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ABSTRACT: Here, we demonstrate a fundamentally new reac-
tivity of the silyl enol ether functionality utilizing an in situ-
generated iodonitrene-like species. The present transformation
inserts a nitrogen atom between the silyl enol ether olefinic carbons
with the concomitant cleavage of the C=C bond. Overall, this
facile transformation converts a C-nucleophilic silyl enol ether to
the corresponding C-electrophilic N-acyl-N,O-acetal. This unprece-
dented access to a-amido alkylating agents enables modular
derivatization with carbon and heteroatom nucleophiles and the
unique late-stage editing of carbon frameworks. The reaction
efficiency of this transformation is well correlated with enol ether
nucleophilicity as described by the Mayr N scale. Applications
presented herein include late-stage nitrogen insertion into carbon
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skeletons of natural products with previously unattainable regioselectivity as well as modified conditions for '°N labeling of amides

and lactams.

B INTRODUCTION

In recent years, synthetic methods for the incorporation of
nitrogen into organic compounds have experienced a
renaissance, with the development of many fundamentally
new reactivity concepts and selectivity paradigms.'”> Among
these, nitrogen incorporation methods with concomitant
reorganization of a carbon skeleton are a particularly
interesting class of transformations. Reshuffling C—C bond
connectivity in the course of nitrogen incorporation has many
advantages, including the ability to access functional group-rich
arrays or skeletal architecture that may be difficult to obtain by

*¢ or the ability to achieve late-stage skeletal
7-9

other means
diversification of natural products or drug candidates.

Of particular interest are electrophilic ammonia surrogates,
which allow nitrogen incorporation without the requirement
for specific substituents. Within this area of investigation,
ammonium salts in the presence of an iodine(III) reagent have
shown considerable promise'® since their first report in 2016
for the oxidative amination of sulfoxide to sulfoximines (see
Figure 1A, panel 1)."" The reactivity diversity possible with
this reagent combination is exemplified by the variety of
oxidation modes observed, including formal two-electron,!
four-electron,””"*~'* and six-electron oxidations (vide infra).
Under the reaction conditions, ammonia and PhI(OAc), are
proposed to give an iodonitrene-like species that serves as the
active aminating agent.“’13

In the course of our own recent studies of ammonium/
iodine(III) oxidations of electron-rich functional groups,'” we
became intrigued by the potential for enol ethers to serve as
nucleophilic reaction partners that might fragment or rearrange
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by means of a nitrene-like intermediate. Successful implemen-
tation of this strategy would allow manipulation of the aliphatic
ketone carbon skeletal structure upon silyl enol ether
formation and subsequent ammonium/iodine(III) oxidative
rearrangement. Recent reports of related transformations of
cyclic (hetero)aromatic nucleophiles (see Figure 1A, panel 2)
provide important precedent for the potential power of this
approach.”~” However, the chemistry of acyclic and aliphatic
substrates for skeletal rearrangement upon nitrogen incorpo-
ration has largely been unexplored. In this work, we describe
oxidative C=C cleavage of cyclic and acyclic silyl enol ethers
using a combination of ammonium salt and iodine(III)
reagent, affording N-acyl-N,O-acetals (see Figure 1B).

B RESULTS AND DISCUSSION

We began our exploration by subjecting tert-butyldimethylsilyl
enol ether 1a-TBS to PhI(OAc), (2.5 equiv) and
NH,COONH, (1.5 equiv) in MeOH (see Figure 2, entry
1). Gratifyingly, the N-acyl-N,O-acetal product 1b was
obtained in a 59% yield by NMR. This product represents a
formal four-electron oxidation of the silyl enol ether, in line
with reported “iodonitrene” reactivity.'’ Intrigued by this
unusual and valuable C=C cleavage product, we commenced
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Figure 1. (A) Selected synthetic applications of newly developed
“iodonitrene” chemistry. (B) This work: leveraging “iodonitrene”
chemistry for oxidative nitrogen insertion into silyl enol ethers derived
from aliphatic systems.

