
RESEARCH ARTICLE COMPUTER SCIENCES
BIOPHYSICS AND COMPUTATIONAL BIOLOGY OPEN ACCESS

Parallel molecular computation on digital data stored in DNA
Boya Wanga,1,2,3 ID , Siyuan Stella Wangb,c,1,4 ID , Cameron Chalka,5 , Andrew D. Ellingtonb,c , and David Soloveichika,2 ID

Edited by Darko Stefanovic, The University of New Mexico, Albuquerque, NM; received October 14, 2022; accepted July 10, 2023, by Editorial Board
Member James J. Collins

DNA is an incredibly dense storage medium for digital data. However, computing
on the stored information is expensive and slow, requiring rounds of sequencing, in
silico computation, and DNA synthesis. Prior work on accessing and modifying data
using DNA hybridization or enzymatic reactions had limited computation capabilities.
Inspired by the computational power of “DNA strand displacement,” we augment
DNA storage with “in-memory” molecular computation using strand displacement
reactions to algorithmically modify data in a parallel manner. We show programs for
binary counting and Turing universal cellular automaton Rule 110, the latter of which
is, in principle, capable of implementing any computer algorithm. Information is stored
in the nicks of DNA, and a secondary sequence-level encoding allows high-throughput
sequencing-based readout.We conductedmultiple rounds of computation on 4-bit data
registers, as well as random access of data (selective access and erasure).We demonstrate
that large strand displacement cascades with 244 distinct strand exchanges (sequential
and in parallel) can use naturally occurring DNA sequence from M13 bacteriophage
without stringent sequence design, which has the potential to improve the scale of
computation and decrease cost. Our work merges DNA storage and DNA computing,
setting the foundation of entirely molecular algorithms for parallel manipulation of
digital information preserved in DNA.

DNA storage | DNA computation | molecular programming | strand displacement

DNA is an incredibly dense (up to 455 exabytes per gram, 6 orders of magnitude
denser than magnetic or optical media) and stable (readable over millennia) digital
storage medium (1–3). Storage and retrieval of up to gigabytes of digital information
in the form of text, images, and movies have been successfully demonstrated. DNA’s
essential biological role ensures that the technology for manipulating DNA will never
succumb to obsolescence. However, performing computation on the stored data typically
involves sequencing the DNA, electronically computing the desired transformation, and
synthesizing new DNA. This expensive and slow loop limits the applicability of DNA
storage to rarely accessed data (cold storage).

In contrast to traditional (passive) DNA storage, schemes for dynamic DNA storage
allow access and modification of data without sequencing and/or synthesis. Upon binding
to molecular probes, files can be accessed selectively (4) and modified through PCR
amplification (5). Introducing or inhibiting binding of molecular probes with existing
data barcodes can rename or delete files (6). Information encoded in the hybridization
pattern of DNA can be written and erased (7) and can even undergo basic logic operations
such as AND and OR (8) using strand displacement. By encoding information in the
nicks of naturally occurring DNA [a.k.a. native DNA (9)], data can be modified through
ligation or cleavage (10). With image similarities encoded in the binding affinities of
DNA query probes and data, similarity searches on databases can be performed through
DNA hybridization (11, 12). Although these advances allow information to be directly
accessed and edited within the storage medium, they nevertheless demonstrate limited
or no capacity for computation in DNA.

Conveniently, beyond its role as a storage medium, DNA has proved to be a
programmable medium for computation, primarily via “strand displacement” reac-
tions. With the understanding of the kinetics and thermodynamics of DNA strand
displacement (13–15), a variety of rationally designed molecular computing devices have
been engineered. These include molecular implementations of logic circuits (16–18),
neural networks (19, 20), consensus algorithms (21), dynamical systems including
oscillators (22), and cargo-sorting robots (23). Given the achievements of strand
displacement systems and their inherent molecular parallelism, DNA computation
schemes appear well suited to directly carry out computation on big data stored in
DNA.

Significance

The exponential accumulation of
digital data is expected to outstrip
magnetic and optical storage
media. DNA’s significantly higher
information density combined
with the availability of technology
for manipulating and reading
DNA owning to its essential
biological role makes DNA an
attractive alternative. Often,
general information processing
on the data stored in DNA
requires an inefficient change of
domain from the chemical to the
electronic and back. Here, we
develop dynamic DNA storage
capable of general programmable
(Turing universal) computation
entirely “in chemistry.” Based on
DNA strand displacement
reactions, algorithms are
executed on all data entries in
parallel. We demonstrate
high-throughput readout via
next-generation sequencing,
identifier-based access to specific
data entries, and the use of
naturally occurring sequences for
greater scalability.

1B.W. and S.S.W. contributed equally to this work.
2To whom correspondence may be addressed. Email:
boyawang.chem@gmail.com or david.soloveichik@
utexas.edu.
3Present address: Bioengineering, California Institute of
Technology, Pasadena, CA 91125.
4Present address: Wyss Institute for Biologically Inspired
Engineering, Harvard University, Boston, MA 02115.
5Present address: Computation and Neural Systems,
California Institute of Technology, Pasadena, CA 91125.

This article contains supporting information online
at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2217330120/-/DCSupplemental.

Published September 5, 2023.

PNAS 2023 Vol. 120 No. 37 e2217330120 https://doi.org/10.1073/pnas.2217330120 1 of 10

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y

U
N

IV
ER

SI
TY

 O
F

TE
X

A
S

A
T

A
U

ST
IN

 o
n

O
ct

ob
er

 2
0,

 2
02

4
fr

om
 IP

 a
dd

re
ss

 1
28

.6
2.

14
7.

16
2.

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2217330120&domain=pdf&date_stamp=2023-08-31
https://orcid.org/0000-0003-1898-4063
https://orcid.org/0000-0001-8249-6553
https://orcid.org/0000-0002-2585-4120
mailto:boyawang.chem@gmail.com
mailto:david.soloveichik@utexas.edu
mailto:david.soloveichik@utexas.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2217330120/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2217330120/-/DCSupplemental

A

C

D

E

B

Fig. 1. Overview of SIMD||DNA. (A) Instead of outsourcing the computation process to an electronic computer with required sequencing and synthesis
steps, SIMD||DNA allows in-memory computation performed by DNA itself. (B) Analogous to SIMD computation in classical computing, in SIMD||DNA, a set of
instruction strands is added to the solution to simultaneously react with all the registers (multistranded complexes with information encoded in the pattern
of nicks and exposed single-stranded regions). Magnetic beads (blue) labeling of registers allows separation of unreacted instruction strands and displaced
reaction products. (C) Notation: Vertically aligned Top and Bottom domains are complementary unless specifically labeled (e.g., a and a∗, with “*” indicating
complementarity). We assume that domains bind only their complements. Dashed strands share the same sequence as their vertically aligned Bottom strands.
(D) Instruction strands induce three types of events: attachment, displacement, and detachment. The toehold exchange reaction in (iv) is considered irreversible
since instruction strands are at high concentration. (E) Experimental workflow: Registers are assembled through annealing and attached to magnetic beads,
followed by computation. The postcomputation process of ligation and PCR amplification prepares for sequencing readout. Yellow dots indicate Top-Bottom
strand mismatches, allowing data readout after ligation erases the nick information (secondary sequence–based encoding).

