* water m\py

Technical Note

Reproducibility Starts at the Source: R, Python, and Julia
Packages for Retrieving USGS Hydrologic Data

Timothy O. Hodson **{, Laura A. DeCicco >'(), Jayaram A. Hariharan 3, Lee F. Stanish 3, Scott Black *
and Jeffery S. Horsburgh >

U.S. Geological Survey Central Midwest Water Science Center, Urbana, IL 61801, USA

U.S. Geological Survey Upper Midwest Water Science Center, Madison, WI 53726, USA; ldecicco@usgs.gov
U.S. Geological Survey Water Mission Area, Reston, VA 20192, USA; Istanish@usgs.gov (L.ES.)

Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI),

Arlington, MA 02476, USA; sblack@cuahsi.org

Civil and Environmental Enginnering, Utah State University, Logan, UT 84322, USA; jeff.horsburgh@usu.edu
* Correspondence: thodson@usgs.gov

t These authors contributed equally to this work.

W N e

Abstract: Much of modern science takes place in a computational environment, and, increasingly,
that environment is programmed using R, Python, or Julia. Furthermore, most scientific data now live
on the cloud, so the first step in many workflows is to query a cloud database and load the response
into a computational environment for further analysis. Thus, tools that facilitate programmatic
data retrieval represent a critical component in reproducible scientific workflows. Earth science is
no different in this regard. To fulfill that basic need, we developed R, Python, and Julia packages
providing programmatic access to the U.S. Geological Survey’s National Water Information System
database and the multi-agency Water Quality Portal. Together, these packages create a common
interface for retrieving hydrologic data in the Jupyter ecosystem, which is widely used in water
check for research, operations, and teaching. Source code, documentation, and tutorials for the packages are
updates available on GitHub. Users can go there to learn, raise issues, or contribute improvements within a

Citation: Hodson, T.O.; DeCicco, single platform, which helps foster better engagement and collaboration between data providers and
L.A.; Hariharan, J.A.; Stanish, L.E;

Black, S.; Horsburgh, J.S.
Reproducibility Starts at the Source:

their users.

Keywords: packaged workflows; water data; reproducibility; open science; open data; open source;

R, Python, and Julia Packages for R; Python;]ulia;]upyter; USGS

Retrieving USGS Hydrologic Data.
Water 2023, 15, 4236. https://
doi.org/10.3390/w15244236

Academic Editors: Daniel P. Ames, 1. Introduction

Gustavious Paul Williams, Huidae e g e . . e eqe
Open data initiatives have pushed most scientific data to the cloud to ease accessibility

choand Xiaohui Qiao such that a typical scientific workflow begins by querying a cloud database and loading
Received: 7 November 2023 the response into the computational environment for further analysis. In that paradigm,
Revised: 29 November 2023 data are accessed using either some kind of graphical user interface (GUI) or by writing
Accepted: 6 December 2023 code to retrieve data via an application programming interface (API). Non-programmers
Published: 9 December 2023 find GUIs more intuitive, but their manual nature creates barriers to reproducibility and

scalability because it can be difficult to record the exact sequence of steps within a GUI,
and GUISs often change. In contrast, APIs are typically versioned, which means that code

written to programmatically access an API can be executed repeatably, shared, tracked in
version control, and run through automated tests, all of which are tenets of computational
reproducibility and open science.

The U.S. Geological Survey (USGS) operates the largest water-monitoring network
conditions of the Creative Commons 11 the United States, whose data are widely used for research, as well as operationally for
Attribution (CC BY) license (https:// odeling, flood forecasting, water resources management investigations, etc. Thus, there
creativecommons.org/ licenses/by/ is a great benefit to science and society in having standardized and reusable packages for
40/).

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article

distributed under the terms and

Water 2023, 15, 4236. https:/ /doi.org/10.3390/w15244236 https:/ /www.mdpi.com/journal /water

Water 2023, 15, 4236

2 0f 10

programmatically accessing USGS data, ensuring that the first step in many water science
workflows—loading USGS data from the cloud—is reproducible.

