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Abstract
We investigate a micro-scale model of superfluidity derived by Pitaevskii (1959
Sov. Phys. JETP 8 282–7) to describe the interacting dynamics between the
superfluid and normal fluid phases of Helium-4. The model involves the non-
linear Schrödinger equation (NLS) and the Navier–Stokes equations, coupled
to each other via a bidirectional nonlinear relaxation mechanism. Depending on
the nature of the nonlinearity in the NLS, we prove global/almost global exist-
ence of solutions to this system in T

2—strong in wavefunction and velocity,
and weak in density.
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1. Introduction

Superfluids constitute a phase of matter that is achieved when certain substances are isobar-
ically cooled, resulting in Bose–Einstein condensation. That Helium-4 (and also its isotope
Helium-3) undergoes such a quantum mechanical phase transition was first experimentally
discovered [Kap38, AM38] over 80 years ago and has been the subject of intense inquiry ever
since. Despite this, a single theory that describes the phenomenon continues to elude us.

The general picture is that at non-zero temperatures, there is a mixture of two interacting
phases: the normal fluid and the superfluid [PL11, Vin04, Vin06, BSS14, BDV01, BLR14].
It is important to note that this is not like classical multiphase flow, where one can define a
clear boundary between the two phases. Instead, some atoms are in the normal fluid phase,
and some are in the superfluid phase, with both fluids occupying the entire volume. The nor-
mal fluid is well-modelled by the Navier–Stokes equations (NSE), while the description of
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the superfluid varies by the length scale that we are interested in (see [BBP14, Jay22] for a
discussion). Briefly, the superfluid is described by the NSE at large scales [Hol01], a vortex
model at intermediate scales [Sch78, Sch85, Sch88], and the nonlinear Schrödinger equation
(NLS) at small scales [Kha69, Car96]. The macro-scale, NSE-based description is a current
topic of numerical research [VSBP19, RBL09, SRL11], and has also been rigorously analysed
[JT21]. In this paper, we use the micro-scale, NLS-based model by Pitaevskii [Pit59], which
has previously been considered in [JT22a, JT22b].

A missing piece of the physics puzzle here is the nature of the interaction mechanism. It is
known that the interaction between the fluids is dissipative/retarding. Pitaevskii thus derived
a micro-scale model that intertwines the NLS (for the superfluid) and the NSE (for the nor-
mal fluid). The coupling is nonlinear, bidirectional and transfers mass, momentum, and energy
between the two fluids. For the combined system of both phases, the model respects the con-
servation of total mass and total momentum, while the total energy decreases in accordance
with the dissipation.

The NLS, in its most popular form, is fundamentally a dispersive partial differential
equation with a cubic nonlinearity that models systems with low-energy wave interactions,
such as dipolar quantum gases [CMS08, Soh11]. The well-posedness issues of NLS have been
tackled in many situations [CKS+], and its scattering solutions [Tao06, Dod16] have been of
particular interest. The NLS can also be recast as a system of compressible Euler equations
(referred to as quantum hydrodynamics or QHD) with an additional quantum pressure term
[CDS12]. This system is a special case of the more general Korteweg models, subject to much
mathematical analysis. Hattori and Li [HL94] showed that the 2D QHD equations are locally
well-posed for high-regularity data, and improved this to global well-posedness in the case
of small data [HL96]. Jüngel [JMR02] established local strong solutions to the QHD-Poisson
system, formed by including a potential governed by the Poisson equation. The same model
possesses local-in-time classical solutions in 1D when the data is highly regular [JL04]. For
initial conditions close to a stationary state, the solutions are global-in-time and converge expo-
nentially fast to the stationary state. Blow-up criteria have also been derived for QHD [WG20,
WG21]. While the discussion so far has focused on strong solutions, there has also been rising
interest in the weak formulation of QHD-like models. Antonelli and Marcati [AM09, AM12,
AM15] introduced the novel fractional step method in the pursuit of finite-energy global weak
solutions. The idea was to revert (from QHD) to NLS, which was easier to solve, and account
for collision-induced momentum transfer via periodic updates to the wavefunction. In this
process, the occurrence of quantum vortices could also be characterized by imposing irrota-
tionality of the velocity field (away from vacuum regions). Using special test functions that
permit better control of the quantum pressure term, Jüngel [Jün10] proved that the viscous
QHD system admits weak solutions in 2D. For small values of viscosity, these solutions were
global in time. The proof utilized a redefinition of the velocity that converts the hyperbolic con-
tinuity equation into a parabolic one, a technique that was pioneered by Bresch and Desjardins
[BD04] for Korteweg systems in general. Vasseur and Yu [VY16b] expanded Jüngel’s result
to a wider class of test functions while adding some physically-motivated drag terms. Various
forms of damping have appeared in the literature, primarily serving two different roles: (i) as
an approximating scheme for both the compressible Navier–Stokes with degenerate viscosities
[LX15, VY16a] as well as Korteweg-type systems [AS17, ACLS20, AS22], and (ii) as a means
of proving global existence [Cha22] or relaxation to a steady state [BGLVV22, SYZ22]. Most
works involving Korteweg systems use the notion of κ-entropy that was first demonstrated
in [BDZ15]. Furthermore, even questions of non-uniqueness (and weak-strong uniqueness)
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of weak solutions have been addressed for the QHD-Poisson system with linear drag using
convex integration [DFM15].

It is only at absolute zero temperature that superfluids can be well-approximated by the
use of the NLS alone. For temperatures above zero and below about 2.17K, we have a mix-
ture of both fluids. In this article, we consider Pitaevskii’s model [Pit59] which couples the
NLS and the NSE. The model was initially derived for a fully compressible normal fluid.
While compressible fluids are more realistic in some scenarios, they are also much more chal-
lenging to both rigorously analyse and numerically simulate. [Fei04, Lio96a] contain several
classical results on the compressible NSE. On the other hand, the incompressible NSE (no
density equation) is arguably the most studied nonlinear partial differential equation in math-
ematics (see [Tem77, MB02, RRS16] for classical results). In this article, we approximate
the normal fluid to be incompressible, but the density persists, varying from point to point
in the flow domain. What results is an incompressible, inhomogeneous flow: compressible
NSE appended with the condition of divergence-free velocity. This model of fluids was first
investigated by Kazhikov for local weak solutions when the initial density is bounded from
below [Kaz74], and vacuum states were allowed in an improvement by Kim [Kim87]. Further
advances for weak solutions were made by Simon [Sim90], who in particular analysed their
continuity at t= 0, and also proved the existence of global solutions in a less regular space.
Meanwhile, Ladyzhenskaya and Solonnikov [LS78] presented the case for strong solutions:
With the density bounded from below, it is possible to construct local (global) unique solu-
tions in 3D (2D). Furthermore, if the data is small enough, one obtains global-in-time unique
solutions. Results in the same spirit were proven by Danchin for small perturbations from the
stationary state in critical Besov spaces [Dan03]. He further established the inviscid limit of
the incompressible inhomogeneous NSE in subcritical spaces [Dan06]. The local existence
theorem by Ladyzhenskaya and Solonnikov was shown to be valid for non-negative densities
as long as the initial data satisfied a compatibility criterion [CK03]. This work by Choe and
Kim has since spurred on several other results that utilize such compatibility conditions on the
initial data.

Given the immense interest in the NLS and NSE, the rigorous study of a coupled system
should be a natural next step. Indeed, one such two-fluid model of superfluidity was analysed
by Antonelli andMarcati in [AM15]. The superfluid was described by the NLS, and the normal
fluid by the compressible NSE. This is similar to the system considered in this article, save for
two key differences. Firstly, their model did not permit anymass transfer between the two fluids
(which allows for global-in-time solutions). Aswe shall discuss, this is the biggest roadblock in
Pitaevskii’s model and essentially defines the strategy used. Secondly, the momentum transfer
in their model is unidirectional and linear, affecting only the superfluid phase (as opposed to
the bidirectional and nonlinear nature of the coupling in this work).

Thanks to the retarding interactions between the two phases, the NLS acquires a dissipat-
ive flavour and renders it parabolic. This lets us extract dissipative contributions to the energy
estimates. To analyse the momentum equation of the NSE, we work with initial velocity inH1

d.
This yields appropriate regularity for the velocity, in order to adequately control the relaxa-
tion mechanism which contains quadratic terms in the velocity. Parting ways from [Kim87],
we begin with an initial density field that is bounded from below. This is necessary since
the continuity equation is unusual and is not a homogeneous transport equation. Our primary
goal is to avoid the occurrence of zero or negative densities at any time. To this end, we
must limit the effect of inhomogeneity, which is the relaxation mechanism that allows for
mass and momentum transfer between the two fluids. As a serendipitous by-product of this
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non-zero density field, we also obtain control of ‖∂tu‖L2
t L2

x
, which allows the use of compact-

ness arguments to actually obtain strong continuity in time of the velocity field.
The crux of this work is to derive a priori estimates and carefully extract coercive terms that

allow for norms to decay, while avoiding any derivatives on the density of the normal fluid. To
engineer this decay, we include a linear drag term for the NSE. Additionally, we also present
results for any polynomial-type nonlinearity in the NLS. We now mention the notation used
in the article before describing the model and stating the results.

1.1. Notation

We denote by Hs(T2) the completion of C∞(T2) under the Sobolev norm Hs, while we use
Ḣs(T2)when referring to the homogeneous Sobolev spaces. Consider a 2D vector-valued func-
tion u≡ (u1,u2), where ui ∈ C∞(T2) for i = 1,2. The set of all divergence-free, smooth 2D
functions u defines C∞

d (T2). Then, Hs
d(T

2) is the completion of C∞
d (T2) under the Hs norm.

The L2 inner product, denoted by 〈·, ·〉, is sesquilinear (the first argument is complex conjug-
ated, indicated by an overbar) to accommodate the complex nature of the Schrödinger equation,
i.e. 〈ψ,φ〉 :=

´

T2 ψ̄φ dx. Since the velocity and density are real-valued functions, we ignore
the complex conjugation when they constitute the first argument of the inner product.

We use the subscript x to denote Banach spaces that are defined over T2. For instance,
Lpx := Lp(T2) andHs

d,x := Hs
d(T

2). For spaces/norms over time, the subscript t denotes the time
interval in consideration, such as Lpt := Lp[0,t]. The Bochner spaces Lp(0,T;X) and C([0,T];X)
have their usual meanings, as Lp and continuous maps (respectively) from [0,T] to a Banach
space X.

We also use the notation X≲ Y and X≳ Y to imply that there exists a positive constant C
such that X⩽ CY and CX⩾ Y, respectively. When appropriate, the dependence of the con-
stant on various parameters shall be denoted using a subscript as X≲k1,k2 Y or X⩽ Ck1,k2Y.
Throughout the article, C is used to denote a (possibly large) constant that depends on the sys-
tem parameters listed in (2.4), while κ and ε are used to represent (small) positive numbers.
The values of C, κ, and ε can vary across the different steps of calculations.

1.2. Organization of the paper

In section 2, we present and discuss the mathematical model, along with statements of the main
results. Several a priori estimates, at increasing levels of regularity, are derived in section 3.
The construction of the semi-Galerkin scheme and the renormalization of the density are dis-
cussed in section 4.

2. Mathematical model and main results

The superfluid phase is described by a complex wavefunction, whose dynamics are governed
by the NLS, while the normal fluid is modelled using the compressible NSEs. In all gener-
ality, the full set of equations can be found in [Pit59, section 2]. In what follows, we use a
slightly simplified and modified version of the equations, arrived at by making the following
assumptions.
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(1) We consider a general power-law nonlinearity for the NLS. This is done by choosing the
internal energy density of the system to be 2µ

p+2 |ψ |p+2, for 1⩽ p<∞ (see remark 2.5).
We also assume that the internal energy is independent of the density of the normal fluid.

(2) We work in the limit of a divergence-free normal fluid velocity. This means that the pres-
sure is a Lagrange multiplier, rendering the equations of state and entropy unnecessary.
Note that, due to the nature of the coupling between the two phases, the density of the
normal fluid is not simply transported.

(3) A linear drag term has been included in the momentum equation to account for the lack of
coercive estimates for the velocity.

(4) Planck’s constant (ℏ) and the mass of the Helium atom (m) have both been set to unity for
simplicity.

We now state the equations used in this paper:

∂tψ +λBψ =− 1
2i
∆ψ +

µ

i
|ψ|pψ (NLS)

B=
1
2
(−i∇− u)2 +µ|ψ |p =−1

2
∆+

1
2
|u|2 + iu · ∇+µ|ψ |p (CPL)

∂tρ+∇· (ρu) = 2λ Re
(

ψ̄Bψ
)

(CON)

∂t (ρu)+∇· (ρu⊗ u)+∇q− ν∆u+αρu=−2λIm
(

∇ψ̄Bψ
)

+λ∇Im
(

ψ̄Bψ
)

+
µ

2
∇|ψ|p+2

(NSE)

∇· u= 0. (DIV)

Here, ψ is the wavefunction describing the superfluid phase, while ρ, u, and q are the density,
velocity and pressure (respectively) of the normal fluid. The normal fluid has viscosity ν and
drag coefficient α, while µ (positive constant) is the strength of the scattering interactions
within the superfluid1. This scattering nonlinearity has an exponent p ∈ [1,∞). Finally, λ is a
positive constant that indicates the coupling strength between the two phases. The coupling is
denoted by the nonlinear operator B.

The Schrödinger equation dictates the evolution of the wavefunction, generated via the
action of the Hamiltonian (roughly, the energy) of the system. The coupling B resembles the
relative kinetic energy2 between the two phases. This is evident upon recalling that the quantum
mechanical momentum operator (in the position basis) is −iℏ∇. The purpose of this coupling
is to allow for mass/momentum transfer between the two phases as a means of relaxation or
dissipation.

These equations are supplemented with the initial conditions

ψ (0,x) = ψ0 (x) , u(0,x) = u0 (x) , ρ(0,x) = ρ0 (x) a.e. x ∈ T
2. (INI)

We use periodic boundary conditions, i.e. we are working on the two-dimensional torus [0,1]2.

1 µ> 0 (resp. µ< 0) is called the defocusing (resp. focusing) NLS.
2 There is also the nonlinear wavefunction term, so that the relaxation to equilibrium also depends on the potential
energy of the superfluid.
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2.1. Weak solutions and the existence theorems

Having stated the model, the notion of weak solutions to (NLS), (NSE), (CON), and (DIV)
(with initial conditions (INI) and periodic boundary conditions), henceforth referred to as the
Pitaevskii model, is as follows.

