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Abstract—In the realm of flexible substrate technology, inkjet
printing has emerged as a highly sought-after method due to
its cost-effectiveness, scalability for mass production, simplicity,
and environmental sustainability. While recent advancements
have led to the development of fully printed artificial neurons,
realizing a fully printed Echo State Network (ESN) remains
elusive. This study introduces a novel approach involving the
fabrication of a low-cost, minimally processed, nonlinear com-
putation element entirely through inkjet printing. Positioned on
a polyethylene terephthalate film substrate, this element serves
as the activation function for an Echo State Network. The
conventional activation function within the ESN architecture is
supplanted by the electrical response curve of the inkjet-printed
neuron. This neuron is constructed using silver nanoparticle ink,
complemented by a layer of hexagonal boron nitrade. To assess
the activation performance for time series prediction within the
Echo State Network framework, the Mackey-Glass time series
data is employed as a benchmark. Comparative analysis is
conducted against established conventional activation functions,
utilizing test mean squared error as the performance metric. The
outcomes of this evaluation highlight the efficacy of the proposed
nonlinear computational element as an activation function within
the Echo State Network paradigm.

Index Terms—Activation function, Echo State Network, Inkjet-
printed circuit, Reservoir computing.

I. INTRODUCTION

Silicon-based technologies have been pivotal in the realm
of high-speed digital processing, laying the groundwork for
the evolution of electronics. Their contribution to the minia-
turization and enhancement of electronic devices has been
unparalleled, facilitating the creation of low-power sensing
and signal processing [1]–[8], wireless powering [9]–[11], and
high-performance computing systems [12], [13]. Yet, further
venture into minimizing transistor sizes, in accordance with
Moore’s Law, is confronted by substantial physical constraints
[14]. Innovative alternatives are being explored, including car-
bon nanotube-based electronics [15], memristor [16], quantum
dot [17] and other non-conventional methods [18]–[20], all
of which offer prospects that transcend the capabilities of
conventional silicon-based devices and hold the potential to
redefine our approach to computational processing power in
the forthcoming era.

However, these nascent technologies face their own set
of challenges, such as resource limitations, difficulties in
transitioning from lab to market, environmental concerns, and
cost constraints [21] [22]. Inkjet-printed electronics emerge as

a solution to these limitations, boasting attributes that make
them ideal for compact, energy-efficient, and cost-effective
non-linear circuits that facilitate alternative computational
processes [23]–[25]. Additionally, the versatility of inkjet
printing technology allows deposition of electronic materials
on a variety of substrates [26], including textiles and irreg-
ular surfaces. This low-cost and straightforward fabrication
technique enables rapid prototyping and design iteration—a
stark contrast to the lengthy fabrication cycles associated
with CMOS technologies. For the past two decades, inkjet-
printed circuits have played a crucial role in the develop-
ment of sensors [27]–[29], antennas [30]–[32], and reservoir
computing systems [33]. Inkjet-printed memristor created with
this method, are proving to be comparable in function to
their MOSFET counterparts fabricated with high-precision
laboratory equipment [34]. This technique can be adeptly
applied to construct physical neural networks by arranging
multiple units in configurations compatible with echo state
networks (ESN) [35], liquid state machines [36] other reservoir
computing systems [37]. Previously, inkjet-printed memristive
device is used to build a artificial neural neuron, which pro-
vides comparable result in ESN framework [38]. This inkjet-
printed memristive device exhibits behavior characterized by a
hyperbolic sine curve across a broad voltage spectrum, which
results in increased power consumption. There is potential for
research to minimize this voltage range, and this work aims
to address this gap.

This paper presents an innovative inkjet-printed non-linear
computation element with memristive response in a small
voltage range, for developing low-power computing systems.
Specifically, this study explores the utility of inkjet-printed
memristive response within the ESN paradigm to predict
benchmark Mackey-Glass time series signal. The structure
of the paper is organized as follows: an overview of inkjet-
printed technology, ESN architecture and activation function
are provided in Section II, III and IV respectively. Proposed
inkjet printed non-linear computation element is described in
section V and followed by a comprehensive presentation of
the electrical modeling in section VI. The design of ESN with
a nonlinear computation element as an activation function is
delineated in section VII and followed by the findings and
extensive analysis in section VIII. The paper concludes by
summarizing the study’s conclusions in Section IX.



