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Abstract—Tactile sensors with impact localization are becom-
ing an essential part in automotive, aerospace, and civil engi-
neering for damage assessment, safety assurance and structural
monitoring. Inkjet printing is on rise for its eco-friendliness, cost-
efficiency, low power consumption and quick design iteration
ability. However, its minimal fabrication process results in oper-
ational challenges. These challenges can be mitigated by integrat-
ing artificial intelligence with inkjet printed sensors to enhance
their performance. Among all artificial intelligences, echo state
networks are gaining recognition for their low computational
demands and hardware compatibility. This study developed an
inkjet-printed tactile grid sensor with an echo state network for
impact localization. The sensitivity of sensor was assessed through
a pencil drop experiment, with data transformation across time
and magnitude domains to improve network adaptability. Hy-
perparameters of the model were fine-tuned through sequential
search. Developed echo state network with grid tactile sensor
demonstrated high accuracy, pinpointing the impact location of
pencil drops with an impressive precision rate of 94.89%.

Index Terms—Echo state network, Inkjet printing technology,
Reservoir computing, Tactile grid sensor, .

I. INTRODUCTION

The rise of the Internet of Things (IoT) has significantly
boosted the need for monitoring sensors in sectors like health-
care [1] [2], industrial automation [3], and robotics. In the
automotive and aerospace industry, continuous monitoring and
precise impact detection through tactile sensors are crucial
for maintaining vehicle safety and structural integrity, as well
as for pinpointing and evaluating the extent of any damage
[4] [5]. In the realm of civil engineering, these sensors
are indispensable for detecting potential structural damage,
thereby aiding in the upkeep of infrastructure [6]. Additionally,
the synergy of artificial intelligence with sensor technology is
pushing the boundaries of real-time monitoring, classification,
and predictive analysis. Employing inkjet printing to embed
these sophisticated technologies onto flexible substrates brings
several advantages, including reduced size, lower costs, and
better environmental sustainability which is paving the way
for mass production of sensor networks.

In the realm of technology, there’s a pronounced shift
towards making devices smaller. This miniaturization trend
is driven by the consumer demand for more portable, space-
efficient, and integrated technologies. Smaller devices often
need to be cost-effective, especially when intended for mass

production. Alongside this rising demand for miniaturization,
there is an expectation for sensors to deliver enhanced ac-
curacy in large-scale production. Inkjet printing technology
emerges as a key player, meeting these needs low cost, energy
efficient and compact while also offering the added advan-
tage of being eco-friendly [7] [8]. Moreover, inkjet printed
technology can be implemented in a wide range of flexible
substrates. Nonetheless, inkjet printing may not always achieve
the same precision as conventional silicon-based approaches
due to its simplified and sophisticated fabrication process. This
gap can be bridged by integrating artificial intelligence with
inkjet printing, a combination that promises to amplify sensor
capabilities and precision [9]. The combination of artificial
intelligence and inkjet printing technology offers the potential
to develop a sensor ecosystem that is not only cost-effective
and energy-efficient but also exhibits improved performance.

Over the past few decades, in the realm of artificial intelli-
gence, Reservoir Computing (RC) has demonstrated superior
performance compared to other machine learning models in
analyzing time series data for IoT devices. RC is a frame-
work for computation used particularly in recurrent neural
network settings. It is distinguished by its unique approach
to handling the internal state. Among different RC methods,
Echo State Network (ESN) has emerged as a prominent
alternative to gradient descent-based neural networks due to its
better convergence and simpler computational requirements,
which makes it more practical and suitable for hardware
implementation. Previously, through inkjet printing, neurons
for a RC [10] are designed, as well as vibration and proximity
sensor [11], tactile sensor [12] is designed. In our work, we
have designed a efficient inkjet printed grid tactile sensor for
impact localization and the sensor is combined with an ESN
network to make the sensor more efficient than conventional
inkjet printed sensors.

The contents of this work are arranged as follows. Firstly,
for preliminaries, inkjet-printing technology and ESN are
introduced and explained in Section II. This section is followed
by the sensor design and fabrication process in Section III.
The sensor testing and data collection process is explained
in Section IV, and data augmentation process is discussed in
Section V. ESN model and its hyperparameters optimization
is explained in Section VI. Lastly, the result is analysed in
Section VII and followed by a conclusion in Section VIII.



Fig. 1: Experimental setup for pencil drop experiment in the
grid tactile sensor along with ESN. Grid tactile sensor is
current biased with source Meter Unit (SMU). All relevant
dimensions of the sensor is showed. Here, X-mark indicates
the randomly chosen areas for pencil impact experiment in the
tactile sensor grid. Dotted line from sensor to ESN indicates
the optional connection.

