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Abstract

We investigate a micro-scale model of superfluidity derived by Pitaevskii (1959
Sov. Phys. JETP 8 282-7) to describe the interacting dynamics between the
superfluid and normal fluid phases of Helium-4. The model involves the non-
linear Schrodinger equation (NLS) and the Navier—Stokes equations, coupled
to each other via a bidirectional nonlinear relaxation mechanism. Depending on
the nature of the nonlinearity in the NLS, we prove global/almost global exist-
ence of solutions to this system in T>—strong in wavefunction and velocity,
and weak in density.

Keywords: superfluids, Pitaevskii model, Navier—Stokes equation,
nonlinear Schrédinger equation, global weak solutions, existence
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1. Introduction

Superfluids constitute a phase of matter that is achieved when certain substances are isobar-
ically cooled, resulting in Bose-Einstein condensation. That Helium-4 (and also its isotope
Helium-3) undergoes such a quantum mechanical phase transition was first experimentally
discovered [Kap38, AM38] over 80 years ago and has been the subject of intense inquiry ever
since. Despite this, a single theory that describes the phenomenon continues to elude us.

The general picture is that at non-zero temperatures, there is a mixture of two interacting
phases: the normal fluid and the superfluid [PL11, Vin04, Vin06, BSS14, BDVO1, BLR14].
It is important to note that this is not like classical multiphase flow, where one can define a
clear boundary between the two phases. Instead, some atoms are in the normal fluid phase,
and some are in the superfluid phase, with both fluids occupying the entire volume. The nor-
mal fluid is well-modelled by the Navier—Stokes equations (NSE), while the description of
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the superfluid varies by the length scale that we are interested in (see [BBP14, Jay22] for a
discussion). Briefly, the superfluid is described by the NSE at large scales [HolO1], a vortex
model at intermediate scales [Sch78, Sch85, Sch88], and the nonlinear Schrédinger equation
(NLS) at small scales [Kha69, Car96]. The macro-scale, NSE-based description is a current
topic of numerical research [VSBP19, RBL09, SRL11], and has also been rigorously analysed
[JT21]. In this paper, we use the micro-scale, NLS-based model by Pitaevskii [Pit59], which
has previously been considered in [JT22a, JT22b].

A missing piece of the physics puzzle here is the nature of the interaction mechanism. It is
known that the interaction between the fluids is dissipative/retarding. Pitaevskii thus derived
a micro-scale model that intertwines the NLS (for the superfluid) and the NSE (for the nor-
mal fluid). The coupling is nonlinear, bidirectional and transfers mass, momentum, and energy
between the two fluids. For the combined system of both phases, the model respects the con-
servation of total mass and total momentum, while the total energy decreases in accordance
with the dissipation.

The NLS, in its most popular form, is fundamentally a dispersive partial differential
equation with a cubic nonlinearity that models systems with low-energy wave interactions,
such as dipolar quantum gases [CMSO08, Soh11]. The well-posedness issues of NLS have been
tackled in many situations [CKS+-], and its scattering solutions [Tao06, Dod16] have been of
particular interest. The NLS can also be recast as a system of compressible Euler equations
(referred to as quantum hydrodynamics or QHD) with an additional quantum pressure term
[CDS12]. This system is a special case of the more general Korteweg models, subject to much
mathematical analysis. Hattori and Li [HL.94] showed that the 2D QHD equations are locally
well-posed for high-regularity data, and improved this to global well-posedness in the case
of small data [HL.96]. Jiingel [JMRO02] established local strong solutions to the QHD-Poisson
system, formed by including a potential governed by the Poisson equation. The same model
possesses local-in-time classical solutions in 1D when the data is highly regular [JL04]. For
initial conditions close to a stationary state, the solutions are global-in-time and converge expo-
nentially fast to the stationary state. Blow-up criteria have also been derived for QHD [WG20,
WG21]. While the discussion so far has focused on strong solutions, there has also been rising
interest in the weak formulation of QHD-like models. Antonelli and Marcati [AM09, AM12,
AM15] introduced the novel fractional step method in the pursuit of finite-energy global weak
solutions. The idea was to revert (from QHD) to NLS, which was easier to solve, and account
for collision-induced momentum transfer via periodic updates to the wavefunction. In this
process, the occurrence of quantum vortices could also be characterized by imposing irrota-
tionality of the velocity field (away from vacuum regions). Using special test functions that
permit better control of the quantum pressure term, Jiingel [Jiin10] proved that the viscous
QHD system admits weak solutions in 2D. For small values of viscosity, these solutions were
global in time. The proof utilized a redefinition of the velocity that converts the hyperbolic con-
tinuity equation into a parabolic one, a technique that was pioneered by Bresch and Desjardins
[BDO04] for Korteweg systems in general. Vasseur and Yu [VY 16b] expanded Jiingel’s result
to a wider class of test functions while adding some physically-motivated drag terms. Various
forms of damping have appeared in the literature, primarily serving two different roles: (i) as
an approximating scheme for both the compressible Navier—Stokes with degenerate viscosities
[LX15, VY16a] as well as Korteweg-type systems [AS17, ACLS20, AS22], and (ii) as a means
of proving global existence [Cha22] or relaxation to a steady state [BGLVV22, SYZ22]. Most
works involving Korteweg systems use the notion of x-entropy that was first demonstrated
in [BDZ15]. Furthermore, even questions of non-uniqueness (and weak-strong uniqueness)
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of weak solutions have been addressed for the QHD-Poisson system with linear drag using
convex integration [DFM15].