There have been several efforts to improve programmatic data access of USGS data.
For example, the Consortium of Universities for the Advancement of Hydrologic Science,
Inc. (CUAHSI) Hydrologic Information System (HIS) project developed a web service
interface that proxied the USGS National Water Information System (NWIS) database [1]
(i.e., it translated web service requests to the NWIS, retrieved and parsed the resulting
data, and translated the results into Water Markup Language (WaterML) format before
returning the data to the user [2]). Multiple software tools were then built to use the
CUAHSI HIS proxy web services to retrieve data, including HydroR for accessing data
via the HIS HydroDesktop software [3,4], the waterML R package for retrieving data from
HIS web services [5], and the ulmo (https:/ /github.com/ulmo-dev/ulmo (accessed on
5 December 2023)) Python package for retrieving data from the HIS and several other
sources. Many others have written custom code to automate retrieval of data from NWIS
using different languages and approaches, prompting the USGS to issue documentation
and recommendations for automating data retrieval from NWIS (https:/ /waterdata.usgs.
gov/nwis?automated_retrieval_info (accessed on 5 December 2023)).

Since these earlier efforts, the USGS has enhanced its web service interfaces, including
adopting the model of the CUAHSI HIS and providing the option for encoding data
returned from USGS web services in WaterML format. Along with these efforts to enhance
their interface, the USGS and collaborators have worked to develop and support tools
for accessing data via USGS web services that not only standardize data access functions
and responses where possible, but also use USGS web services directly without proxy and
expand access to additional datasets not available via prior tools. To that end, we developed
R, Python, and Julia “dataretrieval” packages that provide programmatic access to data
from any streamflow gauge, water quality monitoring station, or groundwater well, as well
as other datasets available via the NWIS and the multi-agency Water Quality Portal [6].
R, Python, and Julia are open-source languages with large communities of scientific users
and developers. They have become the lingua franca—the common language—of the
open science movement. Notably, all three can run within Jupyter Notebooks, a web-
based interactive computing platform that scientists increasingly use to explore data and
communicate their findings [7], create and share reproducible workflows [8], and access
data in the cloud [9]. By wrapping web service API calls in a common interface, the
dataretrieval packages simplify and standardize data access across three of the standard
programming languages used in water science. This simple abstraction allows users to
focus on their particular science or coding problem rather than remembering details about
the underlying web services, while also making their workflows simpler, more reproducible,
and easier to maintain.

2. Sharing Scientific Knowledge as Reproducible Workflows

Given that this paper presents relatively simple utilities for retrieving data, we reflect
on their role within the broader scientific enterprise. Fundamentally, these utilities facilitate
the development of reusable packages and reproducible workflows. There is growing
awareness of a reproducibility crisis in science, e.g., [10] by one estimate, 95 percent of recent
hydrology and water resources publications cannot be reproduced [11]. In response, many
within the scientific community are advocating for greater transparency and reproducibility
of research results. Journals increasingly require submissions to be accompanied by data,
code, and other research artifacts that enable the reproduction of the analyses and results.
However, the original code and data are insufficient to ensure reproducibility; one also
needs the original computational environment, or at least the means to recreate it.

A package is an archive of software along with metadata intended to make the software
more easily shared and reused by others [12]. It is essentially a set of software tools
that may be reused to accomplish different computational tasks, either by expanding the
functionality of other packages or by performing a particular task, such as in a workflow.

Water 2023, 15, 4236

30f10

A workflow is a sequence of steps that produces a particular result. A recipe for baking
bread is a workflow, but in this context, we mean workflows that run in a computational en-
vironment, known as computational workflows. Often, workflows that begin as notebooks
or scripts go on to be developed into packages that more formally organize and codify a set
of functionality along with scientific knowledge for reuse by others. Just as in open-source
software development, packages are fundamental organizational units within open science,
where researchers contribute expertise to help develop packages, and then use and combine
those packages to create flexible and reproducible workflows. In this regard, one might
consider the development and availability of scientific code packages to be a revolution
in scientific philosophy (metascience). Recent advances in machine learning, data science,
and many other domains have been accelerated through the availability of open-source
packages [13,14].

The principal purpose of a package is reusability: If one researcher writes a package
to accomplish X, then another researcher can use that package to accomplish X without
having to write the code themselves. There is also an expectation that packages evolve as
code and knowledge are contributed over time. A workflow is, in essence, another type
of package but its purpose and lifecycle differ. Once published, a workflow is intended
as a static archive; its principal purpose is to ensure reproducibility. To achieve that,
workflows adopt many of the same tools and practices used in software packaging, such as
dependency resolvers to reproduce a particular computation environment, version control,
automated testing, and open web-based publication platforms, etc.

