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Abstract—The emergence of 5G technology and edge comput-
ing enables the collaborative use of data by mobile users for
scalable training of machine learning models. Privacy concerns
and communication constraints, however, can prohibit users
from offloading their data to a single server for training. Split
learning, in which models are split between end users and a
central server, somewhat resolves these concerns but requires
exchanging information between users and the server in each
local training iteration. Thus, splitting models between end users
and geographically close edge servers can significantly reduce
communication latency and training time. In this setting, users
must decide to which edge servers they should offload part of
their model to minimize the training latency, a decision that is
further complicated by the presence of multiple, mobile users
competing for resources. We present Edge-MSL, a novel formu-
lation of the mobile split learning problem as a contextual multi-
armed bandits framework. To counter scalability challenges with
a centralized Edge-MSL solution, we introduce a distributed
solution that minimizes competition between users for edge
resources, reducing regret by at least two times compared to a
greedy baseline. The distributed Edge-MSL approach improves
trained model convergence with a 15% increase in test accuracy.

I. INTRODUCTION

The increasing prevalence of Internet-of-Things (IoT) de-
vices that can collect and analyze data has fueled the rise
of many new applications and services, e.g., in smart homes
and cities [1]. To facilitate these new applications, many
recent works have proposed various distributed and federated
machine learning methods that allow models to be trained on
data that is physically distributed across multiple IoT devices.
These methods generally require user devices to train local
models on their own data, with occasional synchronization
at a central coordinator, e.g., a cloud server. Thus, they
provide better privacy guarantees with less communication
than sending all data to cloud servers for model training [2].

Vanilla federated learning architectures place a considerable
computing burden on users, by requiring them to compute
multiple iterations of gradient descent on a regular basis. For
large models, such computational burdens can be prohibitive,
and many federated learning algorithms attempt to reduce
this burden [2]. In particular, recent works have developed
the idea of federated split learning, in which part of a
model resides on user devices and part resides at the central
coordinator [3]–[5]. Typically, the model is a neural network,
and each user maintains a set of individual network layers,
while all users share another set of layers maintained by the

Fig. 1: Split learning framework where neural network layers
are split between users and edge servers.

central coordinator as seen in Figure 1. As in vanilla federated
learning, training proceeds in rounds, during each of which
a client will compute multiple gradients of its local model,
communicating with the shared model at the coordinator as
needed [6]. By locating part of the model at the coordinator,
split learning thus reduces the computing done at the local
device. At the same time, user privacy is not compromised, as
only pre-processed data is sent to the coordinator [7].

Deploying split learning in practice often relies on the
emerging paradigm of edge computing, in which devices may
access computing resources on nearby edge servers [8]. Many
cellular operators are moving towards providing MEC (multi-
access edge computing) [9] services near or co-located with
5G base stations. These edge servers’ geographic proximity re-
duces their communication latency to end users, which benefits
split learning frameworks, especially for latency-sensitive ap-
plications like smart health, as they require multiple exchanges
of intermediate data and gradients between the different parts
of the model during training [3]. However, 5G users are
often within range of multiple suitable base stations [10],
each of which can maintain copies of the shared layers in
anticipation of expected user demand [11], [12]. Thus, users
face a fundamental research question: to which edge servers
should users offload their shared layers? To the best of our
knowledge, our work is the first to answer this question in
the presence of user mobility, e.g., for autonomous vehicles,
which changes users’ optimal offloading decisions over time.

A. Challenges: Split Learning in Mobile Edge Computing

Mobile split learning introduces new challenges beyond
those of previous mobile edge computing optimization [13].



Fig. 2: The successful participation of a client in split learning
depends on the (a) innate capability of edge server to complete
training task in time, (b) distance between user and server, and
(c) coordination amongst different offloading users.

Figure 2 illustrates that users must select edge servers account-
ing for (a) the compute and communication capability of the
server to complete the training task on time, (b) their cur-
rent physical distance to the server (and thus communication
latency), and (c) collisions with other users, i.e., whether the
edge server has the capacity to serve all users that offload to it.
These characteristics moreover change as users move, resulting
in changing edge server preferences and user competition.

Users’ selections of edge servers are made difficult by
the inherent uncertainty in their received services. Not only
can access latency depend on rapidly varying and location-
dependent wireless channel conditions [14], but users gener-
ally do not know how much competition from other users
they will face at a given edge server. Thus, prior works have
proposed centralized, learning-based allocation methods for
assigning users to edge servers [13], [15], which can easily
coordinate user competition. Indeed, similar combinatorial
multi-armed bandit frameworks have been proposed to select
which federated learning clients can advance model training
the most in any given training round, which can be used to
prioritize users competing for edge server resources [16], [17].

Such centralized learning-based methods, however, often
struggle to account for dynamics in users’ optimal choices
of edge servers. These naturally arise due to user mobility,
which causes users’ edge server preferences to change over
time as they move closer to or further from different edge
servers. Tracking these dynamics in a centralized manner
may be difficult. Thus, these centralized methods generally
scale poorly to large numbers of users and servers [13].
Furthermore, the central server may require privacy-sensitive
information from individual users in centralized algorithms,
in order to determine the optimal allocation [16]. Thus, a
promising alternative is a distributed algorithm that allows
individual users to select their own edge servers [18].

