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ABSTRACT: Low-temperature plasma is an emerging approach
for the treatment of bacterial infections. Nonchemical treatments
such as cold plasma offer potential solutions to antibiotic resistance.
We investigated the use of laser-induced graphene as an
inexpensive, lightweight, and portable electrode for generating
cold plasma. At the same time, the mechanism or molecular
mediators of cold plasma-induced antibacterial activity remain
poorly understood. This study validates graphene as an efficient
structure for producing therapeutic cold plasma, and this study also
indicates that ozone is the primary mediator of antibacterial activity
in graphene-mediated cold plasmas for bacterial growth under the
conditions studied.
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B INTRODUCTION

Cold plasma (CP) technology is a promising alternative
antibacterial agent with the potential to overcome resistance
mechanisms that plague traditional antibiotic drugs."” This
technology utilizes plasma, a partially ionized gas composed of
electrons, ions, and reactive species, to eliminate micro-
organisms and inactivate viruses on surfaces, including wounds
and other porous materials.”~” One of the main advantages of
cold plasma for wound sanitization is its safety profile. Cold
plasma does not generate heat, and several studies® '’ indicate
that therapy is safe for mammalian tissue and indeed is
“without any known significant negative effects on healthy
tissues.”'' CP also does not leave toxic residue on the wound
surface,/ can prevent biofilm formation,'”> and promotes
wound healing by stimulating cell proliferation®" and collagen
synthesis." "> Atmospheric plasma has also been employed to
activate polymeric biomaterials for wound healing and
antimicrobial delivery.'®'”  Additionally, cold-atmospheric
plasma devices have been utilized for induction of immuno-
genic cell death of cancer cells in surgical cavities,"® blocking
cancer survival pathways,'” and treating a variety of cancer cell
lines.”"™**

These investigations have also led to inquiries into the
molecular mechanism of action of plasma therapeutics. Despite
a robust history of investigation, the mechanism and exact
nature of molecular mediators of cold plasma antibacterial
activity are not known and remain the subject of current
investigation." It may be that the short lifetime”> and complex
composition of plasma discharge contribute to the analytical
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challenges associated with determining the impact of individual
molecular species. A variety of reactive species have been
postulated as playing a key role in observed effects, including
peroxide, free radicals, and reactive nitrogen species.””” For
example, a recent report investigated hydrogen peroxide as one
potential active agent in plasma-based antibacterial therapy but
found that hydrogen peroxide was insufficient to account for
the observed results." Furthermore, cell death upon exposure
to ozone from plasma is a complex biochemical phenomenon
that has been extensively studied.”*™>°

CP for therapeutic applications has been generated in a
variety of ways, including plasma jets and needles"”" as well as
dielectric barrier discharge.“’32 Access to inexpensive, robust,
lightweight, and easily available components for plasma
generation could enable plasma therapy in remote areas, low-
resource settings, or as a compact portable treatment device. In
this study, we report the efficacy of a capacitively coupled laser-
induced graphene (LIG)-based plasma device for surface
sanitization. By analyzing the ozone produced by the plasma
discharge in a flow-through setup and comparing cell-killing
results to those of a traditional external ozone generator, we
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determined that the ozone produced within the plasma
discharge is sufficient to explain the observed cell killing.

B RESULTS

LIG is easily synthesized by laser irradiation of a wide variety
of common polymer films, such as polyimide (e.g.,, Kapton, see

Figure 1)**7*° on a wide range of substrates.’® The resulting
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Figure 1. (a) Schematic of LIG synthesis on a polyimide film surface
to form various patterns, including LIG deposits. (b—d) Petri dishes
are 100 mm in diameter.

LIG exhibits high electrical conductivity, good flexibility, and
low weight, making it an ideal material for use as an electrode
in the generation of plasma.”****” A flexible electrode material
could prove essential for localizing CP near real-world wounds
that have unpredictable shapes that do not conform to the flat
topologies of laboratory bacterial growth plates. Capacitively
coupling an LIG material with an externally received field
makes it possible to generate plasma cheaply and easily without
the need for electrical connections.

The LIG for this study is easily synthesized through laser
irradiation of a polyimide surface based on protocols
previously reported (Figure 1a).”* The ability to synthesize
and pattern LIG into any desired dimensional shape and layout
allows easy customization of the pattern to fit various
applications. This method afforded a variety of graphene
deposit rounded shapes to minimize arc discharge from
graphene-Kapton edges (Figure 1b—d). The resulting LIG-
layered materials exhibit good flexibility and low weight,
making them an ideal electrode for the generation of plasma.
We briefly examined a variety of LIG geometries (Figure 1b—
d) but saw similar plasma-derived antibacterial performance,
and all data reported here utilize the circular LIG pattern in
Figure 1b.