A packaged workflow combines both concepts by using computer science tools and
practices in a manner that allows it to easily migrate from one computational environment
to another. Such workflows are becoming an increasingly important component of sci-
entific communication. An example is HydroShare [15,16], which is an online repository
that supports the sharing and publication of packaged workflows. Using HydroShare, a
researcher can upload a Jupyter Notebook containing their workflow and then share it
publicly or permanently publish it with a citable digital object identifier (DOI). Anyone can
then rerun the notebook using HydroShare’s linked JupyterHub environment.

GitHub increasingly serves a similar role as a general research platform, and is a perfect
example of how scientific research is adopting and adapting to software development
practices. On GitHub, researchers can develop and publish their packages and workflows,
use automated tests to ensure they work as intended, provide pre-configured computational
environments (called Codespaces), and engage in collaborative research and development.

The importance of the packages described in this paper, as well as others like
waterData [17], waterML [5], HyRiver [18], and hydroloom [19], is that they facilitate pro-
grammatic data access, which is a key component in creating open and reproducible
scientific workflows that are distributed on platforms like HydroShare and GitHub.

3. Design and Functionality

The data retrieval packages were designed to operate within the context of the services-
oriented architecture provided by the USGS” NWIS, which provides a set of “water services”
that enable automated retrieval of USGS data encoded in extensible markup language
(XML) and other data encodings (Table 1). These services generally correspond with
data types or products produced by the USGS (e.g., an Instantaneous Values Service
for retrieving current streamflow and other real-time data for USGS monitoring sites, a
Groundwater Levels Service for retrieving historical, manually recorded groundwater levels
from monitoring sites, etc.). These services are REST-friendly, meaning they are accessible
via URLs and can be called from any programming language or environment. However,
understanding the specific URL syntax and query parameters to make requests and writing
code to interpret the results can be challenging. The data retrieval packages provide
convenience functions within each programming language that abstract the construction of
the required URLs, handle the interpretation and parsing of the returned data format, and
generally make working with the USGS” web services easier (Figure 1).

Water 2023, 15, 4236

40f 10

Additionally, using similar function names, argument names, and responses (where
possible) across the different packages makes it easier for programmers to work across
languages or to choose the language that is most appropriate for their current application.
Helping to abstract data access enables users to focus on their particular coding task or
science question rather than learning and remembering the details of the underlying web
services. For example, consider retrieving streamflow values for the most recent day for a
single USGS streamflow gage in Python.

site_code = "10109000" # USGS site code
parameter = "00060" # USGS code for discharge
start_date = date.today().isoformat ()

end_date = date.today().isoformat ()

To make such a request, a programmer needs to remember that the Python requests library
retrieves data using a URL, how to formulate the URL required to retrieve the data from
NWIS using service-specific query parameters, the data structure of the response, and how
to parse that into a Pandas dataframe.

import requests
import pandas as pd
from datetime import date

Build a URL to retrieve the unit discharge values

url = (f"https://waterservices.usgs.gov/nwis/iv/?format=json&sites="
f"{site_code}&startDT={start_date}&endDT="
f"{end_date}¶meterCd={parameter}")

response = requests.get(url)

Extract discharge data from the response
discharge_data = response.json()

Create a Pandas dataframe from the JSON data
df = pd.DataFrame(discharge_data["value"]["timeSeries"] [0]
["values"][0] ["value"])

Convert dateTime column to datetime index and value column to numeric
df ["dateTime"] = pd.to_datetime(df["dateTime"])

df .set_index("dateTime", inplace=True)

df ["value"] = pd.to_numeric(df["value"])

-
Database ib ~ s

R>

NP A
PdEN—; s

N @ ° dataframe
Web Services

Figure 1. Information flow for data retrieval packages. A data consumer uses a data retrieval package

L

to make a request for data to the appropriate USGS web service (1). The service handles the request
by querying the underlying NWIS database to retrieve the requested data (2), and then encoding the
results in XML, text, or JSON format for return to the user (3). The data retrieval package then parses
the result (4) and loads it into a performant data structure for analysis (e.g., a dataframe object in R or
Pandas for Python).

