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Abstract

There are two strategic and longstanding questions about cyber risk that organizations largely
have been unable to answer: What is an organization's estimated risk exposure and how does
its security compare with peers? Answering both requires industry-wide data on security
posture, incidents, and losses that, until recently, have been too sensitive for organizations to
share. Now, privacy enhancing technologies (PETs) such as cryptographic computing can enable
the secure computation of aggregate cyber risk metrics from a peer group of organizations
while leaving sensitive input data undisclosed. As these new aggregate data become available,
analysts need ways to integrate them into cyber risk models that can produce more reliable risk
assessments and allow comparison to a peer group. This paper proposes a new framework for
benchmarking cyber posture against peers and estimating cyber risk within specific economic
sectors using the new variables emerging from secure computations. We introduce a new top-
line variable called the “Defense Gap Index” representing the weighted security gap between an
organization and its peers that can be used to forecast an organization’s own security risk based
on historical industry data. We apply this approach in a specific sector using data collected from
25 large firms, in partnership with an industry ISAQ?, to build an industry risk model and provide
tools back to participants to estimate their own risk exposure and privately compare their
security posture with their peers.

1 Authors listed in alphabetical order. Weitzner and Wu were supported, in part, by NSF grant Collaborative
Research: DASS: Legally Accountable Cryptographic Computing Systems (LAChS) Award Number: 21315415.
Reynolds was supported by MIT’s Future of Data Initiative, MIT’s FinTech@CSAIL, and MIT’s Machine Learning
Applications @CSAIL.

2 The data was collected from 25 large firms in the United States with combined annual revenues of USD 23 billion.
Due to the sensitive nature of the results, we are keeping the name of the ISAO undisclosed in this version of the
paper.
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Introduction

There are two strategic and longstanding questions about cyber risk that organizations largely
have been unable to answer: What is an organization's estimated risk exposure and how does
its security compare with peers? Answering both requires industry-wide data on security
posture, incidents, and losses that, until recently, have been too sensitive for organizations to
share.

Until now, firms have been unable to assess their own cyber risk posture with reference to
larger risk patterns. This means that firms have been unable to forecast their own cyber risk
because they lack the tools to learn about the frequency and magnitude of attacks in their own
sector and the defensive posture of their peer group. Some of this data has been narrowly
available to insurers, but even insurance providers and brokers lack data on core data such as
actual economic losses (in contrast with insured losses) that are necessary to accurately forecast
cyber risk. This lack of data leaves organizations struggling to answer basic questions about the
magnitude of their own cyber risk and how they compare with other organizations in their peer

group.

This comes at a time when government regulations increasingly require organizations to
evaluate and monitor their cyber risk and the effectiveness of security controls. For example,
the newly revised FTC Safeguards Rule in the United States requires organizations, now
extending beyond just financial services, to conduct security risk assessments that “must be
written and must include criteria for evaluating those risks and threats.”(“FTC Safeguards Rule:
What Your Business Needs to Know” 2022). The New York State Department of Financial
Services recently issued a rule requiring covered entities to confirm that they have devoted
adequate resources to cover expected risk (NYDFS 2023). In Europe, Article 21 of the European
Union’s Network and Information Security Directive (NIS 2) mandates that organizations have
“policies on risk analysis and information system security” as well as “policies and procedures to
assess the effectiveness of cybersecurity risk-management measures”(EU 2022).

It is not just governments putting new demands on organizations to produce cyber risk
assessments and track the effectiveness of controls. The US National Association of Corporate
Directors (NACD) produced a 2023 Director’s Handbook on Cyber-Risk Oversight that calls for
management to “deliver reports that are benchmarked, so directors can see metrics in context
to peer companies or the industry” (NACD 2023). In addition, the NACD says directors should
obtain cyber risk assessments and information about cyber-risk exposure in economic terms
(NACD 2023).

While there are clear policy requirements for organizations to evaluate the effectiveness of
controls and compare themselves to peers, the ability to do so must be called into question
without access to the key external data about their peers that they would need to so effectively.
This could change though as new cryptographic techniques open access to aggregated cyber
security data within a particular industry.



Cryptographic computation tools, a type of privacy enhancing technology or PETS, facilitate new
data sources within an industry that can be used to benchmark and model risk. A subset of PETs
known as “encrypted data processing tools” or “cryptographic computing” allow aggregated
results to be computed from encrypted cyber security posture, incident, and loss data without
requiring organizations to disclose the individual inputs. These secure computation approaches
are used to develop cybersecurity benchmarks that can be used by individual firms for private
comparisons (de Castro et al. 2020).

The introduction of secure computation techniques for data analytics opens access to data sets
that were never available before, particularly at the sector level among a group of peers.
Organizations can now share sensitive information into a computation without the risk of
revealing or disclosing sensitive, proprietary, or embarrassing data to anyone. This exciting
development introduces a new set of modeling possibilities using a richer data set but one that
has smaller data coverage.

In general, secure data aggregation techniques in the cybersecurity sector produce aggregated
data on security posture, control failures, incident frequencies, and losses. The available
mathematical analytic tools include sums, averages, and high-level visibility into the overall data
distribution of the variables. Individual inputs and more detailed data are not available as a
feature of these techniques to protect the privacy and security of the underlying data. Given
these new developments, there is a need for modified cyber risk frameworks that can ingest
and use these smaller but richer data sets.

One of the most exciting developments is the ability to aggregate data on security posture and
incidents at the sector level. Focusing on the industry level allows a group of similar firms facing
similar threats to essentially pool information to understand and compare against the relevant
peer group. From a modeling perspective, focusing on a peer group with common threats,
similar incident frequencies, and comparable loss amounts opens new analytical possibilities for
holding certain elements constant across the group and exploring the impact of control
adoption and security posture on risk estimates.