Definition 2.1 (weak solutions3). For a given time T > 0, a triplet (ψ,u,ρ) is called a weak
solution to the Pitaevskii model if the following conditions hold.

(i) ψ ∈ L∞([0,T];H2(T2))∩ L2(0,T;H3(T2)), u ∈ L∞([0,T];H1
d(T

2))∩ L2(0,T;H2
d(T

2)),
and ρ ∈ L∞([0,T]×T

2), and
(ii) ψ, u, and ρ satisfy the governing equations in the sense of distributions, i.e. for all test

functions φ, Φ, and σ described below, we have

−
ˆ T

0

ˆ

T2

(

ψ∂tφ̄+
1
2i
∇ψ · ∇φ̄−λφ̄Bψ − iµφ̄|ψ |pψ

)

dx dt

=

ˆ

T2

(ψ0φ̄(0)−ψ (T) φ̄(T))dx,

(2.1)

with

−
ˆ T

0

ˆ

T2

(

ρu · ∂tΦ + ρu⊗ u :∇Φ − ν∇u :∇Φ − 2λΦ · Im
(

∇ψ̄Bψ
)

+αρu ·Φ
)

dx dt

=

ˆ

T2

(ρ0u0Φ(0)− ρ(T)u(T)Φ(T))dx (2.2)

and

−
ˆ T

0

ˆ

T2

(

ρ∂tσ+ ρu · ∇σ+ 2λσ Re
(

ψ̄Bψ
))

dx dt=
ˆ

T2

(ρ0σ (0)− ρ(T)σ (T))dx,

(2.3)

where ψ0 ∈ H2(T2), u0 ∈ H1
d(T

2) and ρ0 ∈ L∞(T2) are the initial data. The test functions
are:
(a) a complex-valued scalar field φ ∈ H1(0,T;L2(T2))∩ L2(0,T;H1(T2)),
(b) a real-valued, divergence-free (2D) vector field Φ ∈ H1(0,T;L2

d(T
2))∩

L2(0,T;H1
d(T

2)), and
(c) a real-valued scalar field σ ∈ H1(0,T;L2(T2))∩ L2(0,T;H1(T2)).

Remark 2.2. We note that the last two terms in (NSE) are gradients, just like the pressure term,
and thus vanish in the definition of the weak solution (since the test function is divergence-
free). Henceforth, we absorb these two gradient terms into the pressure, relabeling the new
pressure as q.

We are now ready to state our main results.

3 See remark 2.6.
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Theorem 2.3 (global existence). Fix any p ∈ [1,4), and let ψ0 ∈ H
5
2 (T2) with u0 ∈ H1

d(T
2).

Suppose 0< mi ⩽ ρ0 ⩽Mi <∞ a.e. in T2. Then, there exist a global weak solution (ψ,u,ρ)
to the Pitaevskii model such that the density is bounded between mf ∈ (0,mi) and Mf :=Mi +
mi −mf, if the initial data satisfy the smallness criterion

‖ψ0‖
H

5
2
x

+ ‖u0‖H1
x
+ ‖ψ0‖Lp+2

x
⩽ ε0 (λ,µ,ν,mi,Mi,mf,α,p) . (2.4)

Also, the solution has the regularity

ψ ∈ C([0,∞);H
5
2 (T2))∩ L2(0,∞;H

7
2 (T2)), (2.5)

u ∈ C([0,∞);H1
d(T

2))∩ L2(0,∞;H2
d(T

2)), (2.6)

ρ ∈ L∞([0,∞)×T
2)∩C([0,∞);Lr(T2)), (2.7)

for 1⩽ r<∞. Additionally, the solution also satisfies the energy equality

1
2
‖
√

ρ(t)u(t)‖2L2
x
+

1
2
‖∇ψ(t)‖2L2

x
+

2µ
p+ 2

‖ψ(t)‖p+2

Lp+2
x

+ ν‖∇u‖2L2
[0,t]L

2
x
+α‖√ρu‖2L2

[0,t]L
2
x
+ 2λ‖Bψ‖2L2

[0,t]L
2
x

=
1
2
‖√ρ0u0‖2L2

x
+

1
2
‖∇ψ0‖2L2

x
+

2µ
p+ 2

‖ψ0‖p+2

Lp+2
x

a.e. t ∈ [0,∞).

(2.8)

For the case of higher-order nonlinearities, i.e. when p⩾ 4, we obtain ‘almost global’
existence.

Theorem 2.4 (almost global existence). In the case of p= 4, the solution to the Pitaevskii
model has the same regularity properties as in theorem 2.3, except that their existence is guar-
anteed on [0,T] such that T∼ exp(ε−

1
2 ), where ε is the size of the (sufficiently small) initial

data.
For p> 4, the existence time scales polynomially with the size of the data, as T∼ ε−

p
p−4 . In

both cases, these solutions also satisfy the energy equality on [0,T].

While deriving the a priori estimates, we have to distinguish between the cases 1⩽ p< 2,
p= 2, 2< p< 4, p= 4, and p> 4. This is due to the poor control we have on the superfluid
mass. Given that we are on T

2, and our equations do not preserve functions with vanishing
mean, the L2 norm becomes the limiting factor even in the decay of higher norms. In the case
of the wavefunction, this corresponds to the mass of the superfluid. Similarly, for the velocity,
we do not get coercive estimates from the viscosity term alone, at least at the level of the kinetic
energy estimate. Thus, we introduce a linear drag term.

Remark 2.5. Since the self-interaction term in (NLS) involves a discontinuity due to the com-
plex magnitude, evaluating the H2 norm as in (3.51) requires p⩾ 1. In particular, points of
superfluid vacuum (ψ = 0) may lead to problems. As an illustration, consider D2 (|f |pf) for a
real-valued function f, which can be regularized as D2

(

( f2 + ε)
p
2 f
)

. Upon differentiation, the
most problematic term is ( f2 + ε)

p
2−2f 3(Df)2. To be able to handle this term in the limit ε→ 0,

at the points where f = 0, we require that 2
( p
2 − 2

)

+ 3= p− 1⩾ 0. This argument can be
easily extended to a complex-valued function.

Remark 2.6. The regularity of the solutions seem to suggest that thewavefunction and velocity
are strong solutions. Indeed this is true, as they are strongly continuous in their topologies. On

8



Nonlinearity 37 (2024) 065009 J Jang et al

the other hand, the density is truly a weak solution and is the reason for referring to the triplet
as a weak solution. This low regularity of the density influences the nature of the calculations
that are employed.

The proofs of both theorems 2.3 and 2.4 follow from detailed a priori estimates, and a
semi-Galerkin scheme to construct the solutions. The a priori estimates only differ slightly for
various ranges of the values of p, as will be illustrated. The general approach to the problem
is motivated by that of [Kim87], but we do not allow the density to vanish anywhere. This
is because the presence of u in the nonlinear coupling means we are required to control it
in L∞(T2) to prevent the formation of vacuum (and regions of negative density). Beginning
from the usual mass and energy estimates, we derive a hierarchy of several energies for the
wavefunction and velocity.

2.2. Significance of the results

The holy grail of superfluid modelling is to find a unified description that works at all length
scales, and rigorous validation of any proposed models is crucial to this process. The thrust of
this paper is the analysis of Pitaevskii’s description of superfluidity, the most important feature
of which is to characterize themass transfer between the two fluids. In the course of proving the
main theorems, we quantify the conversion of superfluid into normal fluid (lemma 3.1), con-
firming the interaction-induced relaxation mechanism. We establish the validity of the model
in the limit t→∞ even as the superfluid mass decreases (polynomially) quickly. The trans-
ition in the behaviour of the solutions, from global to almost-global, as the self-interactions are
increased in strength, is in accordance with the decreasing mass decay. However, the threshold
p= 4 still begs for a physical explanation. Of the assumptions underlying our theorems, relax-
ing the demands of small data and positive normal fluid density would be important future
advancements in the context of the Pitaevskii model.

The rigorous analysis of superfluid models is a fairly new topic, and we expect for this
work to pave the way for further results in this direction. Some questions of interest, particu-
larly of consequence to physicists and engineers, are the issues of stability and compressibility.
For example, in [Pit59], Pitaevskii investigated the propagation of sound waves in superfluid
Helium by studying the case when the superfluid has only small density gradients. It has to be
noted that his derivation of the model accounted for the contributions to the internal energy
of the system from both fluids. Thus, by utilizing appropriate self-interactions (for instance,
non-local potentials, or including the normal fluid density), it would be important to test the
model against experimental findings. A mathematical guarantee of the existence of solutions
to the Pitaevskii model is essential to complement the efforts to numerically simulate such
complicated systems [BSZ+23]. It is worth mentioning that a better understanding of super-
fluidity could be revolutionary to most modern experiments in physics (including the Large
Hadron Collider [Leb94, RM18]), and also to the fields of quantum computing [HDT21], grav-
itational wave astronomy [SDLPS17], and dark matter [vKEE+23]. All of these use helium as
a cryogen, often as a superfluid-normal fluid mixture due to the superfluid’s excellent thermal
conductivity [Vin04].

2.3. The strategy

The nonlinear coupling terms in (NLS) and (NSE) may be the most obvious differences
between this model and other standard fluid dynamics models, but the source term in (CON)
is the most troublesome. The backbone of our approach towards proving global existence is

9
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ensuring a positive lower bound for the density at all times. This involves a meticulous hand-
ling of the a priori estimates so as to obtain coercive terms that lead to global-in-time bounds.
Throughout the calculations, we ensure that the density norms are only in Lebesgue spaces: ρ
is not smooth enough to be differentiated (even weakly). Before we outline the strategy, we
discuss some properties of the coupling operator B. Henceforth, we refer to the linear (in ψ)
part of B as BL. Thus,

BL = B−µ|ψ|p =−1
2
∆+

1
2
|u|2 + iu · ∇. (2.9)

Lemma 2.7 (BL is symmetric and B is coercive). We have

(1) 〈ϕ,BLψ 〉= 〈BLϕ,ψ 〉 for all ϕ,ψ ∈ H1(T2),
(2) Re〈ψ,Bψ 〉⩾ µ‖ψ‖p+2

Lp+2
x

for all ψ ∈ H1(T2).

Proof. Both calculations follow using integration by parts.

(1) By (2.9) and incompressibility of u, we have

〈ϕ,BLψ 〉=
ˆ

T2

ϕ̄BLψ =

ˆ

T2

ϕ̄

[

−1
2
∆ψ +

1
2
|u|2ψ + iu · ∇ψ

]

=

ˆ

T2

[

−1
2
∆ϕ̄+

1
2
|u|2ϕ̄− iu · ∇ϕ̄

]

ψ =

ˆ

T2

(

BLϕ
)

ψ = 〈BLϕ,ψ 〉.

(2) Similarly,

Re〈ψ,Bψ 〉= Re
ˆ

T2

ψ̄Bψ = Re
ˆ

T2

ψ̄

[

−1
2
∆ψ +

1
2
|u|2ψ + iu · ∇ψ +µ|ψ|pψ

]

=
1
2
‖∇ψ‖2L2

x
+

1
2

ˆ

T2

|u|2|ψ|2 − Im
ˆ

T2

uψ̄ · ∇ψ +µ‖ψ‖p+2

Lp+2
x

⩾ µ‖ψ‖p+2

Lp+2
x
.

In the last inequality, we used Hölder’s and Young’s inequalities to cancel the third term
with the first two terms:

−Im
ˆ

T2

uψ̄ · ∇ψ ⩾−1
2
‖uψ‖2L2

x
− 1

2
‖∇ψ‖2L2

x
.

Remark 2.8. Given that B provides a relaxation mechanism, it is tempting to treat it, or at
least its linear part BL, as a dissipative second-order elliptic operator whose eigenfunctions
can be used as a basis for the semi-Galerkin scheme. Even though BL is symmetric and has
a non-negative real part, this cannot work since it has time-dependent coefficients, and so its
eigenvalues and eigenfunctions also depend on time. Moreover, BL does not have a spectral
gap at 0. Its eigenvalues are not known to be bounded from below by a positive number.

Thus, by integrating (CON) over T2, the advective term vanishes and using lemma 2.7, we
have

d
dt

ˆ

T2

ρ dx= 2λ Re
ˆ

T2

ψ̄Bψ ⩾ 0. (2.10)

10
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This implies that the overall mass of the normal fluid does not decrease with time. Put differ-
ently, the coupling causes superfluid to be converted into normal fluid, on average. However,
the RHS of (CON) need not be non-negative pointwise in T

2. So it is not inconceivable that
the density of the normal fluid may locally vanish, or even take negative values! To prevent
physically unrealistic density fields, and because our estimates require a strictly positive dens-
ity, we fix a positive lower bound for ρ. Based on this, we define our existence time T, so that
ρ does not drop below the lower bound until time T. Our goal is to show that this lower bound
can be maintained for arbitrarily long, provided we begin from sufficiently small data.

Definition 2.9 (existence time). Start with an initial density field 0< mi ≤ ρ0(x)⩽Mi <∞.
Given 0< mf < mi, we define the existence time for the solution as

T∗ := inf

{

t> 0 | inf
T2
ρ(t,x) = mf

}

. (2.11)

A formal solution to the continuity equation can be written using the method of character-
istics. Let Xα(t) be the characteristic starting at α ∈ T

2. To wit, the characteristic solves the
differential equation

d
dt
Xy (t) = u(t,Xy (t))

Xy (0) = y ∈ T
2.

(2.12)

Here, u is the velocity of the normal fluid. So, along such characteristics,

ρ(t,Xy (t)) = ρ0 (y)+ 2λ Re
ˆ t

0
ψ̄Bψ (τ,Xy (τ)) dτ. (2.13)

From (2.11) and (2.13), it is clear that a sufficient condition to ensure the density is bounded
from below by mf is

2λ
ˆ T

0
|ψ̄Bψ|(τ,Xy (τ)) dτ ⩽ mi−mf, (2.14)

for all T⩽ T∗. This can in turn be ensured through the sufficiency

2λ‖ψ‖L2
[0,T]L

∞
x
‖Bψ‖L2

[0,T]L
∞
x

⩽ mi−mf. (2.15)

So, we are looking to show that (2.15)—actually a stronger version of it—holds irrespective
of T, so that we can conclude that the density is always greater than mf. This is achieved by
selecting small enough data, and allows us to deduce the global existence of solutions. Since
Bψ involves a second-order derivative, its L∞x boundedness leads us to high-regularity spaces.
The momentum equation (NSE) is used to estimate ‖u‖L2

t H2
x
and ‖u‖L2

t H1
x
, which are useful in

handling parts of ‖Bψ‖L∞x . As a by-product of these calculations, we are also able to bound
‖∂tu‖L2

t L2
x
, which plays a part in the compactness arguments for the strong time-continuity of u.