Selected Optimization Results

OSiEt; PhI(OAc), (2.5 equiv) (0]
NH;CO,NH, (1.5 equiv
Me 4CO,NH; ( quiv) R NH oue
MeOH (0.2 M), rt, 1 h Me
70% [91% conv.]
1a-SiEt; 1b
. i % NMR yield
entry variation from conditions above [% NMR conversion]
1 t-BuMe,Si instead of SiEtg 59 [90]
2 PhI(O,CCF3), instead of PhI(OAc), 0[100]
3 PhI(OH)(OTs) instead of Phl(OAc), 0[100]
4 NH4OAc instead of NH,CO,NH, 53 [80]
5 (NH,4),CO3 instead of NH,CO,NH, 59 [83]
6 EtOH instead of MeOH 43 [81]*
7 i-PrOH instead of MeOH 5 [54]*
8 PhI(OAc); (4.0 equiv) 79 [100]
PhI(OAc), (4.0 equiv)
9 and MeOH (0.1 M) 85[100]
PhI(OAc); (4.0 equiv),

10 MgO (2.0 equiv). and MeOH (0.1 M) e T

Figure 2. Selected reaction optimization. *NMR yields refer to the
corresponding OEt and Oi-Pr compounds, respectively.

the optimization of the reaction conditions. Upon screening
common silyl groups, we discovered that the triethylsilyl
(SiEt;) group gave the highest yield (Figure 2), presumably
due to the optimal balance of steric bulk and stability toward
the reaction conditions. All subsequent screenings therefore
used 1a-SiEt; as the substrate. Varying the iodine(III) and
ammonium sources showed that PhI(OAc), and NH,CO,NH,
were the optimal reagents, respectively. It is worth noting that
other ammonia sources, such as NH,OAc and (NH,),COj;,
gave lower but still preparatively useful yields (entries 4 and 5).
Methanol proved to be by far the superior solvent for this
transformation, with the yield of 1b plummeting for larger

alcohols (entries 6 and 7) and no product formation in aprotic
solvents (see the Supporting Information). When using 2.5
equiv of PhI(OAc),, incomplete conversion occurred.
Increasing the amount of PhI(OAc), to 4.0 equiv ensured
complete conversion and maximal yield of 1b (entry 8). The
concentration also plays a fairly significant role, as decreasing
the concentration from 0.2 to 0.1 M raised the yield to 85%
(entry 9). We hypothesized that acetic acid released during the
reaction may lower the reaction efficiency, so we screened
various additives. Indeed, including solid MgO increased the
yield further to 94% (entry 10).

With optimal conditions in hand, we next investigated the
scope of the nitrogen insertion reaction on silyl enol ethers
derived from cyclic and bicyclic ketones (Figure 3). The
oxidative nitrogen insertion was first tested on the model
substrate 1a at a 0.5 mmol scale, giving the expected product
1b in a 90% isolated yield. The reaction was then rerun at a 15
mmol scale, whereupon the yield had only decreased to 76%,
indicating that the reaction is amenable to significant scale-up.
The reaction also proceeded smoothly with the triethylsilyl
enol ethers of unsubstituted 5-, 6-, 7-, 8-, and 12-membered
cycloalkanones, giving the corresponding 6-, 7-, 8-, 9-, and 13-
membered cyclic N-acyl-N,O-acetals (2b—6b) in moderate to
good yields. A phenyl substituent at the a-carbon was also well
tolerated (7). The two-step silylation/nitrogen insertion
sequence was also applied to the commercially available
enantioenriched terpenoid (+)-dihydrocarvone, giving the 7-
membered lactam 8b. The selective nitrogen insertion into the
silyl enol ether C=C bond of 8a showcases the chemo-
selectivity favoring nucleophilic olefins. Treatment of 9a and
10a, derived from (+)-3-carene and dihydrolevoglucosenone
(Cyrene), respectively, with standard nitrogen insertion
conditions gave the bicyclic N,O-acetals 9b and 10b. Insertion
into a bis-triethylsilyl enol ether in a bicyclo[2.2.2]octane
system 11a gave a single nitrogen insertion product 11b, with
concomitant hydrolysis of the other silyl enol.

Upon closer inspection of the initial nitrogen insertion
scope, it became clear that the six-membered silyl enol ether 3a
gave a rather poor yield for the oxidative nitrogen insertion
(41%), seemingly out of place compared to its five-, seven-,
and eight-membered ring congeners (65, 76, and 78%,
respectively). Though initially puzzling, a plausible explanation
emerged by considering the innate nucleophilicities of the silyl
enol ethers. Quantitative nucleophilicities of analogous
trimethylsilyl enol ethers were obtained from the Mayr N
scale, a logarithmic nucleophilicity scale based on the Mayr—
Patz equation for predicting bimolecular rate constants of
nucleophile/electrophile reactions.'®'” As displayed in Figure
4, six-membered 3a has by far the lowest nucleophilicity of the
group and correspondingly gives the lowest yield of its N,O-
acetal product 3b. Additionally, increasing the nucleophilicity
from 2a to 4a to Sa parallels the increasing trend in yields. We
therefore attribute the seemingly aberrant trend of yields for
2b—5b to the innate nucleophilicities of the parent silyl enol
ethers.