Here, we propose a paradigm called SIMD||DNA* (Single
Instruction Multiple Data† computation with DNA) which
integrates DNA storage with in-memory computation by strand
displacement (Fig. 1A). A preliminary version of the theoretical
results in this work appeared as a conference paper (25).
Inspired by methods of storing information in the positions of
nicks in double-stranded DNA (9, 10), SIMD||DNA encodes
information in a multistranded DNA complex with a unique
pattern of nicks and exposed single-stranded regions (a register).
Although storage density is somewhat reduced (approximately a

*“||” indicates “parallel computation” and the DNA double helix.
† Single instruction, multiple data (SIMD) is one of the four classifications in Flynn’s
taxonomy (24). The taxonomy captures computer architecture designs and their paral-
lelism. The four classifications are the four choices of combining single instruction (SI) or
multiple instruction (MI) with single data (SD) or multiple data (MD). SI versus MI captures
the number of processors/instructions modifying the data at a given time. SD versus MD
captures the number of data registers being modified at a given time, each of which can
store different information. Our scheme falls under SIMD, since many registers, each with
different data, are affected by the same instruction.

factor of 30; see Discussion), encoding information in nicks still
achieves orders of magnitude higher density than magnetic and
optical technologies. To manipulate information, an instruction
(a set of strands) is applied in parallel to all registers which all
share the same sequence space (Fig. 1B). The strand composition
of a register changes when the applied instruction strands trigger
strand displacement reactions within that register. Nonreacted
instruction strands and reaction waste products are washed away
via magnetic bead separation to prepare for the next instruction.
Each instruction can change every bit on every register, yielding a
high level of parallelism. Our experiments routinely manipulated
1010 registers in parallel; DNA storage recovery studies suggest
that, in principle, 108 distinct register values can be stored in one
such sample (SI Appendix, section S20).

To enable data multiplexing (i.e., the pooling, separation,
and identification of multiple datasets), registers can be labeled
with unique identifiers, or “barcodes” (e.g., in putative medical
record applications, the barcodes could identify specific patients).

2 of 10 https://doi.org/10.1073/pnas.2217330120 pnas.org

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y

U
N

IV
ER

SI
TY

 O
F

TE
X

A
S

A
T

A
U

ST
IN

 o
n

O
ct

ob
er

 2
0,

 2
02

4
fr

om
 IP

 a
dd

re
ss

 1
28

.6
2.

14
7.

16
2.

https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials

Specific information may be retrieved or erased through the
addition of a query strand that contains the complement of
the barcode sequence and may therefore be used to displace the
register from the magnetic bead without disturbing the remaining
registers. Unlike typical strand displacement computation sys-
tems, SIMD||DNA leverages the bandwidth of next-generation
sequencing (NGS) to read out mixed pools of information.
SI Appendix, section S19 discusses abstract data manipulation
operations that SIMD||DNA achieves.

Reliance on custom-synthesized oligonucleotide strands is an
important bottleneck to the adoption of both strand displacement
and DNA storage systems, limiting their scale and increasing
cost. With a few notable exceptions [such as for diagnostic
applications (26)], sophisticated sequence design incompatible
with natural sequences is typically used (27–29). In the context of
strand displacement systems, naturally occurring, nonoptimized
DNA sequences may in general lead to undesired binding,
trigger spurious displacement, or prevent displacement from
completing. Surprisingly, we show that SIMD||DNA algorithms
may be realized on the M13 phagemid while eschewing careful
sequence design and the high costs and low yield of long oligonu-
cleotide phosphoramidite synthesis. M13, a mainstay of DNA
origami (30), provides a large storage space for parallel SIMD
computation on multiple registers. To date, we constructed
the largest strand displacement system using naturally occurring
DNA sequences: using SIMD||DNA, we implemented in total
244 distinct strand displacement reactions.

SIMD||DNA

In SIMD||DNA, molecular algorithms manipulate digital in-
formation stored in DNA strand nicks through DNA strand
displacement reactions (Fig. 1). Each data register contains a
long Bottom strand and multiple bound Top strands. As registers
share the same sequence space, the Bottom strand is the same
between different registers, while the information is encoded in
the location of the nicks between Top strands.Domains represent
consecutive nucleotides that act as a functional unit. Strand
displacement is initiated by hybridization at a single-stranded
toehold domain followed by displacement of the incumbent
strand. The domain lengths are chosen so that ideally 1) each
domain can initiate strand displacement (i.e., can act as a
toehold), 2) strands bound by a single domain readily dissociate,
and 3) strands bound by two or more domains cannot dissociate.
The Bottom strand is partitioned into sets of consecutive domains
called cells, each representing a bit of information (Fig. 1C).

Each instruction of a program corresponds to the addition
of a set of DNA strands at high concentration to registers
bound to magnetic beads. Instruction strands are allowed to
react for a few minutes before washing to prevent waste products
from interacting with registers. Physical separation of instruction
strands, waste, and registers can be achieved through applying a
magnetic field.

The instruction strands cause three types of events (Fig. 1D):
Attachment events attach new top strands to the register, pre-
serving all the previously bound strands. Attachment can include
partial displacement of a preexisting Top strand on the register
(Fig. 1, D, ii). In displacement events, an instruction strand
displaces and replaces a previously bound Top strand. This event
can occur only if a toehold is available for the displacement. Note
that since the displaced strands are in relatively low concentration,
we assume they do not subsequently react with the registers.
We assume toehold exchange (13) is irreversible in our model
(Fig. 1,D, iv). Two instruction strands can also cooperatively (31)

displace strands on the register (Fig. 1, D, v). In a detachment
event, an instruction strand displaces a complementary Top
strand from a register without introducing a new Top strand.
This event can only occur if there is a toehold on the Top strand
to initiate the displacement.