II. INKJET-PRINTED TECHNOLOGY

In basic inkjet printing technology, there are primarily
two essential steps: (1) designing the pattern using a digital
editing tool and (2) printing the pattern onto a substrate
using a compatible printer. To enhance the quality of the
printing, additional fabrication steps such as substrate pre-
processing, plasma treatment, and curing are incorporated.
Depending on research requirements, novel materials like
silver nanoparticles, graphene, hexagonal boron nitride (hBN)
etc. are employed. Most inkjet printing systems utilize the
Dimatix Material Printer (DMP) for printing purposes.

III. ESN ARCHITECTURE

ESN, a type of reservoir computing, was introduced by
Jaeger [35]. ESNs consist of three layers: an input layer,
a reservoir, and an output layer, which is also referred to
as the readout layer. Data is fed into the ESN through the
input layer and transformed into a higher-dimensional space
within the reservoir. The weights and biases of the input layer
and reservoir are randomly assigned during the initial setup
and remain fixed during training, making these layers non-
trainable. The only trainable part of an ESN is the readout
layer, where weights and biases are adjusted using simple
learning algorithms like linear regression [39]. Fig. 1 illustrates
the basic structure of an ESN. The dynamic laws governing
the updates of the reservoir and output states are defined by
equation (1) and (2) respectively.

x(n+ 1) = f(Winu(n+ 1) +Wresx(n)) (1)

y(n+ 1) = Wox(n+ 1) (2)

where,
u(n) = Input state vector
x(n) = Reservoir state vector
y(n) = Output state vector
Win = Input weight matrix
Wres = Reservoir weight matrix
Wo = Output weight matrix
f(.) = Non-linear activation function

Fig. 1. Generic architecture of an ESN.

To ensure the echo state property in a reservoir’s weight
matrix, it is essential to scale the matrix by its spectral
radius, denoted as λmax. Typically, the reservoir is sparsely
connected, with about 90-95% of the elements in the reservoir
weight matrix being zero. The popularity of ESN is increasing
due to their straightforward computational requirements and
reduced processing time, making them well-suited for hard-
ware implementations.

IV. ACTIVATION FUNCTION

Neural networks consist of units called artificial neurons,
which non-linearly transform their inputs using mathematical
functions known as activation or squashing functions. A single
neuron alone cannot linearly separate input data; a network
of neurons is required for effective data separation. Most
commonly used activation functions include sigmoid, hyper-
bolic tangent (tanh), rectified linear unit (ReLU), and leaky
ReLU, as shown in Fig. 2. Beyond these, there are additional
variations of these functions.

The ReLU function provides the input values in outputs
directly for positive input values; otherwise, it outputs zero.
On the other hand, leaky ReLU, a variant of ReLU, allows a
small, non-zero, output with smaller slope for negative inputs.
The sigmoid function maps any input to a range between 0
and 1, while tanh provides output values between -1 and 1. A
limitation of the standard tanh and sigmoid functions is their
gradual transition from high to low values, which can obscure
minor dynamic changes in input. Other variations, like the
hyperbolic sine function, exhibit similar nonlinearities. The
nonlinearity of the tanh function is somewhat analogous to the
behavior of inkjet-printed computing systems, which exhibit
a steeper slope and two pinch points in transitions. These aid
in the detection of small dynamic changes in inputs, making
them suitable for modeling inkjet-printed computing systems
and for use in computer-based experimental setups.

Fig. 2. Characteristics of most commonly used activation functions including
hyperbolic tangent, sigmoid, ReLU, and Leaky ReLU.



Fig. 3. Inkjet printed fabrication process of the nonlinear element is shown in the flowchart. Along with the flowchart, images of nonlinear elements in
different steps are shown along with all relevant dimensions.

V. PROPOSED INKJET-PRINTED NON-LINEAR
COMPUTATION ELEMENT

This study introduces a non-linear computing component
created using inkjet printing technology. The component was
initially designed using a graphic editing software and then
transferred onto a 135 µm thick PET film using a drop-
on-demand piezoelectric inkjet printer, which utilizes silver
nanoparticle ink. The silver nanoparticle ink utilized in this
study serves as a conductor for non-linear computing element
and is formulated in a noncombustible, eco-friendly aqueous
solution. It is non-toxic to humans and does not require sin-
tering during the fabrication process. The nanoparticles have
an approximate diameter of 20 nm, and the ink’s viscosity is
suitable for printing through inkjet printer nozzles. Following
the printing process, the component underwent a curing phase
on a hotplate for a specified duration.

