 , which is significant in high dimension.

Theorem 1. For random feature map Ψ(·), greedily optimizing

the KL divergence, KL (𝑝 (𝑧 |𝑥, 𝜃)∥𝑝 (𝑧)) , or equivalently the variance
of the posterior predictive distribution E

[
(⟨Ψ(𝜃), 𝑧⟩ − E ⟨Ψ(𝜃), 𝑧⟩)2

]
in search of 𝜃 will lead to an error ∥𝑧𝑡 − 𝑧∗∥2 of order O

(
𝜎𝑑/
√
𝑡
)

with high probability. On the other hand, random sampling of 𝜃 will

lead to an error of order O
(
𝜎𝑑2/
√
𝑡
)
with high probability.

See proofs in the Appendix A.1.

4 EXPERIMENTS

We evaluate our proposed STNP for its surrogate modeling perfor-
mance in the offline learning setting and LIG acquisition function
for active learning performance. We aim to verify that (a) LIG
outperforms other acquisition functions in the NP and GP model
setting for deep Bayesian active learning on non-spatiotemporal
surrogate modeling, (b) STNP outperforms other existing baselines
for spatiotemporal surrogate modeling in the offline learning set-
ting, and (c) LIG outperforms other acquisition functions in the
STNP model setting for deep Bayesian active learning on spatiotem-
poral surrogate modeling. The implementation code is available at
https://github.com/Rose-STL-Lab/Interactive-Neural-Process.

4.1 Experimental Setup

We experiment with the following four stochastic simulators.
SEIR Compartmental Model. To highlight the difference be-

tween NP and GP, we begin with a simple stochastic, discrete,
chain-binomial SEIR compartmental model as our stochastic simu-
lator. In this model, susceptible individuals (𝑆) become exposed (𝐸)
through interactions with infectious individuals (𝐼) and are eventu-
ally removed (𝑅), details are deferred to the Appendix C.

We set the total population 𝑁 = 𝑆 +𝐸+𝐼 +𝑅 as 100, 000, the initial
number of exposed individuals as 𝐸0 = 2, 000, and the initial number
of infectious individuals as 𝐼0 = 2, 000. We assume latent individuals
move to the infectious stage at a rate 𝜀 ∈ [0.25, 0.65] (step 0.05),
the infectious period 𝜇−1 is set to be equal to 1 day, and we let
the basic reproduction number 𝑅0 (which in this case coincides
with the transmissibility rate 𝛽) vary between 1.1 and 4.0 (step
0.1). Here, each (𝛽, 𝜀) pair corresponds to a specific scenario, which
determines the parameters 𝜃 . We simulate the first 100 days of the
epidemic with a total of 300 scenarios and generate 30 samples for
each scenario.

We predict the number of individuals in the infectious compart-
ment. The input is (𝛽, 𝜀) pair and the output is the 100 days’ infec-
tion prediction. As the simulator is not spatiotemporal, we use the
vanilla NP model with the global latent variable 𝑧. For each epoch,
we randomly select 10% of the samples as context. Implementation
details are deferred to Appendix C.

Reaction DiffusionModel. The reaction-diffusion (RD) system
[48] is a spatiotemporal model that simulates how two chemicals
might react to each other as they diffuse through a medium to-
gether. The simulation is based on initial pattern, feed rate (𝜃0),

2563

KDD ’23, August 6ś10, 2023, Long Beach, CA, USA. Dongxia Wu et al.

removal rate (𝜃1) and reaction between two substances. We use
an RD simulator to generate sequences from 0 to 500 timestamps,
sampled every 100 timestamps, resulting into 5 timestamps for each
simulated sequence. Every timestamp is a 3D tensor (2 × 32 × 32)
with dimension 0 corresponds to the two substances in the reaction
and dimension 1, 2 are the image representation of the reaction
diffusion processes. Each sequence is simulated with a unique feed
rate 𝜃0 ∈ [0.029, 0.045] and kill rate 𝜃1 ∈ [0.055, 0.062] combina-
tion. There are 200 uniformly sampled scenarios, corresponding to
(𝜃0, 𝜃1) combinations.

We implement STNP to mimic the reaction diffusion simulator
with feed rate (𝜃0) and kill rate (𝜃1) as input. The initial state of
the reaction is fixed. We use multiple convolutional layers with a
linear layer to encode the spatial data into latent space. We use an
LSTM layer to encode the latent spatial data with 𝜃0, 𝜃1 to map the
input-output pairs to hidden features 𝑧1:5. With (𝜃0, 𝜃1), and 𝑧1:5
sampled from the posterior distribution, we use an LSTM layer and
deconvolutional layers to simulate reaction diffusion sequence. For
each epoch, we randomly select 20% samples as context sequence.

Heat Model. The model is to predict the spatial solution fields
of the Heat equation [36]. The ground-truth data is generated from
the standard numerical solver used in [24]. The experiment setting
also follows [24]. The examples are generated by solvers running
with 32 × 32 meshes. The corresponding output dimension is 1024.
The input consists of three parameters that control the thermal
conductivity and the flux rate.