To enable the parallel reading of a pool of registers holding
different data through NGS, we rely on a secondary sequence–
level data encoding consisting of single-base mismatches between
certain Top strands relative to the Bottom strand. This encoding
allows us to continue to distinguish 0’s and 1’s after ligation and
PCR amplification—steps that erase information stored in nicks.
To ensure fast kinetics of displacement events in the presence of
mismatches, any mismatch is on the displaced strand rather than
the displacing strand (32); see SI Appendix, section S3.4.

Results

Binary Counting Program. The binary counting SIMD||DNA
program treats each register as a binary integer and increments all
the registers by one. Abstractly, a binary increment operation flips
the right-most (least significant) zero and all bits to its right. At the
high level, our SIMD algorithm does the following (Fig. 2A):
Starting from the rightmost domain (designed to initiate dis-
placement), the program erases all 1’s in between the rightmost
cell and the rightmost value-0 cell (Instructions 1 and 2), and
changes those cells to 0 at Instructions 4 and 5. The rightmost
value-0 cell is first marked (Instruction 3) and then changed to
value 1 (Instructions 6 and 7). (See SI Appendix, section S1 for
the proofs of correctness of our programs.)

We show that strand displacement computation can proceed
directly on naturally occurring M13mp18 plasmid (M13) se-
quence space with minimal sequence optimization (Fig. 2). To
choose the parts of the M13 plasmid to use, we first eliminated
areas with 4 consecutive C’s or G’s and hairpin “[A]” (33)
and then selected 9 random locations as candidates at which
we encoded registers (Fig. 2B). As a scalable technique to
alleviate spurious interactions in naturally occurring DNA while
keeping desired binding intact, we increased reaction temperature
and the strength of domain binding (increasing their length).
We partitioned the sequence from the chosen locations into
domains of different lengths according to the binding energy:
M13.1, M13.2, and M13.3 registers were designed with weak
(short) domains, M13.4, M13.5, M13.6 registers with medium
domains, and M13.7, M13.8, M13.9 registers with strong (long)
domains (details in SI Appendix, section S3.2). We tested initial
values 0010 and 0011 with different reaction temperatures
(SI Appendix, section S6) on these 9 registers and then picked
5 of them for further experiments.

We first performed SISD (single-instruction, single-data)
computation on M13.8 registers for each of the 16 4-bit initial
values, where each test tube contained only one initial value.
After NGS sequencing, the reads were organized according
to the barcode sequences associated with their encoded initial
values, and the percentage of reads representing the correct
value was calculated (Materials and Methods in SI Appendix,
section S5.2). More than 99% of M13.8 registers that were
assembled, processed, and sequenced contained the expected
initial value (SI Appendix, Fig. S4A). After a round of binary
counting computation, registers corresponding to all 16 initial
values show the correct output as the dominant output (Fig. 2C),
with the minimum correct percent at 68%. We observed similar
results for M13.3 registers (SI Appendix, Fig. S4B).

To demonstrate SIMD computation, we executed the binary
counting program on a pool of M13.8 registers with all 16 initial

PNAS 2023 Vol. 120 No. 37 e2217330120 https://doi.org/10.1073/pnas.2217330120 3 of 10

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y

U
N

IV
ER

SI
TY

 O
F

TE
X

A
S

A
T

A
U

ST
IN

 o
n

O
ct

ob
er

 2
0,

 2
02

4
fr

om
 IP

 a
dd

re
ss

 1
28

.6
2.

14
7.

16
2.

https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials

A

D E

B

C

Fig. 2. Binary counting program on naturally occurring (M13) sequences. (A) Molecular program implementing binary counting. The example register (Top)
encoding the initial value updates to the new value (Bottom) after 7 instructions. Strands are labeled by colors: value 1 (purple), value 0 (pink), intermediates
(others). Solid boxes show the instruction strands and the configuration of the register before reacting. Dashed boxes explain the logical meaning of the
instructions. (B) Locations of registers on M13mp18 and the encoding of 0 and 1. In the text, M13.i refers to registers at location choice i. The yellow circle on
one of the Top strands encoding the value 1 indicates a single-base mismatch with respect to the Bottom strand. (C) NGS results of SISD binary counting (40 °C)
on M13.8 registers. For each initial value, the distribution of the output values is represented in the heat-map matrix. The lower bar plot shows an example of
the distribution of output values in one row (input 1011) of the heat map. (D) NGS results of SIMD binary counting (40 °C) on M13.8 registers. (E) NGS results of
SIMD binary counting (50 °C) on M13.7 and M13.9 registers in parallel. In the heat maps, black borders indicate the correct output value; the percent value is
shown if the output value is at least 25% of all reads for a given sample.

4 of 10 https://doi.org/10.1073/pnas.2217330120 pnas.org

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y

U
N

IV
ER

SI
TY

 O
F

TE
X

A
S

A
T

A
U

ST
IN

 o
n

O
ct

ob
er

 2
0,

 2
02

4
fr

om
 IP

 a
dd

re
ss

 1
28

.6
2.

14
7.

16
2.

seal

BA

barcode displacement

add adaptor

Po
st

-c
om

pu
ta

tio
n

pr
oc

es
si

ng

ligation

PCR amplification

Rule 110

Fig. 3. SIMD cellular automaton Rule 110 computation. (A) Postcomputation process for the Rule 110 program with chemically synthesized DNA. After
computation, “seal” strands are added to fill in the gap for cells representing bit 1 for the following ligation step. Strands complementary to the barcode
sequences are added to selectively displace the register with certain initial values. (B) NGS results of SIMD Rule 110 computation (25 °C) on 16 registers with
unique initial values. The Leftmost and Rightmost cells of the input only have one neighbor; thus, they undergo a modified Rule 110 update which proceeds
as if the missing neighbor were 0 (see SI Appendix, section S10 for the implementation of this boundary condition). The registers were composed of chemically
synthesized DNA. The correct output value is indicated with a black border; values that appear in at least 25% of all reads for a given sample are printed.

values in the same test tube (SI Appendix, Fig. S5A), obtaining
a similar correct fraction of computation as for SISD (Fig. 2D).
We also achieved similar SIMD computation results on M13.7
and M13.9 registers (SI Appendix, Fig. S5 B and C) at a higher
temperature.