Subsequently, a layer of hBN which works as dielectric
was applied at the component’s junction and then subjected
to further curing with a hot air gun. The deposition of
hBN was meticulously carried out using a precision pipette,
although some variability in the thickness and uniformity of
the deposited layers was noted, which is likely a consequence
of manual handling. This material is used for insulating
substrate which is essential for subsequent steps. The final step
involved making a precise cut at the junction of the element.
A significant challenge in the curing step of inkjet printing
technology is the coffee-ring effect, which leads to the natural
accumulation of high-concentration nanoparticles at the edges
of the dried ink. This effect compromises nanoparticle uni-
formity, affecting the reliability and repeatability of samples.
This issue is resolved by etching a well into the hBN across
the gap. The flowchart in Fig. 3 illustrates the sequence of

steps in the inkjet printing process and includes images of the
component at various stages of fabrication process.

At the center of the non-linear element, there are 13
square blocks, each with 1.5 mm sides, arranged alongside
8 triangular blocks of the same length along two sides. The
dimensions and shapes of these square blocks can be modified.
All these shapes are evenly spaced, maintaining a 0.2 mm
gap between them, a dimension influenced by the printer’s
resolution limit due to the sputtering effect in printing. From
the central part of the non-linear element, eight connectors
extend outward, each utilizing a square block that measures 5
mm in length to facilitate these connections. Fig. 3 details the
specific dimensions of the non-linear computational element.

VI. ELECTRICAL DESIGN OF NON-LINEAR
COMPUTATIONAL ELEMENT

I-V characteristics of the non-linear computational element
were assessed using a Keithley 2604B Dual Channel Source
Measure Unit. The unit conducted a voltage sweep from -5
volts to +5 volts and returned to -5 volts, a cycle which was
repeated twice to confirm the stability of the current and to
check for hysteresis effects. The resulting I-V curve for the
inkjet-printed non-linear computational element is depicted in
Fig. 4. This curve clearly demonstrates that within a narrow
voltage range of [-1,1]V, the element undergoes a current
transition within the range of [-0.8,0.8] nA. The reverse path of
the hysteresis loop resembles the hyperbolic tangent function
and features two pinch-off points during the transition. Current
research indicates that the nonlinearity of the I-V profile is
caused by hopping conduction in the silver nanoparticle ink,
leading to its potential application in analog neural networks
as mentioned in the literature [40].



Fig. 4. I-V characteristics of the non-linear computational element. Voltage
sweep of two cycles ensure the hysteresis properties of the element.

The observed backward I-V curve of the element could
potentially serve as an activation function for neural networks,
offering an alternative to the widely used hyperbolic tangent
function. The unique pinch-off characteristics observed during
the transition could yield enhanced sensitivity in that region.
Fig. 5 presents the I-V characteristics of the non-linear element
alongside the optimally fitted curve for the proposed custom
activation function. To fit the custom activation function to
the I-V characteristics of the non-linear element, mathematical
tanh function is modified with some additional constant values
to control the slope and position of the tanh function. Along
with this, pinch off of the I-V curve is replicated in the custom
activation function with Gaussian function, where position and
spread of the pinch off is controlled by the mean and variance
of the Gaussian function. Moreover, height of the pinch of is
replicated by adding a factor in the Gaussian function. Custom
activation function is defined by (3).

f(x) = t(x)× g1(x)× g2(x) (3)

Where, t(x) is the modified tanh function, g1(x) and g2(x)
are the gaussian functions to replicate pinch off in activation
function.

t(x) = a tanh (bx) + dx2 + c (4)

g1(x) =
h1

σ1

√
2π

e−(x−µ1)
2/2σ2

1 (5)

g2(x) =
h2

σ2

√
2π

e−(x−µ2)
2/2σ2

2 (6)

Here, constant a, b, c, d controls the position and slope of
tanh function. µ1, µ2 mean of both gaussian functions control
the position of pinch off, whereas, σ1, σ2 variance of gaussian

Fig. 5. I-V characteristics of the non-linear computation element and best-
fitted activation function for ESN.

function controls the width of pinch off and h1, h2 controls
their height.

VII. ESN WITH THE PROPOSED NON-LINEAR ELEMENT AS
ACTIVATION FUNCTION

This section describes the substitution of the conventional
tanh activation function with the proposed I-V curve, im-
plemented as a custom activation function within an ESN.
The ESN was set up using the PyRCN library [41]. To
assess the effectiveness of this custom activation function,
we utilized the Mackey-Glass time series dataset [42] for
predictive modeling. Initially, the baseline parameters for the
ESN were established. This was followed by integrating the
proposed custom activation function. Prior to its application,
the I-V characteristic curve was normalized to serve as an
activation function.