Local Epidemic and Mobility model. The Local Epidemic and
Mobility model (LEAM-US) is a stochastic, spatial, age-structured
epidemic model based on a metapopulation approach which divides
the US in more than 3,100 subpopulations, each one correspond-
ing to a each US county or statistically equivalent entity. Popu-
lation size and county-specific age distributions reflect Census’
annual resident population estimates for year 2019. We consider
individuals divided into 10 age groups. Contact mixing patterns are
age-dependent and state specific and modeled considering contact
matrices that describe the interaction of individuals in different
social settings [33]. LEAM-US integrates a human mobility layer,
represented as a network, using both short-range (i.e., commut-
ing) and long-range (i.e., flights) mobility data, see more details in
Appendix C.

We separate data in California monthly to predict the 28 days’
sequence from the 2nd to the 29th day of each month fromMarch to
December. Each 𝜃 includes the county-level parameters of LEAM-
US and state level incidence and prevalence compartments. The
total number of dimension in 𝜃 is 16, 912, see details in Appendix C.
Overall, there are 315 scenarios in the search space, corresponding
to 315 different 𝜃 with total 16, 254 samples. We split 78% of the
data as the candidate set, and 11% for validation and test. For active
learning, we use the candidate set as the search space.

We instantiate an STNP model to mimic an epidemic simulator
that has 𝜃 at both county and state level and 𝑥𝑡 at the state level.
We use county-level parameter 𝜃 together with a county-to-county
mobility graph 𝐴 in California as input. We use the DCGRU layer
[25] to encode the mobility graph in a GRU. We use a linear layer
to map the county-level output to hidden features at the state level.
For both the state-level encoder and decoder, we use multi-layer

GRUs. For each epoch, we randomly select 20% samples as context
sequence.

4.2 Offline Learning Performance

We compared our proposed STNP with vanilla NP [13], SNP [47],
Masked Autoregressive Flow (MAF) [37], the RNN baseline with
variational dropout (RNN) [55], and VAE-based deep surrogate
model for multi-fidelity active learning (DMFAL) [24]. The imple-
mentation details can be seen in Appendix C. The key innovation
of STNP is the introduced temporal latent process. To ensure fair
comparison, we modified baselines for the RD and Heat model
by adding convolutional layers for data encoding and deconvolu-
tional layers for sequence generation. For the LEAM-US model, we
modified NP by adding the convolutional layers with diffusion con-
volution [26] to embed the graphs. Similarly, we modified SNP by
replacing the convolutional layers with diffusion convolution. The
rest baselines do not support LEAM-US surrogate modeling. Table 1
shows the testing MAE of different NP models trained in an offline
fashion. Our STNP significantly improves the performance and can
accurately learn the simulator dynamics for all three experiments.

Figure 3 left compares the NP and GP performance on one sce-
nario in the held-out test set. It shows the ground truth and the
predicted number of infectious population for the first 50 days. We
also include the confidence intervals (CI) with 5 standard deviations
for ground truth and NP predictions and 1 standard deviation for
GP predictions. We observe that NP fits the simulation dynamics
better than GP for mean prediction. Moreover, NP has closer CIs to
the truth, reflecting the simulator’s intrinsic uncertainty. GP shows
larger CIs which represent the model’s own uncertainty. Note that
NP is much more flexible than GP and can scale easily to high-
dimensional data. Figure 3 middle indicates STNP can accurately
predict various patterns corresponding to different (𝜃0, 𝜃1). This
confirms that our STNP is able to capture the high-dimensional
spatiotemporal dependencies in RD simulations. Figure 3 right vi-
sualize the STNP predictions in four key compartments of a typical
scenario with 𝑅0 = 3.1 from March 2nd to March 29th. The confi-
dence interval is plotted with 2 standard deviations. We can see that
both the mean and confidence interval of STNP predictions match
the truth well. These two results demonstrate the promise that the
generative STNP model can serve as a deep surrogate model for
RD and LEAM-US simulator.

4.3 Active Learning

ImplementationDetails.We compare 6 different acquisition func-
tions with NP for SEIRmodel and STNP for RD, Heat, and LEAM-US
model. For SEIR, the initial training dataset has 2 scenarios and we
continue adding 1 scenario per iteration to the training set until the
test loss converges to the offline modeling performance. We also
include GP with 3 different acquisition functions and Sequential
Neural Likelihood (SNL) (see Table 3). For the RD and Heat model,
all acquisition functions start with the same 5 scenarios randomly
picked from the training dataset. Then we continue adding 5 sce-
narios per iteration to the training set until the test loss converges.
Similarly, the LEAM-US model begins with 27 training data and we
continue adding 8 scenarios per iteration to the training set until

2564

KDD ’23, August 6ś10, 2023, Long Beach, CA, USA. Dongxia Wu et al.