In this paper we propose a modified cyber risk modeling framework that incorporates newly
available securely aggregated data. We introduce a new top-line variable in a standard cyber
risk model called the “Defense Gap Index” that measures how a firm’s deviation from the
average security posture, based on historical industry data of the peer group, impacts an
organization’s own security risk. We show further how to construct this gap measurement from
the outputs of secure data aggregations done within a specific sector. Figure 1 introduces the
proposed risk model that uses data collected from the sector to estimate the probability of a
significant event in a given year (P), the average observed financial losses in the peer group (L),
and now the gap index that relates control deviations from the group average to changes in risk
outcomes.



Figure 1: PLG=R
Calculated for the Calculated for the Baseline calculated
sector sector for the sector

Probability * Loss * Defense GapIndex = Risk
Adjusted by firm’s Firm ‘
actual defenses Specific

We apply this approach in a specific sector, in partnership with an industry ISAO3, using actual
data collected from 25 large firms with combined revenues of over USD 23 billion. The result is a
general risk model for the industry and new private benchmarking tools for individual firms that
allow them to answer the two outstanding questions — 1) what is my organization’s estimated
cyber risk and 2) how does it compare to the peer group?

Related work

Cyber risk modeling approaches

Some of the earliest work on what we now call cyber risk modeling was focused on the risk of
data processing. In the 1970s, Courtney posited that risk to electronic data processing systems
can be summarized with two elements — a statement of impact from a “difficulty” and the
probability of encountering that difficulty (Courtney 1977). Nearly 50 years later, the basic
formula for calculating risk is still widely used, although with different names.

The widespread adoption of computers throughout the business world in the 1990s and the
growth of Internet connectivity later in the decade and throughout the 2000s highlighted the
need for new information security protections. Markets responded and new risk transfer
options in the form of cyber insurance appeared from companies such as Chubb, AlG, Lloyds,
and Marsh (Gordon, Loeb, and Sohail 2003). In 2003, Gordon, Loeb, and Sohail published a
framework for using insurance for cyber risk management that assesses risks, deploys security
controls to mitigate some of the risk, and transfers remaining financial risk via insurance
(Gordon, Loeb, and Sohail 2003). Researchers began exploring the decision-making process for
businesses to transfer cyber risk via insurance (Mukhopadhyay et al. 2005). Around the same
time, researchers began questioning whether the insurance market for cyber insurance was
actually sustainable given the correlations among losses, the lack of actuarial data, and the
difficulty of substantiating claims (Wang and Kim 2009b; 2009a; Bohme 2005; Baer and

3 The data was collected from 25 large firms in the United States with combined annual revenues of USD 23 billion.
Due to the sensitive nature of the results, we are keeping the name of the ISAO undisclosed in this version of the

paper.



Parkinson 2007). The question of cyber insurability remains an important research area (Biener,
Eling, and Wirfs 2015).

A new line of cyber risk research emerged in the early 2010s focusing on data breaches and the
number of lost records to compare and quantify cyber incidents (Ayyagari 2012; Edwards,
Hofmeyr, and Forrest 2016). Since the financial impact of data breaches were not available
outside of insurance providers, researchers attempted to use the number of records exfiltrated
as part of incident as a way to compare and quantify cyber breach (OECD 2013; Wheatley,
Maillart, and Sornette 2016). The approach proved difficult because different records have
different value and some of the quantification methods such as looking for changes in market
capitalization tended to revert to the traditional growth path over time. Recent work is re-
exploring the potential to estimate the value of data by estimating the value individuals put on
access to their computer files (Cartwright, Cartwright, and Xue 2021).

Later in the 2010s, cyber risk modeling began splitting into two camps — those with access to
large data sets such as insurance providers, and individual organizations that needed to
understand and manage their own risk. Insurance providers such as brokers and underwriters
arguably have access to the most detailed data on frequencies, and losses, but lack information
on security posture within an organization.

Individual organizations have a much better understanding of their own security posture than
their insurers do (asymmetric information), but they lack vital information about the broader
cybersecurity landscape and information on incidents in their own sector that are valuable for
forecasting their own risk. Since quantitative data is largely unavailable to individual firms, they
rely heavily on heat maps and other qualitative measures to evaluate and address their cyber
risk (Fink et al. 2009; Staheli et al. 2014; Jiang et al. 2022).

In the mid 2010s, two influential books appeared targeting individual organizations looking to
quantify their own risk. Freund and Jones developed a bottom-up cyber risk modeling
framework called Factor Analysis of Information Risk (FAIR) that has the same top-level
structure as the model proposed by Courtney in 1977 (Courtney 1977; Freund and Jones 2014).
The FAIR approach expands this into a taxonomy and ontology for building cyber risk models
and quantifying cyber risk within a firm based on its own internal data and information that can
be gleaned from other sources (Freund and Jones 2014). Around the same time, Hubbard and
Seiersen published a popular book entitled, “How to Measure Anything in Cybersecurity Risk”
(Hubbard and Seiersen 2016). Both approaches target risk analysts in individual firms and rely
heavily on stochastic methods such as Monte Carlo simulations to estimate an organization’s
cyber risk.

At present, industry is moving toward risk quantification methods, and governments are making
this a requirement in certain sectors, but the lack of external data sources remains a significant
challenge.



Cryptographic computing

Beginning in the 2010s and continuing into the 2020s, new privacy-enhancing technologies such
as cryptographic computing began emerging that permit the collection, processing, analysis and
sharing of information while protecting the confidentiality of the underlying data (OECD 2023).
Advances in cryptography and expanding computational power unlocked the potential to do
secure computations using homomorphic encryption that can compute functions over
encrypted data (Abbe, Khandani, and Lo 2012; Asharov et al. 2012).