Hyperparameter optimization is a critical procedure aimed
at enhancing a model’s performance by identifying the most
effective combination of hyperparameters for a particular
dataset. Common strategies for hyperparameter optimization
include methods like random search and grid search. The
selection of the optimization method is influenced by various
factors, including the model’s complexity, the breadth of
the hyperparameter space, and the computational resources
at hand. The overarching aim is to pinpoint an optimal set
of hyperparameters efficiently, thereby refining the model’s
efficacy for the task. The model begins with predetermined
parameters, including the size of the hidden layer, the initial
activation, bias scaling, and the learning rate. Subsequently, a
methodical search is carried out in three step of model training
to optimize input scaling, spectral radius, leakage rate, and
bias scaling. In the initial step, the input scaling and spectral
radius are explored within the ranges of 0.1 to 5 and 0 to
1.5, respectively. Subsequently, a grid search is conducted in
the second step to determine the optimal hyperparameter for
leakage, examining values from 0 to 1. In the third and final



step, the bias scaling parameter is investigated across a range
from 0 to 1.5. The concluding hyperparameters of the ESN,
determined through this sequential search, are summarized in
Table I.

TABLE I
BEST ESTIMATED ESN HYPERPARAMETERS

Hyperparameter Value Hyperparameter Value
Bias Scaling 1.5 Input Scaling 2
Bias Shift 0 Input Shift 0
Hidden layer size 100 Sparsity 0.1
Spectral Radius 0.6 Leakage 0.5
Learning Rate 1e-5 Bidirectional False

VIII. RESULT ANALYSIS AND DISCUSSION

Input Mackey-Glass time series signal used to in ESN model
with custom activation function. ESN model is trained with
990 time frames and tested with 90 time frames. Each time
frame consists of 10 values and in return model predicts the
next value of Mackey-Glass time series signal. Predicted time
series signal along with the test signal is showed in Fig.
6. The effectiveness of the non-linear activation function is
evident from the outcomes presented in the ESN analysis, as
delineated in Table II. The effectiveness of our proposed non-
linear computation element was assessed using two different
performance metrics: the R2 score and mean squared error.
Additionally, its performance was compared with three con-
ventional activation functions: tanh, ReLU, and leaky ReLU.
R2 score or coefficient of determination, serves as a statistical
measure that reflects the model’s ability to predict unseen
signal, with an optimal value of 1. In contrast, mean squared
error measures the discrepancy between predicted signal and
actual signal, providing a detailed evaluation of an estimator’s
accuracy, where the optimal value is 0. According to the
results presented in the table, although ReLU and leaky ReLU
both perform commendably in predicting the Mackey-Glass
time series, our proposed function demonstrates a performance
comparable to that of the tanh activation function.

This parity underscores the potential of the non-linear
element to serve as a viable alternative in neural network
applications. Previously, an inkjet printing process was used
to implement the hyperbolic sine activation function, which is
relatively uncommon, as noted in [38]. However, our inkjet-
printed non-linear computation element emulates the more
commonly used activation function tanh. Despite experienc-
ing two sharp transitions, this element still functions nearly
identical to the traditional tanh activation function.

TABLE II
PERFORMANCE METRIC COMPARISON OF THE ESN WITH DIFFERENT

ACTIVATION FUNCTIONS

Activation function R2 Score Mean Squared Error
ReLU 0.993 1.4× 10−3

Leaky ReLU 0.995 1.02× 10−3

tanh 0.989 2.52× 10−3

Proposed Function 0.986 3.2× 10−3

Fig. 6. Test and predicted Mackey-Glass time series signal for ESN network
with custom activation function.

IX. CONCLUSION

This study introduces a novel nonlinear computational el-
ement with memristive response in a lower voltage range,
created through inkjet printing on a PET film using silver
nanoparticle ink. The process is further enhanced by depositing
hBN and making precise cuts in the hBN layer to boost the
conductivity of the silver nanoparticles. This method produces
a nonlinear I-V characteristic curve, making the element
suitable as a custom activation function for neural networks.
The practicality of using this element as an activation function
was tested in an ESN tasked with predicting the benchmark
Mackey-Glass time series. The ESN’s hyperparameters were
optimized through sequential search, with the inkjet-printed
nonlinear element serving as the reservoir activation function.
The outcomes were compared against traditional activation
functions. This research demonstrates that an ESN equipped
with an inkjet-printed nonlinear activation element can per-
form comparably to conventional activation functions while
offering benefits futuristic hardware implementation of neural
network in terms of lower cost and energy consumption, pre-
senting a potential alternative to standard CMOS technologies.
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