The 7.2-kb-long M13mp18 plasmid is, in principle, capable of
accommodating SIMD||DNA computation on several hundreds
of bits. As a proof of scaling, we investigated the ability to store
(SI Appendix, Fig. S6) and compute (Fig. 2E) simultaneously
on M13.7 and M13.9 registers assembled on the same M13
molecules. As shown in Fig. 2E, most registers produced the
highest readcount for the correct output, albeit with more
errors for some inputs. Note that different programs could be
simultaneously executed on registers of orthogonal sequence,
thereby potentially generalizing SIMD||DNA to MIMD (multi-
ple instruction, multiple data).

Cellular Automaton Rule 110 Program. Expanding the diversity
of functions computable by SIMD||DNA, we implemented a
Turing universal program based on cellular automaton Rule 110
(the full program is shown in SI Appendix, section S1.2). The
Turing universality of Rule 110 (34) argues that, in principle,
SIMD||DNA is capable of performing any computation that can
be performed on any computer.

An abstract elementary cellular automaton (35), one of the
simplest models of computation, consists of a line of cells, each
in one of two states 0 or 1. At each time step, updates to a cell
depend on the states of its Left and Right neighbors. A simple
two-rule characterization of Rule 110 is as follows: 0 updates to
1 if and only if the state to its right is a 1, and 1 updates to 0 if
and only if both neighbors are 1. The SIMD||DNA program for
implementing a time-step is shown in SI Appendix, Fig. S1.

To implement the Rule 110 program, we used artificially
designed sequences (sequence design explained in SI Appendix,
section S3.1) as well as M13. The encoding of bit value 1 for the
Rule 110 program contains an exposed (toehold) region; thus, to
enable ligation and sequencing, “seal” strands were added at the
completion of computation to fill in the gaps on the patterns of
the Top strands (Fig. 3A). We performed SIMD computation for
all 16 initial values taking the bits to the Left and Right of the four
register bits as 0 (the implementation of this boundary condition
is explained in SI Appendix, section S10). The sequencing
readout shows that the correct values are the dominant output:
Fig. 3B shows the data for registers composed of artificially
designed sequences (the control without computation is shown
in SI Appendix, Fig. S8A). We achieved similar results using the
M13 sequence as seen in SI Appendix, Fig. S8B.

Random Access (Selective Retrieval and Selective Erasure).
Random access is the selective reading, modification, or erasure
of data within a database and importantly allows access to a subset
of information without expending resources (such as NGS) to
read the entire repository each time. Other DNA storage schemes
typically use PCR to selectively amplify data (4, 5) or selectively
pull out information by tuning the binding affinity between
sequences (11, 36). However, designing sequences or multiplexed
orthogonal PCR probes with high specificity can be challenging.
In contrast, strand displacement achieves specificity through
kinetically and energetically favorable reactions that displace a
preexisting strand (37).

To accommodate random access in SIMD||DNA, regis-
ters holding different data are prepared with specific barcode
sequences that can serve as a point of access. After computation
on all registers together, query strands complementary to the

PNAS 2023 Vol. 120 No. 37 e2217330120 https://doi.org/10.1073/pnas.2217330120 5 of 10

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y

U
N

IV
ER

SI
TY

 O
F

TE
X

A
S

A
T

A
U

ST
IN

 o
n

O
ct

ob
er

 2
0,

 2
02

4
fr

om
 IP

 a
dd

re
ss

 1
28

.6
2.

14
7.

16
2.

https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials

A

B

Fig. 4. NGS results for random access: Series of selective retrieval operations following Rule 110 computation and selective erasure after the binary counting
computation. (A) Registers with initial value 0011 were accessed first (Left), 1001 second (Middle), and all remaining values last (Right) by adding the query
strands corresponding to their barcodes. The query strand concentration was lower than the estimated register concentration; thus, displacement achieved
partial extraction of registers. Registers reacted with instruction strands at 25 °C. (B) The remaining registers after selective erasure are plotted. The query
strand concentration was higher than the estimated register concentration; thus, displacement achieved full erasure of registers. The green bars indicate the
fraction of the readout registers with the corresponding barcode. Registers reacted with Instruction 1 strands at 40 °C and all other instruction strands at 25 °C.
For both (A) and (B), the registers were composed of chemically synthesized DNA.

barcode sequences can be added to elute registers with the
matching barcodes (Fig. 3A). Thus, specific registers can be
accessed separately for readout from the register mix.

We experimentally demonstrated SIMD computation com-
bined with random access for both the Rule 110 and the binary
counting programs (Fig. 4). To test random access, we assigned
registers barcodes corresponding to their initial inputs. After Rule
110 computation on a mix of registers with all 16 inputs, we
added a query strand with the barcode corresponding to input
0011 and processed the displaced registers (ligation, PCR ampli-
fication, sequencing). Next, we queried the remaining registers
with the barcode corresponding to initial value 1001 in the same
way. Finally, the remaining registers were queried with all 16
different barcodes. The sequencing results confirmed that, for the
first and second queries, the desired registers accounted for 90%
and 67% of the registers displaced from the mix (SI Appendix,
Fig. S9). In random access combined with the binary counting
computation (Fig. 4B), all queries showed high specificity for the
chosen barcode (at least 77%, SI Appendix, Fig. S10).

Another feature of our random access scheme is the targeted
deletion of selected data, which may be crucial for the secure

management of sensitive information. In our running example
of medical records, with the patients’ ID encoded in the
barcodes, the information about a particular set of patients can
be specifically removed. This contrasts with prior methods of
erasure in which the erased information remains intact but is
marked as erased (e.g., ref. 6). We demonstrate selective erasure
by adding excess query strands and reading out the values from
the remaining mix. We observed that reads corresponding to the
displaced registers were almost completely removed (Fig. 4B and
also SI Appendix, Fig. S11).

Multiple Rounds of Computation. The promise of dynamic
DNA storage in removing slow and expensive read-write cycles
requires that the computation cycle can be applied multiple
times. Toward this goal, we performed three rounds of Rule 110
computation on an input mix containing 5 initial values (Fig. 5A).
In the first round of computation, for all inputs, at least 83% of
the readout registers updated correctly. In the second and third
rounds of computation, the correct percent decreased more for
some register values (e.g., second column) than others. For the
binary counting program, we took the input mix that underwent

6 of 10 https://doi.org/10.1073/pnas.2217330120 pnas.org

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y

U
N

IV
ER

SI
TY

 O
F

TE
X

A
S

A
T

A
U

ST
IN

 o
n

O
ct

ob
er

 2
0,

 2
02

4
fr

om
 IP

 a
dd

re
ss

 1
28

.6
2.