This has the potential to make new data sets available to researchers that were previously too
sensitive to share into data aggregations. The technology is still developing but various use
cases have emerged from double auctions in Denmark (Bogetoft et al. 2009), linking private
data sets in Estonia (Bogdanov et al. 2016), protecting privacy in genome studies (Kamm et al.
2013), simulating electricity trading markets (Abidin et al. 2016) to estimating the gender wage
gap using private wage data (Lapets et al. 2019). Current applications include privacy-preserving
inventory matching systems for the banking sector (Polychroniadou et al. 2023) and distributed
private attribution for advertising (Case et al. 2023).

In 2020, a cryptographic computing platform from MIT called SCRAM (Secure Cyber Risk
Aggregation and Measurement) ran a secure multi-party computation to collect security
posture, losses, and incident frequencies from six firms to produce new cyber security metrics
that could be used for modeling in the future (de Castro et al. 2020). This was the first time that
cryptographic computing was used to calculate previously unavailable cyber risk metrics. Now
that the tools are available, the industry needs models that can use them.

In the cybersecurity context, we recommend encrypting data in transit and at rest, but assume
that data must be decrypted during use. Cryptographic computing platforms are exciting
because they bridge this final gap and allow the data to stay encrypted while in use.

Data

Multi-party computation and encrypted data processing rely primarily on the ability to calculate
sums over encrypted data (Abbe, Khandani, and Lo 2012). In the cyber risk context, sums are
useful for counting the total number of incidents, arriving at a sum of total monetary losses, and
counting the number of organizations that adopt a specific security control at a specific maturity
level. The secure computation ingests values from a specific location (vector) within an
encrypted spreadsheet that is contributed by a participating organization. Each of the encrypted
elements is summed across the peer group and the resulting output (a new matching vector) is
decrypted and contains the sum of each item in the input vector.

These sums can then be used to calculate averages for the group simply by dividing by the
number of participants contributing data. Averages can be used for calculating the frequency of
incidents and the average losses associated with an incident. Averages are typically calculated in
post processing of the results data.



Another important data output from the computations are binary flags that are used for
counting specific elements or creating distributions of variables across a set of data ranges. For
example, binary flags are used to count the number of incidents that have a total monetary loss
that falls between a specific range of values. These counts can then be combined to build a
rough histogram of loss quartiles or quintiles that are then used to build the new gap index
variable.

It is worth noting that individual records are not visible in computation results. Researchers
cannot do traditional data cleaning on submitted data, but data checks are implemented with a
verified checksum before data can be uploaded into the computation platform. The lack of
visibility into individual inputs can lead to some imprecision in modeling the losses, for example,
but this is the cost of increased privacy that is given to the input data.

ISAO study: For this paper, we securely collect data from 25 members of a single ISAO using the
MIT SCRAM platform. The 25 organizations have combined annual revenue of over USD 23
billion. The collected data includes a rating of the maturity level of 22 controls in an
organization, the number of incidents with losses larger than $5,000 between January 2021 and
June 2023, information on which control failures are responsible for reported losses, and the
total financial loss amount of security incidents during the relevant period. Specific details
about the variables produced by the resulting computation are provided in the list below.

- Maturity level (22 variables): Average maturity level for each of 22 controls across the
peer group (self-reported). Based on the Ransomware Readiness Index where all
controls are drawn from the White House Executive Order on Improving the Nation’s
Cybersecurity, and the White House Memo to Corporate Executive and Business Leaders
on Ransomware from 2021 (Spiewak, Reynolds, and Weitzner 2021).

- Quartile flags — Maturity levels (88 variables): Count of maturity ratings for 22 controls
over 4 potential responses (Not implemented, partially implemented, largely
implemented, fully implemented). This provides a distribution of maturity levels across
the participants.

- Incident count (1 variable): Sum of the number of incidents across the peer group
during the relevant period

- Control failures (22 variables): Count of the times individual controls failed leading to
incidents with financial losses. Participants submitting an incident can implicate up to 5
failed controls as responsible for the reported financial loss.

- Financial costs — total (1 variable): Sum of the total financial costs across all incidents in
uUsD.

- Financial costs — by control (22 variables): Data on the attributed costs of incident
failures to for each of the 22 controls in USD. Data losses for a single reported incident
are distributed evenly across all implicated controls in that incident.

- Quintile flags — losses (5 variables): Count of the number of incidents in each of five
financial loss bands in USD. (1k-5k, 5k-50k, 50k-500k, 500k-5m, >5m)



These data are then used to build each of the components of the industry risk model and
underpin the private tools that firms can use to compare their own security posture and risk to
the peer group.

Models and results

This modeling section details two modeling approaches that take advantage of the aggregated
results for the sector. The first develops the PLG=R model and builds a new defense gap index
(G) that captures the relationship between weighted security control deviations from the peer
group and risk exposure. The second modeling section uses the same aggregated results to
build an industry risk estimate and loss exceedance curve using a Monte Carlo simulation.

Sectoral risk modeling approach 1: PLG =R

The PLG = R model can be re-written as follows to represent an organization’s own risk relative
to its peers.

Equation 1 Ppeers * Lpeers * Gown = AnnualRisk,,,,
Equation 2 Ppeers * Lpeers * 1 = AnnualRisKkp,e,s
Where:

P = Probability of an incident. Calculated as the average annual incident rate across the peer
group. Once P is derived, it is held constant across the peer group under the assumption that
similar firms face similar threats and defend similar assets.

L = Average financial loss amount per incident across the peer group. Once L is derived, it is also
held constant over the peer group.