II. PRELIMINARIES

A. Echo State Network

Echo State Network is a type of recurrent neural network
introduced by Jaeger in 2007 [13]. It has gained significant
popularity within the field of RC. It contains three layers
named a input layer, reservoir and output layer, which is also
known as readout layer, solely trainable layer in the model.
Dynamics and output update laws are defined by equations (1)
and (2).

x(n+ 1) = f(Winu(n+ 1) +Wresx(n)) (1)

y(n+ 1) = Wox(n+ 1) (2)

where u(n) indicates the input vector fed into the ESN, x(n)
is the reservoir state vector, and y(n) is the output state vector
at time n. Win, Wres, and Wo are the input, reservoir, and
output layer weight matrix, respectively, and f(.) is the non-
linear activation function. To achieve the echo state property
of the reservoir weight, it needs to be scaled by spectral radius
λmax. In a sparsely connected reservoir, 5-10% weights are
nonzero, and the readout layer is trained by a simple linear
regression method [14] [15].

y = WoΦ+ ϵ (3)

where,

Φ = [x(n), x(n+ 1), . . . , x(n+N − 1)]T

y = [y(n), y(n+ 1), . . . , y(n+N − 1)]T

Here, n is the stating index of the training samples, which
is initially set to discard the influence of reservoir initial
transient. ϵ is assumed to be zero-mean Gaussian noise with
β variance and N is the number of training samples.

Fig. 2: Current and voltage signal for multiple pencil drops in
a random point of tactile sensor grid. Each disturbance in the
graph represents a pencil drop in the grid sensor.

As there is only one simple trainable layer, ESN is a
low computation-intensive network. Therefore, ESN is broadly
used in different areas, such as pattern recognition, time series
data analysis, anomaly detection system modeling and control,
etc.

III. INKJET PRINTED SENSOR FABRICATION

In our research, an inkjet-printed tactile sensor array is
developed which is capable of localizing impacts. This sensor
is inkjet printed on a polyethylene terephthalate (PET) film
substrate of 180 mm by 215 mm in size. A standard drop-
on-demand piezoelectric printer is used to print with silver
nanoparticles on PET film with a thickness of 135µm. After
printing, the sensor was thermally cured on a hotplate for a
specified duration. The grid is created by 8 horizontal lines
with 240 mm along with 10 vertical lines with 190 mm. All of
these lines are spaces by 23 mm and features a 0.5 mm gap at
each intersection, which is acting as a capacitive sensing point
and exhibiting nonlinear voltage-current characteristics. Fig. 1
depicts all relevant dimensions of the sensor array along with
the experimental setup.

This inkjet-printed tactile sensor grid translates location
impacts into a high-dimensional signal profile. For current
biasing, two opposite sides of 10 vertical lines of the grid
are interconnected, while the remaining 8 horizontal lines
are configured for signal acquisition. From these 8 horizontal
lines, any number of connection can be randomly selected for
integration with an ESN. In this particular study, only one of
these lines are chosen randomly to connect with the ESN for
further analysis.

IV. SENSOR TESTING AND DATA COLLECTION

After fabrication, the sensor’s performance was tested via
a pencil drop experiment. The sensor grid was tested using
a Keithley 2604B Dual channel Source Meter Unit (SMU),
applying a consistent current bias of 0.5 nA. In this evaluation,



Fig. 3: Original current signal occurred from pencil drop and transformed current signal after data augmentation is showed in
two different colors. For magnitude domain data augmentation method jittering, scaling and magnitude wrapping is applied as
well as for time domain data augmentation time wrapping, widow wrapping and random guided wrapping is applied.

a pencil was repeatedly dropped from a set height onto 12
randomly selected points on the sensor grid. In the Fig. 1
those randomly selected points are showed with X-mark. For
each impact, current signal was captured from one arbitrarily
chosen line out of the available 8 horizontal lines to compile
time series information. Fig. 2 illustrates the sensor’s current
and voltage fluctuations corresponding to each pencil impact
in a randomly chosen area for pencil drop. After an impact,
the sensor typically records around 60 sampling time before
stabilizing and be prepared for next pencil drop. A method
of window slicing was utilized to isolate individual pencil
drop events within the current signals. Each randomly selected
area in the grid was on average subjected to five pencil drops,
resulting in a total of 61 time series signals. This dataset with
61 time series signals subsequently utilized for the training
and testing of the machine learning algorithm with 7:3 ratio.
For testing around 19 time series signals are used for testing
and, 42 time series signals are used for training. However,
before training data augmentation is used in these 42 time
series signal to make the model more robust.

V. DATA AUGMENTATION

Data augmentation is a widely used technique in computer
vision and has been shown to enhance generalization in
neural networks when applied to time series data. It involves
the random alteration of data in two key aspects: time and
magnitude. Historically, the addition of noise and scaling have
been effective for augmenting data in the magnitude domain
of time series. In our research, we have adopted the jittering
approach to introduce gaussian noise, N (µ, σ2) is added to
each time steps of the time series signal. In the gaussian
noise mean µ is set zero and standard deviation σ is tuned
according to required signal to noise ratio. Additionally, we’ve

Fig. 4: ESN contains three layers: input layer, reservoir and
output layer. Hyperparameters of these layers are showed.

implemented scaling and magnitude wrapping to modify the
magnitude characteristics of time series data [16].