Distributed algorithms also have the advantage of allowing
users to choose between edge services offered by different
providers who may not coordinate with each other. However,
without carefully designed coordination mechanisms, they
cannot prevent collisions, i.e., multiple users offloading to
the same edge server and overwhelming its limited resources,
leading to poor experience for all offloading users (case (c)
of Figure 2). This coordination should also adapt to user

mobility; however, since other users’ movements are unknown
to an individual user, from an individual user’s perspective
the distributed scenario induces a non-stationary environment,
which introduces new learning challenges [19]. These are
exacerbated in the split learning setting, since users’ differing
local datasets and individual model layers can make some
users more “useful” to the training than others, complicating
the optimal allocation of users to edge servers as these more
useful users should be prioritized [3]. To the best of our knowl-
edge, our work is the first to propose such a decentralized
coordination algorithm under end user mobility.

B. Edge-MSL: Mobile Split Learning in Edge Computing

In this paper, we propose Edge-MSL (Mobile Split Learning
on the Edge), a contextual and combinatorial bandits formu-
lation aiming to solve the problem of deciding which users
should offload their training of split models to which edge
servers. In more detail, our technical contributions are as
follows:

• We design the first system that optimizes edge com-
puting allocations for split learning using a contextual
and combinatorial multi-player bandits framework to
jointly address split learning performance at different
edge servers, collisions between user requests, and the
relation between user mobility and latency. We show
that combinatorial bandit algorithms continue to achieve
sublinear regret in this setting (Theorem 1).

• We next consider distributed user offloading algorithms
and are the first to show that, due to user collisions and
mobility, they necessarily have linear (or worse) regret
(Theorem 2). We quantify the effect of user collisions
on this worst-case regret (Theorem 3), which motivates
our design of a novel reservation-based algorithm that
reduces collisions by using edge servers to mediate them.
We analytically quantify our algorithm’s regret relative to
naı̈ve distributed algorithms. To the best of our knowl-
edge, this work is the first to extend multi-player bandits
with collisions to non-stationary settings.

• We perform extensive evaluations of our distributed so-
lutions on real mobility traces [20] for split learning. Our
distributed solution, Edge-MSL:D, incurs less regret than
other methods that do not consider collisions and mobility
by at least a factor of 2. Models trained via Edge-MSL:D
converge faster, to a test accuracy 10% to 25% higher for
the CIFAR-10 and 15% for the CIFAR-100 data set.

The remainder of this paper is organized as follows. Sec-
tion II contrasts Edge-MSL with related works. Section III
presents the system model and the fact that the Edge-MSL
model allows us to formulate a linear integer optimization
problem for edge allocations. Sections IV and V present
our centralized and distributed Edge-MSL solution methods,
respectively, and theoretically examine their performance. Fi-
nally, we experimentally validate our work compared to prior
approaches in Section VI. We conclude in Section VII. All
proofs are shortened to sketches to conserve space.



θPu , θH Personalized (for user u) and shared layers of split learning model rtu
Reward received by user u at time t.
Sum of rewards across all users is r(It, Y,Xt, µ)

Yu Data quality constant ∈ [0, 1] for user u. Y is the vector of Yu ∀u. µu,s
Parameter for unscaled reward distribution of user u
offloading to server s. µ is the vector of µu,s ∀u, s.

pul1,l2
Probability user u moves from location l1 to l2 at each round,
following the probability transition matrix Pu

Xltu,s
Context variable ∈ {0, 1} to scale received reward
for latency based on location of user u and server s

itu,s
Binary indicator that returns 1 if user u offloads to server s at
time t and 0 otherwise. It is the vector of itu,s ∀u, s jts

Binary indicator variable that returns 1 if a collision
occurs at server s at time t and 0 otherwise.

TABLE I: Variables used for the Edge-MSL formulation.

II. RELATED WORK

In federated learning, edge servers can be used as learning
coordinators [21], to run training updates themselves [22], or
to store shared layers of a federated split learning model [8].
Variants of split learning aim to improve its communication
latency or reduce its needed computing resources [3]–[5] when
users offload to a given server. However, none of these works
consider how split learning end users should choose the edge
server to which they offload their training.

The efficient allocation of users to edge servers for
generic computing jobs [13] has been extensively studied
under the framework of multi-armed bandits. Prior works
have proposed bandit solutions for a single user, e.g., [23]
examines a non-stationary environment without mobility, and
[24], [25] consider energy constraints. Other works [25], [26]
consider the decentralized multi-player bandits framework,
while [27] introduces a sophisticated collision mechanism that
splits rewards amongst competing users and [28] considers the
related problem of decentralized users learning to associate
with heterogeneous wireless base stations. However, these
works do not consider user mobility. Other work proposes
to handle mobility with contextual bandits, with edge servers
acting as mediators for user actions [18], but does not consider
user collisions. Bandit frameworks are also used in the context
of (mobile) vehicles acting as edge servers [29]–[31].