G = Defense Gap Index multiplier. The gap index represents how weighted security posture
deviations from the peer average affect risk forecasts. The calculation of G is defined in detail in
the following sections.

Annual Risk = The forecasted annual financial risk (expected value).

Equation 1 and Equation 2 above include a measure of frequency (P) of incidents and their
impact (L) but introduce a new top-line element called the Defense Gap Index (G). The key
innovation of the Defense Gap Index is that it uses actual loss data from the peer group, control
failure attributions, and the average security posture of the peer group to estimate the
relationship between weighted deviations from the average security control maturities of the
peer group and changes in risk outcomes. This gives firms an empirically grounded means of
predicting risk in the future to support investment decisions and can help enable regulators to
set expectations for reasonable security posture.

In the well-known modeling approach Factor Analysis of Information Risk (FAIR), Freund and
Jones capture the strength of security controls as “Resistance Strength” under the “Loss
Frequency” category (Freund and Jones 2014). Control strength has an indirect effect on the



model via the level of vulnerability the firm faces that impacts the frequency of successful
attacks.

Since our core interest is understanding how changes in security posture affect cyber risk
forecasts, our proposed model elevates differences in security posture from the peer group to a
top line element in the risk model alongside probability and loss. The functionality of the
Defense Gap Index is aligned with the goals of the variable “Secr” in Mukhopadhyay et al’s
CRAM model (Mukhopadhyay et al. 2019), but it is calculated differently and named as a “gap”
index to capture the dynamic that higher scores of the variable relate to higher risk.

P and L are both derived from the secure computation as averages and represent the average
probability of a significant incident for the peer group and the average monetary loss across all
reported incidents.

In each step of the model explanation, we will use real-world data derived from the secure data
collection done with 25 firms from a single ISAO. This allows us to illustrate the process while
producing actual risk metrics and results for the sector.

ISAO data results from the secure computation:

- Average control maturity level: 78% (high level, between largely and fully implemented)

- Number of incidents: 4

- P =0.064 incidents per year per organization

- L=$145,000 average loss per incident

- G =1since this represents the average baseline weighted security of the peer group. In
other words, the average security posture has no deviation from itself and is assigned a
multiplier of 1.

- R=$9,280 average annual cyber risk per firm (computed from PLG)

- Total losses: $580,000

- Implicated control failures: 5 controls implicated across the total $580,000 of losses

Defense Gap Index (G)

At a high level, the Defense Gap Index acts as a multiplier that amplifies or reduces forecasted
risk levels based on an organization’s weighted deviations from the security control maturity
averages of the peer group. The weights for specific controls are allocated based on actual
financial losses attributed to control failures reported by members of the peer group.* Once
individual control weights are assigned, the next step takes actual loss magnitudes contributed
by the group and maps them to net weighted deviations from the group average. Large
observed losses are assigned to large negative deviations (poorer security), while small
observed losses are assigned to positive deviations from the average (better security). Next, we
fit a function to the observed data points (including the known group average). This function is

4 If an organization reports an incident, they must assign responsibility for the incident to specific control failures.
They can implicate up to 5 control failures per incident. The reported loss amount is divided equally across all
implicated controls.
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then used to calculate the Defense Gap Index multiplier (G). Using the gap index multiplier
formula, organizations can privately input their own security posture to obtain a personalized
Defense Gap Index multiplier (G) that goes into the PLG=R model to calculate their own risk.

Once the computation is complete and the Defense Gap Index calculation is parameterized,
participants are sent the group values for P and L along with the Defense Gap Index formula.
This allows them to privately do their own in-house risk modeling and answer the two
outstanding questions of what is an organization's estimated risk exposure and how does its
security compare with peers?

Figure 2 below provides a broad overview of the modeling approach where data from private
computations in the first horizontal section feed into calculations of the Defense Gap Index in
the second section. Finally, individual organizations can privately compute their own Defense
Gap Index multiplier using their own security posture and use it for internal risk modeling. The
five steps for modeling the Defense Gap Index multiplier are provided below and are populated
with real-world data obtained from the computation with 25 members of an ISAO.

Figure 2: Summary of the sectoral risk modeling approach
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The next five steps explain how to derive the Defense Gap Index formula using data from the
secure computation.

Step 1: Allocate overall category weights between controls groups with and without losses
In this first step, researchers building the industry model decide how much importance to place
on control failures that lead to losses, the “loss group”, compared to controls that are not

implicated in loss events, the “no-loss group”. Three possible weighting options are:

- Option 1: Equal weighting for all controls (unweighted)
- Option 2: Weighting based on the allocation of losses across implicated control failures
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- Option 3: Weighting based on correlations of actual losses (or lack of losses) and security
control maturity

Ideally the allocation of weights should be done using correlations between losses (and the lack
of losses) and security control maturity while controlling for endogeneity. At present, the tools
for allowing Option 3 are still under development, so this section describes how Option 2 is
produced. This second option requires that some of the overall weight is assigned among
controls implicated in failures, and the remainder is allocated across controls that have no
associated losses. We start by considering an 85% (implicated) / 15% (non-implicated) split of
the weights but then adjust to make sure that the smallest implicated weight is larger than any
non-implicated weight.

ISAO result: We use a slightly modified data split of 75%/25% because of the wide loss range
between the largest and smallest implicated control. We want to ensure the smallest implicated
weight is larger than the non-implicated weights. Also, the relatively small number of implicated
control failures (5) means additional weight should be added to the non-implicated controls.