1.5 2.0 2.5 3.0 3.5 4.0

0.3

0.4

0.5

0.6

1.5 2.0 2.5 3.0 3.5 4.0

0.3

0.4

0.5

0.6

1.5 2.0 2.5 3.0 3.5 4.0

0.3

0.4

0.5

0.6

1.5 2.0 2.5 3.0 3.5 4.0

0.3

0.4

0.5

0.6

1.5 2.0 2.5 3.0 3.5 4.0

0.3

0.4

0.5

0.6

1.5 2.0 2.5 3.0 3.5 4.0

0.3

0.4

0.5

0.6

1.5 2.0 2.5 3.0 3.5 4.0

0.3

0.4

0.5

0.6

1.5 2.0 2.5 3.0 3.5 4.0

0.3

0.4

0.5

0.6

1.5 2.0 2.5 3.0 3.5 4.0

0.3

0.4

0.5

0.6

1.5 2.0 2.5 3.0 3.5 4.0

0.3

0.4

0.5

0.6

1.5 2.0 2.5 3.0 3.5 4.0

0.3

0.4

0.5

0.6

1.5 2.0 2.5 3.0 3.5 4.0

0.3

0.4

0.5

0.6

1.5 2.0 2.5 3.0 3.5 4.0

0.3

0.4

0.5

0.6

1.5 2.0 2.5 3.0 3.5 4.0

0.3

0.4

0.5

0.6

1.5 2.0 2.5 3.0 3.5 4.0

0.3

0.4

0.5

0.6

1.5 2.0 2.5 3.0 3.5 4.0

0.3

0.4

0.5

0.6

1.5 2.0 2.5 3.0 3.5 4.0

0.3

0.4

0.5

0.6

1.5 2.0 2.5 3.0 3.5 4.0

0.3

0.4

0.5

0.6

1.5 2.0 2.5 3.0 3.5 4.0

0.3

0.4

0.5

0.6

1.5 2.0 2.5 3.0 3.5 4.0

0.3

0.4

0.5

0.6

1.5 2.0 2.5 3.0 3.5 4.0

0.3

0.4

0.5

0.6

1.5 2.0 2.5 3.0 3.5 4.0

0.3

0.4

0.5

0.6

1.5 2.0 2.5 3.0 3.5 4.0

0.3

0.4

0.5

0.6

1.5 2.0 2.5 3.0 3.5 4.0

0.3

0.4

0.5

0.6

1.5 2.0 2.5 3.0 3.5 4.0

0.3

0.4

0.5

0.6

I =2

I =1

I=0

LIG EIG MeanSTD MaxEntropy Random

Transmission rate, β

In
v

e
rs

e
 o

f
th

e
 L

a
te

n
t

P
e

ri
o

d
, ε

1200

1000

800

600

400

200

0

1.0

0.8

0.6

0.4

0.2

0.0

A
cq

u
is

it
io

n
 f

u
n

ct
io

n
 r

e
w

a
rd

In
fe

ct
io

u
s

P
o

p
u

la
ti

o
n

 M
A

E

Figure 5: Acquisition function behavior visualization in SEIR model. For each iteration, top row is the current MAE mesh in

infectious population for all (𝛽, 𝜀) candidates. Bottom row is the acquisition function score. Yellow dots are existing parameters.

Red stars are the newly selected parameters.

with large transmission rate for the first 2 iterations. Including
these scenarios makes the training set unbalanced. The MAE in the
region with small transmission rate become worse after 2 iterations.
Meanwhile, Random is doing pure exploration. The improvement of
MAE performance is not apparent after 2 iterations. Our proposed
LIG is able to reach a balance by exploiting the uncertainty in the
latent process and encouraging exploration. Hence, with a small
number of iterations (𝐼 = 2), it has already selected łinformative
scenariosž in the search space.

5 CONCLUSION

We propose a unified framework Interactive Neural Processes (INP)
for deep Bayesian active learning, that can seamlessly interact with
existing stochastic simulators and accelerate simulation. Specifi-
cally, we design STNP to approximate the underlying simulation
dynamics. It infers the latent process which describes the intrinsic
uncertainty of the simulator. We exploit this uncertainty and pro-
pose LIG as a powerful acquisition function in deep Bayesian active
learning. We perform a theoretical analysis and demonstrate that
our approach reduces sample complexity compared with random
sampling in high dimension. We also did extensive empirical evalu-
ations on several complex real-world spatiotemporal simulators to
demonstrate the superior performance of our proposed STNP and
LIG. For the future work, we plan to leverage Bayesian optimiza-
tion techniques to directly optimize for the target parameters with
auto-differentiation.

ACKNOWLEDGMENTS

This work was supported in part by U.S. Department Of Energy, Of-
fice of Science, Facebook Data Science Research Awards, U. S. Army

Research Office under Grant W911NF-20-1-0334, and NSF Grants
#2134274 and #2146343, as well as NSF-SCALE MoDL (2134209)
and NSF-CCF-2112665 (TILOS). M.C. and A.V. acknowledge support
from grant HHS/CDC 5U01IP0001137.

