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Abstract— Maximizing gain in beamforming arrays for
emerging communications-on-the-move applications is key in
highly resilient networks. Recent studies have demonstrated
the rainbow beamtraining method as an effective solution
for spatio-spectral mapping in analog/hybrid arrays but
require large delay-bandwidth products. In this work, a
proof-of-concept 2-channel 1.5GHz bandwidth 10ns maximum
delay spatial signal processor is proposed. The angle-of-arrival
estimation error is significantly reduced to +1.5° compared
to prior implementations with a smaller delay range.
Multi-stage buffer-less switched-capacitor array enables large
delay-bandwidth product of 15. A passive-active amplifier-based
combination scheme supports the wideband operation minimizing
power and distortion. A negative-capacitance compensated
ring-amplifier with stabilization is proposed as part of the
wideband signal combiner. The 2-channel system consumes
37.3mW/channel and 0.45mm? in 65nm CMOS.

Keywords — rainbow beamtraining, negative-capacitance,
wideband RAMP, delay range, true-time-delay arrays.

I. INTRODUCTION

Joint communication-sensing protocols at millimeter-wave
(mmW) and sub-THz are highly reliant on beamtraining
(BT) to realize the optimal gain at all times. As illustrated
in Fig. 1, frequency-dependent beam probing, hereby called
rainbow-BT, has been proven as a fast and energy-efficient
[1], [2] method for probing multiple directions simultaneously.
The rainbow-BT uses true-time-delay (TTD) arrays enabling
a single-shot spatio-spectral mapping exploiting beam
squint [1]-[4]. Integrated leaky-wave antenna [3] enables
spatio-spectral mapping at sub-THz but is less scalable
to lower mmW occupying a significantly large area. In
[1], fast angle-of-arrival (Ao0A) estimation was studied
for a linear array that shows that the AoA estimation
accuracy is a strong function of diversity order, number of
elements, and bandwidth. Equivalent hardware demonstrations
of rainbow-BT were shown in [2], [4], [5] with a single-stage
switched-capacitor array (SS-SCA). The SS-SCA with
digitally-controlled delay compensation [6] is advantageous
as compared to other delay lines like T-line, g,,-C all-pass
filter, and digital delay units due to its balanced performance of
area/power, delay range, and resolution [2]. The discrete-time
delay unit in the SS-SCA that exploits beam-squint effect
required for rainbow-BT had an overhead of < 3% in
power consumption. However, a delay-BW product of only
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Fig. 1. Wideband comms between user element (UE) and base station.

3 limited the angle-of-arrival (AoA) estimation accuracy to
10° [4]. As the need for a larger delay in a higher bandwidth
system arises, the SS-SCA suffers from considerable signal
leakage and stringent settling time requirements. A multi-stage
(MS-SCA) architecture first proposed in [7] can achieve
larger delay ranges, breaking the fundamental delay-BW
trade-off. However, only a single-element was demonstrated
and inter-element delay compensation with wideband analog
combining was not considered. The analog combining is
particularly challenging with increasing signal BW and
interleaving levels required to achieve larger delay ranges.
Ring-amplifiers (RAMPs) could overcome the limitations
above but are constrained by stability issues.

This work proposes a proof-of-concept 2-element 1.5GHz
BW rainbow-BT array with up to 10ns reconfigurable
delay range compensation. The significantly improved
delay-bandwidth product realizes state-of-the-art AoA
accuracy of < 1.5° with only 74.6mW core power and
0.45mm? area in 65nm CMOS that validates the theoretical
foundations in [1]. Key specific contributions are:

1) Low-power buffer-less multi-stage SCA architecture;

2) Active-passive hybrid signal combination scheme leveraging
power and linearity performance;

3) Highly-digital clock generator design with reconfigurable
delay compensation and leakage reduction; and

4) High-speed RAMP as active signal combiner with
stabilization and passive common-mode-feedback (CMFB)
network for wideband operation.