Water 2023, 15, 4236

50f 10

In contrast, the dataretrieval package provides a significant simplification to the
workflow. Primarily, the programmer must remember that the get_iv function retrieves
instantaneous values data from NWIS, but in practice the function name, as well as its
functionality, can be found within the Python interpreter via built-in functions (e.g., dir ()
and help()).

from dataretrieval import nwis

df, metadata = nwis.get_iv(sites=site_code,
start=start_date,
end=end_date,
parameterCd=parameter)

Even experienced users who are familiar with the web services may write custom code
to manage data retrieval. We still encourage that practice, but it is also our justification for
organizing data retrieval code into community- or organization-developed packages. A
brief overview of the three USGS data retrieval packages’ functionality is given here, but
for more detailed information, refer to the package documentation. The core web services
supported by the USGS data retrieval packages are listed in Table 1, though these may
change over time.

Table 1. Core web services supported by the USGS data retrieval packages. Several services are not
yet supported (NS) but may be added in future versions.

Web Service

Description Function Names (R; Python; Julia)

Daily Values 1

Daily data available at USGS water sites

(https:/ /waterservices.usgs.gov/docs/dv-
service/daily-values-service-details/)
Groundwater Levels (https://waterservices.
usgs.gov/docs/groundwater-levels/
groundwater-levels-details /)
Instantaneous Values (https:/ /waterservices.
usgs.gov/docs/instantaneous-values/
instantaneous-values-details/)

Measurements (https:/ /waterdata.usgs.gov/
nwis/measurements/)

Parameter Codes (https:/ /help.waterdata.
usgs.gov/codes-and-parameters)
Peaks (https:

/ /nwis.waterdata.usgs.gov/usa/nwis/peak)
Ratings (https:/ /waterdata.usgs.gov/
nwisweb/get_ratings/)

Site https:/ /waterservices.usgs.gov/docs/
site-service/site-service-details/
Statistics (https://waterservices.usgs.gov/
docs/statistics/statistics-details/)

Water Use (https:
//waterdata.usgs.gov/nwis/water_use)

Water Quality
(https:/ /www.waterqualitydata.us/)

including mean, median, maximum,
minimum, and/or other derived values
Historical manually-recorded groundwater
levels from hydrologic sites served by the
USGS

Current streamflow, gage height, and
hundreds of other real-time data

Manual measurements of streamflow and gage
height. These measurements are used to
supplement and (or) verify the accuracy of the
automatically recorded observations, as well as
to compute streamflow based on gage height
Lookup 5-digit codes used to identify
measurement types
Annual maximum instantaneous peak
streamflow and gauge height
Stage-discharge rating tables for USGS
streamgages

Site information including location coordinates

Daily, monthly or annual statistics for sites

Water use data collected by local, State, and
Federal agencies as well as academic and
private organizations
Publicly available water-quality data from
USGS, the Environmental Protection Agency,
and over 400 state, federal, tribal, and local
agencies

readNWISdv; nwis.get_dv; readNWISdv
readNWISgwl 2; nwis.get_gwlevels; NS

readNWISunit; nwis.get_iv; readNWISiv

readNWISmeas; nwis.get_discharge; NS

readNWISpCode; nwis.get_pmcodes;
readNWISpCode

readNWISpeak; nwis.get_peaks; NS
readNWISrating; nwis.get_ratings; NS
readNWISsite; nwis.get_info; readNWISsite

readNWISstat; nwis.get_stats; NS

NS; nwis.get_water_use; NS

readWQPdata 3; wpq.get_results 2;
readWQPdata 2

Notes: ! All URLs accessed on 5 December 2023. 2 The R package also retrieves groundwater data from the
National Groundwater Monitoring Network. 3 The Water Quality Service has additional functions for different
types of queries; refer to the documentation for details.

3.1. Usage Examples

This section provides brief usage demonstrations in each of the three languages: R,
Python, and Julia. A typical analysis workflow would be more complicated, but these
highlight some common use cases. On one hand, they are trivial—simple enough to be

Water 2023, 15, 4236

6 of 10

understood by non-programmers—but also illustrate the value of abstraction. In each
case, several high-level packages are used together: each abstracting away some of the
complexity to yield a simple workflow. For many more examples and tutorials see the links
to the package documentation in the Data Availability Section.