The Schrödinger equation (NLS) is used to derive increasingly higher-order a priori estimates
of ψ. In all these calculations, we work with density that is only in L∞x .

3. A priori estimates

Throughout this section, we derive the required a priori estimates, using formal calculations.
We assume the wavefunction and velocity are smooth functions and that the density is bounded
from below by mf > 0 in [0,T]. Here, T is any time less than the local existence time T∗, and
is extended to global existence in section 3.5.

11
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3.1. Superfluid mass estimate

Lemma 3.1 (Algebraic decay rate of superfluid mass). The mass of the superfluid

S(t) := ‖ψ (t)‖2L2
x

decays algebraically in time as (1+ t)−
2
p , and is bounded from above by the initial mass S0.

Proof. Multiplying (NLS) by ψ̄, taking the real part, and integrating over T2 gives

1
2
d
dt
‖ψ‖2L2

x
+λ

ˆ

T2

Re
(

ψ̄Bψ
)

= 0. (3.1)

The Laplacian term on the RHS of (NLS) vanishes using integration by parts. By lemma 2.7,
the second term in (3.1) is bounded from below by the Lp+2

x norm, so we get

1
2
d
dt
‖ψ‖2L2

x
+λµ‖ψ‖p+2

Lp+2
x

⩽ 0. (3.2)

Since we are in a domain of unit volume, Hölder’s inequality leads to

d
dt

1
2
‖ψ‖2L2

x
+λµ‖ψ‖p+2

L2
x

⩽ 0. (3.3)

It is now easy to conclude that the mass of superfluid (using the quantum mechanical inter-
pretation of the wavefunction) decays algebraically in time. Namely,

S(t) = ‖ψ (t)‖2L2
x
≲

S0
(

1+ S
p
2
0 t
)

2
p

, t ∈ [0,T] , (3.4)

where S0 := ‖ψ0‖2L2
x
is the initial mass of the superfluid.

3.2. Energy estimate

In this subsection (section 3.2), we derive the governing equations for the energy

E(t) :=
1
2
‖
√

ρ(t)u(t)‖2L2
x
+

1
2
‖∇ψ (t)‖2L2

x
+

2µ
p+ 2

‖ψ (t)‖p+2

Lp+2
x
. (3.5)

In section 3.3, we work with a higher-order energy X(t), combining it with E(t) in section 3.3.3.
We begin by acting with the gradient operator on (NLS), multiplying by ∇ψ̄, and taking the
real part. This gives

1
2
∂t|∇ψ |2 =−1

2
Im
(

∇ψ̄ · ∇∆ψ
)

−λ Re
(

∇ψ̄ · ∇(Bψ)
)

−µ∇|ψ |p · Im
(

ψ̄∇ψ
)

.

Integrating over T2, we observe that the first term on the RHS vanishes upon integration by
parts due to the periodic boundary conditions. The second term on the RHS is similarly integ-
rated by parts to yield

1
2
d
dt
‖∇ψ‖2L2

x
= λ Re

ˆ

T2

∆ψ̄Bψ −µIm
ˆ

T2

∇|ψ |p · ψ̄∇ψ. (3.6)

12
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Now, we rewrite the first term on the RHS by expressing the Laplacian in terms of the operator
B, giving us a dissipative contribution to the energy estimate. Namely,

λ Re
ˆ

T2

∆ψ̄Bψ =−2λ Re
ˆ

T2

(

Bψ− 1
2
|u|2ψ̄+ iu · ∇ψ̄−µ|ψ |pψ̄

)

Bψ

=−2λ‖Bψ‖2L2
x
+λ

ˆ

T2

|u|2 Re
(

ψ̄Bψ
)

+ 2λ
ˆ

T2

u · Im
(

∇ψ̄Bψ
)

+ 2µλ
ˆ

T2

|ψ |p Re
(

ψ̄Bψ
)

.

(3.7)

We also have to account for the potential (self-interaction) energy of the wavefunction. To
obtain this, we multiply (NLS) by 2ψ̄ and take the real part to obtain

∂t|ψ |2 +∇· Im
(

ψ̄∇ψ
)

=−2λ Re
(

ψ̄Bψ
)

.

Multiplying the above equation with µ|ψ |p and integrating over T2 leads to

2µ
p+ 2

d
dt
‖ψ‖p+2

Lp+2
x

−µ

ˆ

T2

Im
(

ψ̄∇ψ
)

· ∇|ψ |p =−2µλ
ˆ

T2

|ψ |p Re
(

ψ̄Bψ
)

. (3.8)

Combining (3.6)–(3.8) gives the energy equation for the superfluid,

d
dt

(

1
2
∥∇ψ∥2L2

x
+

2µ
p+ 2

∥ψ∥p+2

Lp+2
x

)

+ 2λ∥Bψ∥2L2
x
= λ

ˆ

T2
|u|2 Re

(

ψ̄Bψ
)

+ 2λ
ˆ

T2
u · Im

(

∇ψ̄Bψ
)

.

(3.9)

The terms on the RHS are cancelled once we include the energy of the normal fluid. We first
rewrite (NSE) in the non-conservative form, and apply the Leray projector (see remark 2.2) to
get

P (ρ∂tu+ ρu · ∇u− ν∆u+αρu) = P
(

−2λIm
(

∇ψ̄Bψ
)

− 2λu Re
(

ψ̄Bψ
))

. (NSE’)

Here, P is the Leray projector, which projects a Hilbert space into its divergence-free sub-
space, thus removing any purely gradient terms. We also apply the Leray projector to (NSE) to
obtain

P (∂t (ρu)+∇· (ρu⊗ u)− ν∆u+αρu) = P
(

−2λIm
(

∇ψ̄Bψ
))

. (NSE-L)

Taking the inner product of both (NSE’) and (NSE-L) with u, using incompressibility, and
adding them, we arrive at the energy equation for the normal fluid,

1
2

d
dt
∥√ρu∥2L2

x
+ ν∥∇u∥2L2

x
+α∥√ρu∥2L2

x
=−2λ

ˆ

T2
u · Im

(

∇ψ̄Bψ
)

−λ

ˆ

T2
|u|2 Re

(

ψ̄Bψ
)

. (3.10)

Therefore, by adding (3.9) and (3.10), we obtain the energy equation

dE
dt

+ ν‖∇u‖2L2
x
+α‖√ρu‖2L2

x
+ 2λ‖Bψ‖2L2

x
= 0. (3.11)

Thus, the energy is bounded from above as

E(t)+ ν‖∇u‖2L2
[0,T]L

2
x
+α‖√ρu‖2L2

[0,T]L
2
x
+ 2λ‖Bψ‖2L2

[0,T]L
2
x

= E0, t ∈ [0,T] , (3.12)

with

E0 :=
1
2
‖√ρ0u0‖2L2

x
+

1
2
‖∇ψ0‖2L2

x
+

2µ
p+ 2

‖ψ0‖p+2

Lp+2
x

(3.13)

13
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denoting the initial energy of the system. Next, we wish to show that the energy actually decays
algebraically in time, under a certain smallness condition on the initial data. First, note that

ˆ

T2

|ψ |p Re
(

ψBLψ
)

= Re
ˆ

T2

|ψ |pψ
[

−1
2
∆ψ +

1
2
|u|2ψ + iu · ∇ψ

]

=
1
2

ˆ

T2

|ψ |p|∇ψ |2 + 1
4

ˆ

T2

∇|ψ |p · ∇|ψ |2 + 1
2

ˆ

T2

|u|2|ψ |p+2

−
ˆ

T2

|ψ |pu · Im
(

ψ∇ψ
)

=
1
2

ˆ

T2

|ψ |p|∇ψ |2 + 2p

(p+ 2)2
‖∇
(

|ψ | p2+1
)

‖2L2
x
+

1
2

ˆ

T2

|u|2|ψ |p+2

−
ˆ

T2

|ψ |pu · Im
(

ψ∇ψ
)

≳ ‖∇
(

|ψ | p2+1
)

‖2L2
x
,

where we used an argument similar to the one from the proof of lemma 2.7 to get the last
inequality. We now use (2.9) to see that

‖Bψ‖2L2
x
= ‖BLψ‖2L2

x
+µ2‖ψ‖2p+2

L2p+2
x

+ 2µ
ˆ

T2

|ψ |p Re
(

ψBLψ
)

⩾ ‖BLψ‖2L2
x
+µ2‖ψ‖2p+2

L2p+2
x

+
1
C
‖∇
(

|ψ | p2+1
)

‖2L2
x

⩾
1
8
‖D2ψ‖2L2

x
−C‖|u|2ψ‖2L2

x
−C‖u · ∇ψ‖2L2

x
+

1
C
‖ψ‖2p+2

L2p+2
x

+
1
C
‖∇
(

|ψ | p2+1
)

‖2L2
x
.

(3.14)

Combining (3.11) and (3.14), we get

dE
dt

+ ν‖∇u‖2L2
x
+α‖√ρu‖2L2

x
+
λ

4
‖D2ψ‖2L2

x
+

1
C
‖ψ‖2p+2

L2p+2
x

+
1
C
‖∇
(

|ψ | p2+1
)

‖2L2
x

≲ ‖|u|2ψ‖2L2
x
+ ‖u · ∇ψ‖2L2

x
=: I1 + I2.

(3.15)

We then bound the first term on the RHS using Hölder inequality and Gagliardo–Nirenberg
(GN) interpolation as

I1 ≲ ‖u‖4L6
x
‖ψ‖2L6

x
≲ ‖u‖

4
3

L2
x
‖u‖

8
3

H1
x
‖ψ‖2H1

x
. (3.16)

For the second term in (3.15), we interpolate the L3
x norm, while also applying the Hölder,

Poincaré, and Young inequalities, as well as the GN interpolation inequality, to get

I2 ≲ ‖u‖2L6
x
‖∇ψ‖2L3

x
≲ ‖u‖

2
3

L2
x
‖u‖

4
3

H1
x
‖∇ψ‖L2

x
‖∇ψ‖L6

x

≲ ‖u‖
2
3

L2
x
‖u‖

4
3

H1
x
‖∇ψ‖

4
3

L2
x
‖D2ψ‖

2
3

L2
x
⩽ Cκ‖u‖L2

x
‖u‖2H1

x
‖∇ψ‖2L2

x
+κ‖D2ψ‖2L2

x

⩽ CκE
3
2
0 ‖

√
ρu‖2L2

x
+CκE

3
2
0 ‖∇u‖2L2

x
+κ‖D2ψ‖2L2

x
.

(3.17)

For sufficiently small values of κ and E0, the RHS of (3.17) can be absorbed into the LHS
of (3.15). We also use the Poincaré inequality to convert the last term on the LHS of (3.15)

14
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into a coercive term for the internal energy term 2µ
p+2‖ψ‖

p+2

Lp+2
x

in E(t). To this end, we observe

that

‖ψ‖p+2

Lp+2
x

⩽

∥

∥

∥

∥

|ψ | p2+1 −
ˆ

−T2 |ψ | p2+1

∥

∥

∥

∥

2

L2
x

+

∥

∥

∥

∥

ˆ

−T2 |ψ | p2+1

∥

∥

∥

∥

2

L2
x

≲ ‖∇
(

|ψ | p2+1
)

‖2L2
x
+ ‖ψ‖p+2

L
p
2 +1

⩽ C‖∇
(

|ψ | p2+1
)

‖2L2
x
+κ‖ψ‖p+2

Lp+2
x

+Cκ‖ψ‖p+2
L2
x
.

(3.18)

In the last inequality, we interpolated between the Lp+2
x and L2

x norms, which may be done
when p> 2. By choosing κ sufficiently small, we can absorb the second term on the RHS into
the LHS. For p⩽ 2, we can simply replace ‖ψ‖p+2

L
p
2 +1

by ‖ψ‖p+2
L2
x

since we are on a finite-size

domain. Thus, irrespective of the value of p, (3.15) becomes

dE
dt

+
1
C
‖∇u‖2L2

x
+

1
C
‖√ρu‖2L2

x
+

1
C
‖D2ψ‖2L2

x
+

1
C
‖ψ‖p+2

Lp+2
x

+
1
C
‖ψ‖2p+2

L2p+2
x

⩽ C‖ψ‖p+2
L2
x

+C‖u‖
4
3

L2
x
‖u‖

8
3

H1
x
‖ψ‖2H1

x
.

(3.19)

While we have the required coercive terms on the LHS, we cannot yet obtain a decay estimate
for E(t), since the second term on the RHS is out of reach using E only. In order to control it,
we set up an analogous inequality for a higher-order energy.

3.3. Higher-order energy estimate

In this subsection, we obtain further bounds for ψ and u, this time with one more derivative
than the energy E.