14
7.

16
2.

https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials

A

B

Input
Round 1

Round 2

Round 3

Rule 110 program

computation
Round 2

After Round 2

Binary counting program

barcode
displacement

barcode 0000
barcode 0001

barcode 1101

from
Figure 4

Fig. 5. Multiple rounds of SIMD computation. (A) Three rounds of Rule 110 computation were performed on an input mix with 5 distinct initial values (columns).
Lower panels show the distribution of output values for initial values 0001 and 1101. Registers reacted with instruction strands at 25 °C. The reaction time
for every instruction was 2 min except for Instruction 2, which was 10 min. (B) The mix of inputs that underwent selective erasure from Fig. 4B went through
another round of binary counting computation. Registers reacted with Instruction 1 strands at 40 °C, and all other instruction strands at 25 °C. For (A) and (B),
the registers were composed of chemically synthesized DNA.

one round of computation and selective erasure (from Fig. 4B)
and performed another round of computation (Fig. 5B). The
correct value was present in at least 17% of all readout registers.
Similar results were achieved for a register mix where a different
barcode was erased (SI Appendix, Fig. S12). These experiments
demonstrate the feasibility of not only multiple computational
rounds but the compatibility of selective retrieval, erasure, and
computation in the same register pool.

Discussion

SIMD||DNA bridges the fields of DNA computing and DNA
storage by allowing computation directly on the storage medium,
potentially allowing massively parallel processing on large-scale
databases. Since the first experiment using DNA to solve
instances of NP-complete problems (38) in the 1990s, there
have been more than 20 y of study of parallel DNA computing
machines. Many models rely on enzymes to introduce covalent
modification on DNA (39–42), and they are incompatible with
current DNA storage paradigms. Other enzyme-free models
that are compatible with information storage have limits and
implementation challenges. For example, the sticker model (43)
encodes information in the pattern of exposed domains (similar
to SIMD||DNA). However, these domains require well-tuned
binding affinities to allow a melting procedure which selectively

dissociates some strands but not others—which could account
for the lack of experimental implementation. In contrast, instead
of computation through controlled hybridization and melting,
strand displacement is one of the most versatile mechanisms to
modify chemically encoded information (16–23). In a sense, we
realize an extension of the sticker model envisioned 20 y ago (44):
“Recent research suggests that DNA ‘strand invasion’ might
provide a means for the specific removal of stickers from library
strands. This could give rise to library strands that act as very
powerful read-write memories.” Other theoretical work showed
that strand displacement can, in principle, perform Turing
universal computation on information-storing polymers (45).
However, this method cannot be parallelized and assumes that
there is exactly one copy of certain species requiring a single-
molecule implementation.

While the SIMD||DNA architecture was inspired by elements
of the above theoretical proposals, it achieves experimental
feasibility. We implemented two algorithms (binary counting and
Rule 110) and demonstrated random access, erasure, and mul-
tiple rounds of computation. Binary counting is a fundamental
function in computer programming; in our running example of
medical records storing patient characteristics, disease history,
and treatment plans, this operation could be used to track events.
Rule 110 demonstrates that, in principle, our paradigm is capable
of executing arbitrary algorithms since any algorithm can be

PNAS 2023 Vol. 120 No. 37 e2217330120 https://doi.org/10.1073/pnas.2217330120 7 of 10

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y

U
N

IV
ER

SI
TY

 O
F

TE
X

A
S

A
T

A
U

ST
IN

 o
n

O
ct

ob
er

 2
0,

 2
02

4
fr

om
 IP

 a
dd

re
ss

 1
28

.6
2.

14
7.

16
2.

https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials

“compiled” to Rule 110 (34). Although arbitrary algorithms
could be executed via Rule 110, the simulation is indirect
and memory inefficient (SI Appendix, section S2.7), justifying
the development of algorithms specifically for our architecture.
After the binary counting and Rule 110 programs shown in
the conference version of this work (25), additional algorithms
were developed for bit shifting and parallel bubble sorting (46)
(fundamental algorithms in computer science). Avenues other
than Rule 110 for executing arbitrary algorithms were also
explored (47).

Algorithms can be recast to SIMD||DNA in many distinct
ways; this diversity motivates the investigation of input encoding,
running time, space usage, parallelism, and randomization
(SI Appendix, section S2). All SIMD||DNA programs work in
parallel over different registers, and some have an additional
level of parallelism. For example, in our Rule 110 program,
every cell within a register updates concurrently. This contrasts
with binary counting where Instruction 1 requires a cascade of
strand displacement reactions across multiple cells. Parallelism
across registers may lead to improved scalability of SIMD||DNA
programs by decreasing the duration of instruction steps as
well as the overall number of instructions. Note that our two
programs have different data encodings (differing nick patterns
encoding 0 and 1). Encodings that are compatible across multiple
programs or programs for translating between encodings would
enable applications that require composing different programs
(SI Appendix, section S2.8).

Crucially for scalability, SIMD||DNA “software” can be run
on different underlying ‘hardware’ choices. We constructed
registers and achieved strand displacement computation for both
SIMD||DNA programs using either chemically synthesized or
naturally occurring M13 DNA. Indeed, we show that large
strand displacement systems—244 distinct displacement steps
(SI Appendix, Table S3)—can operate on naturally occurring
sequences without much sequence optimization—comparable to
the most complex strand displacement systems using rationally
designed sequences (20). Due to the key role that the M13
plasmid plays in structural DNA nanotechnology (30, 33), recent
work has developed low-cost biological production of short
single-stranded DNA with M13 subsequences (48). Thus, it
may now be possible to biologically produce both registers and
instruction strands at scale, something that would finally allow
dynamic information storage with low cost.

Importantly, we demonstrated high-throughput readout of the
dynamically manipulated information through NGS sequencing.
In almost all cases, the correct outputs had the highest fraction
of all sequencing reads. In those few instances where there was
only a substantial, but not majority, count for the right answer,
it is likely that further refinement will yield higher accuracy. The
current design is not robust to undesired displacement reactions
that initiate from fraying at nicks (leak), which may account for
some of the errors. Reducing the duration of undesired reactions
such as limiting concentrations and time may result in lower
completion levels (as observed in SI Appendix, section S16).
The recently published design principles for leak reduction
(49, 50) or “software level” error correction codes/schemes may
be incorporated to address the problem of error. Note that
sequence-dependent correlation of errors hampers simple error
correction codes that rely on error independence; the correlation
could potentially be reduced by an additional level of redundancy
offered by two or more register sequences. More hypotheses about
attendant errors and potential for improvement are discussed
in SI Appendix, section S17. (See SI Appendix, section S15 for

additional forms of product loss not captured by read counts,
including loss of registers due to washing and incomplete ligation.
We believe that NGS substitution errors did not substantially
contribute to overall error, as confirmed by the readout of registers
without computation, ≈ 99%, SI Appendix, Fig. S4.)