In our data augmentation process, we have incorporated five
specific methods for enhancing robustness: time wrapping,
window wrapping, sub-optimal wrapping, random guided
wrapping, and discriminative guided wrapping, in addition to
magnitude wrapping. Fig. 3 transformed time series signal is
showed along with original current signal. These techniques
contribute to building a stronger dataset that facilitates neural
network training, enabling it to discern and learn from a
diverse array of patterns and subtle variations. Our aim is for
the model to develop a resilient and generalize understanding
that can withstand fluctuations in either the magnitude or time
aspects of the data. For instance, applying magnitude warping
combined with Gaussian noise mimics various real-life disrup-
tions, like those stemming from measurement inaccuracies or
signal artifacts due to physical movements of the subject. The
time-domain transformations are designed to reflect variations
in the sensor’s recovery time following events such as a pencil
drop, further enhancing the model’s ability to generalize from
the sensor data. By applying data augmentation in training
time series signals, 42 time series signals are increased into
588 time series signals which is used for training.



Fig. 5: Confusion matrix for ESN classification model. Matrix
shows the desired output along Y axis and ESN model
predicted output along X axis. Diagonal elements are showed
the correctly predicted output, whereas non-diagonal elements
are showing wrongly predicted output. Pencil drop areas are
indicated as number and larger number indicates the areas
closer to data collection line.

Fig. 6: Visualization of error rate of the different areas of
pencil drop experiment along with average error rate.

VI. ESN HYPERPARAMETERS OPTIMIZATION

This section details the ESN model development for the
time series signal classification. ESN model is developed with
learning rate and leakage of 1× 10− 5 and 1 respectively. In
the input layer, reservoir and output layer, there are more hy-
perparameters which are determined by optimization process.

Optimization is the process of finding the optimal set of
hyperparameters for a machine learning model that maximizes
its performance on a given dataset. For hyperparameters opti-
mization of a model there are some common methods such as
random search, grid search etc. The choice of hyperparameter

optimization technique depends on factors such as the com-
plexity of the model, the size of the hyperparameter space,
and the computational resources available. The goal is to find
a good set of hyperparameters in a reasonable amount of time,
improving the model’s performance on the task at hand.

By using PyRCN interface, hyperparameters of ESN are
optimised [17]. Initially model starts with some fixed param-
eters such as, hidden layer size, spectral radius, input scaling,
leakage etc. For the optimization of input scaling, spectral
radius and bias scaling sequential search is done in the uniform
distribution of these parameters within a certain range. More-
over, for leakage and alpha sequential search is performed
in logarithmic uniform distribution of these parameters. Other
hyperparameters, including input and reservoir activation func-
tions, decision strategy, and bidirectional connectivity, remain
constant initially. The sequential search process identifies the
best hyperparameters for the model, which are presented in
Fig. 4. For reservoir activation function hyperbolic tangent
function is used.

VII. CLASSIFICATION AND PERFORMANCE RESULTS

Proposed ESN network with optimised hyper parameter is
trained with original training dataset stacked with its aug-
mented versions. Average training and validation accuracy
for the proposed model is 94.89% and 94% respectively. In
the Fig. 5 confusion matrix of the ESN model is showed.
True labels are showed in Y axis and predicted labels are
showed in X axis. Areas closer to the data collecting points
are indicated by larger numbers. From confusion matrix it is
evident that pencil drop points closer to the data collection
point are more accurately classified whereas error rates are
quite large for the distant areas from data collection areas.
Fig. 6 shows the classification error rate of all points along
with the average classification error rate. Propagation path
and charge sharing of grid causes this periodic error rate
relation with pencil drop areas. Effect of propagation path in
impact localization is a matter of future objective. Without
the use of data augmentation, there’s a risk of overfitting,
while the complexity of ESN models must be increased to
enhance accuracy. Moreover, by tweaking the value of some
hyperparameters like spectral radius, leakage accuracy can be
increased, however it will throw the model towards overfitting.

VIII. CONCLUSION

This research developed a tactile grid sensor utilizing inkjet
printing technology and silver nanoparticle ink. Printed onto
PET film using a standard office printer, the sensor’s simple
crossbar grid design enables the capture of time series data
from pencil impact tests, with impacts occurring at random
grid locations. The collected data is processed by an ESN to
classify the location of each impact. To train the ESN, the orig-
inal time series signal is augmented with time and magnitude
domain transformations, enhancing the model’s resilience to
real-world signal distortions, such as noise caused by sensor
movement. The grid design converts the sensory input into
a multidimensional signal. Hyperparameter optimization for



the ESN is performed through sequential searches within uni-
form and log-uniform distributions, fine-tuning the network’s
performance. By integrating inkjet printed sensor technology
with artificial intelligence, this study overcomes the typical
efficiency constraints of conventional inkjet printed sensors.
The resulting sensor is not only cost-effective and versatile but
also suitable for an array of uses, including structural health
monitoring in infrastructure, automobile industry and robotics.
The sensor’s adaptability is particularly beneficial for creating
personalized wearable monitoring and damage tracking in
automobile, with the flexibility to conform to non-uniform
surfaces, such as the inside of a helmet or any protective gear,
to measure impact force and exposure accurately.
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