3.3.1. The Schrödinger equation. Similarly to the case of the energy equation, we act
upon (NLS) with the Laplacian −∆, multiply by −∆ψ̄, take the real part and integrate over
the domain to get

1
2
d
dt
‖∆ψ‖2L2

x
=−λ Re

ˆ

T2

(

∆2ψ̄
)

Bψ +µIm
ˆ

T2

(

∆2ψ̄
)

|ψ |pψ =: I3 + I4. (3.20)

Once again, the first term on the RHS of (NLS) vanishes due to the boundary conditions.
We now estimate the terms on the RHS of (3.20). For the first term,

I3 = λ Re
ˆ

T2

∇
(

∆ψ̄
)

· ∇(Bψ)

= λ Re
ˆ

T2

∇
(

∆ψ̄
)

· ∇
(

−1
2
∆ψ +

1
2
|u|2ψ + iu · ∇ψ +µ|ψ |pψ

)

=−λ
2
‖D3ψ‖2L2

x
+λ Re

ˆ

T2

∇
(

∆ψ̄
)

· ∇
(

1
2
|u|2ψ + iu · ∇ψ +µ|ψ |pψ

)

⩽−λ
4
‖D3ψ‖2L2

x
+C‖∇

(

|u|2ψ
)

‖2L2
x
+C‖∇(u · ∇ψ)‖2L2

x
+C‖∇(|ψ |pψ)‖2L2

x
,

which gives a dissipative term for ψ. For the term I4, we again integrate by parts, followed by
Hölder’s inequality to obtain

I4 =−µIm
ˆ

T2

∇
(

∆ψ̄
)

· ∇(|ψ |pψ)⩽ λ

8
‖D3ψ‖2L2

x
+C‖∇(|ψ |pψ)‖2L2

x
.
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Thus, (3.20) becomes

d
dt
‖∆ψ‖2L2

x
+

1
C
‖D3ψ‖2L2

x
≲ ‖∇

(

|u|2ψ
)

‖2L2
x
+ ‖∇(u · ∇ψ)‖2L2

x
+ ‖∇(|ψ |pψ )‖2L2

x

=: I5 + I6 + I7.
(3.21)

The first of these terms is bounded as

I5 ≲ ‖u‖2L6
x
‖∇u‖2L6

x
‖ψ‖2L6

x
+ ‖u‖4L6

x
‖∇ψ‖2L6

x

≲ ‖u‖
2
3

L2
x
‖u‖

4
3

H1
x
‖∇u‖

2
3

L2
x
‖∆u‖

4
3

L2
x
‖ψ‖2H1

x
+ ‖u‖

4
3

L2
x
‖u‖

8
3

H1
x
‖∇ψ‖

2
3

L2
x
‖∆ψ‖

4
3

L2
x

⩽ Cκ‖u‖2L2
x
‖u‖4H1

x
‖∇u‖2L2

x
‖ψ‖6H1

x
+κ‖∆u‖2L2

x
+C‖u‖

4
3

L2
x
‖u‖

8
3

H1
x
‖∇ψ‖

2
3

L2
x
‖∆ψ‖

4
3

L2
x
,

(3.22)

using the Poincaré and GN interpolation inequalities. We have also applied Young’s inequality
to extract out dissipative terms in the last step. We again use κ to denote a small number whose
value shall be fixed later on, and Cκ is a constant whose value depends on κ and the system
parameters. Similarly, for the second term on the RHS of (3.21), we have

I6 ≲ ‖∇u‖2L3
x
‖∇ψ‖2L6

x
+ ‖u‖2L6

x
‖D2ψ‖2L3

x

≲ ‖∇u‖
4
3

L2
x
‖D2u‖

2
3

L2
x
‖∇ψ‖

2
3

L2
x
‖D2ψ‖

4
3

L2
x
+ ‖u‖

2
3

L2
x
‖u‖

4
3

H1
x
‖∆ψ‖

4
3

L2
x
‖D3ψ‖

2
3

L2
x

⩽ Cκ‖∇u‖2L2
x
‖∇ψ‖L2

x
‖∆ψ‖2L2

x
+κ‖∆u‖2L2

x
+Cκ‖u‖L2

x
‖u‖2H1

x
‖∆ψ‖2L2

x
+κ‖D3ψ‖2L2

x
.

(3.23)

Finally, we apply the Sobolev embedding and Poincaré inequalities to bound I7. This leads
to

I7 ≲ ‖ψ‖2p
L2(p+1)
x

‖∇ψ‖2
L2(p+1)
x

≲ ‖ψ‖2pH1
x
‖∇ψ‖2H1

x
≲ ‖ψ‖2pH1

x
‖∆ψ‖2L2

x
. (3.24)

Combining all these inequalities into (3.21) results in

d
dt
∥∆ψ∥2L2

x
+

1
C
∥D3

ψ∥2L2
x

⩽ Cκ

(

∥u∥2L2
x
∥u∥4H1

x
∥∇u∥2L2

x
∥ψ∥6H1

x
+ ∥∇u∥2L2

x
∥∇ψ∥L2

x
∥∆ψ∥2L2

x
+ ∥u∥L2

x
∥u∥2H1

x
∥∆ψ∥2L2

x

)

+C∥u∥
4
3
L2
x
∥u∥

8
3
H1
x
∥∇ψ∥

2
3
L2
x
∥∆ψ∥

4
3
L2
x
+C∥ψ∥2pH1

x
∥∆ψ∥2L2

x
+κ∥∆u∥2L2

x
,

(3.25)

where we have absorbed κ‖D3ψ‖2L2
x
into the LHS with a sufficiently small κ.

3.3.2. The NSEs. We shall now derive a higher order estimate for the velocity field, which
shall be combined with (3.25). Starting with (NSE’), we first multiply it by ∂tu and integrate
over the domain to obtain
ˆ

T2

ρ|∂tu|2 +
ν

2
d
dt
‖∇u‖2L2

x
=−
ˆ

T2

ρ(u · ∇u) · ∂tu− 2λ
ˆ

T2

∂tu · Im
(

∇ψ̄Bψ
)

− 2λ
ˆ

T2

∂tu · u Re
(

ψ̄Bψ
)

−α

ˆ

T2

ρu · ∂tu

=: I8 + I9 + I10 + I11.

(3.26)

Recalling that mf ⩽ ρ⩽Mf =Mi+mi−mf, we control the RHS. For the first term,

I8 ⩽
1
8
‖√ρ∂tu‖2L2

x
+C
ˆ

T2

|u|2|∇u|2 ⩽ 1
8
‖√ρ∂tu‖2L2

x
+C‖u‖2L6

x
‖∇u‖2L3

x

⩽
1
8
‖√ρ∂tu‖2L2

x
+Cκ‖u‖L2

x
‖u‖2H1

x
‖∇u‖2L2

x
+κ‖∆u‖2L2

x
.
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In going to the last inequality, we used the GN interpolation and Poincaré inequalities.
Finally, Young’s inequality lets us extract the required dissipative term. For the second integral
in (3.26),

I9 ⩽
1
8
‖√ρ∂tu‖2L2

x
+C‖∇ψ‖2L6

x
‖Bψ‖2L3

x

⩽
1
8
‖√ρ∂tu‖2L2

x
+C‖∇ψ‖

2
3

L2
x
‖∆ψ‖

4
3

L2
x
‖Bψ‖

4
3

L2
x
‖Bψ‖

2
3

H1
x

⩽
1
8
‖√ρ∂tu‖2L2

x
+Cκ‖Bψ‖2L2

x

(

‖∇ψ‖
2
3

L2
x
‖∆ψ‖

4
3

L2
x
+ ‖∇ψ‖L2

x
‖∆ψ‖2L2

x

)

+κ‖∇(Bψ)‖2L2
x
,

where the Bψ term is handled via the GN interpolation and Young’s inequalities. In the third
integral in (3.26),

I10 ⩽
1
8
‖√ρ∂tu‖2L2

x
+C‖u‖2L6

x
‖ψ‖2L6

x
‖Bψ‖2L6

x

⩽
1
8
‖√ρ∂tu‖2L2

x
+Cκ‖Bψ‖2L2

x

(

‖u‖
2
3

L2
x
‖u‖

4
3

H1
x
‖ψ‖2H1

x
+ ‖u‖2L2

x
‖u‖4H1

x
‖ψ‖6H1

x

)

+κ‖∇(Bψ)‖2L2
x
,

where the term Bψ is handled just like in I9. Finally, for the last term in (3.26),

I11 =−α
2

ˆ

T2

ρ∂t|u|2 =−α
2

d
dt

ˆ

T2

ρ|u|2 + α

2

ˆ

T2

(∂tρ) |u|2

=−α
2
d
dt
‖√ρu‖2L2

x
− α

2

ˆ

T2

(

∇· (ρu)− 2λ Re
(

ψBψ
))

|u|2

=−α
2
d
dt
‖√ρu‖2L2

x
+
α

2

ˆ

T2

ρu · ∇|u|2 +αλ

ˆ

T2

Re
(

ψBψ
)

|u|2.

(3.27)

We estimate the second term on the RHS of (3.27) using the Hölder and GN interpolation
inequalities. This gives

α

2

ˆ

T2

ρu · ∇|u|2 ≲ ‖u‖2L4
x
‖∇u‖L2

x
≲ ‖u‖L2

x
‖u‖H1

x
‖∇u‖L2

x
.

Similarly, for the third term in (3.27),

αλ

ˆ

T2

Re
(

ψBψ
)

|u|2 ≲ ‖ψ‖L6
x
‖u‖2L6

x
‖Bψ‖L2

x
⩽ Cκ‖ψ‖2H1

x
‖u‖

4
3

L2
x
‖u‖

8
3

H1
x
+κ‖Bψ‖2L2

x
.

Substituting the above estimates into (3.26), we arrive at

ν
d
dt
‖∇u‖2L2

x
+ ‖√ρ∂tu‖2L2

x
+α

d
dt
‖√ρu‖2L2

x

⩽ Cκ‖Bψ‖2L2
x

(

‖∇ψ‖
2
3

L2
x
‖∆ψ‖

4
3

L2
x
+ ‖∇ψ‖L2

x
‖∆ψ‖2L2

x

)

+Cκ‖Bψ‖2L2
x

(

‖u‖
2
3

L2
x
‖u‖

4
3

H1
x
‖ψ‖2H1

x
+ ‖u‖2L2

x
‖u‖4H1

x
‖ψ‖6H1

x

)

+Cκ

(

‖u‖L2
x
‖u‖2H1

x
‖∇u‖2L2

x
+ ‖u‖L2

x
‖u‖H1

x
‖∇u‖L2

x
+ ‖ψ‖2H1

x
‖u‖

4
3

L2
x
‖u‖

8
3

H1
x

)

+κ‖Bψ‖2L2
x
+κ‖∇(Bψ)‖2L2

x
+κ‖∆u‖2L2

x
,

(3.28)

where Cκ depends on κ and the system parameters.
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So far, we have obtained equations for ‖∇u‖L2
x
and ‖∆ψ‖L2

x
, while including the higher-

order dissipation corresponding to the wavefunction, ‖∇(Bψ)‖2L2
x
or ‖D3ψ‖2L2

x
. What remains

is to consider the higher-order velocity dissipation ‖∆u‖2L2
x
. To this end, we multiply (NSE’)

by −θ∆u, with θ to be determined, and integrate over the domain. This gives

θν‖∆u‖2L2
x
= θ

ˆ

T2

ρ∂tu ·∆u+ θ

ˆ

T2

ρ(u · ∇u) ·∆u+ 2λθ
ˆ

T2

Im
(

∇ψ̄Bψ
)

·∆u

+ 2λθ
ˆ

T2

Re
(

ψ̄Bψ
)

u ·∆u+αθ

ˆ

T2

ρu ·∆u

=: I12 + I13 + I14 + I15 + I16.

(3.29)

When estimating the RHS, the goal is to extract ‖∆u‖2L2
x
with a small coefficient, so it can

be absorbed into the LHS. Thus, we have

I12 ⩽
θν

10
‖∆u‖2L2

x
+Cθ‖√ρ∂tu‖2L2

x
.

The second integral is manipulated just as I8 and yields

I13 ⩽
θν

20
‖∆u‖2L2

x
+Cθ

ˆ

T2

|u|2|∇u|2

⩽
θν

10
‖∆u‖2L2

x
+Cθ‖u‖L2

x
‖u‖2H1

x
‖∇u‖2L2

x
.

The bound for the integral I14 follows from the GN interpolation, Poincaré, and Young inequal-
ities, as

I14 ⩽
θν

10
‖∆u‖2L2

x
+Cθ‖∇ψ‖2L6

x
‖Bψ‖2L3

x

⩽
θν

10
‖∆u‖2L2

x
+Cθ‖∇ψ‖

2
3

L2
x
‖∆ψ‖

4
3

L2
x
‖Bψ‖

4
3

L2
x
‖Bψ‖

2
3

H1
x

⩽
θν

10
‖∆u‖2L2

x
+Cκ,θ‖Bψ‖2L2

x

(

‖∇ψ‖
2
3

L2
x
‖∆ψ‖

4
3

L2
x
+ ‖∇ψ‖L2

x
‖∆ψ‖2L2

x

)

+κ‖∇(Bψ)‖2L2
x
.

In a similar manner, we have

I15 ⩽
θν

10
‖∆u‖2L2

x
+Cθ‖u‖2L6

x
‖ψ‖2L6

x
‖Bψ‖2L6

x

⩽
θν

10
‖∆u‖2L2

x
+Cθ‖u‖

2
3

L2
x
‖u‖

4
3

H1
x
‖ψ‖2H1

x
‖Bψ‖

2
3

L2
x
‖Bψ‖

4
3

H1
x

⩽
θν

10
‖∆u‖2L2

x
+Cκ,θ‖Bψ‖2L2

x

(

‖u‖
2
3

L2
x
‖u‖

4
3

H1
x
‖ψ‖2H1

x
+ ‖u‖2L2

x
‖u‖4H1

x
‖ψ‖6H1

x

)

+κ‖∇(Bψ)‖2L2
x
.

Finally, for the last integral in (3.29),

I16 ⩽
θν

10
‖∆u‖2L2

x
+Cθ‖√ρu‖2L2

x
.

Thus, (3.29) becomes

θν

2
‖∆u‖2L2

x
⩽ Cκ,θ‖Bψ‖2L2

x

(

‖∇ψ‖
2
3

L2
x
‖∆ψ‖

4
3

L2
x
+ ‖∇ψ‖L2

x
‖∆ψ‖2L2

x

)

+Cκ,θ‖Bψ‖2L2
x

(

‖u‖
2
3

L2
x
‖u‖

4
3

H1
x
‖ψ‖2H1

x
+ ‖u‖2L2

x
‖u‖4H1

x
‖ψ‖6H1

x

)

+Cθ‖u‖L2
x
‖u‖2H1

x
‖∇u‖2L2

x
+Cθ‖√ρ∂tu‖2L2

x
+Cθ‖√ρu‖2L2

x
+κ‖∇(Bψ)‖2L2

x
.