It is only at absolute zero temperature that superfluids can be well-approximated by the
use of the NLS alone. For temperatures above zero and below about 2.17 K, we have a mix-
ture of both fluids. In this article, we consider Pitaevskii’s model [Pit59] which couples the
NLS and the NSE. The model was initially derived for a fully compressible normal fluid.
While compressible fluids are more realistic in some scenarios, they are also much more chal-
lenging to both rigorously analyse and numerically simulate. [Fei04, Lio96a] contain several
classical results on the compressible NSE. On the other hand, the incompressible NSE (no
density equation) is arguably the most studied nonlinear partial differential equation in math-
ematics (see [Tem77, MB02, RRS16] for classical results). In this article, we approximate
the normal fluid to be incompressible, but the density persists, varying from point to point
in the flow domain. What results is an incompressible, inhomogeneous flow: compressible
NSE appended with the condition of divergence-free velocity. This model of fluids was first
investigated by Kazhikov for local weak solutions when the initial density is bounded from
below [Kaz74], and vacuum states were allowed in an improvement by Kim [Kim87]. Further
advances for weak solutions were made by Simon [Sim90], who in particular analysed their
continuity at =0, and also proved the existence of global solutions in a less regular space.
Meanwhile, Ladyzhenskaya and Solonnikov [LS78] presented the case for strong solutions:
With the density bounded from below, it is possible to construct local (global) unique solu-
tions in 3D (2D). Furthermore, if the data is small enough, one obtains global-in-time unique
solutions. Results in the same spirit were proven by Danchin for small perturbations from the
stationary state in critical Besov spaces [Dan03]. He further established the inviscid limit of
the incompressible inhomogeneous NSE in subcritical spaces [Dan06]. The local existence
theorem by Ladyzhenskaya and Solonnikov was shown to be valid for non-negative densities
as long as the initial data satisfied a compatibility criterion [CKO03]. This work by Choe and
Kim has since spurred on several other results that utilize such compatibility conditions on the
initial data.

Given the immense interest in the NLS and NSE, the rigorous study of a coupled system
should be a natural next step. Indeed, one such two-fluid model of superfluidity was analysed
by Antonelli and Marcati in [AM15]. The superfluid was described by the NLS, and the normal
fluid by the compressible NSE. This is similar to the system considered in this article, save for
two key differences. Firstly, their model did not permit any mass transfer between the two fluids
(which allows for global-in-time solutions). As we shall discuss, this is the biggest roadblock in
Pitaevskii’s model and essentially defines the strategy used. Secondly, the momentum transfer
in their model is unidirectional and linear, affecting only the superfluid phase (as opposed to
the bidirectional and nonlinear nature of the coupling in this work).

Thanks to the retarding interactions between the two phases, the NLS acquires a dissipat-
ive flavour and renders it parabolic. This lets us extract dissipative contributions to the energy
estimates. To analyse the momentum equation of the NSE, we work with initial velocity in H}.
This yields appropriate regularity for the velocity, in order to adequately control the relaxa-
tion mechanism which contains quadratic terms in the velocity. Parting ways from [Kim87],
we begin with an initial density field that is bounded from below. This is necessary since
the continuity equation is unusual and is not a homogeneous transport equation. Our primary
goal is to avoid the occurrence of zero or negative densities at any time. To this end, we
must limit the effect of inhomogeneity, which is the relaxation mechanism that allows for
mass and momentum transfer between the two fluids. As a serendipitous by-product of this



Nonlinearity 37 (2024) 065009 JJang et al

non-zero density field, we also obtain control of ||d,u||;2;2, which allows the use of compact-
ness arguments to actually obtain strong continuity in time of the velocity field.

The crux of this work is to derive a priori estimates and carefully extract coercive terms that
allow for norms to decay, while avoiding any derivatives on the density of the normal fluid. To
engineer this decay, we include a linear drag term for the NSE. Additionally, we also present
results for any polynomial-type nonlinearity in the NLS. We now mention the notation used
in the article before describing the model and stating the results.

1.1. Notation

We denote by H*(T?) the completion of C°°(T?) under the Sobolev norm H°, while we use
H*(T?) when referring to the homogeneous Sobolev spaces. Consider a 2D vector-valued func-
tion u = (uy,us), where u; € C°°(T?) for i = 1,2. The set of all divergence-free, smooth 2D
functions u defines C3°(T?). Then, H(T?) is the completion of C3°(T?) under the H norm.