The rest of the paper is organized as follows. Section II
explains the proposed system design. Circuit implementation
is detailed in Section III, followed by measurements in Section
IV. Section V concludes this paper.
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Fig. 3. Proposed 2-element MS-SCA with negative-capacitance stabilized
RAMP for wideband analog combining.

II. PROPOSED SYSTEM IMPLEMENTATION

We note that for high precision rainbow-BT a large delay
range is required in hardware [1]. Fig. 2 shows the simplified
system architecture. The proposed system consists of 3 main
parts: MS-SCA, signal combiner, and clock generator. The
MS-SCA and the signal combiner process the input signals
with different delay, and combine signals from different
channels. Fig. 3 presents the signal processing chain with
more details. Time-interleaving SCA is used to extend delay
range [6]. However, the basic SS-SCA [8] (Fig. 4(a)) suffers
from timing skew and signal leakage as the interleaving levels
are increased. In [7], MS-SCA was proposed to relax the
timing requirement for large interleaving levels (Fig. 4(b)).
The clock signals of the second stage overlap with those of
the first stage, leading to a timing skew-insensitive design. In
this work, we implement a buffer-less SCA to reduce power
consumption and also minimize area (Fig. 4(c)). However, the
buffer-less SCA comes at the cost of increased gain loss. A
hybrid passive- and active-signal summation scheme is thus
proposed to compensate for the gain loss induced in the
MS-SCA (Fig. 3). The passive summation processes the signal
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Fig. 4. Comparison of 3 different SCA architectures.
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Fig. 5. Clock generator diagram.

information during phase 1 (CLK), followed by amplification
and active summation in phase 2. SCA sampler charges are
transferred into RAMP input capacitor Ci,: N x Cs X AV, =
Cin x AV;,, N=2 denotes the number of channels and AV, is
the voltage difference across sampling cap C. By adjusting the
RAMP input capacitance, the bandwidth and gain limitation
of the amplifier are also relieved: w, > 2 x In(2) X N x
(R+1) x fs, where w, is the unity-gain bandwidth, R is the
ADC resolution, and fs is the sampling frequency. Passive
combination is inherently linear but suffers due to charge
sharing. This is partly compensated using a low-power RAMP
improved from [9] in section III.

III. CIRCUIT IMPLEMENTATION

A. Clock Generator: A simplified clock design diagram is
shown in Fig. 5. Delay is controlled by generating different
start-up timing using DFFs and external digital control codes.
A non-overlapping retiming logic block is used before each
stage’s output phases to avoid signal leakage within the
same interleaving level SCA. The integrated clock generator
provides multiple duty cycle clocks: 50% at 3 GHz for input
sampler, 25% for Stage 1 at 750 MHz; 12.5% for Stage 2
clocks at 93.75 MHz. Fig. 6 illustrates the maximum delay
case where one channel is delayed by one sampling period
while the other channel is set to maximum delay.

B. Negative-Capacitance Compensated RAMP with Gain
Boost: To compensate for the passive combination loss, a
RAMP-based signal combiner is used. In [9], a dead-zone
degenerated RAMP was demonstrated with improved gain
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Fig. 7. Proposed (a) rmg—amphﬁer (RAMP) cell and (b) its schematic with
gain boost and negative capacitance compensation.

performance. For wideband operation, the RAMP stability is
affected, leading to poor settling. To improve stability in the
RAMP-based summer adding two antenna inputs, a negative
capacitance compensation with gain boost RAMP scheme is
proposed (Fig. 7(a)). The compensation shown in detail in
Fig. 7(b) helps in the following two ways: (1) reduce the
input capacitance of the second RAMP stage as the equivalent
Miller capacitance at node A is negative; and (2) the output
capacitance of the RAMP cell is increased due to the Miller
cap at the output node. As a result, phase margin is increased,
and the proposed RAMP is stabilized with a large bandwidth,
as illustrated in Fig. 8. A resistive gain boost technique is
further implemented to help improve the RAMP gain. We
also apply resistive CMFB in the RAMP (Fig. 9) that does
not require an extra reset phase in the delay compensation for
the MS-SCA as compared to [6]. This enhances the maximum
delay range feasible by an additional 0.57 (Ts = 1/ f5).