Data storage in the nicking patterns does trade data density
and stability for computability. Our current encodings in
SIMD||DNA store data at a density of approximately 0.03
bit per nucleotide and 18 Pbytes per gram of DNA assuming
100 duplicate copies of each distinct register value (1) (SI
Appendix, section S20), a decrease from traditional storage
schemes that encode information in the DNA sequence itself
(theoretical maximum data density of 2 bits per nucleotide).
In principle, data density can be increased by using different
encoding schemes, such as allowing overhangs on the Top strands
to encode information. Additionally, compared to information
stored in the DNA sequence, which could be stable for
thousands of years (1), information stored in the pattern of
nicks may be more prone to change since the patterns of nicks
are more readily disrupted (e.g., via undesired 4-way branch
migration between different registers, or due to high temper-
ature). Indeed, the temperature instability of nicked strands
could enable easy and complete erasure of information through
heating (51). For applications requiring longevity, however, in
addition to using specialized materials for the protection of
DNA (52, 53), it is possible to covalently link the strands in
a register with a highly efficient reversible photo-cross-linking
reaction (54).

Several follow-up approaches could be used to further scale
up SIMD||DNA. Recently developed Nanopore sequencing
methods could potentially read information encoded in nicks
and single-stranded gaps in double-stranded DNA directly in
a high-throughput manner without PCR amplification (55).
To increase both the yield and scale of computation, registers
can be affixed to the surface of a microfluidic chip to achieve
autonomous control of instruction strand addition and elution.
Further, as discussed in SI Appendix, section S2.1, our programs
in principle only require a small set of orthogonal domains
(7 for Rule 110 and 8 for binary counting) independent of
the length of the register. Reusing domains in this manner
would also allow each instruction to be implemented with up to
two distinct strands, potentially reducing chemical synthesis cost
significantly.

SIMD||DNA ultimately adds a “wet” CPU to the opportuni-
ties inherent in DNA encoding for “cold” data storage. Such
dynamic DNA storage could revolutionize the DNA storage
architecture for applications that involve multiple computation
cycles and parallel computation, especially since SIMD||DNA
circumvents repeated sequencing and synthesis of oligonu-
cleotides. The demonstrations that distinct strand displacement
cascades can be read out in parallel, that long strand displacement
cascades may not require extensive sequence design and can
operate with naturally occurring sequences, and that barcoded
registers can be separately processed is important when we begin
to consider DNA data storage beyond purely archival purposes—
for example, for the storage and updating of medical records for
specific patients. In particular, more advanced querying could be
used to select a population of patients satisfying certain criteria
(such as receiving a combination of diagnostics or treatment
plans), and such algorithmic queries could be practically realized
via SIMD||DNA programs that control the accessibility of the
toehold for the query strand as the output of the computation
(SI Appendix, Fig. S17).

8 of 10 https://doi.org/10.1073/pnas.2217330120 pnas.org

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y

U
N

IV
ER

SI
TY

 O
F

TE
X

A
S

A
T

A
U

ST
IN

 o
n

O
ct

ob
er

 2
0,

 2
02

4
fr

om
 IP

 a
dd

re
ss

 1
28

.6
2.

14
7.

16
2.

https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials

Materials and Methods

The theoretical proofs and open questions for the SIMD||DNA model are in SI
Appendix. All DNA sequences are listed in SI Appendix. DNA oligonucleotides
were purchased from Integrated DNA Technologies. The registers were annealed
separately and then attached to magnetic beads. Computation was performed by
adding instruction strands to a test tube containing registers with different initial
values. After computation, the Top strands in each register were ligated, PCR
amplified, and then sequenced. Detailed experimental Materials and Methods
and SI Appendix, Figs. S1–S17 and SI Appendix, Tables S1–S3 are included in
SI Appendix.

Data, Materials, and Software Availability. Raw sequencing data from
Illumina analysis of computation products are available on NCBI SRA under
SRP455481 (56) and SRP455485 (57). All study data are included in the article
and/or SI Appendix. Sequence design code and NGS analysis code are available
on GitHub (sequence design, https://github.com/boyawang-github/SIMDDNA
(58); NGS data analysis, https://github.com/SiyuanSWang/simddna) (59).

ACKNOWLEDGMENTS. We thank Marc Riedel, Olgica Milenkovic, and
Tonglin Chen for invaluable discussions on the theoretical model. We
also thank Marc Riedel for suggesting the analogy to Single-Instruction,

Multiple-Data Computers. We thank the Genomic Sequencing and Analysis
Facility at UT-Austin for providing sequencing services. We thank Cheulhee Jung
and Bingling Li for sharing experience of working with magnetic beads, and
David Doty for discussion and suggestion of using ViennaRNA. B.W., C.C., and
D.S. were supported by NSF grants CCF-1652824, CCF-2200290, DARPA grant
W911NF-18-2-0032, and the Alfred P. Sloan Foundation. A.D.E. and S.S.W.
were supported by the Welch Foundation grant F-1654, and S.S.W. received
additional support from NSF grant DGE-1610403.

Author affiliations: aElectrical and Computer Engineering, University of Texas at
Austin, Austin, TX 78712; bDepartment of Molecular Biosciences, University of Texas at
Austin, Austin, TX 78712; and cDepartment of Chemistry and Biochemistry, University of
Texas at Austin, Austin, TX 78712

Author contributions: B.W., C.C., and D.S. devised the project; B.W. and C.C. designed
the programs and proved their correctness; B.W. performed initial fluorescence exper-
iments, experiments for register preparation, computation, post-computation ligation
and displacement; S.S.W. performed qPCR assays, post-computational sequencing library
preparation, NGS and Sanger analysis; B.W. and S.S.W. prepared the figures; and D.S. and
A.D.E. provided guidance throughout the project.

The authors declare no competing interest.

This article is a PNAS Direct Submission. D.S. is a guest editor invited by the Editorial
Board.

Copyright © 2023 the Author(s). Published by PNAS. This open access article is distributed
under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).