REFERENCES
[1] Sercan Arik, Chun-Liang Li, Jinsung Yoon, Rajarishi Sinha, Arkady Epshteyn,

Long Le, Vikas Menon, Shashank Singh, Leyou Zhang, Martin Nikoltchev, et al.
2020. Interpretable Sequence Learning for Covid-19 Forecasting. Advances in
Neural Information Processing Systems 33 (2020).

[2] Sùren Asmussen and Peter W Glynn. 2007. Stochastic simulation: algorithms and
analysis. Vol. 57. Springer Science & Business Media.

[3] Salva Rühling Cachay, Venkatesh Ramesh, Jason N. S. Cole, Howard Barker, and
David Rolnick. 2021. ClimART: A Benchmark Dataset for Emulating Atmospheric
Radiative Transfer in Weather and Climate Models. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track. https:
//arxiv.org/abs/2111.14671

[4] Kathryn Chaloner and Isabella Verdinelli. 1995. Bayesian experimental design: A
review. Statist. Sci. (1995), 273ś304.

[5] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. 2018.
Neural ordinary differential equations. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems. 6572ś6583.

[6] David A Cohn, Zoubin Ghahramani, and Michael I Jordan. 1996. Active learning
with statistical models. Journal of artificial intelligence research 4 (1996), 129ś145.

[7] Estee Y Cramer, Velma K Lopez, Jarad Niemi, Glover E George, Jeffrey C Cegan,
Ian D Dettwiller, William P England, Matthew W Farthing, Robert H Hunter,
Brandon Lafferty, et al. 2021. Evaluation of individual and ensemble probabilistic
forecasts of COVID-19 mortality in the US. medRxiv (2021).

[8] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. 2019. Gradient
Descent Finds Global Minima of Deep Neural Networks. In Proceedings of the
36th International Conference on Machine Learning (ICML). 1675ś1685.

[9] Adam Foster, Desi R Ivanova, IlyasMalik, and TomRainforth. 2021. DeepAdaptive
Design: Amortizing Sequential Bayesian Experimental Design. Proceedings of the
38th International Conference on Machine Learning (ICML) (2021).

[10] A Foster, M Jankowiak, E Bingham, P Horsfall, YW Tee, T Rainforth, and N
Goodman. 2019. Variational Bayesian optimal experimental design. Conference
on Neural Information Processing Systems.

[11] Peter I Frazier. 2018. A tutorial on Bayesian optimization. arXiv preprint
arXiv:1807.02811 (2018).

2566

Deep Bayesian Active Learning for

Accelerating Stochastic Simulation KDD ’23, August 6ś10, 2023, Long Beach, CA, USA.

[12] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. 2017. Deep bayesian active
learning with image data. In International Conference on Machine Learning. PMLR,
1183ś1192.

[13] Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J
Rezende, SM Eslami, and Yee Whye Teh. 2018. Neural processes. arXiv preprint
arXiv:1807.01622 (2018).

[14] Daniel T Gillespie. 2007. Stochastic simulation of chemical kinetics. Annu. Rev.
Phys. Chem. 58 (2007), 35ś55.

[15] Michael U Gutmann, Jukka Corander, et al. 2016. Bayesian optimization for
likelihood-free inference of simulator-based statistical models. Journal of Machine
Learning Research (2016).

[16] Philipp Holl, Nils Thuerey, and Vladlen Koltun. 2019. Learning to Control PDEs
with Differentiable Physics. In International Conference on Learning Representa-
tions.

[17] Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. 2011.
Bayesian active learning for classification and preference learning. arXiv preprint
arXiv:1112.5745 (2011).

[18] Marko Järvenpää, Michael U Gutmann, Arijus Pleska, Aki Vehtari, and Pekka
Marttinen. 2019. Efficient acquisition rules for model-based approximate Bayesian
computation. Bayesian Analysis 14, 2 (2019), 595ś622.

[19] Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan
Rosenbaum, Oriol Vinyals, and Yee Whye Teh. 2019. Attentive neural processes.
International Conference on Learning Representation (2019).

[20] Diederik P Kingma and Max Welling. 2013. Auto-Encoding Variational Bayes.
arXiv preprint arXiv:1312.6114 (2013).

[21] Andreas Kirsch, Joost Van Amersfoort, and Yarin Gal. 2019. Batchbald: Efficient
and diverse batch acquisition for deep bayesian active learning. Advances in
neural information processing systems 32 (2019).

[22] Steven Kleinegesse and Michael U Gutmann. 2020. Bayesian experimental design
for implicit models by mutual information neural estimation. In International
Conference on Machine Learning. PMLR, 5316ś5326.

[23] Damien Lamberton and Bernard Lapeyre. 2007. Introduction to stochastic calculus
applied to finance. CRC press.

[24] Shibo Li, Robert M Kirby, and Shandian Zhe. 2020. Deep Multi-Fidelity Active
Learning of High-dimensional Outputs. arXiv preprint arXiv:2012.00901 (2020).