(3.30)
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We now add (3.25), (3.28) and (3.30). We also observe that

‖∇(Bψ)‖2L2
x
≲ ‖D3ψ‖2L2

x
+ ‖∇

(

|u|2ψ
)

‖2L2
x
+ ‖∇(u · ∇ψ)‖2L2

x
+ ‖∇(|ψ |pψ )‖2L2

x
,

where the last three terms on the RHS are the same as I5, I6, and I7 in (3.21).We bound them just
as in (3.22)–(3.24). Choosing θ sufficiently small, and subsequently κ also small enough, we
absorb ‖√ρ∂tu‖2L2

x
and ‖∆u‖2L2

x
on the RHS into the corresponding terms on the LHS. Finally,

what remains is

d
dt

(

‖∆ψ‖2L2
x
+ ν‖∇u‖2L2

x
+α‖√ρu‖2L2

x

)

+
1

Cκ,θ

‖D3ψ‖2L2
x
+

1
Cκ,θ

‖√ρ∂tu‖2L2
x
+

1
Cκ,θ

‖∆u‖2L2
x

⩽ Cκ,θ

(

‖u‖L2
x
‖u‖2H1

x
‖∇u‖2L2

x
+ ‖u‖L2

x
‖u‖H1

x
‖∇u‖L2

x
+ ‖ψ‖2H1

x
‖u‖

4
3

L2
x
‖u‖

8
3

H1
x

)

+Cκ,θ‖Bψ‖2L2
x

(

‖∇ψ‖
2
3

L2
x
‖∆ψ‖

4
3

L2
x
+ ‖∇ψ‖L2

x
‖∆ψ‖2L2

x

)

+Cκ,θ‖Bψ‖2L2
x

(

‖u‖
2
3

L2
x
‖u‖

4
3

H1
x
‖ψ‖2H1

x
+ ‖u‖2L2

x
‖u‖4H1

x
‖ψ‖6H1

x

)

+Cκ

(

‖u‖2L2
x
‖u‖4H1

x
‖∇u‖2L2

x
‖ψ‖6H1

x
+ ‖∇u‖2L2

x
‖∇ψ‖L2

x
‖∆ψ‖2L2

x
+ ‖u‖L2

x
‖u‖2H1

x
‖∆ψ‖2L2

x

)

+Cκ‖u‖
4
3

L2
x
‖u‖

8
3

H1
x
‖∇ψ‖

2
3

L2
x
‖∆ψ‖

4
3

L2
x
+Cκ‖ψ‖2pH1

x
‖∆ψ‖2L2

x

+Cθ‖√ρu‖2L2
x
+κ‖Bψ‖2L2

x
, (3.31)

where we absorbed ‖D3ψ‖2L2
x
with an appropriate choice of κ. This is the higher-order energy

estimate.

3.3.3. TheGrönwall inequality step. Having derived the equations for the higher-order norms
of u and ψ, and while accounting for the relevant dissipative terms, the goal now is to use a
Grönwall-type argument.

Lemma 3.2 (Algebraic decay rate for energies). The sum of the energy E(t) and the higher-

order energy X(t) := ‖∆ψ(t)‖2L2
x
+ ν‖∇u(t)‖2L2

x
decays algebraically in time as (1+ t)−(1+

2
p ).

Proof. We begin by denoting

Y :=
1
C

(

‖D3ψ‖2L2
x
+ ‖√ρ∂tu‖2L2

x
+ ‖∆u‖2L2

x

)

,

so we can rewrite (3.31), after updating θ,κ,E0, and S0 to be sufficiently small, as

dX
dt

+α
d
dt
‖√ρu‖2L2

x
+ Y⩽ CSpX+Q1 (X+E)+ ‖Bψ‖2L2

x
Q2 (X+E)

+
α

2
‖√ρu‖2L2

x
+
ν

2
‖∇u‖2L2

x
+λ‖Bψ‖2L2

x
,

(3.32)

where Q1(X+E) is a strictly super-linear polynomial, while Q2(X+E) contains both linear
and super-linear terms. To arrive at (3.32), we have also expanded the Sobolev norms as

‖u‖2H1
x
= ‖u‖2L2

x
+ ‖∇u‖2L2

x
⩽ m−1

f ‖√ρu‖2L2
x
+ ν−1

(

ν‖∇u‖2L2
x

)

≲ E+X (3.33)

for the velocity, and

‖ψ‖2H1
x
⩽ ‖ψ‖2L2

x
+ ‖∇ψ‖2L2

x
≲ S+E (3.34)
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for the wavefunction. Next, we add (3.11) and (3.32) to end up with

d
dt

(X+E)+ Y+
1
C
‖∇u‖2L2

x
+

1
C
‖√ρu‖2L2

x
+

1
C
‖Bψ‖2L2

x

⩽ CSpX+Q1 (X+E)+ ‖Bψ‖2L2
x
Q2 (X+E) .

(3.35)

We use the Poincaré inequality to rewrite Y in order to get decaying norms. Indeed,

Y≳ ‖∆ψ‖2L2
x
+ ‖∇u‖2L2

x
≳ X.

Additionally, we also use the analysis in (3.14)–(3.19) to rewrite ‖Bψ‖2L2
x
on the LHS of (3.35)

in terms of ‖D2ψ‖2L2
x
, which in turn can be downgraded to ‖∇ψ‖2L2

x
using the Poincaré inequal-

ity. One can also represent ‖Bψ‖2L2
x
on the RHS of (3.35) by

‖Bψ‖2L2
x
≲ ‖∆ψ‖2L2

x
+ ‖|u|2ψ‖2L2

x
+ ‖u · ∇ψ‖2L2

x
+ ‖ψ‖2p+2

L2p+2
x

≲ X+(S0 +E0)(X+E)2 +(X+E)2 + ‖ψ‖2L2
x
‖ψ‖2pH1

x

≲ X+(S0 +E0 + 1)(X+E)2 + Sp+1
0 + S0E

p,

where we have used the estimates (3.16) and (3.17), and the GN inequality. After all of the
above manipulations, (3.35) now reads

d
dt

(X+E)+β (X+E)⩽ CS
p
2+1 +CSp0 (1+ S0)(X+E)+Q1 (X+E)+ Q̃2 (X+E) , (3.36)

where β depends on the system parameters, and the polynomials Q1 and Q̃2 are strictly super-
linear. The first term on the RHS results from the estimates in (3.18). As for the second term
on the RHS, we note that this can be absorbed into the LHS by tweaking S0.

For notational convenience, wewrite Z := X+E and useQ := Q1 + Q̃2 to denote the strictly
super-linear polynomial in the RHS of (3.36), leaving us with

dZ
dt

+βZ⩽
CS

p
2+1
0

(

1+ S
p
2
0 t
)1+ 2

p

+Q(Z) . (3.37)

The Duhamel solution for Z(t) obeys

Z(t)⩽ e−βtZ0 +CS
p
2+1
0

ˆ t

0

e−β(t−s)

(

1+ S
p
2
0 s
)1+ 2

p

ds+
ˆ t

0
e−β(t−s)Q(Z(s))ds. (3.38)

We set the size of the initial data as Z(0) =: Z0 ⩽ ε. We need to use a bootstrap argument to
show that Z(t)⩽ 3εfor t ∈ [0,T]. Specifically, we prove that the hypothesis Z(t)⩽ 4ε for t⩽ t1
leads to the stronger conclusion Z(t)⩽ 3ε for t⩽ t1, where t1 ∈ [0,T]. To this end, we estimate
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each integral on the RHS of (3.38). The first integral is split into two parts to take advantage
of the exponential decay factor. Thus,
ˆ t

0

e−β(t−s)

(

1+ S
p
2
0 s
)1+ 2

p

ds=
ˆ

t
2

0

e−β(t−s)

(

1+ S
p
2
0 s
)1+ 2

p

ds+
ˆ t

t
2

e−β(t−s)

(

1+ S
p
2
0 s
)1+ 2

p

ds

⩽ e−β(t− t
2 )
ˆ

t
2

0
ds+

1
(

1+ S
p
2
0
t
2

)1+ 2
p

ˆ t

t
2

e−β(t−s)ds

⩽
t
2
e−β t

2 +
β−1

(

1+ S
p
2
0
t
2

)1+ 2
p

⩽
C

(

1+ S
p
2
0 t
)1+ 2

p

.

(3.39)

The last inequality is a result of the exponential decay of the first term, compared to the
algebraic decay of the second. The second integral in (3.38) is more straightforward, with

ˆ t

0
e−β(t−s)Q(Z(s))ds⩽ Q(4ε)

ˆ t

0
e−β(t−s)ds⩽ CQ(4ε) .

Now we choose ε small enough (call it ε0) so that the RHS ⩽ ε. Similarly, the contribution
from the first integral term in (3.38) is made less than ε for all S0 ⩽ ε0 < 1 small enough.
This completes the bootstrap argument, and we can see that indeed Z(t)⩽ 3ε. For ε0 suffi-
ciently small, the linear dissipation in (3.37) dominates the nonlinearities, and we may write
the equation as

dZ
dt

+
1
C
Z⩽

CS
p
2+1
0

(

1+ S
p
2
0 t
)1+ 2

p

, (3.40)

whose solution, following (3.37)–(3.39), obeys

Z(t)⩽ Z0e
− t

C +
CS

p
2+1
0

(

1+ S
p
2
0 t
)1+ 2

p

≲ Z0 + S
p
2+1
0 . (3.41)

Returning to (3.35), we now absorb the last term on the RHS into the LHS, which is possible
for small enough data since sup0⩽t⩽TZ(t)⩽ 3ε0. Furthermore, in the regime of small data, the
super-linear polynomial Q1 can be dominated by the linear term on the RHS, which leaves us
with

dZ
dt

+ Y+
1
C
‖∇u‖2L2

x
+

1
C
‖√ρu‖2L2

x
+

1
C
‖Bψ‖2L2

x
⩽ CSp0Z. (3.42)

Employing the bound for Z from (3.41) in the RHS of (3.42) and integrating over [0,T], we
estimate the dissipation as

‖D3ψ‖2L2
[0,T]L

2
x
+ ‖√ρ∂tu‖2L2

[0,T]L
2
x
+ ‖∆u‖2L2

[0,T]L
2
x
+ ‖∇u‖2L2

[0,T]L
2
x

+ ‖√ρu‖2L2
[0,T]L

2
x
+ ‖Bψ‖2L2

[0,T]L
2
x

≲ Z0 + Z0S
p
0 + Sp+1

0 ≲ Z0 + Sp+1
0 .

(3.43)

The last inequality holds because S0 < 1. Thus, we can achieve small values for the RHS
of (3.43) by selecting appropriate Z0 and S0.
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Another useful estimate for the dissipative terms results from integrating (3.42) over the
time interval [t,2t], where t⩾ 1. This gives

‖D3ψ‖2L2
[t,2t]L

2
x
+ ‖√ρ∂tu‖2L2

[t,2t]L
2
x
+ ‖∆u‖2L2

[t,2t]L
2
x
+ ‖∇u‖2L2

[t,2t]L
2
x

+ ‖√ρu‖2L2
[t,2t]L

2
x
+ ‖Bψ‖2L2

[t,2t]L
2
x

≲ Z0e
− t

C +
S

p
2+1
0

(

1+ S
p
2
0 t
)

2
p

.

(3.44)

This time-decaying bound on the dissipation is necessary to obtain a sharp control of the
dynamics at large times.

3.4. The highest-order a priori estimate for ψ

From the previous analysis, we have obtained Bψ ∈ L2
[0,T]H

1
x . However, as pointed out in the

discussion following definition 2.9, we seek Bψ ∈ L2
[0,T]L

∞
x . To this end, we would like to

obtain an even higher order a priori estimate, only for ψ.

Lemma 3.3 (Algebraic decay rate for highest-order norm of ψ). For S0,E0, and Z0 small
enough, and with s= 5

4 , the homogeneous Sobolev norm ‖ψ(t)‖Ḣ2s
x
decays algebraically in

time as (1+ t)−2− 2
p . In addition, if ‖ψ0‖Ḣ2s

x
is sufficiently small, the higher-order dissipation

‖ψ‖L2
[0,T]Ḣ

2s+1
x

may be made as small as required, independent of the time T.

The choice of s= 5
4 is dictated by u ∈ L∞t H1

x ∩ L2
tH

2
x ⊂ L4

tH
3
2
x . This inclusion is precisely

what we need to control the term |u|2ψ in the coupling using the a priori estimates up to this
point.

Proof. With s= 5
4 , we apply (−∆)s to (NLS), to get

∂t (−∆)
s
ψ +λ(−∆)

s
(Bψ) =− 1

2i
∆(−∆)

s
ψ +

µ

i
(−∆)

s
(|ψ |pψ) . (3.45)

Just as in sections 3.2 and 3.3.1, we multiply by (−∆)sψ̄, and integrate the real part over T2.
As a result, the second term on the LHS yields

Re
ˆ

T2

(−∆)
s
ψ̄ (−∆)

s
(Bψ) = Re

〈

(−∆)
s
ψ,(−∆)

s
(Bψ)

〉

= Re
〈

(−∆)
s+ 1

2 ψ,(−∆)
s− 1

2 (Bψ)
〉

= Re
〈

(−∆)
s− 1

2 (−∆)ψ,(−∆)
s− 1

2 (Bψ)
〉

.

(3.46)

Using the self-adjoint property of the Laplacian allows us to conclude that the first term on the
RHS of (3.45) vanishes, since

Im
ˆ

T2
(−∆)s ψ̄ (−∆)s+1

ψ = Im
〈

(−∆)sψ,(−∆)s+1
ψ
〉

= Im
〈

(−∆)s+
1
2 ψ,(−∆)s+

1
2 ψ
〉

= 0.
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For the second term on the RHS of (3.45), we have

Im
ˆ

T2

(−∆)
s
ψ̄ (−∆)

s
(|ψ |pψ) =

〈

(−∆)
s
ψ,(−∆)

s
(|ψ |pψ)

〉

=
〈

(−∆)
s+ 1

2 ψ,(−∆)
s− 1

2 (|ψ |pψ)
〉

=
〈

(−∆)
s− 1

2 (−∆)ψ,(−∆)
s− 1

2 (|ψ |pψ)
〉

.

In the last expression of (3.46), we expand the operator B and use Hölder’s inequality to arrive
at

d
dt
‖(−∆)

s
ψ‖2L2

x
+

1
C
‖(−∆)

s− 1
2 (−∆ψ)‖2L2

x

≲ ‖(−∆)
s− 1

2
(

|u|2ψ
)

‖2L2
x
+ ‖(−∆)

s− 1
2 (u · ∇ψ)‖2L2

x
+ ‖(−∆)

s− 1
2 (|ψ |pψ)‖2L2

x
.