Step 2: Allocate individual control weights within loss and no-loss groups

The second step allocates weights across individual controls in the loss and no-loss groups (
Figure 3). We assign controls in the “loss group” a high proportion of the total weight (e.g. 75%)
and then the sub-weights of individual controls within the group are pro-rated based on the
magnitude of losses assigned to each by the peer group. Sub-weights in the no-loss group are
assigned as an equal distribution of the remaining weight (e.g. 25%).

ISAO result: There were 5 implicated controls with loss amounts in the ISAO data collection. The
5 implicated controls are assigned a combined 75% of the weight, while 17 non-implicated
controls receive an equal share of the remaining 25%. The weights in the implicated group vary
widely from 42% of the total weight assigned to “Evaluate employee skills” down to 1.9% of the
weight assigned to “Deploy Multifactor Authentication”. The full breakdown is available in (Table
2 in the Annex. These are all based on observed losses which ranged from largest amount of
$325,000 attributed to employee skills to the smallest amount of $15,000 on MFA. Employee
skills and training were the two largest loss areas followed by controls related to backup and
then MFA. The remaining 17 controls each received an equal weight of 1.5%.

Figure 3 provides a breakdown of the ISAO weighting.

Figure 3: ISAO weights applied to controls with and without attributed losses

12
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Step 3: Net weighted security control deviation and boundaries

The third step uses the weights produced in Step 2 to create a net weighted deviation formula
that individual organizations will use to calculate their own weighted security control deviations
from the peer group. The group average and control weights are calculated in Step 2 above. The
general equation is given in below:

Equation 3

NetWeightedDeviate = ¥ _,((OwnMaturity, /GroupAverage,,) * ControlWeight,)

Where:
OwnMaturity = The organization’s own control maturity for control n
GroupAverage = The average maturity level for control n across the peer group
ControlWeight = The control weight assigned to control n in Step 2

In this step, the industry model developers determine a set of deviation boundaries that will be
used to model the high and low ranges of observed losses. For example, the relevant ranges to
consider could be 30% above and 30% below the group average, where having a net weighted
security control deviation that is 30% below the average would correspond to the highest range
of losses reported by the peers. The lowest range of losses are then assigned to net weighted
security control deviations that are better than the peer average. Clearly there is some art
involved in determining these ranges, but we have found +/- 30% to be a good set of modeling
ranges in multiple sectors. In the future it should be possible to calculate the correlations
between losses (and the lack of losses) and net weighted security control deviation to produce
better estimates.

13




ISAQ result: We select a maximum range of +/- 30% for the net weighted security deviation
range to represent our best estimate of the weighted security variations across the sector.®

Step 4: Create a model fitting observed loss data to the net weighted deviation for controls
The fourth step evaluates and models the distribution of actual observed losses over the net
weighted security control deviation boundaries defined in Step 3. We assume a non-linear,
exponential model. We also assume that higher security (positive net weighted variation)
corresponds to lower losses and vice versa (Eling and Wirfs 2019). The largest observed losses
map to the lowest security levels (e.g. 30% below average) and the smallest losses to the higher
security levels (e.g. up to 30% above average). The average loss and the average security level,
which represent the averages of the peer group, correspond to a Defense Gap Index multiplier
(G) of 1 and are used as one of the observations. Since individual losses are not visible, loss
ranges in quartiles or quintiles provide the relevant data points for fitting the loss function.
There is no precise way to place individual loss points from a range, but options include using
the maximum, average, midpoint, or minimum as the representative point in the quartile. The
average loss amount and average security level (corresponding to a Defense Gap Index of 1) are
both known and serve as the grounding point for the model estimation.

ISAQ result: The ISAO computation reveals four incidents reported by three firms spread over
two quintiles. We calculate the loss model in this step by using the three observed loss amounts
plus the computed average loss to build the loss model. The two incidents from the same firm
are only visible to us as a single loss amount range which complicates interpreting the bands.
The total losses across all incidents amount to $580,000. Two firms report losses between
$50,000 and $500,000 and a third firm reports losses between $5,000 and $50,000.

For the higher loss quintile (50k-500k), we use $450,000 as the top end loss and assign it to a
net weighted deviation of -30%. We arrive at the $450,000 number by subtracting away the
bottom quartile’s single highest loss ($50,000) from all reported losses ($580,000). We also
know that the second firm’s loss in the high quartile is larger than the upper limit of the smaller
quartile (550,000) so that can be subtracted as well — leaving us with $480,000. We used a
slightly smaller $450,000 value to reflect the ambiguity around the actual loss amounts.

We know the average loss ($145,000) at the average level of security (net weighted security
control deviation of 0). Finally, we assume the single loss in the lower quintile is close to the top
of the range at $50,000 for an organization that has 15% better security than the average. These
three available points provide us with enough data to estimate a curve that traverses through
the average for the peer group in Figure 4.

® The maximum range is allowed to surpass 100% because weights on individual controls can vary considerably. In
the ISAO case here, 42% of the total weight is assigned to one control (evaluating employee skills) so significant
deviations of this single control can have large effects.
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Figure 4: Producing the Gap index scalar
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The resulting gap index model is:
Equation 4 DefenseGapIndex = G = e *7%6*NetWeightedDeviate

Where:

DefenseGaplndex = the Defense Gap Index multiplier (G) to be used in the equation P*L*G =R
NetWeightedDeviate = the net weighted security control deviation from the peer group’s

average control maturity.

Computing private results

Once the Defense Gap Index formula in Equation 4 is established and values for P and L are
known from the computation results, organizations can now use the model to privately

calculate their risk and compare their security posture and risk to their peers.® The equations

and process for each are described in this section.

Q1: What is our organization’s estimated risk exposure?
The process a participating organization uses to forecast their own risk exposure is seamless and
automated via a spreadsheet once the secure computation results are available, but we step

through the process in detail here.