Algorithmically, our work falls into the research line
of multi-player multi-armed bandits [32] and contextual
multi-armed bandits [33]. Prior work solves the combina-
torial bandits problem when different players have differ-
ent expected rewards for arms, which change following a
Markovian pattern [34] or are stationary [35]. Other works
have considered multi-player bandits with heterogeneous user
rewards [36]. Unlike Edge-MSL, these formulations do not
include contextual variables, as is needed to model user
heterogeneity in split learning. Prior work on (single-player)
contextual combinatorial bandits learns the relationship be-
tween context variables and reward, while in our setting the
context is a simple scaling factor, allowing better performance
bounds [37]. Other work on contextual multi-player bandits
for wireless channel allocation assumes i.i.d. (independent and
identically distributed) user mobility [38], which removes the
non-stationarity challenge. Prior work on single-player non-
stationary switching bandits has shown that they may achieve
linear regret relative to the optimal policy [19], [39], [40].
However, these works do not consider multi-player bandits,
in which the non-stationary environment is induced by other
users, as in our split learning framework.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Physical Model. We consider an edge computing service
provider with S servers to service U ≤ S users, each with
a split learning task. A “server” can represent a share of a
virtual container within a physical server; we abstract these
resources as servers for simplicity. For example, if a single
VM has the capacity to support five users, we abstract it as
five “servers”. Note that some “servers” may also be located in
the resource-rich cloud, allowing us to assume U ≤ S. We let
[N ] represent the set {1, 2, ..., N}. We consider discrete time
steps t ∈ [T ], which also function as rounds in the bandits
and split learning setting. While our model is agnostic to the
exact time step length, in practice, the time steps would likely
last a few minutes. At this granularity, we can meaningfully
represent user movement around a city via their locations at
different times as well as the duration of a single training
round of split learning. Following prior work [41], [42], all
users enter the system with a learning task to offload at time
t = 1 and exit at t = T . Table I summarizes our notation.

Split Learning Framework. Every user u performs split
learning following Algorithm 1, training a neural network with
personalized layers (θPu ) at the user’s local device, and shared
layers (θH ) at edge servers. The personalized layers serve as
the input layers, ensuring raw data remains on the user’s local
device. Only intermediate data between the personalized and
shared layers, as well as labels needed for computing loss
for back propagation, are sent to the edge server from the
user. At the end of each training round, the shared layers are
aggregated. Each round has a given wall-clock time deadline;
to prevent stragglers, users who do not finish their model
updates by the deadline discard this update [4].

User Mobility. We consider l ∈ [L] discretized locations
from which users will offload processes to edge servers, each
with a distance of dl,s to server s ∈ [S]. User u’s location for
time step t is denoted as ltu. The movement of users from one
location to another is depicted as a Markov chain as in [41],
where a transition probability matrix Pu captures the mobility
pattern for user u, and pul1,l2 is the transition probability for
user u from location l1 to l2 at the next time step.

Service Offloading and Reward. At each time step t, if
a user u offloads their service (shared layers) to server s,
the indicator variable itu,s = 1, and itu,s = 0 if otherwise.
The reward a user u receives from offloading to server s is
rtu,s ∼ itu,sYuXltu,s

Bernoulli(µu,s). The quality of a user’s
data, Yu, is a known constant representing the expected
per round contribution of the data mapped within the range
Yu ∈ [0, 1]. For example, previous works define Yu values



Algorithm 1: Mobile split learning framework.

1 Input: Users u ∈ [U ], edge servers s ∈ [S], user data
(xu, yu) ∼ Du, model personalized (input) layers
θPc,t, and shared (output) layers θHt .

2 Initialization: Randomly initialize θPc,t and θHt .
3 For each round t = 1, ..., T

1) Server Selection: Each client u ∈ [U ] selects edge
server s ∈ [S] to offload θHc,t. Shared layers are
downloaded or migrated to chosen edge servers.

2) Local Training: Each client u performs at first a
forward pass through θPc,t using data at device (xu),
and sends smashed data as well as labels yu to the
edge device holding θHc,t. Back propagation begins
at the edge server towards the local user.

3) Aggregation: All shared layers that perform updates
within a deadline (U∗ = [U ]τu<τG ) are aggregated
across edge servers, i.e., θHt+1 =

∑
u∈U∗

1
|Du|θ

H
t,u.

as a function of the number of data points at a client, as
well as the sum of losses for each data point, which quantify
the impact of this user’s participation on federated learning
convergence [16]. Similar expressions can be used in our split
learning framework, though the convergence of split learning
models is much harder to analytically quantify [6].

The distance-based context variable Xltu,s
∈ {0, 1} indicates

whether server s is in range of user u based on whether
the distance dltu,s exceeds the maximum distance of tolerable
latency dmax. Xltu,s

may also be taken as a continuous variable
∈ [0, 1] if the range depends on other stochastic factors.
The expected reward parameter µu,s ∈ [0, 1] represents the
probability that a task offloaded by user u to server s is
completed within the training round’s deadline, separate from
the distance-induced latency, e.g., due to straggler compute
times [4] or wireless interference.

Collisions. When more than one user offloads to a single
edge server, a collision occurs between those tasks. We use
jts = 1 to indicate that a collision occurs at server s and time
t (i.e.,

∑
u i

t
u,s > 1); otherwise, jts = 0. Each user that collides

will have a probability π, which is the same for all users, of
being granted access to the server. For example, we may have
π = 0, i.e., no user receives resources from this edge server,
or π may be the reciprocal of the number of colliding users,
i.e., one user is chosen uniformly at random to receive the
edge resources. We focus on these two cases in the rest of the
paper; the bulk of our theoretical analysis applies to both.