(3.47)

Rewriting the LHS in terms of the homogeneous Sobolev norms and the RHS in terms of the
usual Sobolev norms, we have

d
dt
‖ψ‖2Ḣ2s

x
+

1
C
‖ψ‖2

Ḣ2s+1
x

≲ ‖|u|2ψ‖2
H2s−1
x

+ ‖u · ∇ψ‖2
H2s−1
x

+ ‖|ψ |pψ‖2
H2s−1
x

. (3.48)

Since 2s− 1= 3
2 , the algebra property of Sobolev norms is applicable. Using this, (3.4)

and (3.41), we estimate the RHS of (3.48). The first term requires interpolation4 and yields

‖|u|2ψ‖2
H2s−1
x

≲ ‖u‖4
H

3
2
x

‖ψ‖2
H

3
2
x

≲ ‖u‖2H1
x
‖u‖2H2

x
‖ψ‖2H2

x
≲ Z(t)(S(t)+ Z(t))‖u‖2H2

x

≲






Z0e

− t
C +

S
p
2+2
0

(

1+ S
p
2
0 t
)1+ 4

p






‖u‖2H2

x
,

(3.49)

where we have retained only the terms that decay the slowest. In arriving at the last inequality
in (3.49), we use the fact that Z0 < 1. For the second term in the RHS of (3.48), we similarly
obtain

‖u · ∇ψ‖2
H2s−1
x

≲ ‖u‖2
H

3
2
x

‖ψ‖2Ḣ2s
x
≲ ‖u‖2H2

x
‖ψ‖2Ḣ2s

x
. (3.50)

While the H
3
2
x norm could have been interpolated between H1

x and H2
x , it does not provide

an improved estimate since ‖u‖L2
t H1

x
and ‖u‖L2

t H2
x
are both bounded by (3.43). In the last term

of (3.48), in view of remark 2.5, we have

‖|ψ |pψ‖2
H2s−1
x

≲ ‖ψ‖2p+2
H2
x

≲
(

‖ψ‖2L2
x
+ ‖∆ψ‖2L2

x

)p+1

≲
Sp+1
0

(

1+ S
p
2
0 t
)2+ 2

p

+ Zp+1
0 e−(p+1) t

C +
S
( p2+1)(p+1)
0

(

1+ S
p
2
0 t
)3+ 2

p+p

≲ Z0e
− t

C +
Sp+1
0

(

1+ S
p
2
0 t
)2+ 2

p

,

(3.51)

4 In [JT22a], the high norm of the velocity was estimated using the Lions-Magenes lemma, which cannot be applied.
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where the penultimate inequality is obtained using (3.4) and (3.41). Therefore, (3.48) becomes

d
dt
‖ψ‖2Ḣ2s

x
+

1
C
‖ψ‖2

Ḣ2s+1
x

≲ ‖u‖2H2
x
‖ψ‖2Ḣ2s

x
+






Z0e

− t
C +

S
p
2+2
0

(

1+ S
p
2
0 t
)1+ 4

p






‖u‖2H2

x

+ Z0e
− t

C +
Sp+1
0

(

1+ S
p
2
0 t
)2+ 2

p

.

(3.52)

With the Poincaré inequality, we replace the dissipative term on the LHS with W(t) :=
‖ψ(t)‖2

Ḣ2s
x
, which yields

dW
dt

+
1
C
W≲ ‖u‖2H2

x
W+






Z0e

− t
C +

S
p
2+2
0

(

1+ S
p
2
0 t
)1+ 4

p






‖u‖2H2

x

+ Z0e
− t

C +
Sp+1
0

(

1+ S
p
2
0 t
)2+ 2

p

,

(3.53)

whose solution obeys, using the Grönwall inequality,

W(t)⩽ e
C∥u∥2

L2
[0,T]

H2
xW0e

− t
C

+Ce
C∥u∥2

L2
[0,T]

H2
x

ˆ t

0
e−

1
C (t−s)






Z0e

− s
C +

S
p
2+2
0

(

1+ S
p
2
0 s
)1+ 4

p






‖u‖2H2

x
ds

+Ce
C∥u∥2

L2
[0,T]

H2
x

ˆ t

0
e−

1
C (t−s)






Z0e

− s
C +

Sp+1
0

(

1+ S
p
2
0 s
)2+ 2

p






ds,

where W0 := ‖ψ0‖2Ḣ2s
x
. We employ calculations similar to (3.39) to estimate the integrals,

i.e. splitting them over
[

0, t2
]

and
[

t
2 , t
]

. We also use (3.43), in particular ‖u‖2L2
[0,T]H

2
x
≲ Z0 +

Sp+1
0 ≲ 1, to simplify the exponential factors outside the integrals. In all, we end up with

W(t)≲W0e
− t

C + Z0‖u‖2L2
[0,t]H

2
x
e−

t
C + S

p
2+2
0 ‖u‖2L2

[0, t2 ]
H2
x
e−

t
2C +

S
p
2+2
0

(

1+ S
p
2
0 t
)1+ 4

p

‖u‖2L2

[ t2 ,t]
H2
x

+ Z0e
− t

2C + Sp+1
0

t
2
e−

t
2C +

Sp+1
0

(

1+ S
p
2
0 t
)2+ 2

p

,

(3.54)
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for all t ∈ [0,T]. We simplify further by making use of (3.43) and (3.44) for ‖u‖2L2
[0, t2 ]

H2
x
and

‖u‖2L2
[ t2 ,t]

H2
x
, respectively. This leads to

‖ψ (t)‖2Ḣ2s
x
≲W0e

− t
C +

(

Z0 + S
p
2+2
0

)(

Z0 + Sp+1
0

)

e−
t

2C

+
S

p
2+2
0

(

1+ S
p
2
0 t
)1+ 4

p






Z0e

− t
C +

S
p
2+1
0

(

1+ S
p
2
0 t
)

2
p






+ Z0e

− t
2C +

Sp+1
0

(

1+ S
p
2
0 t
)2+ 2

p

≲

(

W0 + Z0 + S
3p
2 +3
0

)

e−
t

2C +
Sp+3
0

(

1+ S
p
2
0 t
)1+ 6

p

+
Sp+1
0

(

1+ S
p
2
0 t
)2+ 2

p

.

(3.55)

We use (3.55) in (3.52) and integrate over [0,T] to obtain the final dissipative estimate

‖ψ‖2
L2
[0,T]Ḣ

2s+1
x

≲W0 +
(

W0 + Z0 + Sp+1
0

)

‖u‖2L2
[0,T]H

2
x
+
(

Z0 + S
p
2+2
0

)

‖u‖2L2
[0,T]H

2
x

+ Z0

(

1− e−
T
C

)

+ S
p
2+1
0

(

1−
(

1+ S
p
2
0 T
)−1− 2

p

)

≲W0 + Z0 + S
p
2+1
0 .

(3.56)

This shows that with small enough data one can achieve an arbitrarily small value (inde-
pendent of T) for this highest-order dissipation.

Similarly to (3.44), it is possible to also get a time-decaying estimate by integrating (3.52)
over the time interval [t,2t] for t⩾ 1. This leads to

‖ψ‖2
L2
[t,2t]Ḣ

2s+1
x

≲ ‖ψ (t)‖2Ḣ2s
x
+






‖ψ (t)‖2Ḣ2s

x
+ Z0e

− t
C +

S
p
2+2
0

(

1+ S
p
2
0 t
)1+ 4

p






‖u‖2L2

[t,2t]Ḣ
2
x

+

ˆ 2t

t
Z0e

− s
C +

Sp+1
0

(

1+ S
p
2
0 s
)2+ 2

p

ds

≲ (W0 + Z0)e
− t

2C +
S

p
2+1
0

(

1+ S
p
2
0 t
)1+ 2

p

,

(3.57)

where we have used (3.44) and (3.55), and retained only the slowest decaying terms.

The high-norm control in (3.56) and (3.57) is important because the inequalities can be
translated into the desired bounds (on two fewer derivatives) for Bψ. Indeed,

‖Bψ‖2
H2s−1
x

≲ ‖Bψ‖2L2
x
+ ‖Bψ‖2

Ḣ2s−1
x

≲ ‖Bψ‖2L2
x
+ ‖ψ‖2

Ḣ2s+1
x

+ ‖|u|2ψ‖2
H2s−1
x

+ ‖u · ∇ψ‖2
H2s−1
x

+ ‖|ψ |pψ‖2
H2s−1
x

,
(3.58)
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where for the last three terms, we replaced the homogeneous Sobolev norms by the larger
inhomogeneous norms. Combining the analysis in (3.49)–(3.51) with (3.4), (3.43), (3.56)
and (3.58), we get the sought-after dissipation bound

‖Bψ‖2
L2
[0,T]H

2s−1
x

≲W0 + Z0 + S
p
2+1
0 . (3.59)

Since 2s− 1= 3
2 , Sobolev embedding allows us to conclude that Bψ is bounded in L2

[0,T]L
∞
x .

Similarly, integrating (3.58) over [t,2t] for t⩾ 1, we get

‖Bψ‖2
L2
[t,2t]H

2s−1
x

≲ (W0 + Z0)e
− t

2C +
S

p
2+1
0

(

1+ S
p
2
0 t
)

2
p

. (3.60)

The estimates in (3.59) and (3.60) are used to ensure that the density remains bounded from
below.

3.5. Ensuring positive density

We now have all the a priori estimates to return to (2.15). For it to hold true, a sufficient
condition is

(

‖ψ‖L2
[0,T]L

2
x
+ ‖∆ψ‖L2

[0,T]L
2
x

)

‖Bψ‖
L2
[0,T]H

3
2
x

≲ mi−mf. (3.61)

Depending on the value of p, we now divide the analysis into several cases: 1⩽ p< 2, p= 2,
2< p< 4, p= 4, and p> 4.

3.5.1. The case 1⩽ p< 2. Owing to the Poincaré inequality and (3.43), we have

‖∆ψ‖2L2
[0,T]L

2
x
≲ ‖D3ψ‖2L2

[0,T]L
2
x
≲ Z0 + Sp+1

0 , (3.62)

and this bound holds for all p⩾ 1. For the first term of (3.61), we integrate (3.4), yielding

‖ψ‖2L2
[0,T]L

2
x
≲
S
1− p

2
0

2− p






1− 1

(

1+ S
p
2
0 T
)

2
p−1






≲ S

1− p
2

0 , (3.63)

since 2
p > 1. From (3.59), (3.62) and (3.63), we conclude that the condition in (3.61) can be

achieved if W0 + Z0 + S
1− p

2
0 is sufficiently small. Thus, the density satisfies mf ⩽ ρ⩽Mi+

mi−mf for all T > 0, as long as the initial data are small enough.
For p⩾ 2, the integral of the superfluid mass, i.e. ‖ψ(t)‖2L2

x
, cannot be bounded uniformly

in [0,T]. This is where the decaying estimates in (3.44) and (3.60) prove to be useful.

3.5.2. The case p= 2. We split the time integral in (3.61) over the ranges 0⩽ t⩽ 1 (short-
time) and t⩾ 1 (long-time). We start with the long-time estimate the LHS of (3.61) with p= 2.
For the first term, we have

ˆ 2t

t
‖ψ‖2L2

x
≲

ˆ 2t

t

S0
1+ S0t

≲ log

(

1+ 2S0t
1+ S0t

)

≲ log2. (3.64)

Using the Poincaré inequality and (3.44) gives
ˆ 2t

t
‖∆ψ‖2L2

x
≲

ˆ 2t

t
‖D3ψ‖2L2

x
≲ Z0e

− t
C +

S20
1+ S0t

. (3.65)
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From (3.60), (3.64), and (3.65), we obtain

I(t) :=
ˆ 2t

t
‖ψ‖L∞x ‖Bψ‖L∞x ≲

(

‖ψ‖L2
[t,2t]L

2
x
+ ‖∆ψ‖L2

[t,2t]L
2
x

)

‖Bψ‖
L2
[t,2t]H

3
2
x

≲

(

log2+ Z0e
− t

C +
S20

1+ S0t

)

1
2
(

(W0 + Z0)e
− t

2C +
S20

1+ S0t

)

1
2

≲ (W0 + Z0)
1
2 e−

t
4C +

S0

(1+ S0t)
1
2

≲
(W0 + Z0)

1
2 + S

1
2
0

t
1
2

.

This leads us to
ˆ 2N+1

1
‖ψ‖L∞x ‖Bψ‖L∞x =

N
∑

k=0

I
(

2k
)

≲ (W0 + Z0 + S0)
1
2

N
∑

k=0

1

(2k)
1
2

≲ (W0 + Z0 + S0)
1
2 , (3.66)

which is the long-time contribution (independent of N) of the constraint in (3.61). It can be
made as small as required with an appropriate choice of W0 + Z0 + S0.

Finally, we verify the short-time control as well. The superfluid mass bound in (3.4) means
that

ˆ 1

0
‖ψ‖2L2

x
≲

ˆ 1

0

S0
1+ S0t

≲ log(1+ S0). (3.67)

Similarly, using (3.43), we get
ˆ 1

0
‖∆ψ‖2L2

x
≲

ˆ 1

0
‖D3ψ‖2L2

x
≲ Z0 + S30. (3.68)

From (3.59), (3.67), and (3.68), we have
ˆ 1

0
‖ψ‖L∞x ‖Bψ‖L∞x ≲

(

log(1+ S0)+ Z0 + S30
)

1
2
(

W0 + Z0 + S20
)

1
2 , (3.69)

which can be made small enough to satisfy (3.61). This lets us conclude that the density is
bounded from below uniformly in time, for the case p= 2. Thus, we have the necessary global
bound.

3.5.3. The case 2< p< 4. We begin, once again, with the long-time analysis, i.e. for t⩾ 1.
From (3.4), we have

‖ψ‖2L2
[t,2t]L

2
x
≲

S
1− p

2
0

(

1+ S
p
2
0 t
)

2
p−1

. (3.70)

Using the Poincaré inequality and (3.44),

‖∆ψ‖2L2
[t,2t]L

2
x
≲ ‖D3ψ‖2L2

[t,2t]L
2
x
≲ Z0e

− t
C +

S
p
2+1
0

(

1+ S
p
2
0 t
)

2
p

. (3.71)
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Combining (3.60), (3.70) and (3.71), we have

I(t)≲









S
1
2−

p
4

0
(

1+ S
p
2
0 t
)

1
p−

1
2

+Z
1
2
0 e

− t
2C +

S
p
4+

1
2

0
(

1+ S
p
2
0 t
)

1
p

















(W0 +Z0)
1
2 e−

t
4C +

S
p
4+

1
2

0
(

1+ S
p
2
0 t
)

1
p









≲

(

1

t
1
p−

1
2

+Z
1
2
0 e

− t
2C +

S
p
4
0

t
1
p

)(

(W0 +Z0)
1
2 e−

t
4C +

S
p
4
0

t
1
p

)

≲
(W0 +Z0)

1
2 + S

p
4
0

t
2
p−

1
2

.

(3.72)

Once again, the slowest decaying term is the dominant one. Therefore, we have

ˆ 2N+1

1
‖ψ‖L∞x ‖Bψ‖L∞x =

N
∑

k=0

I
(

2k
)

≲
(

(W0 + Z0)
1
2 + S

p
4
0

)

N
∑

k=0

1

(2k)
2
p−

1
2

≲
(

W0 + Z0 + S
p
2
0

)
1
2
.