[25] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2017. Diffusion convolu-
tional recurrent neural network: Data-driven traffic forecasting. arXiv preprint
arXiv:1707.01926 (2017).

[26] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion Convolutional
Recurrent Neural Network: Data-Driven Traffic Forecasting. In International
Conference on Learning Representations (ICLR).

[27] Haoxing Lin, Rufan Bai, Weijia Jia, Xinyu Yang, and Yongjian You. 2020. Preserv-
ing dynamic attention for long-term spatial-temporal prediction. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 36ś46.

[28] Christos Louizos, Xiahan Shi, Klamer Schutte, and Max Welling. 2019. The
Functional Neural Process. Advances in Neural Information Processing Systems
(2019).

[29] Jose Lourenco, Robert Paton, Mahan Ghafari, Moritz Kraemer, Craig Thompson,
Peter Simmonds, Paul Klenerman, and Sunetra Gupta. 2020. Fundamental princi-
ples of epidemic spread highlight the immediate need for large-scale serological
surveys to assess the stage of the SARS-CoV-2 epidemic. MedRxiv (2020).

[30] Jan-Matthis Lueckmann, Giacomo Bassetto, Theofanis Karaletsos, and Jakob H
Macke. 2019. Likelihood-free inference with emulator networks. In Symposium
on Advances in Approximate Bayesian Inference. PMLR, 32ś53.

[31] Edward Meeds and Max Welling. 2014. GPS-ABC: Gaussian process surrogate
approximate Bayesian computation. In Proceedings of the Thirtieth Conference on
Uncertainty in Artificial Intelligence. 593ś602.

[32] Song Mei and Andrea Montanari. 2019. The generalization error of random
features regression: Precise asymptotics and double descent curve. (2019). arXiv:
1908.05355.

[33] Dina Mistry, Maria Litvinova, Ana Pastore y Piontti, Matteo Chinazzi, Laura
Fumanelli, Marcelo FC Gomes, Syed A Haque, Quan-Hui Liu, Kunpeng Mu,
Xinyue Xiong, et al. 2021. Inferring high-resolution human mixing patterns for
disease modeling. Nature communications 12, 1 (2021), 1ś12.

[34] Andreas Munk, Adam Ścibior, Atılım Güneş Baydin, Andrew Stewart, Goran
Fernlund, Anoush Poursartip, and FrankWood. 2019. Deep probabilistic surrogate
networks for universal simulator approximation. arXiv preprint arXiv:1910.11950
(2019).

[35] Jay I Myung, Daniel R Cavagnaro, and Mark A Pitt. 2013. A tutorial on adaptive
design optimization. Journal of mathematical psychology 57, 3-4 (2013), 53ś67.

[36] Louise Olsen-Kettle. 2011. Numerical solution of partial differential equations.
Lecture notes at University of Queensland, Australia (2011).

[37] George Papamakarios, Theo Pavlakou, and Iain Murray. 2017. Masked autore-
gressive flow for density estimation. Advances in neural information processing
systems 30 (2017).

[38] George Papamakarios, David Sterratt, and Iain Murray. 2019. Sequential neural
likelihood: Fast likelihood-free inference with autoregressive flows. In The 22nd
International Conference on Artificial Intelligence and Statistics. PMLR, 837ś848.

[39] Zhaozhi Qian, Ahmed M Alaa, and Mihaela van der Schaar. 2020. When and How
to Lift the Lockdown? Global COVID-19 Scenario Analysis and Policy Assess-
ment using Compartmental Gaussian Processes. Advances in Neural Information
Processing Systems 33 (2020).

[40] Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella,
Yuyang Wang, and Tim Januschowski. 2018. Deep state space models for time
series forecasting. Advances in neural information processing systems 31 (2018),
7785ś7794.

[41] Stephan Rasp, Michael S Pritchard, and Pierre Gentine. 2018. Deep learning
to represent subgrid processes in climate models. Proceedings of the National
Academy of Sciences 115, 39 (2018), 9684ś9689.

[42] Brian D Ripley. 2009. Stochastic simulation. Vol. 316. John Wiley & Sons.
[43] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure

Leskovec, and Peter Battaglia. 2020. Learning to simulate complex physics
with graph networks. In International Conference on Machine Learning. PMLR,
8459ś8468.

[44] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Fre-
itas. 2015. Taking the human out of the loop: A review of Bayesian optimization.
Proc. IEEE 104, 1 (2015), 148ś175.

[45] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and
Wang-chun Woo. 2015. Convolutional LSTM network: A machine learning
approach for precipitation nowcasting. Advances in neural information processing
systems 28 (2015).

[46] Aditya Siddhant and Zachary C Lipton. 2018. Deep bayesian active learning
for natural language processing: Results of a large-scale empirical study. arXiv
preprint arXiv:1808.05697 (2018).

[47] Gautam Singh, Jaesik Yoon, Youngsung Son, and Sungjin Ahn. 2019. Sequential
Neural Processes. Advances in Neural Information Processing Systems 32 (2019),
10254ś10264.