R

Of the three packages, the R version, dataRetrieval was developed first and has
been downloaded over 195,000 times (as of November 2023; [20]). Along with simplifying
workflows, its functionality has become integral in other packages like EGRET (Exploration
and Graphics for RivEr Trends), which provides utilities for the analysis of long-term
changes in water quality and streamflow [21]. Several EGRET functions use dataRetrieval
to retrieve data, and then preprocess the output into an analysis-ready format. A typical
EGRET workflow retrieves data, calibrates a model, and displays long-term trend calcula-
tions. Here we use it to retrieve orthophosphate data from an USGS monitoring location
(01631000), then model and plot the orthophosphate load through time (Figure 2). Us-
ing dataRetrieval, both EGRET and the workflow are simpler and, therefore, easier to
understand, use, and maintain.

library (EGRET)
site <- "01631000"
parameter <- "00660" # USGS code for orthophosphate
Sample <- readNWISSample(site, parameter)
Daily <- readNWISDaily(site,
startDate = min(Sample$Date))

INFO <- readNWISInfo(site, parameter,

interactive = FALSE)
eList <- mergeReport(INFO, Daily, Sample)
eList <- modelEstimation(eList, verbose = FALSE)
plotConcHist (eList, printTitle=FALSE)

3.2. Python

Jupyter’s interactivity is often cited as being key for rapid prototyping and exploratory
data analysis [7]. Here, we demonstrate a common usage pattern for data exploration,
which uses dataretrieval to query sites matching a particular criteria, then displays the
results in an interactive webmap using hvplot (Figure 3).

from dataretrieval import nwis
import geopandas as gpd
import hvplot.pandas

parameter = "00665" # USGS code for total phosphorus

df, meta = nwis.what_sites(stateCd="IL", parameterCd=parameter)
geometry = gpd.points_from_xy(df.dec_long_va, df.dec_lat_va)
gdf = gpd.GeoDataFrame(df, geometry=geometry)

gdf .hvplot.points(geo=True, hover_cols=["site_no", "station_nm"],
tiles=True, width=300, size=3)

<
7

Q 0 T T T T T

§ 0.6 'c\. M =

B) 05 I~ 3] _

€ * L.

c 04} o . .

& 03f \ N\ 4

g o2 .

c o o,

8 01 . s

é 0 L L L | TTeeeetepe
1970 1980 1990 2000 2010 2020

Figure 2. EGRET generated time series of flow-normalized concentration of orthophosphate (PO4)
in miligrams per liter (mg/L) for the South Fork Shenanndoah River at Front Royal, Virginia. Dots
depict the annual mean concentration.

Water 2023, 15, 4236

7 of 10

= Madison o

Kenosha

42
41 9

4041y

S
Longitude: -88.4973 l# ¥ & ¢
Latitude: 38.7731 | RO L
te_no:03378900 3
station_nm: LITTLE WABASH RIVER AT
LOUISVILLE, IL
o 3ot
38 s ; .
. . Evansy
o] =~
37
© OpenStreetMap contributors
L B I I A e e e e
=91 -90 -89 -88

Figure 3. Interactive web map displaying locations in Illinois with phosphorus samples.

3.3. Julia

As the youngest programming language and data retrieval package, our Julia demon-
stration is more introductory. We use DataRetrieval. j1 to retrieve annual groundwater
levels from a single site in Delaware, then compute summary statistics on an annual basis us-
ing the Statistics package [22] and format the output for publication using Latexify [23]

(Table 2).

using DataRetrieval, Dates, Statistics, DataFrames, Latexify

site = "393617075380403"
parameter = "72019" # USGS code for depth to water level
df, response = readNWISdv(site,
parameter,
startDate="1776-07-04",
endDate="2022-12-31",
format="json");
df .datetime = Dates.DateTime.(df.datetime, "yyyy-mm-ddTHH:MM:SS.SSS");
df .year = Dates.year.(df.datetime);
df2 = combine(groupby(df, :year),
parameter => minimum => :Minimum,
parameter => maximum => :Maximum,
parameter => mean => :Mean;

latexify(df2, env=:table) |> print

Water 2023, 15, 4236

8 of 10

Table 2. Annual (calendar year) summary statistics for groundwater levels (depth to water level in
feet below land surface) at U.S. Geological Survey site 393617075380403 in Delaware.