The scope of oxidative nitrogen insertion was also explored
for triethylsilyl enol ethers derived from aldehydes and acyclic
ketones (Figure S). The linear silyl enol ether 12a gave the
expected N-formyl-N,O-acetal product 12b in a relatively poor
28% vyield, whereas the a,a-disubstituted 13a gave 13b in a
64% vyield. These yields are likely also related to intrinsic
substrate nucleophilicity. The corresponding N-acyl-N,O-
acetals were also obtained from dialkyl (14b) and alkyl aryl
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Oxidative Nitrogen Insertion into Cyclic and Bicyclic Silyl Enol Ethers
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Figure 3. Scope of oxidative nitrogen insertion into cyclic and bicyclic triethylsilyl enol ethers. All reactions were run at 0.5 mmol scale unless
indicated. *3.0 equiv of NH,CO,NH,, 8.0 equiv of PhI(OAc),, and 4.0 equiv of MgO.

Possible Explanation for Yield Trend with Products 2b—5b

i i OfSi [Si]O
log k (20 °C) = sy(N + E) Qorsi] oS [Si]
Mayr-Patz equation
N parameter
[Si] = Me;Si: 6.57 5.21 6.62 6.77
N-insertion yield
[Si] = EtSi: 65% 41% 76% 78%

Figure 4. Utilizing Mayr N-parameters to explain the aberrantly low
yield of 3b relative to 2b, 4b, and Sb.

(15b) ketones. The range of cycloalkyl phenyl ketones with
four- to six-membered cycloalkyl rings was also subjected to
the silylation/oxidative nitrogen insertion procedure and
provided products 16b, 17b, and 24b in good yields.
Intriguingly, the cyclobutyl ring of 16 remained intact with
no ring expansion or cleavage products detected. The nitrogen
insertion on 16a was repeated on a 4 mmol scale, giving 16b in
a 74% yield. Next, a range of cycloalkyl (hetero)aryl ketones
were explored, allowing us to assess some questions of
functional group tolerance. A range of substituted phenyl
rings, including CF; (18), Br (19), vinyl (20), CI/F (21), OPh
(25) substituents, as well as a difluorobenzodioxole ring (26),
tolerated the oxidative conditions and afforded the expected
products smoothly. In particular, the absence of side reactivity
with the styrenyl olefin of 20a further showcases the
chemoselectivity of the process. Substrates containing a
naphthyl group or a S-phenyl enone also gave the desired N-
acyl-N,O-acetals (22b and 27b, respectively). Gratifyingly,
quite electron-rich heteroaromatics—pyrrole (28), indole
(23), furan (29), and benzofuran (30 and 31)—were also
well tolerated under the oxidative conditions. Furthermore,
more complex substrates containing an indazole (32) and a
benzoxazole (33) also gave the desired N-acyl-N,O-acetals.
In some cases, N-acyl imino ethers were observed as six-
electron oxidation products instead of, or in addition to, the

21131

expected N-acyl-N,O-acetals (see Figure 6). Silyl enol ethers
derived from a-tetralone (34a) and tropolone (35a) gave
imino ethers 34c and 3S5c, respectively. Note that the a-keto
group of 35a spontaneously formed the dimethylacetal under
the reaction conditions. When cross-conjugated silyl dienol
ether 36a was exposed to the standard nitrogen insertion
conditions, the expected four-electron N,O-acetal product 36b,
the six-electron imino ether product 36¢c, and the eight-
electron aromatic azepinone 36d were all observed. Based on
these results, we propose that such overoxidized products form
when (1) the a-carbon is not fully substituted so that a labile
hydrogen remains after N,0O-acetal formation and (2) there is a
driving force for the formation of the imino ether due to
extended conjugation. To the best of our knowledge, this is the
first case of six- or eight-electron oxidations being observed
under iodonitrene-like conditions.