To generate plasma through capacitive coupling with LIG,
we make use of a commercially available high frequency, high
voltage, and hand-held Tesla coil (Electro-Technic Products,
Ltd.) that is capacitively coupled to an LIG material placed on
the inner aspect of the lid on a closed Petri dish (Figure 2a).
The LIG functions both as an electric field receiver and a
dielectric barrier discharge material that generates plasma
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Figure 2. (a) Schematic illustrations of the high frequency generator
applied to LIG in a bacterial culture. (b) E. coli and S. aureus % cell
death after 2 min plasma exposure. (c) E. coli cell cultures with 0 and
14 ppm plasma ozone exposure over S min.

inside the Petri dish without the need to make physical
electrode connections into the bacterial growth chamber.

The LIG affixed to the polyimide, upon which it was
prepared, was mounted to the inside of a Petri dish lid (Figure
2a) with tape. After closing the lid on a bacterial culture,
plasma antibacterial studies could then be conducted without
opening or disturbing the bacterial colonies. Turning on the
high frequency generator above the lid resulted in an
immediately observable corona discharge from the LIG within
the Petri dish (see Supporting Information).

We explored the antibacterial properties of this capacitively
coupled plasma system against 2 different bacteria: Escherichia
coli (Gram-negative) and Staphylococcus aureus (Gram-
positive). After 2 min of exposure, significant bacterial death
was observed, with >97% cell death observed for E. coli and
>90% cell death observed for S. aureus (Figure 2b,c).

Having established that capacitively coupled plasma could
induce bacterial cell death, we became interested in exploring
the molecular mechanism of action responsible for the
observed activity. Based on previous reports that ROS may
be significant contributors, we first examined the response of
an ROS indicator, Congo red, to plasma (Figure 3). Congo red
is an azo dye sensitive to oxidants,”® and bleaching has been
used as a method to quantify ROS species generally.”” When
exposing both E. coli and Congo red to plasma, there was a
positive correlation between the voltage input of the plasma
generator (Supporting Information) and both increased
bacterial killing and a change in absorbance of dye due to
oxidative bleaching by ROS (Figure 3b,c).

Our Congo red studies pointed to ROS species as a
significant mediator of cell death, and we hypothesized that
one ROS in particular, ozone, may play a role in the observed
antibacterial activity. We next sought to examine the
relationship between plasma, ozone, specifically, and bacterial
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Figure 3. (a) Ilustration and picture of the system for controlled
ozone bacterial exposure to LIG-generated CP. (b) Absorbance of
Congo red dye [100 mg/L, 100 uL, analytical standard Congo red
(>97.0%)] and E. coli % bacterial death as a function of ozone
concentration over 2 min exposure. (c) Congo red (1 g/L, 10 uL, dye
content > 35%) color change after 1.5 min exposure to ozone
generator. (d) Comparison of bacterial death and Congo red
absorbance change between air with and without LIG and nitrogen
gas systems for 2 min plasma exposure with air flowing at 35 psi.

cell death in a more quantitative way. In order to measure
ozone levels in situ during plasma treatment, we measured
ozone concentration by means of a flow-through design
(Figure 3a). Measuring in situ ozone levels during plasma
treatment allowed us to discover a positive correlation also
exists between ozone levels and Congo red oxidative bleaching
(Figure 3b, green data) and bacterial killing against two
different cell lines (red, blue data). In addition, control
experiments conducted under an inert atmosphere (N,) and
without LIG showed negligible bacterial cell killing (Figure
3d), lending further credence to the significant role of ozone in
plasma therapy.

To more directly and quantitatively assess the extent to
which ozone is responsible for the observed cell-killing
behavior, we used the same flow-through setup (Figure 3a)
to measure both the ozone concentration and cell killing
observed for (i) plasma-based therapy (Figure 4a,b, red data)
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Figure 4. Bacterial cell death curves from the controlled ozone
exposure system were generated with (a) BW25113 and (b)
BL21DES3 strains of E. coli after S min of exposure.

and (ii) ozone alone, produced by a commercially available
external ozone generator fed into the incoming air flow (blue
data). In both instances, the ozone concentration could be
conveniently controlled by regulating the air flow rate into the
system (Figure 3a). Bacterial cell death curves were developed
for two different strains of E. coli for plasma and ozone
generator exposure (Figure 4a,b). The extent of bacterial cell
death in plasma and external ozone generator experiments was
statistically indistinguishable for both the BW25113 and
BL21DE3 strains. The data suggest that ozone concentration
is necessary and sufficient to explain the cell killing observed
with the LIG-based capacitively coupled plasma generator.
This finding is surprising given the complexity and diversity of
reactive and/or high-energy species present in plasma, but may
reflect the short diffusional lifetime and thus quite limited
effect on cells of many such species in the plasma phase.

A novel system of CP therapy has been developed by using
LIG as a flexible and cost-effective electrode for generating CP
for surface or wound sanitization. The use of a polymer film for
capacitively coupled plasma generation provides opportunities
for using plasma easily and effectively in enclosed environ-
ments, in low-resource settings, and/or in situations demand-
ing flexibility/mobility. Our findings also emphasize the
significance of ozone as the primary reactive species
responsible for bacterial cell death and indicate that plasma
may be an effective approach for localized generation of ozone
for bactericidal purposes.
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