5 participating organizations receive a results spreadsheet with detailed dashboards that only requires them to
insert their own private values that were originally contributed into the secure computation that then populates all

the dashboards.
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The first step is calculating the organization’s own risk exposure and comparing it to the peer
group. This is done using Equation 3 to calculate its own net weighted security deviation (x).
The results Equation 3 are then used in Equation 5 to calculate the organization’s own Defense
Gap Index value (Gown). Equation 5 should already include the derived constant value for the
peer group that was calculated earlier for the entire group in Equation 4. Finally, the
organization inserts Gown from Equation 5 into the two following risk equations, holding P and L
constant, to obtain a forecast of its own annual cyber risk in monetary terms (Equation 6) and a
forecasted incident size (Equation 7) in the case of an event. P and L are derived in the original
secure computation and provided for the participants along with the DerivedConstant from the
gap index modeling.

Equation 3
NetWeightedDeviate = Y _,((OwnMaturity, /GroupAverage,,) * ControlWeight,)

Equation 5 GOwn — GapIndexDefense — eDerivedConstant+NetWeightedDeviation
Equation 6 AnnualRisky,,,, = Ppeers * Lpeers * Gown
Equation 7 ForecastedIncidentSizey,,,, = Lpeers * Gown

Q2a: How does our risk compare with our peers?

Once the organization knows its own forecasted annual risk and incident size, analysts can
compare these results with the average results from the peer group. Equation 8 and Equation 9
compare the annual risk of the own firm with its peers, while Equation 10 and Equation 11 with
the peer group on annual risk and forecasted incident sizes.

Equation8  AnnualRiskg,,, = Ppeers * Lpeers * Gown

Equation9 AnnualRisKkp..;s = Ppeers * Lpeers

Equation 10 ForecastedIncidentSize,,,,, = Lpeers * Gown

Equation 11 ForecastedIncidentSizep,.,s = Lpeers

Q2b: How does our security posture compare with our peers?
The next question that can be answered with the data is how the organization’s own security
posture compares with its peers.

There are two ways analysts can compare their organization’s own security posture with peers
in the sector (Figure 5). The first is using standard benchmarking tables outputs from the secure
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computation which provide the average maturity across the peer group for each control and a
distribution of responses (not / partially / largely / fully implemented).

Analysts can also use the weighted controls lists that have been informed by actual losses across
the group to accommodate control prioritization. The net weighted security control deviation
measure provides a weighted comparison against the average (value of 1) of the peer group. For
example, a net weighted deviation score of 0.75 implies that the organization’s security posture
is 25% lower than the sector’s peer average after weighting each control by observed losses.

Figure 5: Security posture comparison (unweighted and weighted controls)

Own Ave peer Peer

controls

(1)

security control
stance maturity

ISAQ results for the industry

Equation 12 AnnualRisKkp..,s = Ppeers * Lpeers = 0.064 * $145,000 = $9,280

Equation 13 ForecastedIncidentSizep,.,s = Lpgers = $145,000

ISAQ results for a particular firm

Equation 14 G,,, = GapIndexDefense = e~*+7%6*NetWeightedDeviation
Equation 15 AnnualRisk,,, = 0.064 * $145,000 * G,,,

Equation 16 ForecastedIncidentSizey,,, = $145,000 * G,,,,

Using the ISAO results from the equations above, we illustrate how forecasted risk increases or
decreases with changes in the net weighted security control deviation through the Defense Gap
Index multiplier (G). Figure 6 shows annual expected risk based on variations in an ISAO
member’s defense posture. The average risk derived in Equation 12 of $9,280 per year for the
average level of protection reflects the “fair price” for an insurance premium based on the
incidents reported by the 25 firms over 2.5 years. However, if a member organization has
substantially lower levels of control implementation, its forecasted annual loss could be over
five times the average, or $49,723 as shown in Figure 6. At the other end of the control maturity
spectrum, an organization with 35% higher weighted maturity will only suffer a forecasted
average annual loss of $1,732, which is roughly one fifth lower than the average.
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In insurance parlance, this fair price is the equivalent of the expected loss for the pool, but does
not include other internal costs, external costs, economic profit needs, and capital costs that the
insurance provider incurs to run its business. This means that the actual premium would need
to be somewhat higher than the calculated expected loss for the insurance company to operate.
The “fair price” calculation also assumes that all costs would be covered in the case of an
incident, but that is typically not the case as there are exclusions and deductibles that lead to
less than full coverage. The “fair price” calculations are imprecise, but they still provide a good
starting point for organizations in the peer group to evaluate insurance offers.

Figure 6: Annual cyber risk forecasts by net weighted security control deviation from group
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Figure 7 shows the same trend but forecasts the financial impact of an individual security
incident based on the net weighted security deviation relative to the ISAO industry average. An
organization with the average security posture could expect an incident size of $145,000 when
there is a successful attack. However, organizations with a weighted net security gap that puts it
30% below average would expect an incident to cost $778,917 — nearly 5 times the average.

Figure 7: Forecasted incident sizes by net weighted security control deviation from group

Forecasted ISAO member security incident size, by net weighted security control deviation, USD
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Sectoral risk modeling approach 2: Monte Carlo simulations & loss exceedance curves

Monte Carlo simulations

The peer data on losses can also be used in a Monte Carlo simulation at the peer group level to
forecast the probability that the loss from a single cyber incident will be above a certain
threshold. This requires an understanding of the distribution of financial losses across the group
that can be gleaned from the secure computation loss quintiles. Eling and Wirfs use insurance
data to study the costs of cyber events and find two categories of losses — the first they call the
“cyber risks of daily life” with frequent but low financial losses, and the second that they call
“extreme cyber risks” that are infrequent but have high associated losses (Eling and Wirfs 2019).
One of their key findings is that the two categories of cyber events have different distributions
and should be modeled separately.