1. G. M. Church, Y. Gao, S. Kosuri, Next-generation digital information storage in DNA. Science 337,
1628 (2012).

2. L. Ceze, J. Nivala, K. Strauss, Molecular digital data storage using DNA. Nat. Rev. Genet. 20,
456–466 (2019).

3. L. C. Meiser et al., Synthetic DNA applications in information technology. Nat. Commun. 13, 1–13
(2022).

4. L. Organick et al., Random access in large-scale DNA data storage. Nat. Biotechnol. 36, 242–248
(2018).

5. S. M. H. T. Yazdi et al., Random-access DNA-based storage system. Sci. Rep. 5, 14138 (2015).
6. K. N. Lin, K. Volkel, J. M. Tuck, A. J. Keung, Dynamic and scalable DNA-based information storage.

Nat. Commun. 11, 1–12 (2020).
7. K. Chen, J. Zhu, F. Bošković, U. F. Keyser, Nanopore-based DNA hard drives for rewritable and

secure data storage. Nano Lett. 20, 3754–3760 (2020).
8. A. R. Chandrasekaran, O. Levchenko, D. S. Patel, M. MacIsaac, K. Halvorsen, Addressable

configurations of DNA nanostructures for rewritable memory. Nucleic Acids Res. 45, 11459–11465
(2017).

9. S. K. Tabatabaei et al., DNA punch cards for storing data on native DNA sequences via enzymatic
nicking. Nat. Commun. 11 (2020).

10. C. Pan et al., Rewritable two-dimensional DNA-based data storage with machine learning
reconstruction. Nat. Commun. 13, 1–12 (2022).

11. C. Bee et al., Molecular-level similarity search brings computing to DNA data storage. Nat.
Commun. 12, 4764 (2021).

12. K. J. Tomek, K. Volkel, E. W. Indermaur, J. M. Tuck, A. J. Keung, Promiscuous molecules for smarter
file operations in DNA-based data storage. Nat. Commun. 12, 3518 (2021).

13. D. Y. Zhang, E. Winfree, Control of DNA strand displacement kinetics using toehold exchange.
J. Am. Chem. Soc. 131, 17303–17314 (2009).

14. J. SantaLucia, D. Hicks, The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol.
Struct. 33, 415–440 (2004).

15. R. M. Dirks, J. S. Bois, J. M. Schaeffer, E. Winfree, N. A. Pierce, Thermodynamic analysis of
interacting nucleic acid strands. SIAM Rev. 49, 65–88 (2007).

16. G. Seelig, D. Soloveichik, D. Y. Zhang, E. Winfree, Enzyme-free nucleic acid logic circuits. Science
314, 1585–1588 (2006).

17. L. Qian, E. Winfree, Scaling up digital circuit computation with DNA strand displacement cascades.
Science 332, 1196–1201 (2011).

18. G. Chatterjee, N. Dalchau, R. A. Muscat, A. Phillips, G. Seelig, A spatially localized architecture for
fast and modular DNA computing. Nat. Nanotechnol. 12, 920–927 (2017).

19. L. Qian, E. Winfree, J. Bruck, Neural network computation with DNA strand displacement cascades.
Nature 475, 368–372 (2011).

20. K. M. Cherry, L. Qian, Scaling up molecular pattern recognition with DNA-based winner-take-all
neural networks. Nature 559, 370–376 (2018).

21. Y. J. Chen et al., Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8,
755–762 (2013).

22. N. Srinivas, J. Parkin, G. Seelig, E. Winfree, D. Soloveichik, Enzyme-free nucleic acid dynamical
systems. Science 358 (2017).

23. A. J. Thubagere et al., A cargo-sorting DNA robot. Science 357, eaan6558 (2017).
24. M. J. Flynn, Some computer organizations and their effectiveness. IEEE Trans. Comput. C–21,

948–960 (1972).
25. B. Wang, C. Chalk, D. Soloveichik, “SIMD||DNA: Single instruction, multiple data computation

with DNA strand displacement cascades” in Lecture Notes in Computer Science (Including
Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), (LNCS, 2019),
vol. 11648, pp. 219–235.

26. P. Craw, W. Balachandran, Isothermal nucleic acid amplification technologies for point-of-care
diagnostics: A critical review. Lab Chip 12, 2469–2486 (2012).

27. D. Y. Zhang, “Towards domain-based sequence design for DNA strand displacement reactions in
DNA computing and molecular programming” in DNA Computing and Molecular Programming,
Y. Sakakibara, Y. Mi, Eds. (Springer, Heidelberg, 2011), vol. 6518, pp. 162–175.

28. B. R. Wolfe, N. J. Porubsky, J. N. Zadeh, R. M. Dirks, N. A. Pierce, Constrained multistate sequence
design for nucleic acid reaction pathway engineering. J. Am. Chem. Soc. 139, 3134–3144
(2017).

29. C. G. Evans, E. Winfree, D. N. A. Sticky, “DNA sticky end design and assignment for robust
algorithmic selfassembly” in End Design and Assignment for Robust Algorithmic Self-assembly in
DNA Computing and Molecular Programming, D. Soloveichik, B. Yurke, Eds. (Springer International
Publishing, Cham, 2013), vol. 8141, pp. 61–75.

30. S. Dey et al., DNA origami. Nat. Rev. Methods Primers 1, 13 (2021).
31. D. Y. Zhang, Cooperative hybridization of oligonucleotides. J. Am. Chem. Soc. 133, 1077–1086

(2011).
32. R. R. F. Machinek, T. E. Ouldridge, N. E. C. Haley, J. Bath, A. J. Turberfield, Programmable energy

landscapes for kinetic control of DNA strand displacement. Nat. Commun. 5, 5324 (2014).
33. P. W. Rothemund, Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302

(2006).
34. M. Cook, Universality in elementary cellular automata. Complex Syst. 15, 1–40 (2004).
35. S. Wolfram, Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, 601–644 (1983).
36. J. L. Banal et al., Random access DNA memory using Boolean search in an archival file storage

system. Nat. Mater. 20, 1272–1280 (2021).
37. D. Y. Zhang, S. X. Chen, P. Yin, Optimizing the specificity of nucleic acid hybridization. Nat. Chem.

4, 208–214 (2012).
38. L. M. Adleman, Molecular computation of solutions to combinatorial problems. Science 266,

1021–1024 (1994).
39. D. Beaver, “A universal molecular computer” in DNA Based Computers, Proceedings of a DIMACS

Workshop, Princeton, New Jersey, USA, April 4, 1995, DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, R. J. Lipton, E. B. Baum, Eds. (DIMACS/AMS, 1995), vol. 27,
pp. 29–36.