(3.73)

The sum converges (uniformly in N) because p< 4. Hence, we obtain good long-time control
of the LHS of (3.61) for 2< p< 4.

What remains is to check that we also maintain short-time control. To this end, we have
from (3.4),

ˆ 1

0
‖ψ‖2L2

x
≲

ˆ 1

0

S0
(

1+ S
p
2
0 t
)

2
p

≲ S
1− p

2
0

(

(

1+ S
p
2
0

)1− 2
p − 1

)

, (3.74)

and from (3.43),

ˆ 1

0
‖∆ψ‖2L2

x
≲

ˆ 1

0
‖∆ψ‖2L2

x
≲ Z0 + Sp+1

0 . (3.75)

Combining (3.59) with (3.74) and (3.75) yields

ˆ 1

0
‖ψ‖L∞x ‖Bψ‖L∞x ≲

(

S
1
2−

p
4

0

(

(

1+ S
p
2
0

)1− 2
p − 1

)
1
2

+ Z
1
2
0 + S

p+1
2

0

)

(

(W0 + Z0)
1
2 + S

p
4+

1
2

0

)

⩽ C

(

S
1
2−

p
4

0

(

1+CS
p
2−1
0 − 1

)
1
2
+ Z

1
2
0 + S

p+1
2

0

)

(

(W0 + Z0)
1
2 + S

p
4+

1
2

0

)

⩽ C

(

1+ Z
1
2
0 + S

p+1
2

0

)

(

(W0 + Z0)
1
2 + S

p
4+

1
2

0

)

≲
(

W0 + Z0 + S
p
2+1
0

)
1
2
,

which is the short-time control we are seeking. This implies global solutions, since the density
is bounded from below uniformly in time.
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3.5.4. The case p⩾ 4. The arguments for short-time control in section 3.5.3 remain valid
even for p⩾ 4. However, the long-time estimates breaks down. Specifically, the geometric
series in (3.73) diverges. We see that for T= 2N+1,

ˆ T

1
‖ψ‖L∞x ‖Bψ‖L∞x ≲

N
∑

k=0

W
1
2
0 + Z

1
2
0 + S

p
4
0

(2k)
2
p−

1
2

≲











(

W0 + Z0 + S20
)

1
2 logT, p= 4

(

W0 + Z0 + S
p
2
0

)
1
2
T

p−4
2p , p> 4.

(3.76)

Therefore, in this scenario, global-in-time estimates elude us due to the logarithmic/poly-
nomial dependence on T. We can, however, guarantee almost global existence of solutions.
Given a set of system parameters, we can ensure that ρ⩾ mf for any finite time T > 0 as long
as we start from small enough initial data (depending on T). In other words, if the size of the

data is ε, then we have T∼ e
1√
ε for p= 4 and T∼ ε−

p
p−4 for p> 4. This is the scaling expressed

in theorem 2.4.

4. Existence of weak solutions (proof of theorems 2.3 and 2.4)

Having derived the required a priori estimates, we now establish the existence of a weak solu-
tion for a truncated form of the governing equations, and then pass to the limit.

4.1. Constructing the semi-Galerkin scheme

The finite-dimensional wavefunction and velocity are constructed using eigenfunctions of the
Laplacian and the Leray-projected Laplacian, respectively.

4.1.1. The approximate wavefunction. Consider the negative Laplacian −∆ on the torus
T

2, with the domain D(−∆) = H2. It has a discrete set of non-negative and non-decreasing
eigenvalues {βj}, and the corresponding eigenfunctions {bj} ∈ C∞(T2) can be chosen to be
orthonormal in L2

x and orthogonal in H1
x . We define the approximate wavefunction as

ψN (t,x) =
N
∑

k=0

dNk (t)bk (x) , (4.1)

for N ∈ N∪{0} and dNk (t) ∈ C.

4.1.2. The approximate velocity. We consider the Leray-projected Laplacian (or Stokes oper-
ator) A=−P∆ with the domain D(A) = L2

d ∩H2 (see [RRS16, chapter 2], for instance).
The Stokes operator (like the Laplacian) has a discrete set of non-negative and non-

decreasing eigenvalues {αj}, and the corresponding divergence-free, vector-valued eigenfunc-
tions {aj} ∈ C∞(T2) can be chosen to be orthonormal in L2

d,x and orthogonal in H1
x . We define

the approximate velocity as

uN (t,x) =
N
∑

k=0

cNk (t)ak (x) , (4.2)

for N ∈ N∪{0} and cNk (t) ∈ R.
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4.2. The initial conditions

4.2.1. The initial wavefunction and initial velocity. We begin by defining PN (respectively,QN)
to be the projections onto the space spanned by the firstN+ 1 eigenfunctions ofA (respectively,
−∆). Then, we truncate the initial conditions for the velocity and wavefunction accordingly:

uN0 := PNu0, ψN0 := QNψ0. (4.3)

Since u0 ∈ H1
d(T

2) and ψ0 ∈ H
5
2 (T2), it is necessary to establish that the truncated initial con-

ditions converge to the actual ones in the relevant norms.

Lemma 4.1 (the projections QN and PN are convergent). If ψ ∈ Hr
x and u ∈ Hs

d,x for any
0< r,s<∞, then

(1) ‖QNψ‖Hr
x
≲ ‖ψ‖Hr

x
and QNψ

Hr

−−−−→
N→∞

ψ, and

(2) ‖PNu‖Hs
x
≲ ‖u‖Hs

x
and PNu

Hs

−−−−→
N→∞

u .

The proof utilizes the equivalence of norms between Sobolev spaces and fractional powers of
the negative Laplacian/Stokes operator (see theorem 2.27 in [RRS16]). Given the regularity
of ψ0 and u0, we deduce the convergence of the approximate initial conditions by applying
lemma 4.1.

4.2.2. The initial density. Given the initial density field ρ0 ∈ L∞x ⊂ Lrx for 1⩽ r<∞,

we consider an approximating sequence ρN0 ∈ C1
x , such that ρN0

Lr−−−−→
N→∞

ρ, and mi ⩽ ρN0 ⩽Mi.

(Recall thatmi ⩽ ρ0 ⩽Mi.) This approximating sequence may be constructed by mollification.

4.3. Approximate equations

4.3.1. The continuity equation. Having described the (approximate) initial conditions and
the semi-Galerkin scheme, we now establish the existence of solutions to the ‘approximate’
equations, starting with the continuity equation. It is given by

∂tρ
N+ uN · ∇ρN = 2λ Re

(

ψNBNψN
)

,

ρN (0,x) = ρN0 (x) ,
(4.4)

where BN =− 1
2∆+ 1

2 |uN|2 + iuN · ∇+µ|ψN|p. Just as in (2.15), we see that the constraint that
fixes the local existence time TN for (4.4) is

2λ‖ψN‖L∞
[0,TN]

L∞x ‖BNψN‖L2
[0,TN]

L∞x
⩽ mi−mf. (4.5)

Since the norms in (4.5) are bounded by the size of the initial data, the time TN is independent
of N. Hence, we use T to denote the time of existence, with T arbitrarily large for 1⩽ p< 4
and T bounded for p⩾ 4 (as specified in theorem 2.4).

We now establish the analogues of lemmas 2.2 and 2.3 from [Kim87]. These constitute the
existence of a unique solution to (4.4) and a Picard iteration scheme for the same, respectively.

Lemma 4.2. Let uN ∈ C0
[0,T]C

1
x and ψNB

NψN ∈ L1
[0,T]L

∞
x (uniformly in N), with∇· uN(t,T2) =

0 for t ∈ [0,T]. Then, (4.4) has a unique solution ρN ∈ C1
[0,T]C

1
x .
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Proof. Consider the evolution equation for the characteristics of the flow,

dxN

dt
= uN

(

t,xN (t)
)

,

xN (0) = yN ∈ T
2.

(4.6)

Since uN ∈ C0
[0,T]C

1
x , there exists a unique solution xN(t,yN) ∈ C1

[0,T]C
1
x . Owing to the incom-

pressibility of the flow uN, it follows that det
(

∂xNi
∂yNj

)

= 1, allowing us to conclude that the char-

acteristics are C1 diffeomorphisms and therefore, invertible. This means

yN = yN
(

t,xN
)

:= S−1
t xN

is well-defined. We now write the solution to (4.4) along characteristics as

ρN (t,x) = ρN0
(

yN (t,x)
)

+ 2λ
ˆ t

0
Re
(

ψNBNψN
)

(

τ,yN (t− τ,x)
)

dτ. (4.7)

That (4.7) uniquely solves (4.4) can be verified using the property of the ‘inverse-
characteristics’ y(t,x). For any τ ∈ R,

∂

∂t
y(t− τ,x) = lim

∆t→0

y(t− τ +∆t,x)− y(t− τ,x)
∆t

= lim
∆t→0

x(t+∆t,y)− x(t,y)
∆t

· y(t− τ +∆t,x)− y(t− τ,x)
x(t+∆t,y)− x(t,y)

= u(t,x) · ∂ty(t− τ,x)
∂tx(t,y)

=−u(t,x) · ∇xy(t− τ,x) ,

(4.8)

where the last equality is due to Euler’s chain rule.

Now, we consider a convergent sequence of velocities and wavefunctions that belong to the
finite-dimensional subspaces spanned by the truncated Galerkin scheme. Given such a conver-
gent sequence, we show that the sequence of density fields satisfying (4.4) is also convergent,
and this shall be used to complete a contraction mapping argument below.

Lemma 4.3. For n ∈ N, let uNn ∈ C0
[0,T]C

1
x and ψNn B

N
nψ

N
n ∈ L1

[0,T]L
∞
x (uniformly in n), with ∇·

uNn (t,T
2) = 0 for t ∈ [0,T]. Denote by ρNn ∈ C1

[0,T]C
1
x the unique solution to the system

∂tρ
N
n + uNn · ∇ρNn = 2λ Re

(

ψNn B
N
nψ

N
n

)

,

ρNn (0,x) = ρN0 (x) ∈ C1
x .

(4.9)

If uNn
C0
[0,T]C

1
x−−−−→

n→∞
uN and ψNn

C0
[0,T]C

3
x−−−−→

n→∞
ψN, then ρNn

C0
[0,T]C

0
x−−−−→

n→∞
ρN, where ρN solves (4.4).

Proof. We begin by defining ΨN
n := 2λ Re(ψNn B

N
nψ

N
n ). Since uNn ∈ C0

t C
1
x , there exists a

sequence of characteristics xNn (t,y) ∈ C1
t C

1
x corresponding to the flow, i.e. solving dxNn

dt =
uNn (t,x

N
n ) with xNn (0,y) = y. The assumed convergence of uNn allows us to conclude that

xNn
C1
t C

1
x−−−→

n→∞
xN. Consider the map y 7→ xNn (t,y) and define its inverse yNn (t,x); this is just the

inverse of the characteristic, i.e. if the flow were reversed. Due to the flow being incompress-

ible, we know that the matrix ∂yNn
∂x is invertible. Also, as shown in the proof of the previous

lemma, ∂
∂ty

N
n =−uNn · ∇xyNn . This implies that the derivatives of yNn with respect to both space

and time are bounded uniformly in n, t and x. Thus, by the Arzela-Ascoli theorem, we can
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extract a subsequence that converges uniformly: yNn
C0
t C

0
x−−−→

n→∞
yN. Just as in (4.8), we can show

that the solution to (4.9) is

ρNn (t,x) = ρN0
(

yNn (t,x)
)

+

ˆ t

0
ΨN
n

(

τ,yNn (t− τ,x)
)

dτ. (4.10)

Therefore,

ρNn (t,x)− ρN (t,x) = ρN0
(

yNn (t,x)
)

+

ˆ t

0
ΨN
n

(

τ,yNn (t− τ,x)
)

dτ

− ρN0
(

yN (t,x)
)

−
ˆ t

0
ΨN
(

τ,yN (t− τ,x)
)

dτ,

which leads to

|ρNn − ρN|C0
t,x
⩽ |ρN0

(

yNn
)

− ρN0
(

yN
)

|C0
t,x
+ T|ΨN

n

(

t,yNn
)

−ΨN
(

t,yN
)

|C0
t,x

⩽ ‖∇ρN0 ‖L∞x |yNn − yN|C0
t,x

+ T
(

‖∇ΨN
n ‖L∞t L∞x |yNn − yN|C0

t,x
+ |ΨN

n −ΨN|C0
t,x

)

−−−→
n→∞

0.

Given the convergence of yNn derived above, and because ρN0 ∈ C1
x , the first term on the RHS

vanishes. The second and third terms vanish on account of the following argument. Note that
ΨN
n has its highest order term of the form ψNn∆ψ

N
n (second derivative), and so the assumed

convergence of ψNn in the C0
t C

3
x norm implies thatΨN

n converges in C0
t C

1
x . This also guarantees

that ‖∇ΨN
n ‖L∞t L∞x is finite, uniformly in n.

4.3.2. The Navier–Stokes equation. We now consider an ‘approximate momentum
equation’, composed of the approximate wavefunction and velocity fields defined by (4.1)
and (4.2), respectively. Namely,

PN
(

ρ
N
∂tu

N+ ρ
NuN · ∇uN− ν∆uN

)

=−2λPN
(

Im
(

∇ψNBNψN
)

+ uN Re
(

ψNBNψN
))

. (4.11)

Recall that the incompressiblity condition is built-in, because the eigenfunction basis used
to construct the velocity fields are divergence-free. Now, taking the L2 inner product of (4.11)
with aj(x) for 0⩽ j⩽ N, we arrive at a system of equations for the coefficients describing the
time-dependence of the approximate velocity fields, as

N
∑

k=0

RNjk (t)
d
dt
cNk (t) =−ναjcNj (t)−

N
∑

k,l=0

N N
jkl (t)c

N
k (t)c

N
l (t)− 2λSNj

(

t,cN
)

, (4.12)

where

RNjk (t) =
ˆ

T2

ρNaj · ak, N N
jkl (t) =

ˆ

T2

ρN (ak · ∇)al · aj,

and

SNj
(

t,cN
)

=

ˆ

T2

aj ·
(

Im
(

∇ψNBNψN
)

+ uN Re
(

ψNBNψN
))

.
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Since we have both lower and upper bounds on the density in the chosen interval of time,
we can use lemma 2.5 in [Kim87] to show that the matrix RN(t) is invertible. Therefore, we
arrive at

d
dt
cN =−ν

(

RN
)−1

D · cN−
(

RN
)−1 (N N : cN⊗ cN

)

− 2λ
(

RN
)−1

SN
(

t,cN
)

, (4.13)

which is the desired evolution equation (written vectorially) for the coefficients cNj (t).