Optimization Problem Formulation. We define the col-
lection of allocation variables itu,s across users and servers
at time t as It = (itu,s)u,s, the collection of data quality
variables as Y = (Yu)u, the collection of contextual variables
as Xt = (Xltu,s

)u,s, and the collection of expected reward
parameters as µ = (µu,s)u,s. When π = 0, the term
r(It, Y,Xt, µ) =

∑
u,s i

t
u,sYuXltu,s

µu,s(1 − jts) denotes the
expected reward received across all users given the aforemen-
tioned variables taking collisions into account. We show that

finding the optimal (i.e., reward-maximizing) global allocation
from a set of users to servers can be formulated as a maximum
weight matching problem. Thus, we wish to solve:

max
I

∑
t∈[T ]

r(It, Y,Xt, µ) (1)

s.t.
∑
u∈[U ]

itu,s = 1∀s ∈ [S],
∑
s∈[S]

itu,s = 1∀u ∈ [U ]

The objective is to find the optimal It at every time step that
returns the maximum amount of rewards, while the constraints
indicate that the optimal solution avoids all collisions, and that
users can only offload to a single server every round.

IV. CENTRALIZED MOBILE SPLIT LEARNING

We next consider a centralized controller that allocates
each user to an edge server at every round. This centralized
solution prevents reward loss due to collisions, but it requires
the controller to communicate with each user every round,
including communication of potentially private local data.
The remainder of this section elaborates and analyzes our
solution algorithm, Edge-MSL:C, a contextual-combinatorial
multi-armed bandits approach that achieves sublinear regret.

Edge-MSL:C Algorithm. The expected reward parameters
µu,s are initially unknown to the central controller and must be
learned. Accordingly, we quantify the learning and offloading
performance by its regret RC(T ), defined as the difference
between accumulated rewards received and that of the optimal
allocation over all time steps. We define an “arm” as a user-
server pair and accordingly denote ICt as the chosen arm
allocation and I∗t as the dynamic optimal solution.

RC(T ) =
∑
t∈[T ]

r(I∗t , Y,Xt, µ)−
∑
t∈[T ]

r(ICt , Y,Xt, µ) (2)

The dynamic optimal solution I∗t may change with time t since
we assume the Xt context variables are known to the central
controller before the allocation is chosen in each round.

To minimize the regret incurred throughout T time steps,
Edge-MSL:C uses an UCB (upper confidence bound)-based
approach to effectively learn the reward parameters µu,s.
The central controller obtains user location information ltu,
estimated expected reward parameters µ̄u,s, the number of
previous allocations zu,s, and uses the Hungarian algorithm to
solve itu,s for an allocation that maximizes for round t ∈ [T ]:

∑
u,s

itu,sYuXltu,s

(
µ̄u,s +

√
2ln(t)

zu,s

)
. (3)

Regret Analysis. We introduce the following two proper-
ties of r(I,X, µ) to bound the regret of Edge-MSL:C. We
disregard the data quality term Y as it can be absorbed by µ
without altering the following properties and theorems.

Property 1 (Monotonicity). For any action I , any context
X , and any two vectors µ and µ′, we have r(I,X, µ) ≤
r(I,X, µ′), if µu,s ≤ µ′

u,s for all u, s.



Property 2 (Bounded Smoothness). For any action I ,
any context X and any two vectors µ and µ′, we have
|r(I,X, µ) ≤ r(I,X, µ′)| ≤

∑
u,s |µu,s − µ′

u,s|.

Both properties are satisfied, providing the problem-
independent regret bound for the central UCB approach.

Theorem 1. (Edge-MSL:C Regret Upper Bound) The regret
of Edge-MSL:C is bounded by

RC(T ) ≤ O(U
√
ST lnT )

Proof: We generally follow the proof of Theorem 4
in [43]. We define the reward gap ∆t

It
= r(I∗t , Xt, µ) −

r(ICt , Xt, µ). Given that µ̂t represents the UCB value across
all arms at time t (i.e., µ̂u,s,t = µ̄u,s +

√
2ln(t)
zu,s

), the key step
is to show the following inequalities.

r(ICt , Xt, µ̂t) ≥ r(I∗t , Xt, µ̂t)

≥ r(I∗t , Xt, µ) = r(ICt , Xt, µ) + ∆t
It .

Then by Property 2, we have

∆t
It ≤ |r(I

C
t , Xt, µ̂t)− r(ICt , Xt, µ)| ≤

∑
u,s

|µ̂u,s,t − µu,s|.

All requirements on bounding ∆S(t) in Lemma 5 from [43]
are also satisfied by the algorithm. Hence, we can follow the
remaining proofs to derive the desired regret bounds.

While Edge-MSL:C achieves sub-linear regret, the overhead
of finding the allocation ICt scales poorly with the number of
users U and servers S in the system:

Proposition 1. (Complexity of Edge-MSL:C) The computation
overhead of each round of Edge-MSL:C grows at most O(S3),
as the Hungarian algorithm must be run every round [44].

For split learning in particular, hundreds of users may train a
model, which may make this high overhead prohibitive. This
overhead, in addition to the need for the central controller
to collect user data information Y , motivates a distributed
approach, Edge-MSL:D, that maintains lower overhead and
privacy-awareness. We discuss Edge-MSL:D next.

V. DISTRIBUTED MOBILE SPLIT LEARNING

A distributed allocation method can reduce the runtime and
communication overhead compared to a centralized approach.
In this setting, users may easily choose between edge servers
owned by different providers without a central coordinator.