To investigate the utility of expedient and general access to
N-acyl-N,O-acetals, we explored subsequent derivatizations
that harness their latent electrophilic nature. The N-acyl-N,O-
acetals are air- and moisture-stable sources of N-acyl imine or
iminjum species, which can be generated in situ’® and
intercepted by a nucleophile.'” Such reactivity allows access
to highly congested tertiary amide and lactam nitrogens, which
are challenging to access in a modular manner (Figure 7). For
our studies, we chose N-acyl-N,O-acetal 1b for derivatization.
Our studies commenced with hydride reduction to give lactam
37 using a combination of silane reductant and silyl triflate. An
analogous combination using trimethylsilyl cyanide as a
nucleophile gave the a-amido nitrile 38. Allylation could also
be achieved using a combination of allylmagnesium bromide
and TiCl, to give 39, presumably proceeding through an
elimination—addition sequence via the N-acyl imine. A
Mukaiyama—Mannich reaction with a silyl ketene acetal was
also successful, giving a very sterically hindered array of vicinal
quaternary centers of 40 in a 48% yield. Under Bronsted acid
conditions, @-amido sulfide 41 was formed from thiophenol.
An Arbuzov-type transformation using trimethylphosphite was
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Oxidative Nitrogen Insertion Scope on Acyclic Silyl Enol Ethers
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Figure S. Scope of the oxidative nitrogen insertion into acyclic triethylsilyl enol ethers. All reactions were run at a 0.5 mmol scale unless indicated.

*2.0 equiv of PhI(OAc),.

Unexpected Overoxidation Products

Derivatization of N-Acyl-N,O-Acetal 2b

Figure 6. Unexpected overoxidation under standard oxidative
nitrogen insertion conditions giving primarily N-acyl imino ethers
34c—36¢ as six-electron oxidation products.

also successful, giving N-methyl-a-amido phosphonate 42 in a
27% yield. Lastly, electrophilic aromatic substitution was
attempted with NH- or N-methylindole. Surprisingly, only the
ring-opened, double electrophilic aromatic substitution prod-
ucts 43 and 44 were isolated, even without an excess indole
nucleophile. This finding is likely due to the strongly electron-
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Figure 7. Derivatization of N-acyl-N,O-acetal 2b showcases the
potential for rapid complexity generation.

donating nature of the indole ring coupled with the nucleofugal
behavior of the lactam under acidic conditions.

We also considered oxidative nitrogen insertion as a tool to
manipulate carbon skeletons of complex natural products
(Figure 8). The commercially available steroid estrone (45)
was first doubly silylated with Et;SiOTf and then was subjected
to standard nitrogen insertion conditions.
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Oxidative Nitrogen Insertion for Late-Stage Derivatization of Complex Natural Products
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© (0]
49 [known] 48: (-)-isosteviol 50

1. Et3SiOTf, 2,6-lutidine
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2. N-insertion conditions
54% (d.r. ~7:1)

[anti-Beckmann regioselectivity]

1. allyl bromide, K,CO3
2. Et3SiOTf, Et3N
75% over two steps

3. N-insertion conditions

OMe

Figure 8. Application of oxidative nitrogen insertion into estrone- and (—)-isosteviol-derived silyl enol ethers 45 and 48, respectively, with anti-
Beckmann regioselectivity. The N,O-acetals 47 and 50 are primed for further synthetic elaboration.

The expected N-acyl-N,O-acetal 47 was isolated in a 54%
yield with a 7:1 d.r. The terpenoid (—)-isosteviol, prepared on
a multigram scale from the sweetener stevioside following a
reported procedure,”’ was analogously esterified, silylated, and
subjected to the standard conditions. The N-acyl-N,O-acetal
50 was isolated in an 83% yield as a single diastereomer. As
indicated in Figure 8, both estrone and (—)-isosteviol have
previously been transformed into the corresponding ring-
expanded lactams 46~ and 49°* using the Beckmann
rearrangement,25 though only the alternative nitrogen insertion
into the more substituted side was observed. In general, the
regioselectivity of Beckmann rearrangements is stereospecific
and depends on the E/Z preference of the starting oxime,
which is not generally controllable.”*™** Furthermore,
fragmentation pathways can occur when one of the oxime
substituents strongly stabilizes carbocationic character, such as
tertiary alkyl groups or substituents with a-heteroatoms.”
Indeed, such fragmentation was observed during the
preparation of 49.”" Other commonly used methods for the
conversion of ketones to amides/lactams include the
Schmidt—Aubé reaction,”””" where the latent electrophilic
nitrogen source is either hydrazoic acid®* or an alkyl azide.*
While rules have been formulated regarding the regiochemical
outcome of the Schmidt-Aubé reaction, the site of nitrogen
insertion is still predominantly dictated by migratory ability
and substrate structure.”**** In contrast, the present method
is not bound by considerations of oxime geometry or migratory
aptitude as the site of nitrogen insertion is precisely dictated by
the regiochemistry of the silyl enol ether. Furthermore, the
N,O-acetal afforded here can be a new vector for further
synthetic elaboration. Such an operationally simple manipu-
lation of carbon skeletons holds promise for accessing
previously hard-to-reach or unreachable areas of chemical
space surrounding complex bioactive molecules.