Open-loop Bode Plot of RAMP cell
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Fig. 8. Simulated open-loop Bode plot of the proposed RAMP cell.
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Fig. 9. Closed-loop RAMP configuration with resistive CMFB.
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Fig. 10. (left) Die photo. (right) Testbench setup.

IV. MEASUREMENT RESULTS

The proposed design is fabricated in a 65nm CMOS
process occupying 1.086mm?, with a core area of 0.45mm?
and core power of 74.62mW (excluding test buffers). The
test setup is shown in Fig. 10. MATLAB-generated test
data is applied to the DUT (chip-on-board) using high-speed
Xilinx ZCU111 DACs with the DUT output captured by R&S
spectrum analyzer. Clocks and other biases, as well as on-chip
serial peripheral interface (SPI) providing digital delay control
codes, are shown in Fig. 10.

Fig. 11 presents the measured spectrum with interleaving
spurs removed. The clock interleaving spurs are static by
nature and below 3rd-harmonics tones. Thus it is reasonable
to have post-processing remove interleaving spurs. Measured
single-tone results show an SFDR of 40dB at low frequency
and 33dB near Nyquist (with post-processing in the RFSoC).
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Fig. 11. Measured single-tone spectrum at different input frequencies.
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Fig. 12 shows the combined 2-channel output with different
delays between the two channels for three different single-tone
inputs. The measured curves match the theoretical estimates,
proving that on-chip delay can be precisely tuned within the
10ns range. With the ability to control the delay, BT power
spectrum density (PSD) has been measured with delays set to
1/BW and 10/BW for a 1.5GHz chirp applied from ZCU111
in Fig. 13. As illustrated, the angle estimation error range has
reduced dramatically from +7.8° to £1.5°, proving that a 10X
increased delay range increases BT accuracy.
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Table 1. Comparison Table
This Work [4] [6] (3] [10]
Function BF/BT BF/BT BF BF/BT BF/BT
Tech 65nm 65nm 65nm 65nm 45nm
eeh- CMOS CMOS CMOS CMOS SOI CMOS
Dela Time-interleaved Time- Time- On-chip Time-interleaved
Meth())/d multi-stage interleaved interleaved leaky-wave multi-stage
switched-cap switched-cap | switched-cap antenna switched-cap
# of
Channels 2 22 4 2 !
Freg. Range DC-15 DC-0.8 DC-0.5 360-400 0.22
(GHz)
Max Delay 10 38 1 N/R 448.6
(ns)
Delay Range
« BW 15 3.04 0.5 N/R 897.2
AoA £1.5° £11.2° N/R £0.95° N/A
Accuracy
1IP3 (dBm) 17.5-18 14 79 N/R N/R
Area Effici.
P 22 12.6 26.3 N/R 330
(ns/mm#)
Pdc/Channel
(mW) 37.3 29 40 163 74
Core Area 045 1.98 0.82 3 136
(mm*~)

V. CONCLUSIONS AND FUTURE WORKS

This work demonstrated a spatial signal processor with an
on-chip integrated delay range of 10ns supporting 1.5GHz
bandwidth for wideband communications-on-the-move and
fast BT applications. Table 1 compares state-of-the-art
beamformers with integrated BT. In contrast to [7], this
work achieves higher power efficiency with less delay while
combining several channels. In [8], SS-SCA architecture
is used for delay compensation but with a smaller signal
bandwidth and hence a smaller delay-bandwidth product.
The larger delay-bandwidth product in this work shows
state-of-the-art accuracy with one of the lowest reported areas
per channel. Further research will investigate simultaneous
communication and training.
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