In a distributed method, server selection must be done
locally by users, as seen in Figure 3. Each user u is assumed
to know its own location information ltu and have access to its
historical service information (i.e., its past received rewards
and scaling variables Yu, Xltu,s

, as well as the presence of
collisions). However, it does not have any visibility into other
users’ received rewards or scaling variables. Similarly, we
assume edge servers do not monitor user mobility, to reduce
communication and coordination overhead. The remainder
of this section elaborates and analyzes distributed bandit
approaches, including Edge-MSL:D, that aims to minimize

Fig. 3: Flowchart of the distributed approach of solving the
allocation problem from users to servers.

collisions between users. For the following analysis, we dis-
regard the data quality term Y as it can be absorbed by µ.

A. Performance Limits of a Distributed Approach

In the distributed case, each user individually aims to learn
the expected reward parameters µu,s. Users must minimize
collisions while selecting arms with high reward. We quantify
the regret from the distributedly found allocation IDt with
regard to the optimal allocation I∗t that solves Equation (1):

RD(T ) =
∑
t∈[T ]

r(I∗t , Y,Xt, µ)− r(IDt , Y,Xt, µ) (4)

We examine the theoretical characteristics of distributed
solutions. In a system that begins with the optimal allocation
already found (IDt = I∗t ), we consider a scenario where a
single user moves with probability pm at every round to cause
the optimal solution to change

(
IDt ̸= I∗t+1

)
. As the optimal

solution changes, the moving user may offload to (i) a new
server, potentially inducing a collision with another user at that
server who does not know of the user’s movement and thus
cannot avoid the collision, or (ii) the same server to avoid colli-
sions despite incurring regret

(
r(Xt+1, I

∗
t+1) > r(Xt+1, I

∗
t )
)
.

We denote the resulting expectation (over Xt) of the minimum
regret incurred in subsequent rounds due to the user’s move-
ment as ∆min; ∆min > 0, since we consider a finite number
of user locations and servers. For example, if U = S, the
moving user will collide with high probability as another user
will be allocated to every other server, unless that other user
also switches its server. When U < S, as S increases, the
probability of collision for the moving user will decrease as
more servers will be un-allocated, decreasing ∆min. Theorem
2 shows that any distributed solution has at least linear regret.

Theorem 2 (Distributed Solution Lower Bound). Assume that
a single user has a probability of movement pm in each time
step that alters the contextual variable Xt and the optimal
allocation from user to server (i.e., I∗t ̸= I∗t−1). Given a
distributed algorithm that can discover the new optimal allo-
cation I∗t with probability of po at every round, any distributed
solution of problem (1) that does not have global knowledge
of Xt has expected per round regret lower-bounded:

lim
t→∞

E [RD(t)]

t
≥ ∆min

1 + po/pm
> 0. (5)

Proof: Let at t = 0 the optimal allocation I∗t=0 be
found for Xt=0. With probability pm at every time step, a
user movement shifts Xt such that the optimal allocation is



altered and at least regret ∆min is incurred in expectation.
Thus, an ergodic Markov chain can be used to represent the
system, with states πopt and πsub respectively representing
the states of optimal and sub-optimal allocation. The state
πopt has a transition probability of popt,sub = pm, and the
state πsub has a transition probability of psub, opt = po. The
stationary probability of state πsub = 1/(1 + po/pm). Thus,
any distributed solution will incur at least regret ∆min for
1/(1 + po/pm) proportion of the rounds in expectation.

Since we assume all rewards are bounded, one can also
prove a O(T ) upper bound on the regret of any allocation
algorithm; thus, any distributed algorithm will have O(T )
regret. While this result is disappointing from a bandits
perspective, our split learning framework may still succeed:
split learning benefits from having more participating users,
but it can successfully train models when a subset of users
participate in each training round [16]. Thus, we aim to reduce
the constant factor in the regret by considering the two sources
of regret: user collisions and pulling sub-optimal arms.

We examine the impact of collisions by comparing two
different allocation algorithms. The greedy distributed al-
gorithm has each user greedily pull its highest UCB arm
at each round while disregarding collisions. The stationary
distributed algorithm finds a single non-changing allocation
Istat
t that is optimal with respect to the expectation of con-

textual variables E[Xt], which is constant across time steps.
For Markovian user movement, E[Xt] can be obtained from
the stationary distribution of the user mobility Markov chain.
The stationary algorithm incurs regret as it does not consider
the changing optimal allocation I∗t as Xt changes, but avoids
collisions, as done by existing distributed algorithms [35]. For
Theorem 3, we use ropt = r(I∗t , Xt, µ) to represent the optimal
expected reward of every round, and rstat = r(Istat

t , Xt, µ) to
represent the reward for the stationary algorithm.

Theorem 3 (Collision Rate and Regret). Assume for a system
where reward parameters µ drawn from a uniform distribution
are well learned that a static allocation Istat

t has no collisions
and in expectation over Xt receives at least p ≥ 1/e of the
reward of the optimal allocation that takes into consideration
dynamic Xt (i.e., E[rstat] ≥ (1/e)ropt). Further assume that the
number of servers is equal to the number of users (S = U) and
contextual parameters for each user-server pair is equal in ex-
pectation across multiple rounds (i.e., E[Xt

u,s] = C ∀(u, s, t)).
Then for U sufficiently large, the greedy distributed algorithm
will always incur equal or higher regret to the stationary
policy when collisions lead to no reward for all users.