Year Minimum Maximum Mean
2012 —-0.27 —-0.0 —0.11

2015 -1.2 —0.03 —0.26
2016 -0.6 0.01 -0.2

2020 -0.6 0.12 —-0.22
2021 —0.38 0.1 -0.16
2022 —0.44 0.15 —0.045

4. Usage Scenarios

As basic utilities, the data retrieval packages support a range of usage scenarios. For
scientific research and publishing, they automate hydrologic data retrieval in workflows
such that data access can be encoded in scripts or notebooks that can be shared, re-run, and
built upon by other researchers. By reducing the time and effort required for retrieving and
loading data into analysis-ready structures like “data frames”, they also lower barriers for
novice users and enable experienced users to dedicate more energy to research.

The packages serve a similar role for water resource professionals who depend on
USGS data for operational purposes including flood forecasting and warning, operating
dams and hydraulic control structures, bridge design, allocating irrigation water, planning
for energy development, assessing water quality and pollution, and more. While our
focus has been on the reproducibility of scientific work, practitioners also need transparent,
reliable, and reproducible modeling and analysis workflows.

In the classroom, instructors use these packages to teach data science and hydroin-
formatics concepts, which are becoming increasingly important skills as scientific and
engineering work becomes more data-intensive. A growing part of hydrologic science is
shifting from collecting data for testing or supporting existing conceptual models toward
analyses based on models derived from observational data [24]. A recent survey of hydroin-
formatics or water-data-science instructors found that most incorporate basic programming,
data formatting and wrangling, visualization and plotting, and other data science topics
into their courses [25]. Nearly all of them used Python or R in their course materials, and
several used one of the data retrieval packages. Feedback from that survey was used in
developing the Hydroinformatics and Water Data Science module on HydroLearn, which
also uses the Python dataretrieval [26].

5. Conclusions

Software packages that facilitate programmatic data retrieval are a critical component
in open and reproducible scientific workflows. However, scientific data providers typically
have limited resources and serve large user communities. In this situation, the best way to
serve a community can be to leverage it: By adopting open-source practices, data providers
can better engage and organize their users to collaboratively develop software that serves
the community as a whole.

As a prime example, that open-source model enabled development of the R, Python,
and Julia dataretrieval packages. These three programming languages are used extensively
in scientific computing and data science, and are the core languages supported by Jupyter
Notebooks, a web-based computing platform widely used to teach programming and
develop scientific workflows. By wrapping web service API calls in a common interface,
these packages simplify data access, allowing users to focus on their particular science
or coding problem rather than remembering details about the underlying web services.
Although this is a relatively simple abstraction, by serving many users it provides sub-
stantial benefit by making workflows simpler and more reproducible. The paper gives an
overview of the USGS dataretrieval packages along with some simple examples of their
usage. To learn more or to contribute, refer to the GitHub repositories linked in the Data
Availability Section.

Water 2023, 15, 4236 9 of 10

Author Contributions: Conceptualization, TO.H., L.A.D. and J.5.H.; software, TO.H., L.A.D.,]. A.-H.
and S.B.; writing—original draft, T.O.H., L.A.D., J. A -H. and J.S.H.; project administration, L.F.S.;
writing—review and editing, L.E.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This material is partially based upon work supported by the National Science Foundation
(NSF) under award 1931297. Any opinions, findings, conclusions, or recommendations expressed in
this material do not necessarily reflect the views of the NSF.

Data Availability Statement: Source code, documentation, and tutorials for each package are avail-
able from their respective GitHub repositories: R (https://github.com/DOI-USGS/dataRetrieval),
Python (https://github.com/DOI-USGS/dataretrieval-python), and Julia (https:/ /github.com/DOI-
USGS/dataretrieval jl). Users are encouraged to raise issues and contribute improvements to the pack-
ages via GitHub. For easy installation, packaged versions are also available on CRAN (for R), PyPI
and conda-forge (for Python), and Pkg (Julia’s built-in package manager). Please cite this paper when
discussing the software in an abstract sense or other ideas from the paper. When using the software,
we recommend citing the specific version and its associated software release. For example, the R,
Python, and Julia versions used in the paper are available as software releases [20,27,28], respectively.
The Python example was run in Jupyter on Windows Subsystem for Linux 2 (WSL2) with an Intel
processor. The supplemental environment.yml (https://raw.githubusercontent.com/DOI-USGS/
dataretrieval-python/paper-env/demos/webmap/environment.yml (accessed on 5 December 2023))
contains the package metadata to reproduce our Python computational environment. As with all the
examples, different package managers, operating systems, and hardware may yield different results.
If you are unable to reproduce the examples, please raise an issue on the relevant GitHub repository.