Following this approach, we set up a Monte Carlo simulation based on the observed loss
categories across the peer group. A mean, distribution, and probability are assigned to the large
but infrequent loss category, and a different mean, distribution, and probability are assigned to
the small but frequent loss category.

Our ISAO data show a potential cluster of one or two incidents in the $50,000 low end range
and another potential cluster of incidents in the higher quintile in the $450,000 range. The
computation results were ambiguous about the number of incidents in each quintile, so we will
assume a 75% low end and 25% high end distribution that we have seen in other sectors. We
model them separately within the same Monte Carlo simulation.” The Monte Carlo that selects
losses distributed around $50,000 for 75% of the time and around $450,000 for the remaining
25% of the time (Table 1). We flatten the distributions by increasing the standard deviations for
each of the categories to roughly correspond with the +/- 30% net weighted security deviation
scores discussed earlier. The high distribution has a larger relative standard deviation indicating
that losses at the high end will vary more than losses at the low end.

Table 1: Monte Carlo inputs based on observed data

Variable Low distribution High distribution
Mean $50,000 $450,000
Standard deviation $25,000 $300,000
Probability 75% 25%

The Monte Carlo simulation selects a random value 10,000 times that follows the distributions
shown in Table 1 and represents the average security level for the group. For 75% of the time,
that random value comes from the low distribution, and for 25% of the time from the high
distribution. The results of the 10,000 iterations are then classified by their loss amount to
provide a distribution of possible losses. In Figure 8, the Y axis shows the count of results in a
specific range, and the X -axis shows the corresponding monetary loss.

7 Spreadsheet equation: IF(RAND()<0.75,NORMINV(RAND(),50000,25000), NORMINV(RAND(),450000,300000))
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The mean and spread of each distribution are determined by the observed data in the loss
categories, but standard deviations are typically large and flat to cover the broad range of
potential losses. The probability of a loss falling in either of the distributions should largely be
set by the observed data but can be augmented with other known industry loss data if available.
It is easier to introduce external data for this approach because no measure of the affected
organization’s security posture is required to place the loss in context.

Using the seeds from the peer group data collection, the next stop is running a Monte Carlo
simulation with 10,000 or more instances. Random loss values cannot be negative, so any
negative values are bottom censored at zero. This simulation represents expected losses based
on the average security level for the peer group and is not tailored to a specific firm.

ISAO Results: The distribution emerging from Monte Carlo simulation using ISAO data is shown
in Figure 8. clear peak is visible around $75,000 at the low end, while the distribution of high
losses is thin and relatively flat around $500,000.

Figure 8: ISAO Monte Carlo simulation of random loss values

ISAO distribution of of simulated losses by USD category, average control maturity, count from Monte Carlo (n=10,000)
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Note: Random values in the distribution cannot be negative and are bottom censored at zero.

Loss exceedance curves

The results of the Monte Carlo simulation can be used to build loss exceedance curves (also
known as complementary cumulative distribution functions) that are commonly used in
catastrophic risk modeling to describe the probability that a certain loss value will be exceeded
in a predefined future time period (Grossi, Kunreuther, and Windeler 2005). Loss exceedance
curves have also been adopted in cyber risk modeling to convey the probability that the losses
from large cyber incident will exceed a given amount (Hubbard and Seiersen 2016), (Sokri
2019), (Humphreys 2021). They are useful for risk managers and governance boards charged
with managing the organization’s overall risk.
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In the context of cyber risk governance, an organization’s leadership may want to know whether
the organization can handle the financial losses of a large incident and the probability that a
single significant loss event will exceed a certain amount.

The loss data derived from secure computations is put into a Monte Carlo simulation whose
outputs are use to create loss exceedance curves. We use a model based on (Hubbard and
Seiersen 2016) and (Humphreys 2021) which shows the probability that a large incident will be
above a certain loss threshold (Equation 17).

Equation 17 LossExceedanceCurve =1 —F; () = p(Lyc > 1)

Where:

Fiis the cumulative distribution function of losses

Lmc is the random variable of the loss from the Monte Carlo (real numbers).

| (lowercase) is the potential loss amount

In this implementation, the loss variable Lwc represents the size of a single incident.

Figure 9 shows the ISAO peer group’s loss exceedance curve based on the Monte Carlo
simulation above. The results show that in 97% of cases, the cost of a significant incident will be
over $10,000. The probabilities fall as the losses increase so that the probability of having a loss
over $500,000 falls to 12%, and the probability of having a loss over $1,000,000 is only 1%. It is
important to note that this simulation may only be representative for the peer group and not
the entire sector due to selection bias issues.

Figure 9: ISAO imputed loss exceedance curve

ISAO Loss exceedence curve, % chance of loss from an incident exceeding amount, USD, average control maturity,
from Monte Carlo simulation (n=10,000)
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Limitations of the work

These cyber risk models making use of secure computation results will improve our understand
on risk and produce better estimates. Yet, there are several limitations to this research
approach. First, the data that is used in the secure computations is self-reported by the
organizations themselves. Although every effort is made to educate the participants about
evaluating control maturities and estimating loss amounts, the self-reported data is likely to
have variability that limits the precision of the results. In the future, automated data collections
of specific variables could help minimize this challenge.

The risk modeling process, and the production of the Defense Gap Index in particular, require a
bit of art mixed with science to locate and map reported loss ranges to net weighted deviations
from the peer average. We understand that the process is imprecise, but we believe that
perfection should not be the enemy of the good and having a small amount of actual data to
model cyber risk for a peer group is better than having no data at all.