We also envisioned applying the nitrogen insertion
presented here for °N isotopic labeling of amides and lactams.
Selective labeling with "N is important for a variety of tools to
interrogate biomolecule structure”™ ™" and function,*®™*°
including MS-based proteomics*' and metabolomics,**~**
spin hyperpolarization,””~*" and mechanistic elucidation.*>*’

Since '"NH,Cl is one of the most common and relatively
inexpensive commercially available N sources, it was
preferable to establish conditions for nitrogen insertion directly
with commercial "NH,Cl. NH,CI performed quite poorly

during the initial screening of nitrogen sources (see the
Supporting Information). We wondered if it was possible to
generate °N-labeled isotopologues of more efficient ammo-
nium salts in situ via salt metathesis. After a short optimization
campaign, we gratifyingly found that the combination of
NH,CI and Ag,CO; was suitable for generating the desired
N,O-acetal 1b (Figure 9 and Supporting Information),

Modified Nitrogen Insertion Conditions for 15N Labeling

Phi(OAc); (4.0 equiv)
) 15NH,CI (2.5 equiv)
OS'E't;e Ag5CO; (1.25 equiv) Q_H
OMe
MeOH, 1t, 1 h Ve
i 83%, ~100%
1a-SiEt; 15N incorporation 1b-15N
H NMR 5
lactam "SN-H 1 NNMR
J%\ Jm\ JNH 86.4 Hz
135
(ppm) 1 (ppm)

Figure 9. In situ generation of ("*NH,),CO; for "N insertion into
1a-SiEt;. 'H and "N NMR showing the large 'Jyy coupling constant
in 1b-"N.

presumably via (NH,),CO; upon the precipitation of AgCl.
Use of these modified conditions with *NH,CI afforded
1b-'N in an 83% yield with essentially 100% '°N
incorporation, as shown by the absence of a “*NH peak in
the 'H NMR spectrum (see Figure 9, bottom-left spectrum).

A plausible mechanistic pathway for this transformation is
outlined in Figure 10. Formation of the C=C cleavage
product N-acyl-N,O-acetal D can be rationalized on the basis
of C—C cleavage from an N-iodo aziridine species such as B
(Figure 10) or a similar aziridine with an N-leaving group.
Such a mechanistic step would initially afford N-acyl imine C,
which would then afford the observed product D upon
addition of methanol solvent. Formation of the key aziridine B
can be envisioned as a formal [2 + 1] cycloaddition involving a
suitable nitrene equivalent after four-electron oxidation by 2
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Plausible Mechanism for Oxidative Nitrogen Insertion
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D

Figure 10. Plausible mechanism for oxidative nitrogen insertion into
silyl enol ethers with speculative structures for the “iodonitrene”
intermediate.

equiv of PhI(OAc), Although the exact nature of the
aziridination reagent is not clear, potential candidates may
include N-iodo-iminoiodinane 51, as well as related free
nitrenes 52 and $3, previously proposed on the basis of MS
experiments.”"" The lack of two-electron oxidation products in
favor of available four-electron pathways suggests that 1 equiv
of ammonia must react with 2 equiv of the iodine(III) reagent
to form the active aminating species,'” as opposed to stepwise
aziridination with iminoiodinane (PhI=NH) and subsequent
oxidation/rearrangement of the intermediate N—H aziridine.

B CONCLUSIONS

We have developed a robust method to perform oxidative
insertion of nitrogen into the C=C bond of silyl enol ethers.
The present method exemplifies a new mechanistic paradigm
for achieving formal four-electron oxidation with reorganiza-
tion of the carbon skeleton. The efficacy of this transformation
has been demonstrated on a wide variety of cyclic, bicyclic, and
acyclic silyl enol ethers, giving the corresponding N-acyl-N,O-
acetals in generally high yields. This reaction proceeds rapidly
under mild conditions under air and shows good tolerance of a
wide variety of substituents and functional groups. The N-acyl-
N,O-acetal products serve as a robust platform for further
modular derivatization adjacent to amide and lactam nitrogens,
a position traditionally difficult to functionalize. We also
showed the versatility of this transformation in achieving
previously inaccessible late-stage skeletal modifications of
complex natural products. Furthermore, modified conditions
allow near 100% incorporation of "*N into N-acyl-N,O-acetals
using readily available "NH,CL
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