[48] Alan Mathison Turing. 1990. The chemical basis of morphogenesis. Bulletin of
mathematical biology 52, 1 (1990), 153ś197.

[49] Benjamin T Vincent and Tom Rainforth. 2017. The DARC Toolbox: automated,
flexible, and efficient delayed and risky choice experiments using Bayesian adap-
tive design. PsyArXiv. October 20 (2017).

[50] Rui Wang, Karthik Kashinath, Mustafa Mustafa, Adrian Albert, and Rose Yu.
2020. Towards physics-informed deep learning for turbulent flow prediction.
In Proceedings of the 26th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2020.

[51] YunboWang, Mingsheng Long, JianminWang, Zhifeng Gao, and Philip S Yu. 2017.
Predrnn: Recurrent neural networks for predictive learning using spatiotemporal
lstms. Advances in neural information processing systems 30 (2017).

[52] Frank Wood, AndrewWarrington, Saeid Naderiparizi, Christian Weilbach, Vaden
Masrani, William Harvey, Adam Scibior, Boyan Beronov, John Grefenstette, Dun-
can Campbell, et al. 2020. Planning as inference in epidemiological models. arXiv
preprint arXiv:2003.13221 (2020).

[53] Huaxiu Yao, Xianfeng Tang, Hua Wei, Guanjie Zheng, and Zhenhui Li. 2019.
Revisiting spatial-temporal similarity: A deep learning framework for traffic
prediction. In Proceedings of the AAAI conference on artificial intelligence, Vol. 33.
5668ś5675.

[54] Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng Tang, Yitian Jia, Siyu Lu, Pinghua Gong,
Jieping Ye, and Zhenhui Li. 2018. Deep multi-view spatial-temporal network
for taxi demand prediction. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 32.

[55] Lingxue Zhu and Nikolay Laptev. 2017. Deep and confident prediction for time
series at uber. In 2017 IEEE International Conference on Data Mining Workshops
(ICDMW). IEEE, 103ś110.

[56] Christoph Zimmer, Mona Meister, and Duy Nguyen-Tuong. 2018. Safe active
learning for time-series modeling with gaussian processes. In Proceedings of the
32nd International Conference on Neural Information Processing Systems. 2735ś
2744.

2567

KDD ’23, August 6ś10, 2023, Long Beach, CA, USA. Dongxia Wu et al.

A THEORETICAL ANALYSIS

A.1 Sample Efficiency of Active Learning

From the main text we know that in each round, the output random
variable

𝑋 =

〈
Ψ(𝜃), 𝑧∗

〉
+ 𝜖. (4)

We further assume that the random noise 𝜖 is mean zero and 𝜎-
subGaussian.

Using this information, we treat 𝑧 as an unknown parameter and
define a likelihood function so that 𝑝 (𝑋 |𝑧;𝜃) has good coverage
over the observations:

𝑝 (𝑋𝑘 |𝑧;𝜃𝑘) ∝ exp

(
− 1

2𝜎2
(𝑋𝑘 − ⟨Ψ(𝜃𝑘), 𝑧⟩)2

)
.

Let the prior distribution over 𝑧 be:

𝑝 (𝑧 |𝜃𝑘) = 𝑝 (𝑧) ∝ exp
(
− 𝑚

2𝜎2
∥𝑧∥2

)
.

Here we use 𝑘 instead of (𝑖) in the Algorithm 1 to represent the
number of iterations. We can form a posterior over 𝑧 in the 𝑘-th
round:

𝑝 (𝑧 |𝑋1, 𝜃1, . . . , 𝑋𝑘 , 𝜃𝑘) ∝ exp
(
− 𝑚
2𝜎2 ∥𝑧∥2 − 1

2𝜎2

∑𝑘
𝑠=1 (𝑋𝑠 − ⟨Ψ(𝜃𝑠), 𝑧⟩)

2
)
.

Focusing on the random variable 𝑧 ∼ 𝑝 (·|𝑋1, 𝜃1, . . . , 𝑋𝑘 , 𝜃𝑘), the
estimate of the hidden variable, we can express it at 𝑘-th round as:

𝑧𝑘 = 𝑧𝑘 + 𝜎𝑉 −1𝑘
𝜂𝑘 , (5)

where 𝑧𝑘 = 𝑉 −1
𝑘

∑𝑘
𝑠=1 𝑋𝑠Ψ(𝜃𝑠), 𝑉𝑘 =𝑚𝑰 +∑𝑘𝑠=1 Ψ(𝜃𝑠)Ψ(𝜃𝑠)T, and

𝜂𝑘 is a standard normal random variable.
We can either choose action 𝜃 randomly or greedily. A random

choice of 𝜃 corresponds to taking

𝜃𝑘 ∼ N (0, 𝑰) , (6)

A greedy procedure is to choose action 𝜃𝑘 in the 𝑘-th round to opti-

mize KL (𝑝 (𝑧 |𝑥, 𝜃)∥𝑝 (𝑧)) = E𝑝 (𝑧 |𝑥,𝜃)
(
log

𝑝 (𝑧 |𝑥,𝜃)
𝑝 (𝑧)