The number of organizations that can potentially participate in a computation is limited to a
single sector, so there will be fewer incidents that are available for modeling then would be
possible using firms from a variety of sectors. We also need a large representative sample from
the sector to get results that reflect the state of the sector as a whole. Our strategy of limiting
the research to one sector at a time allows us to hold P and L constant and evaluate changes in
the Defense Gap Index (G) and how they affect risk. Broadening to the entire economy would
certainly increase the number of incidents that could be used to model, but the assumption
that P and L remain constant would be much more difficult to make.

The secure data collections likely suffer from some selection bias. Any organizations that is a
member of an ISAO and is willing to invest time participating in a secure data collection for
understanding cyber risk better is also likely to be among the most proactive in defending their
data and networks. The 25 firms from the ISAO that participated in the study were somewhat
surprised by the loss results. They expected much larger losses than were reported by the
group, and several participants suggested that the issue may be due to selection bias. As a
result, inferences related to the findings of the ISAO risk modeling should be limited to the
profile of leading firms in the sector with regards to their security.

Policy implications

The creation of the new defense gap index has important implications for policy making. First, it
provides a valuable tool for organizations to calculate their cyber risk and compare it against
their peer group in a way that has never been possible before. Second, it introduces a
guantification methodology for prioritizing security controls based on actual losses and control
failures reported by the peer group — providing clear guidance to policymakers on areas of
particular need and targets for policy attention. Third, the defense gap index provides a holistic
view of an organization’s cyber security posture relative to its peers in the sector. Fourth, the
gap index provides a baseline security posture for an industry that can be tracked over time to
understand the sector’s evolving security landscape.
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This research shows that there are methods for calculating cyber risk metrics and models for
specific sectors that can take advantage of new data coming from secure aggregations. These
new secure computational techniques have opened a rich set of metrics that can be used to
gauge the risk profile of a specific economic sector and allow organizations within that sector to
compare themselves to their peers. Government efforts to bring together peer groups to jointly
and securely aggregate cyber risk data could help policy makers and the organizations
themselves obtain a much better understanding of cyber risk throughout the sector.

One of the key challenges in cyber risk modeling is a lack of standardized definitions and terms
that are used across the industry. Until now, there has been limited effort to standardize the
terminology since the data was previously too sensitive to share. But this is changing, and
governments working with industry groups and academic researchers can play a role in helping
standardize the definitions and terms we use for cyber risk modeling.

One of the key findings emerging from the ISAO data and backed up by other literature is that
improving security for organizations that are significantly below the peer average can have an
outsized effect relative to the investment. These firms with the lowest security levels offer the
largest return on security investment because of the observed non-linearity of security losses.

Another related finding is that focusing interventions first on security control failures associated
with the largest losses will likely have a larger return on investment and attention. Governments
should prioritize research into uncovering better information about the effectiveness of controls
to guide their own security investments and priorities.

Conclusions & future work

The goal of this research is providing new models and data to answer two key questions that
organizations have struggled to answer. What is an organization's estimated risk exposure? How
does the security of an organization compare with its peers in the sector?

We provide the tools to answer each of these questions through the key innovation in this

paper - a new variable called the Defense Gap Index in the top line of the risk model. The Gap
Index works as a multiplier to increase or decrease forecasted risk for an individual firm based
on the net weighted distance of its own security posture from the average security posture of
the peer group. These comparisons are made possible using cryptographic computation tools.

This modeling approach provides new tools to individual organizations to forecast and
benchmark their risk, but also allows policymakers to compare aggregate security levels across
sectors. In the paper we apply the model to a data collection across 25 large firms in single
sector to produce a benchmark for the industry and create powerful new tools for the
participants to privately compute their own results.

Using data derived from a secure multi-party computation, we can develop a risk model for an
ISAO sector and provide modeling tools to the participating firms to forecast their own risk
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based on their unique security posture, and then compare themselves to their peers. The model
proposed in this paper is used for a secure data collection with an ISAO to build benchmarks of
security posture, and risk models for the industry and individual firms.

Future research in this area should expand to additional sectors using similar methods so that
the results could be compared to one another. Another area for future research would be
developing new methods for introducing external data from outside the peer group into the
modeling process for the Defense Gap Index.
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Annex

Table 2: Observed losses and prorated control weights for the Gap Index (defense)

Prorated control weights
by losses:

Equal 75% prorated across losses
Observed | control 25% equally across non-

Control losses weights losses

5a. Eval employee skills $325,000 4.5% 42.0%
5b. Deliver regular training $90,000 4.5% 11.6%
6b. Test backups $75,000 4.5% 9.7%
6d. Store backups offline $75,000 4.5% 9.7%
1a. Deploy MFA $15,000 4.5% 1.9%
2a. Deploy EDR S0 4.5% 1.5%
2b. Hunt malicious activity S0 4.5% 1.5%
3a. Encrypt in transit SO 4.5% 1.5%
3b. Encrypt at rest SO 4.5% 1.5%
4a. Remove sharing barriers SO 4.5% 1.5%
4b. Threat intelligence SO 4.5% 1.5%
6a. Regular backups SO 4.5% 1.5%
6¢. Protect backups SO 4.5% 1.5%
7a. Timely updates & patching S0 4.5% 1.5%
7b. Centralized patch system S0 4.5% 1.5%
7c. Risk-based patching S0 4.5% 1.5%
8a. Codify incident response plan SO 4.5% 1.5%
8b. Test incident response plan SO 4.5% 1.5%
8c. Maintain incident response plan SO 4.5% 1.5%
9a. External pen testing SO 4.5% 1.5%
9b. Red team exercises S0 4.5% 1.5%
10a. Network segmentation S0 4.5% 1.5%
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