Proof: Users of the stationary algorithm will receive
the expected reward: E[rstat] = roptp ≥ ropt(1/e). The
incurred regret by the stationary algorithm is then depicted
as: E[Rstat] = ropt−E[rstat] ≤ ropt− ropt(1/e) = ropt(1− 1/e).

Users of the greedy approach will offload to each server
with 1/S probability, as each server is equally likely to have
the highest expected scaled reward. Thus, the probability of a

greedy user colliding with any other user each round becomes:

P (Collgreedy) = 1−
(
S − 1

S

)(U−1)

(6)

As the number of servers and users increase the expected
collision probability approaches limS→∞P (Collgreedy) = (1−
1/e). Given that the total reward accrued by the greedy policy
is higher than the reward of the optimal solution when ignoring
collisions (

∑
u,s Xlu,sµu,si

t,greedy
u,s ≥ ropt), the expected regret

of the greedy approach is lower bounded by:

E[Rgreedy] =
∑
u,s

Xlu,sµu,si
t,greedy
u,s (1− 1/e) ≥ ropt(1− 1/e).

Thus, E[Rgreedy] ≥ E[Rstat] when E[rstat] ≥ ropt(1/e).
Theorem 3 highlights the collision-production trade-off,

where “production” denotes the user’s effective, time-
dependent reward. Here, an algorithm that receives a ropt/e
reward outperforms the collision prone greedy algorithm.

B. Edge-MSL:D – Reservation Based Distributed Bandits

Algorithm Intuition. Theorem 3 shows that if not con-
trolled, collisions can push a distributed algorithm’s regret
to be higher than that of a stationary solution that ignores
variation in Xt. Thus, a “good” distributed algorithm should
limit the number of collisions, which is the main challenge
solved by existing distributed bandit work [26], [27], [35].
These works typically utilize a fixed period of time to learn
the collision dynamics and then fix on the optimal collision-
free allocation by having users “reserve” certain arms.

User mobility, however, reduces the effectiveness of these
reservations. For example, users more than dmax away from
their current locations will not be able to access the reserved
servers. Yet even fairly small changes, like a single user
departing from the system, require existing distributed bandit
algorithms to run a new sequence of discovery rounds to re-
learn an optimal allocation [35]. We thus borrow an idea from
the non-stationary bandit literature, to adjust the reservation
over time as users’ reward distributions change [19]. The key
question then becomes how to enforce these reservations and
determine how fast they should change. We can do so with the
edge servers, which can inform users of pending reservations.

Edge-MSL:D Description. In Edge-MSL:D (Algorithm
2), users aim to offload at every round to the server with the
maximum contextual UCB index as calculated in Equation (3).
However, when a collision occurs between two or more users,
the server with the collision compares the users’ estimated
production (Xltu,s

µ̄u,s, which is included in users’ service
requests) and designates a user with the highest production as
”reserving” the server while notifying other colliding users to
avoid the server for the same number of rounds (step 3.4). The
colliding users with lower production may offload to a server
they know is reserved if their expected production increases
due to mobility (step 3.2.b). We thus encourage users with
higher µ̄u,s, who are more likely to successfully complete an
update and have more “useful” data as measured by Yu, to



Algorithm 2: Edge-MSL:D – Distributed collision
based reservation UCB method

1 Input: Users [U ], servers [S], reward parameters µu,s,
time horizon T , reservation time vu,s = 1/pm.

2 Initialization: For all users, set wait time for each
server wu,s = 0, ∀s ∈ [S], production threshold
hu,s = 0, ∀s ∈ [S], reservation time ru = 0, and
reservation arm id au = 0.

3 For each time step t = 1, ..., T
1) User Movement: Update user location ltu.
2) Arm selection phase: For each user u ∈ [U ]

a) If reservation time ru > 0, the user selects the
arm it is currently reserving au ∈ [S]

b) If reservation time ru = 0, the user selects the
arm with the highest contextual UCB index
similar to Equation (3) that has wait time
wu,s = 0. An arm with wu,s > 0 is selected
instead if the expected production exceeds that
of the reserved user (Xltu,s

µ̄u,s > hu,s).
3) Reward phase: Users pull the arms selected and

collect reward information to update µ̄u,s estimates.
4) Collision-Communication phase: When multiple

users collide at server s, and one user u1 has higher
estimated production than all other users u2 (i.e.,
Xltu1

,sµ̄u1,s > Xltu2
,sµ̄u2,s):

a) If au1
= 0 (user u1 has not reserved a server)

the highest estimated production user u1 will
set au1 ← s, and set wait time ru1 ← vu1,s

b) All other users set arm wait time wu2,s ← ru1

and production threshold hu2,s ← Xltu1
,sµ̄u1,s

5) Update reservation time values for next round
a) ru ← min(ru − 1, 0), ∀u ∈ [U ]
b) wu,s ← min(wu,s − 1, 0), ∀(u, s) ∈ ([U ], [S])
c) if ru = 0, then au ← 0
d) if wu,s = 0, then hu,s ← 0

contribute to the split learning. When comparing the overhead
of Edge-MSL:D to that of Edge-MSL:C (Proposition 1), we
observe that Edge-MSL:D has a much better runtime:

Proposition 2. (Complexity of Edge-MSL:D) The computation
time of running a single round of Edge-MSL:D grows at O(S),
as at every round the maximum UCB value across S servers
must be found by each user independently.