)
, where we de-

note the estimated output variable 𝑥 given 𝜃 and 𝑧 as 𝑥 = ⟨Ψ(𝜃), 𝑧⟩.
This optimization procedure is equivalent to maximizing the vari-
ance of the prediction:

𝜃𝑘 = arg max
𝜃 ∈R𝑑

E𝑧∼𝑝 (· |𝑋1,𝜃1,...,𝑋𝑘−1,𝜃𝑘−1) (7)[(
⟨Ψ(𝜃), 𝑧⟩ − E𝑧∼𝑝 (· |𝑋1,𝜃1,...,𝑋𝑘−1,𝜃𝑘−1) ⟨Ψ(𝜃), 𝑧⟩

)2]
.

For both approaches, we assume that the features Ψ(𝜃) are normal-
ized.

We compare the statistical risk of this approach with the random
sampling approach.

Assume that the features are normalized, so that for all 𝜃 ∈ R𝑑 ,
Ψ(𝜃) ∈ S𝑑−1. Define a matrix𝑨𝑘 ∈ R𝑑×𝑘 containing all the column
vectors {Ψ(𝜃1), . . . ,Ψ(𝜃𝑘)}. We can then express the estimation
error in the following lemma.

Lemma 1. The estimation error ∥𝑧𝑘 − 𝑧∗∥2 can be bounded as

follow.

𝑧𝑘 − 𝑧∗

2 ≤ 𝑚
(
𝑚 + 𝜎min

(
𝑨𝑘𝑨

T
𝑘

))−1
·

𝑧∗

2

+min



1/

(
2
√
𝑚
)
, 1/

©­­­­«

√︂
𝜎min

(
𝑨𝑘𝑨

T
𝑘

)
+ 𝑚√︂

𝜎min

(
𝑨𝑘𝑨

T
𝑘

)
ª®®®®¬



· 𝜎
√
𝑑.

We analyze random sampling of 𝜃 versus greedy search for 𝜃 .
If the feature map Ψ(·) = id, then from random matrix theory,

we know that for 𝜃 randomly sampled from a normal distribu-

tion and normalized to ∥𝜃 ∥ = 1, 𝜎min

(
1
𝑘
𝑨𝑘𝑨

T
𝑘

)
will converge to(√︁

1/𝑘 −
√︁
1/𝑑

)2
for large 𝑘 , which is of order Ω(1/𝑑). This will

lead to an appealing risk bound for ∥𝑧𝑘 − 𝑧∗∥2 on the order of

O
(
𝑑/
√
𝑘
)
.

However, in high dimension, this feature map is often far from
identity. In the proof of Theorem 1 below, we demonstrate that
even when Ψ(·) is simply a linear random feature map, with i.i.d.
normal entries, random exploration in 𝜃 can lead to deteriorated
error bound. This setting is motivated by the analyses in wide
neural networks, where the features learned from gradient descent
are close to those generated from random initialization [8, 32].

Theorem 1 (Formal statement). Assume that the noise 𝜖 in equa-

tion 4 is 𝜎-subGaussian.

For a normalized linear random feature mapΨ(·), greedily optimiz-

ing the KL divergence, KL (𝑝 (𝑧 |𝑥, 𝜃)∥𝑝 (𝑧)) (or equivalently the vari-

ance of the posterior predictive distribution defined in equation equa-

tion 7) in search of 𝜃 will lead to an error ∥𝑧𝑘 − 𝑧∗∥2 = O
(
𝜎𝑑/
√
𝑘
)

with high probability.

On the other hand, random sampling of 𝜃 following equation 6 will

lead to ∥𝑧𝑘 − 𝑧∗∥2 = O
(
𝜎𝑑2/
√
𝑘
)
with high probability.

See proofs in the Appendix C.

B ADDITIONAL RESULTS

B.1 INP, GP, and SNL Model

Table 2 and Table 3 show the average results together with the
standard deviation of INP, GP, and SNL model for SEIR simulator
after running experiments three times. The performance of INP
with the proposed LIG is much better than GP and SNL baselines
at each iteration.

B.2 Active learning performance comparison.

Table 4, Table 5, and Table 6 show the active learning performance
comparison results on Heat, RD, and LEAM-US simulation task.
The performance of INPwith the proposed LIG always outperforms
the baselines at each iteration among all 3 tasks.

C OTHER INFORMATION

The proof of Proposition 1, the proof of Theorm A.1 and experiment
details can be found at https://arxiv.org/pdf/2106.02770.pdf.

2568

Deep Bayesian Active Learning for

Accelerating Stochastic Simulation KDD ’23, August 6ś10, 2023, Long Beach, CA, USA.