Acknowledgments: This work was conducted as part of the USGS Integrated Water Availability
Assessments (IWAAs) Program, which examines the spatial and temporal distribution of water
quantity and quality in both surface and groundwater, as related to human and ecosystem needs
and as affected by human and natural influences. Any use of trade, firm, or product names is for
descriptive purposes only and does not imply endorsement by the U.S. Government.

Conflicts of Interest: Authors T.O.H., L.A.D.,].A.H., and L.ES. were employed by the U.S. Geological
Survey. Author S.B. is employed by CUAHSI. The remaining authors declare that the research was
conducted in the absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

USGS United States Geological Survey
wWQP Water Quality Portal

GUI Graphical User Interface

API Application Programming Interface
CRAN Comprehensive R Archive Network
PyPI Python Package Index

References

1. U.S. Geological Survey. National Water Information System Data Available on the World Wide Web (USGS Water Data for the
Nation). 2023. Available online: https://waterdata.usgs.gov/nwis (accessed on 5 December 2023).

2. Goodall, J.L.; Horsburgh, J.S.; Whiteaker, T.L.; Maidment, D.R.; Zaslavsky, I. A first approach to web services for the National
Water Information System. Environ. Model. Softw. 2008, 23, 404—411. [CrossRef]

3. Horsburgh,].S.; Reeder, S.L. Data visualization and analysis within a Hydrologic Information System: Integrating with the R
statistical computing environment. Environ. Model. Softw. 2014, 52, 51-61. [CrossRef]

4. Ames, D.P; Horsburgh, J.S.; Cao, Y.; Kadlec, J.; Whiteaker, T.; Valentine, D. HydroDesktop: Web services-based software for
hydrologic data discovery, download, visualization, and analysis. Environ. Model. Softw. 2012, 37, 146-156. [CrossRef]

5. Kadlec, J.; StClair, B.; Ames, D.P; Gill, R.A. WaterML R package for managing ecological experiment data on a CUAHSI
HydroServer. Ecol. Inform. 2015, 28, 19-28. [CrossRef]

6. National Water Quality Monitoring Council. Water Quality Portal. 2023. Available online: https:/ /www.waterqualitydata.us/
(accessed on 5 December 2023).

7. Granger, B.E.; Pérez, F. Jupyter: Thinking and Storytelling With Code and Data. Comput. Sci. Eng. 2021, 23, 7-14. [CrossRef]

Water 2023, 15, 4236 10 of 10

10.
11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

Beg, M.; Taka, J.; Kluyver, T.; Konovalov, A.; Ragan-Kelley, M.; Thiéry, N.M.; Fangohr, H. Using Jupyter for Reproducible Scientific
Workflows. Comput. Sci. Eng. 2021, 23, 36-46. [CrossRef]

Abernathey, R.P; Augspurger, T.; Banihirwe, A.; Blackmon-Luca, C.C.; Crone, T.J.; Gentemann, C.L.; Hamman, J.J.; Henderson,
N.; Lepore, C.; McCaie, T.A.; et al. Cloud-Native Repositories for Big Scientific Data. Comput. Sci. Eng. 2021, 23, 26-35. [CrossRef]
Baker, M. 1500 scientists lift the lid on reproducibility. Nature 2016, 533, 452-454. [CrossRef] [PubMed]

Stagge,]. H.; Rosenberg, D.E.; Abdallah, A.M.; Akbar, H.; Attallah, N.A.; James, R. Assessing data availability and research
reproducibility in hydrology and water resources. Sci. Data 2019, 6. [CrossRef] [PubMed]

Hillard, D. Publishing Python Packages; Manning: Shelter Island, NY, USA, 2023; p. 248.