In practice, even when the system size increases, the number
of edge servers within the distance dmax from the user likely
does not increase. Thus, Edge-MSL:D achieves a sub-linear
growth in overhead with respect to S as many servers with
Xl,s = 0 will not be considered for offloading. In order to
observe the production-collision trade-off of Edge-MSL:D in
comparison to the greedy and stationary distributed algorithms,
we estimate Edge-MSL:D’s collision rate in Remark 1.

Remark 1 (Edge-MSL:D Collision Rate). Assume all users in

the system have probability of movement from one location to
another pm, and there is probability pb that a moving user has
a high enough production value to interrupt the reserving user
via collision (step 3.2.b in Algorithm 2). Under Theorem 3’s
assumptions, the collision probability per user u ∈ [U ] for
each round using Algorithm 2 is estimated by:

P (Collrsv) = min
(
(1− 1/e)(pm + 1− (1− pmpb)

U−1), 1
)

(7)

From the perspective of a single user, collisions occur when
(i) the user has not reserved a server and collides with another
user to then reserve a server, or (ii) another user interrupts
a reserved user’s service. The expected collision rate of any
number of unreserved users at a single server approaches
1 − 1/e (Theorem 3). Once the user in question reserves
a server for vu,s = 1/pm rounds, collisions will occur pm
proportion of rounds. While a user is reserved, all other users
have a probability of pm of moving their location and pb
of interrupting the reserved user through collision. Thus, the
probability of collision from all other users in [U ] interrupting
a reservation per round is 1− (1−pmpb)

(U−1). The predicted
collision rate of Edge-MSL:D is empirically corroborated in
the evaluation of Figure 5 of Section VI-C.

VI. EVALUATION

In this section, we numerically evaluate Edge-MSL:C and
Edge-MSL:D, validating, and going beyond Section IV’s and
Section V’s results. We aim to show that we have solved the
primary research challenges introduced in Section I: designing
an effective and low overhead allocation method that (i) takes
into consideration user mobility and (ii) reduces collisions to
enhance service. After describing our experimental setup, we
evaluate the regret and collisions induced by Edge-MSL:C and
Edge-MSL:D, and finally the test accuracy and convergence
of split learning under these allocation algorithms.

A. Numerical Experiment Setup

We use synthetic server locations spread out uniformly at
random within a 10 × 10 mile area, based on Seoul, an urban
area typical of edge computing [45]. The expected Bernoulli
reward parameter µu,s between every (u, s) user-server pair is
drawn uniformly at random between 0 and 1. For simplicity,
the data quality parameter Yu is mapped between [0, 1] based
on the number of data points each client has; each client
trains models on both the CIFAR-10 and CIFAR-100 datasets
with 200 to 1800 data points per client. The data is split in
a non-i.i.d. manner across clients following Appendix E.1 in
[46]. We provide more details on the split learning setup in
Section VI-D. Users can be in one of 9 locations that are
equally spread throughout the space. Markovian user move-
ments are estimated from the Yonsei/Lifemap mobility dataset
taken from Seoul [20]. Time steps (and update deadlines) are
five minutes. Unless otherwise stated, dmax = 4.5 miles.

We compare the proposed centralized Edge-MSL:C method
and distributed Edge-MSL:D method, which both consider
the context variables Xt, to three baselines. The greedy



(a) Cumulative regret for Edge-MSL:C,
which achieves sublinear regret.

(b) Cumulative regret of distributed allocation
methods for soft-collisions.

(c) Cumulative regret of distributed allocation
methods for hard-collisions.

Fig. 4: Our proposed distributed reservation method, Edge-MSL:D, achieves 100+% lower regret and fewer collisions than any
method that assumes a stationary contextual variable. The centralized approach, Edge-MSL:C, has the lowest regret.

distributed baseline has each user greedily pull its highest
UCB arm at each round while disregarding collisions. The
distributed stationary baseline follows the Game of Thrones
(GoT) approach [35] to find a static allocation from user to
servers between all rounds by using a fixed estimate of the
contextual variable, through an initial “exploration” phase. The
centralized stationary baseline similarly attempts to find a
static allocation. Unless otherwise stated, all experiments are
averaged across 5 trials and run with 9 users and 9 servers.
For Section VI-B’s regret analysis, we compare a soft-collision
model, where a single user is chosen randomly by a server
when a collision occurs, with a hard-collision model, where
no colliding users complete their tasks.

B. Comparing Different Allocation Methods

Incurred Regret. We first quantify the regret of the cen-
tralized approach in Figure 4a as well as the regret of different
distributed approaches for soft collisions in Figure 4b and hard
collisions in Figure 4c. Consistent with Theorems 1 and 2,
Edge-MSL:C yields a sublinear and a much lower regret than
the distributed methods’ linear regrets.

Under soft collisions in Figure 4b, the stationary methods
perform relatively poorer to the greedy method, as greedy
users receive an increased amount of total reward despite
collisions. Under hard collisions in Figure 4c, the centralized
stationary method that does not consider dynamic context
variables performs relatively well compared to the distributed
greedy method as collisions are avoided. However, not con-
sidering the contextual variable makes it incur higher regret
than both Edge-MSL:D and Edge-MSL:C. The distributed
stationary method aims to similarly find a static allocation
but incurs both a high amount of regret and collisions during
the exploration and collision sensing phase of its algorithm.
The results indicate that the methods above will lead to few
users participating in the split learning training tasks.