Table 2: Active learning Performance comparison using MAE for different acquisition functions in NP model on SEIR simulator

Percentage of samples LIG EIG Random MeanSTD MaxEntropy

1.11% 365.87 ± 142.87 435.08 ± 32.38 480.68 ± 5.24 480.22 ± 12.63 427.73 ± 61.36
1.85% 236.9 ± 50.6 340.27 ± 30.84 398.33 ± 131.05 314.75 ± 111.42 302.24 ± 119.84
2.96% 119.26 ± 14.22 291.15 ± 10.60 244.27 ± 148.89 158.94 ± 36.6 186.88 ± 57.48
4.07% 96.73 ± 17.07 261.60 ± 7.78 116.8 ± 9.1 127.36 ± 27.97 146.72 ± 26.06

Table 3: Active learning erformance comparison using MAE for different acquisition functions in GP model and SNL model on

SEIR simulator

Percentage of samples Random (GP) MeanSTD (GP) MaxEntropy (GP) SNL

1.11% 663.76 ± 46.36 606.81 ± 6.89 586.25 ± 58.44 707.61 ± 44.42
1.85% 637.12 ± 13.45 619.15 ± 36.42 628.54 ± 71.34 669.03 ± 73.19
2.96% 597.3 ± 19.59 589.72 ± 24.9 568.84 ± 19.05 668.67 ± 72.42
4.07% 519.98 ± 17.86 530.07 ± 32.95 578.34 ± 68.7 685.28 ± 53.00

Table 4: Active learning performance comparison using MAE for different acquisition functions in STNP model on Heat

simulator.

Percentage of samples LIG EIG Random MeanSTD MaxEntropy

5.21% 1.55e-2 ± 1.9e-3 1.64e-2 ± 1.9e-3 1.74e-2 ± 2.2e-3 1.77e-2 ± 2e-3 1.83e-2 ± 1.1e-3

7.81% 1.33e-2 ± 1.7e-3 1.56e-2 ± 1.1e-3 1.49e-2 ± 3.3e-3 1.60e-2 ± 3.7e-3 1.58e-2 ± 4e-4

10.42% 1.02e-2 ± 3.4e-3 1.38e-2 ± 1.6e-3 1.23e-2 ± 1.5e-3 1.30e-2 ± 2.4e-3 1.61e-2 ± 8e-4

13.02% 9.3e-3 ± 3.1e-3 1.05e-2 ± 2.2e-3 1.14e-2 ± 1.3e-3 1.27e-2 ± 2.5e-3 1.46e-2 ± 6e-4

15.62% 6.7e-3 ± 5e-4 1.08e-2 ± 1.8e-3 1.05e-2 ± 9e-4 1.17e-2 ± 1.2e-3 1.43e-2 ± 2e-4

Table 5: Active learning performance comparison usingMAE for different acquisition functions in STNPmodel on RD simulator

Percentage of samples LIG EIG Random MeanSTD MaxEntropy

6.25% 4.562 ± 0.114 4.861 ± 0.433 5.325 ± 0.361 5.264 ± 0.298 4.826 ± 0.336
12.50% 3.841 ± 0.253 4.590 ± 0.529 4.179 ± 0.045 4.157 ± 0.252 4.084 ± 0.042
18.75% 3.165 ± 0.142 4.162 ± 0.696 3.602 ± 0.182 3.675 ± 0.229 3.694 ± 0.140
25.00% 2.415 ± 0.083 3.993 ± 0.847 3.140 ± 0.165 3.339 ± 0.111 3.302 ± 0.284
31.25% 2.302 ± 0.007 3.714 ± 0.861 2.561 ± 0.243 2.791 ± 0.072 2.912 ± 0.473

Table 6: Active learning performance comparison using MAE for different acquisition functions in STNP model on LEAM-US

simulator, population divided by 1000.

Percentage of samples LIG EIG Random MeanSTD MaxEntropy

11.1% 14.447 ± 1.087 19.067 ± 3.981 20.961 ± 5.548 35.356 ± 28.706 65.498 ± 13.324
13.7% 11.704 ± 0.216 16.372 ± 3.663 13.418 ± 0.815 16.092 ± 3.11 30.496 ± 24.333
21.3% 7.593 ± 0.822 11.754 ± 1.713 9.332 ± 0.601 11.191 ± 0.184 10.028 ± 2.065
28.9% 6.539 ± 0.618 9.455 ± 0.595 8.077 ± 0.657 7.908 ± 0.536 8.417 ± 0.616
36.5% 6.008 ± 1.079 8.596 ± 0.741 6.719 ± 0.383 7.533 ± 0.861 7.431 ± 0.776

2569

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Interactive Neural Process
	3.2 Spatiotemporal Neural Process
	3.3 Bayesian Active Learning
	3.4 Reward/Acquisition functions
	3.5 Theoretical Analysis

	4 Experiments
	4.1 Experimental Setup
	4.2 Offline Learning Performance
	4.3 Active Learning

	5 Conclusion
	References
	A Theoretical Analysis
	A.1 Sample Efficiency of Active Learning

	B Additional Results
	B.1 INP, GP, and SNL Model
	B.2 Active learning performance comparison.

	C Other Information