Nguyen, G.; Dlugolinsky, S.; Bobdk, M.; Tran, V.; Garcia, A.L.; Heredia, L; Malik, P; Hluchy, L. Machine Learning and Deep
Learning frameworks and libraries for large-scale data mining: A survey. Artif. Intell. Rev. 2019, 52, 77-124. [CrossRef]
Langenkamp, M.; Yue, D.N. How Open Source Machine Learning Software Shapes Al. In Proceedings of the 2022 AAAI/ACM
Conference on Al, Ethics, and Society, Oxford, UK, 19-21 May 2021. [CrossRef]

Tarboton, D.G.; Horsburgh,].S.; Idaszak, R.; Heard, J.; Ames, D.; Goodall, J.L.; Band, L.; Merwade, V.; Couch, A.; Arrigo, J.; et al.
HydroShare: Advancing Collaboration through Hydrologic Data and Model Sharing. In Proceedings of the 7th International
Congress on Environmental Modelling and Software, San Diego, CA, USA, 15-19 June 2014. [CrossRef]

Horsburgh, J.S.; Morsy, M.M.; Castronova, A.M.; Goodall,].L.; Gan, T.; Yi, H.; Stealey, M.].; Tarboton, D.G. HydroShare: Sharing
Diverse Environmental Data Types and Models as Social Objects with Application to the Hydrology Domain. JAWRA J. Am.
Water Resour. Assoc. 2016, 52, 873-889. [CrossRef]

Ryberg, K.R.; Vecchia, A.V. waterData—An R Package for Retrieval, Analysis, and Anomaly Calculation of Daily Hydrologic Time Series
Data, Version 1.0; U.S. Geological Survey: Reston, VA, USA, 2012. Available online: https://pubs.usgs.gov/of/2012/1168
(accessed on 5 December 2023).

Chegini, T,; Li, HY,; Leung, L.R. HyRiver: Hydroclimate Data Retriever. |. Open Source Softw. 2021, 6, 3175. [CrossRef]
Blodgett, D. Hydroloom: Ultilities to Weave Hydrologic Fabrics, Version 1.0. Available online: https://CRAN.R-project.org/
package=hydroloom (accessed on 5 December 2023).

De Cicco, L.A.; Lorenz, D.; Hirsch, R.M.; Watkins, W.; Johnson, M. DataRetrieval: R Packages for Discovering and Retrieving Water
Data Available from U.S. Federal Hydrologic Web Services; U.S. Geological Survey: Reston, VA, USA, 2023. [CrossRef]

Hirsch, R.M.; Moyer, D.L.; Archfield, S.A. Weighted Regressions on Time, Discharge, and Season (WRTDS), with an Application
to Chesapeake Bay River Inputs. JAWRA]. Am. Water Resour. Assoc. 2010, 46, 857-880. [CrossRef] [PubMed]

JuliaStats Contributors. Statistics.jl: The Statistics Stdlib That Ships with Julia. 2023. Available online: https://juliastats.org/
Statistics.jl/dev/ (accessed on 5 December 2023).

Korsbo, N.; Other Contributors. Latexify,jl: Functions for Producing I&TgXFormatted Strings from Julia Objects. 2023. Available
online: https:/ /korsbo.github.io/Latexify.jl/stable/ (accessed on 5 December 2023).

Chen, Y,; Han, D. Big data and hydroinformatics. J. Hydroinform. 2016, 18, 599-614. [CrossRef]

Jones, A.S.; Horsburgh, J.S.; Pacheco, C.J.B.; Flint, C.G.; Lane, B.A. Advancing Hydroinformatics and Water Data Science
Instruction: Community Perspectives and Online Learning Resources. Front. Water 2022, 4, 901393. [CrossRef]

Jones, A.S.; Horsburgh, J.S.; Pacheco, C.J.B. Hydroinformatics and Water Data Science. 2022. Available online: https://edx.
hydrolearn.org/courses/course-v1:USU+CEE6110+2022/about (accessed on 5 December 2023).

Hodson, T.O.; Hariharan, J.A.; Black, S.; Horsburgh,].S. Dataretrieval (Python): A Python Package for Discovering and Retrieving
Water Data Available from U.S. Federal Hydrologic Web Services; U.S. Geological Survey: Reston, VA, USA, 2023. [CrossRef]
Hariharan, J.A. DataRetrieval.jl—]Julia Package for Obtaining USGS Water Data Directly from Web Services; U.S. Geological Survey:
Reston, VA, USA, 2023. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Sharing Scientific Knowledge as Reproducible Workflows
	Design and Functionality
	Usage Examples
	Python
	Julia

	Usage Scenarios
	Conclusions
	References