4.3.3. The nonlinear Schrödinger equation. As in the previous section, we derive an evolu-
tion equation for the coefficients of the approximate wavefunction, by considering an ‘approx-
imate NLS’. Namely,

∂tψ
N =− 1

2i
∆ψN−QN

(

λBNLψ
N+(λ+ i)µ|ψN|pψN

)

. (4.14)

Recall that BL = B−µ|ψ |p, i.e. the linear (in ψ) part of the coupling operator. Performing an
L2 inner product with bj(x), we get

d
dt
dNj (t) =

1
2i
βjd

N
j (t)−λ

N
∑

k=0

LNjk (t)d
N
k (t)− (λ+ i)µ

N
∑

k,l,m=0

Gjklm

(

dNk d
N
l

)
p
2
dNm (t) , (4.15)

where

LNjk (t) =
ˆ

T2

bjB
N
Lbk =

1
2
βjδjk+

1
2

ˆ

T2

|uN|2bjbk+ i
ˆ

T2

(

uN · ∇bk
)

bj

and

Gjklm =

ˆ

T2

bj (bkbl)
p
2 bm.

Written vectorially, the evolution equation for the coefficients dNj (t) becomes

d
dt
dN =

1
2i

BdN−λ LN · dN− (λ+ i)µ G ::

(

(

dN⊗ dN
)

p
2 ⊗ dN

)

, (4.16)

where Bij = βiδij.

4.3.4. Fixed point argument for the coefficients. For a fixed N, a standard contraction map-
ping argument shows that (4.13) and (4.16) have unique solutions that are continuous in [0,T].
For a pair (uNn ,ψ

N
n ), equivalently (cNn ,d

N
n ), using lemma 4.2, we can find a solution ρNn . Owing

to the smoothness (in space) of the eigenfunctions used in the approximate velocity and wave-

function, we conclude that uNn
C0
t C

1
x−−−→

n→∞
uN and ψNn

C0
t C

3
x−−−→

n→∞
ψN. Therefore, performing an iteration

on the triplet (cNn ,d
N
n ,ρ

N
n ) and using lemma 4.3, we conclude that the sequence ρNn converges

to ρN ∈ C0
[0,T]C

0
x .

4.4. Compactness arguments

We now extract convergent subsequences from the a priori estimates in section 3. Beginning
with the density, we know that ρN ∈ C0([0,T];C0

x)⊂ L∞(0,T;Lrx) for 1⩽ r⩽∞, meaning that

ρN
∗−−−⇀

L∞t Lrx
ρ. (4.17)
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Moreover, from (4.4),

‖∂tρN‖L2
[0,T]H

−1
x

≲ ‖∇ · (uNρN)‖L2
[0,T]H

−1
x

+ ‖ Re(ψNBNψN)‖L2
[0,T]H

−1
x

≲ ‖uNρN‖L2
[0,T]L

2
x
+ ‖(ψNBNψN)‖L2

[0,T]L
2
x

≲ ‖
√

ρNuN‖L2
[0,T]L

2
x
‖
√

ρN‖L∞
[0,T]L

∞
x
+ ‖ψN‖L∞

[0,T]L
∞
x
‖BNψN‖L2

[0,T]L
2
x
.

(4.18)

The second inequality is due to the (compact) embedding L2
x ⊂ H−1

x for T2. All the terms
in the last line are finite (uniformly in N) by virtue of the a priori estimates. Therefore, using
the Aubin-Lions-Simon lemma, we conclude the strong convergence of a subsequence of the
density as

ρN
C0
t H

−1
x−−−−→ ρ. (4.19)

Consider a relabeled subsequence ρN that strongly converges to ρ inC([0,T];H−1
x ), so that (4.1)

and (4.2) are also appropriately relabeled. For a.e. s, t ∈ [0,T] and any ω ∈ H1
x ,

〈ρN (t)− ρN (s) ,ω〉H−1×H1 =

〈
ˆ t

s
∂tρ

Ndτ,ω

〉

H−1×H1

⩽

ˆ t

s
‖∂tρN‖H−1

x
‖ω‖H1

x
⩽ (t− s)

1
2 ‖∂tρN‖L2

[0,T]H
−1
x
‖ω‖H1

x
,

showing that 〈ρN(t),ω〉H−1×H1 is uniformly continuous in [0,T], uniformly in N due to (4.18).
Due to the embedding H1

x ⊂ Lrx for all 1⩽ r<∞, we conclude, using the Arzela-Ascoli the-
orem, that ρN is relatively compact in Cw([0,T];Lrx).

We move on to the velocity. Based on the a priori estimates, we extract a subsequence of uN

that weakly converges to u ∈ L∞[0,T]H1
d,x ∩ L2

[0,T]H
2
d,x, with ∂tu ∈ L2

[0,T]L
2
x . Applying the Lions-

Magenes lemma (see [Tem77, chapter 3]), we deduce that u ∈ C([0,T];H1
d,x). Based on the

L∞t L
∞
x bound on the density, and the above strong convergences, it is easy to see that ρNuN

and ρNuN⊗ uN converge in C([0,T];L2
x) to ρu and ρu⊗ u, respectively.

Next, we consider the wavefunction. Again, we extract a subsequence that converges

weakly to ψ ∈ L∞[0,T]H
5
2
x ∩ L2

[0,T]H
7
2
x . From this and (NLS), we have ∂tψ ∈ L2

[0,T]H
3
2
x . Thus, the

Lions-Magenes lemma yields ψ ∈ C([0,T];H
5
2
x ). Additionally, we also have BNψN

C0
t L

2
x−−→ Bψ,

due to the regularity of u and ψ.

As for the initial conditions, by construction itself (section 4.2.2), we have ρN0
Lrx−→ ρ0 for

1 ⩽ r< ∞. Also, lemma 4.1 states that ψN0 and uN0 converge to ψ0 and u0 in H
5
2
x and H1

d,x,
respectively. For the momentum, we have

‖ρN0 uN0 − ρ0u0‖L2
x
⩽ ‖ρN0 − ρ0‖Lrx‖uN0 ‖Lr ′x + ‖ρ0‖L∞x ‖uN0 − u0‖L2

x
, (4.20)

where 1
r +

1
r ′ =

1
2 . Using the embeddingH1

x ⊂ Lr
′

x to handle the velocity in the first term of the
RHS, it is easy to see that the initial momentum converges in the L2

x norm.
The approximate solutions (ψN,uN,ρN) are smooth enough to satisfy (2.1)–(2.3). The afore-

mentioned compactness results allow us to pass to the limit of N→∞ and arrive at the weak
solutions (ψ,u,ρ).
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4.5. Renormalizing the density

At this point, we know that ρN
∗−⇀ρ in L∞t L

∞
x . We wish to use the technique of renormalization

to extend this to ρN → ρ in C0
t L

r
x, for 1⩽ r<∞. To achieve this, we will adapt a classical

argument (see, for instance, theorem 2.4 in [Lio96b]). We begin by defining a sequence of
unit-mass mollifiers ζh(x) = 1

h2 ζ
(

x
h

)

, where h will eventually be taken to 0. Next, for a given
weak solution ρ ∈ L∞t L∞x , we mollify (CON) to obtain

∂tρh+ u · ∇ρh =Ψh+Rh, (4.21)

where gh := g ∗ ζh, Ψ := 2λ Re(ψBψ), and Rh := u · ∇ρh− (u · ∇ρ)h is a commutator. We
multiply this by η ′(ρh), for a C1 function η : R 7→ R. This yields

∂tη (ρh)+ u · ∇η (ρh) = η ′ (ρh)Ψh+ η ′ (ρh)Rh. (4.22)

The Sobolev embedding H2
x ⊂W1,r1

x for any r1 ∈ [1,∞) implies that u ∈ L2
tW

1,r1
x . From

lemma 2.3 in [Lio96b], we note that Rh vanishes in L2
t L

r1
x (and also in L∞t L

2
x) as h→ 0, by

choosing r1 > 2. Similarly, Ψh converges to Ψ in C0
t L

2
x . Finally, note that η ′(ρh) is uniformly

continuous since ρ (and ρh) take values in a compact subset of R. Therefore, using a test func-
tion σ, we may pass to the limit h→ 0 in (4.22). In other words, if ρ is a weak solution of the
continuity equation, then η(ρ) solves (in a weak sense)

∂tη (ρ)+ u · ∇η (ρ) = η ′ (ρ)Ψ . (4.23)

This is the renormalized continuity equation.
Taking the difference of (4.21) for h1,h2 > 0, we write the analog of (4.22) for η(ρh1 − ρh2),

with η(x) = x2n where n ∈ N. Integrating over T2 leads to

d
dt
‖ρh1 − ρh2‖2nL2n

x
=

ˆ

T2

2n(ρh1 − ρh2)
2n−1

((Ψh1 −Ψh2)+ (Rh1 −Rh2))

≲ ‖ρh1 − ρh2‖2n−1
L2n
x

(

‖Ψh1 −Ψh2‖L2n
x
+ ‖Rh1 −Rh2‖L2n

x

)

,

which implies

sup
t∈[0,T]

‖ρh1 − ρh2‖L2n
x
≲ ‖ρ(0) ∗ ζh1 − ρ(0) ∗ ζh2‖L2n

x

+

ˆ T

0

(

‖Ψh1 −Ψh2‖L2n
x
+ ‖Rh1 −Rh2‖L2n

x

)

.

(4.24)

Since we know ψ ∈ L2
tH

2
x and Bψ ∈ L2

tH
3
2
x , it follows from the Sobolev embedding and

Hölder’s inequalities that Ψ = ψBψ ∈ L1
t L

r1
x for any r1 ∈ [1,∞). Between this, the commut-

ator estimate in lemma 2.3 of [Lio96b], and the boundedness of ρ0, we find that all of the
terms on the RHS of (4.24) vanish as h1,h2 → 0, giving us a Cauchy sequence in C([0,T];L2n

x ).
Hence, ρh converges to ρ in C([0,T];L2n

x ). We have, so far, proved that our ‘original approx-
imations’ of the continuity equation ρN converge in Cw([0,T];Lrx) to ρ, and that ρ also belongs
to C([0,T];L2n

x ). To achieve what we set out to prove, i.e. that ρN converges strongly in
C([0,T];Lrx) to ρ, it remains to show that the Lrx norms are continuous in time. It is sufficient to
illustrate this for r= 2 (or n= 1), in order to deduce it for the other values of r. Explicitly, if
there is a sequence of times tN → t, then we need ρN(tN) to converge in L2

x to ρ(t). Returning
to (4.4), we look at its renormalized version with η(x) = x2, and integrate over T2 (and then
from 0 to tN) to get

ˆ

T2

(

ρN
(

tN
))2

=

ˆ

T2

(

ρN0
)2

+ 2λ
ˆ tN

0

ˆ

T2

ρN Re
(

ψNBNψN
)

.
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Since we know that ρ ∈ C([0,T];L2
x), we can do the same calculation with (CON), except over

the time interval 0 to t. This yields
ˆ

T2

(ρ(t))2 =
ˆ

T2

(ρ0)
2
+ 2λ

ˆ t

0

ˆ

T2

ρ Re
(

ψBψ
)

.

Subtracting the last two equations, and taking the limit N→∞, we observe that the first terms

on the RHS cancel (recall from section 4.2.2 that ρN0
L2
x−→ ρ0). What remains is,

lim
N→∞

(
ˆ

T2

(

ρN
(

tN
))2 −

ˆ

T2

(ρ(t))2
)

= 2λ Re lim
N→∞

ˆ tN

0

ˆ

T2

(

ρN− ρ
)

ψNBNψN

+ 2λ Re lim
N→∞

ˆ tN

0

ˆ

T2

ρ
(

ψN−ψ
)

BNψN

+ 2λ Re lim
N→∞

ˆ tN

0

ˆ

T2

ρψ
(

BNψN−Bψ
)

+ 2λ Re lim
N→∞

ˆ tN

t

ˆ

T2

ρψBψ.

Thanks to the uniform boundedness of ψNBNψN in L1
[0,T]H

3
2
x , we can use the strong conver-

gence in (4.19) to handle the first term on the RHS. The second and third terms follow from
simple Hölder’s inequalities, and the strong convergence of ψN of BNψN. Finally, the last term
is integrable on [0,T], so as tN → t, it vanishes. In summary,

ρN
C0
t L

2
x−−→ ρ, (4.25)

which, along with the weak-in-time continuity deduced earlier, implies strong convergence of
ρN to ρ in C0

t L
2n
x for all n ∈ N. Interpolating between Lebesgue norms extends this result to

C0
t L

r
x for all r ∈ [1,∞).

4.6. The energy equality

The smooth approximations to the weak solutions satisfy an energy equation, given by (2.8),
i.e.

(

1
2
‖
√

ρN (t)uN (t)‖2L2
x
+

1
2
‖∇ψN (t)‖2L2

x
+

2µ
p+ 2

‖ψN (t)‖p+2

Lp+2
x

)

+ ν‖∇uN‖2L2
[0,t]L

2
x
+ 2λ‖BNψN‖2L2

[0,t]L
2
x

=
1
2
‖
√

ρN0 u
N
0 ‖2L2

x
+

1
2
‖∇ψN0 ‖2L2

x
+

2µ
p+ 2

‖ψN0 ‖p+2

Lp+2
x
,

(4.26)

for a.e. t ∈ [0,T]. From our choice of the initial conditions and their approximations (see
section 4.2), we can ensure that as N→∞, the RHS converges to the initial energy E0 defined
in (3.13). Indeed, for the first term,

|‖
√

ρN0 u
N
0 ‖2L2

x
−‖√ρ0u0‖2L2

x
|=
∥

∥

∥

∥

ˆ

T2

ρN0 |uN0 |2 − ρ0|u0|2
∥

∥

∥

∥

≲ ‖ρN0 − ρ0‖L2
x
‖uN0 ‖2L4

x
+ ‖ρ0‖L∞x ‖uN0 + u0‖L2

x
‖uN0 − u0‖L2

x

N→∞−−−−→ 0.

(4.27)
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Moreover, based on the results of section 4.4, we can conclude that all the terms on the
LHS of (4.26) converge strongly to the corresponding terms with the approximate solutions
replaced by the weak solution. The first term on the LHS can be dealt with the same way as
the first term on the RHS in (4.27), by simply including a supt outside the absolute values. □

This completes the construction of the solutions. Together with the global/almost global
estimates from section 3, we can conclude the results of theorems 2.3 and 2.4.
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