40. D. Boneh, C. Dunworth, R. J. Lipton, J. Sgall, On the computational power of DNA. Discrete Appl.
Math. 71, 79–94 (1996).

41. R. Freund, DNA computing based on splicing: The existence of universal computers. Theory
Comput. Syst. 32, 69–112 (1999).

42. P. W. K. Rothemund, “A DNA and restriction enzyme implementation of Turing Machines”
in DIMACS Series in Discrete Mathematics and Theoretical Computer Science (1995), vol. 27,
pp. 75–119.

43. S. Roweis et al., A sticker-based model for DNA computation. J. Comput. Biol. 5, 615–629
(1998).

44. R. S. Braich, N. Chelyapov, C. Johnson, P. W. K. Rothemund, L. Adleman, Solution of a 20-variable
3-SAT problem on a DNA computer. Science 296, 499–502 (2002).

45. L. Qian, D. Soloveichik, E. Winfree, “Efficient turing-universal computation with DNA polymers”
in Efficient Turing-Universal Computation with DNA Polymers in DNA Computing and Molecular
Programming, Y. Sakakibara, Y. Mi, Eds. (Springer, Heidelberg, 2011), vol. 6518, pp. 123–140.

46. T. Chen, A. Solanki, M. Riedel, “Parallel pairwise operations on data stored in DNA: Sorting,
shifting, and searching” in 27th International Conference on DNA Computing and Molecular
Programming (DNA 27), M. R. Lakin, P. Šulc, Eds. (Schloss Dagstuhl – Leibniz-Zentrum fur
Informatik, Dagstuhl, Germany, 2021), vol. 205, pp. 11:1–11:21.

47. D. Doty, A. Ong, “Simulating 3-symbol Turing machines with SIMD||DNA” in 1st Symposium on
Algorithmic Foundations of Dynamic Networks (SAND 2022), Leibniz International Proceedings in
Informatics (LIPIcs), J. Aspnes, O. Michail, Eds. (Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, 2022), vol. 221, pp. 14:1–14:15.

48. F. Praetorius et al., Biotechnological mass production of DNA origami. Nature 552, 84–87
(2017).

PNAS 2023 Vol. 120 No. 37 e2217330120 https://doi.org/10.1073/pnas.2217330120 9 of 10

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y

U
N

IV
ER

SI
TY

 O
F

TE
X

A
S

A
T

A
U

ST
IN

 o
n

O
ct

ob
er

 2
0,

 2
02

4
fr

om
 IP

 a
dd

re
ss

 1
28

.6
2.

14
7.

16
2.

https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://trace.ncbi.nlm.nih.gov/Traces/?view=study&acc=SRP455481
https://trace.ncbi.nlm.nih.gov/Traces/?view=study&acc=SRP455485
https://www.pnas.org/lookup/doi/10.1073/pnas.2217330120#supplementary-materials
https://github.com/boyawang-github/SIMDDNA
https://github.com/SiyuanSWang/simddna
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

49. B. Wang, C. Thachuk, D. Soloveichik, Speed and Correctness Guarantees for Programmable
Enthalpy-Neutral DNA Reactions. ACS Synth. Biol. 12, 993–1006 (2023).

50. B. Wang, C. Thachuk, A. D. Ellington, E. Winfree, D. Soloveichik, Effective design principles
for leakless strand displacement systems. Proc. Natl. Acad. Sci. U.S.A. 115, E12182–E12191
(2018).

51. J. Kim, J. H. Bae, M. Baym, D. Y. Zhang, Metastable hybridization-based DNA information storage
to allow rapid and permanent erasure. Nat. Commun. 11, 5008 (2020).

52. R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, W. J. Stark, Robust chemical preservation of digital
information on DNA in silica with error-correcting codes. Angew. Chem. Int. Ed. 54, 2552–2555
(2015).

53. N. V. Ivanova, M. L. Kuzmina, Protocols for dry DNA storage and shipment at room temperature.
Mol. Ecol. Res. 13, 890–898 (2013).

54. Y. Yoshimura, K. Fujimoto, Ultrafast reversible photo-cross-linking reaction: toward in situ DNA
manipulation. Org. Lett. 10, 3227–3230 (2008).

55. K. Liu et al., Detecting topological variations of DNA at single-molecule level. Nat. Commun. 10, 3
(2019).

56. B. Wang, S. S. Wang, C. Chalk, A. D. Ellington, D. Soloveichik, Parallel molecular computation on
digital data stored in DNA. NCBI Sequence Read Archive. https://trace.ncbi.nlm.nih.gov/Traces/
?view=study&acc=SRP455481. Deposited 17 August 2023.

57. B. Wang, S. S. Wang, C. Chalk, A. D. Ellington, D. Soloveichik, Parallel molecular computation on
digital data stored in DNA (synthetic sequences). NCBI Sequence Read Archive. https://trace.ncbi.
nlm.nih.gov/Traces/?view=study&acc=SRP455485. Deposited 17 August 2023.

58. B. Wang, S. S. Wang, C. Chalk, A. D. Ellington, D. Soloveichik, Parallel molecular computation on
digital data stored in DNA (Code for sequence design). https://github.com/boyawang-github/
SIMDDNA. Deposited 16 August 2023.

59. B. Wang, S. S. Wang, C. Chalk, A. D. Ellington, D. Soloveichik, Parallel molecular computation
on digital data stored in DNA (Code for NGS data analysis). https://github.com/SiyuanSWang/
simddna. Deposited 16 August 2023.

10 of 10 https://doi.org/10.1073/pnas.2217330120 pnas.org

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y

U
N

IV
ER

SI
TY

 O
F

TE
X

A
S

A
T

A
U

ST
IN

 o
n

O
ct

ob
er

 2
0,

 2
02

4
fr

om
 IP

 a
dd

re
ss

 1
28

.6
2.

14
7.

16
2.

https://trace.ncbi.nlm.nih.gov/Traces/?view=study&acc=SRP455481
https://trace.ncbi.nlm.nih.gov/Traces/?view=study&acc=SRP455481
https://trace.ncbi.nlm.nih.gov/Traces/?view=study&acc=SRP455485
https://trace.ncbi.nlm.nih.gov/Traces/?view=study&acc=SRP455485
https://github.com/boyawang-github/SIMDDNA
https://github.com/boyawang-github/SIMDDNA
https://github.com/SiyuanSWang/simddna
https://github.com/SiyuanSWang/simddna