The regret lower bound of distributed methods (Equation
(5) in Theorem 2) is shown in Figures 4b and 4c. We
use the probability of mobility pm = 0.02, estimated from
the Yonsei/Lifemap mobility dataset; the probability for an
algorithm to correct the allocation per round is conservatively
estimated at po = 0.05; and ∆min is taken as the smallest

Num. Users 3 5 10 15 20 40
Edge-MSL:D 0.011 0.010 0.011 0.013 0.015 0.022
Edge-MSL:C 0.76 0.91 1.6 2.9 4.8 17

TABLE II: Per round run time in miliseconds experienced by
each user for different amount of users and servers.

incurred regret across all experiments with a single collision.
Edge-MSL:D comes the closest to this estimated lower bound.

Overhead Analysis. Edge-Alloc:C requires orders of mag-
nitude more time (Table II). The increase in runtime for each
method of Edge-Alloc follows Propositions 1 and 2 with
respect to the number of users and servers.

C. Collision Prediction Analysis

Consistent with Remark 1, Edge-MSL:D performs worse
as user competition and user mobility increase. The empirical
collision rates for Edge-MSL:D and the greedy distributed
method follow closely the theoretical estimates of Theorem
3 and Remark 1 across different system settings (Figure 5),
despite the realistic mobility patterns and its impact on con-
textual variables Xt. Figure 5a shows that even as the number
of users and servers grows under trace-based mobility, the
greedy algorithm approaches a 1− 1/e ≈ 0.63 collision rate,
as estimated by Theorem 3. Thus, even soft collisions would
prohibit about one-third of the users from participating in the
split learning training, even before other failures, e.g., due to
slow edge server computations [16].

Mobility Patterns. Figure 5b shows the collision rates of
different algorithms when user mobility patterns are Marko-
vian, with a probability pm of moving away from its current
location equally to any other location. As pm increases, the
regret incurred by Edge-MSL:D increases: collisions occur
more often due to shorter reservation times, and users that
do reserve a server have a higher chance from moving away
from the server to incur higher regret. The greedy method
maintains a consistent, and higher, number of collisions.

Resource Availability. The distributed greedy method has
lower collision rates as more servers are available (Figure 5c).
Edge-MSL:D successfully maintains low collision rates for
various configurations of system resource availability.



(a) Collision rate as the number of users
(equal to servers) increases.

(b) Collision rate for different probability of
movement per round pm.

(c) Collision rate for increasing number
servers for a fixed number of users.

Fig. 5: Empirical results follow theoretical results closely for collision rates compared for distributed methods. Context variable
X has been altered to a continuous variable in [0, 1] based on distance to allow for more arm options per user.

(a) Average number of non-stragglers per
round for the CIFAR-10 split learning.

(b) Test accuracy across rounds for the
CIFAR-10 data set .

(c) Test accuracy across rounds for the
CIFAR-100 data set.

Fig. 6: Edge-MSL:D achieves higher user participation and prioritization for high data quality users to ensure faster convergence
of trained models and higher test accuracy compared to distributed baselines.

D. Split Learning Performance

We finally evaluate split learning tasks on the CIFAR-10
and CIFAR-100 data sets. Here, 20 users perform training
by offloading to 20 servers. The models are trained on the
MobileNetV2 architecture. Approximately 10% of the model
is placed on the user device as personalized layers (θPc ),
and the rest is placed on the edge server as shared layers
(θH ) so as to minimize the workload of local devices. A
hard-collision model is used to simulate a heavily resource-
constrained volatile distributed learning scenario [16].

As seen in Figure 6a, Edge-MSL:D successfully increases
user participation rate by minimizing collisions as well as
considering mobility compared to the baselines. The stationary
baseline yields a greater number of participating users than
the greedy algorithm, likely because of the greedy algorithm’s
severe number of collisions. The increased participation rate
and the prioritization of higher data quality users leads to
higher test accuracy for Edge-MSL:D users, as seen by a 25%
increase in Figure 6b for CIFAR-10 and a 15% increase in
Figure 6c for CIFAR-100 compared to baseline algorithms.

Increasing the probability of client participation during the
training phase in a federated learning setting leads to faster
convergence as seen in Theorem 1 of [16]. For a related split
learning scenario, Edge-MSL:D empirically demonstrates a
higher participation probability of clients, as seen in Figure
6a, leading to faster model convergence relative to the greedy
and stationary baselines, as seen in Figure 6b.

VII. CONCLUSION

While distributed machine learning on the edge has gained
traction in recent years, limited resources on the edge as
well as dynamic user mobility presents challenges. Often,
user competition for resources renders prior methods ineffec-
tive. We formulate a linear integer programming problem to
quantify the performance of different allocations from users
to servers, and utilize a contextual-combinatorial multi-armed
bandits framework to solve the problem, whilst respecting
resource constraints and user mobility. The centralized Edge-
MSL:C algorithm achieves sublinear regret with progressing
rounds. We show that all distributed solutions incur at least
linear regret due to a lack of coordination between users, and
propose the Edge-MSL:D algorithm that reduces regret by a
constant factor of at least 2 compared to other distributed
baselines while greatly reducing overhead compared to Edge-
MSL:C. Edge-MSL:D successfully enhances convergence and
test accuracies of models trained by split learning.
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