The L? inner product, denoted by (-, -), is sesquilinear (the first argument is complex conjug-
ated, indicated by an overbar) to accommodate the complex nature of the Schrédinger equation,
ie. (Y,p) = sz Y dx. Since the velocity and density are real-valued functions, we ignore
the complex conjugation when they constitute the first argument of the inner product.

We use the subscript x to denote Banach spaces that are defined over T?. For instance,
L} :=17(T?) and Hy, = H:(T?). For spaces/norms over time, the subscript 7 denotes the time
interval in consideration, such as I} := L’[’Q ;- The Bochner spaces L/ (0,T;X) and C([0,T]; X)
have their usual meanings, as ? and continuous maps (respectively) from [0, 7] to a Banach
space X.

We also use the notation X < Y and X 2> Y to imply that there exists a positive constant C
such that X < CY and CX > Y, respectively. When appropriate, the dependence of the con-
stant on various parameters shall be denoted using a subscript as X Sy, 1, ¥ or X < Gy, 4, Y.
Throughout the article, C is used to denote a (possibly large) constant that depends on the sys-
tem parameters listed in (2.4), while s and ¢ are used to represent (small) positive numbers.
The values of C, k, and € can vary across the different steps of calculations.

1.2. Organization of the paper

In section 2, we present and discuss the mathematical model, along with statements of the main
results. Several a priori estimates, at increasing levels of regularity, are derived in section 3.
The construction of the semi-Galerkin scheme and the renormalization of the density are dis-
cussed in section 4.

2. Mathematical model and main results

The superfluid phase is described by a complex wavefunction, whose dynamics are governed
by the NLS, while the normal fluid is modelled using the compressible NSEs. In all gener-
ality, the full set of equations can be found in [Pit59, section 2]. In what follows, we use a
slightly simplified and modified version of the equations, arrived at by making the following
assumptions.
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(1) We consider a general power-law nonlinearity for the NLS. This is done by choosing the
internal energy density of the system to be 1% |4 [PF2, for 1 < p < oo (see remark 2.5).
We also assume that the internal energy is independent of the density of the normal fluid.

(2) We work in the limit of a divergence-free normal fluid velocity. This means that the pres-
sure is a Lagrange multiplier, rendering the equations of state and entropy unnecessary.
Note that, due to the nature of the coupling between the two phases, the density of the
normal fluid is not simply transported.

(3) A linear drag term has been included in the momentum equation to account for the lack of
coercive estimates for the velocity.

(4) Planck’s constant (/) and the mass of the Helium atom (/) have both been set to unity for
simplicity.

We now state the equations used in this paper:

1
O + ABY =~ Av + Elypy (NLS)
1. 5 1 1, .
B:E(fzvfu) +u\¢\p:f§A+§|u| +iu-V+plyp (CPL)
Op+V - (pu) =2X Re (YBY) (CON)

O, (pu) +V - (pu®@u) + Vg — vAu+ apu =—2XNm (V)B)) + AVIm (¢By) + %VWJV“
(NSE)

V-u=0. (DIV)

Here, v is the wavefunction describing the superfluid phase, while p, u, and ¢ are the density,
velocity and pressure (respectively) of the normal fluid. The normal fluid has viscosity v and
drag coefficient «, while p (positive constant) is the strength of the scattering interactions
within the superfluid'. This scattering nonlinearity has an exponent p € [1,00). Finally, \ is a
positive constant that indicates the coupling strength between the two phases. The coupling is
denoted by the nonlinear operator B.

The Schrodinger equation dictates the evolution of the wavefunction, generated via the
action of the Hamiltonian (roughly, the energy) of the system. The coupling B resembles the
relative kinetic energy® between the two phases. This is evident upon recalling that the quantum
mechanical momentum operator (in the position basis) is —iZV. The purpose of this coupling
is to allow for mass/momentum transfer between the two phases as a means of relaxation or

dissipation.
These equations are supplemented with the initial conditions
¥ (0,x) = (x), u(0,x)=up(x), p(0,x)=po(x) ae.xecT>. (INT)

We use periodic boundary conditions, i.e. we are working on the two-dimensional torus [0, 1]>.

14> 0 (resp. 1 < 0) is called the defocusing (resp. focusing) NLS.
2 There is also the nonlinear wavefunction term, so that the relaxation to equilibrium also depends on the potential
energy of the superfluid.



Nonlinearity 37 (2024) 065009 JJang et al

2.1. Weak solutions and the existence theorems

Having stated the model, the notion of weak solutions to (NLS), (NSE), (CON), and (DIV)
(with initial conditions (INI) and periodic boundary conditions), henceforth referred to as the
Pitaevskii model, is as follows.

Definition 2.1 (weak solutions®). For a given time 7 > 0, a triplet (1, u, p) is called a weak
solution to the Pitaevskii model if the following conditions hold.

(i) v € L([0,T); H2(T%)) N L2(0,T;H(T2)),  u € L>([0,T); Hy(T?)) N L2(0, T; Hy(T?)),
and p € L*([0,T] x T?), and

(i) 1, u, and p satisfy the governing equations in the sense of distributions, i.e. for all test
functions ¢, ®, and o described below, we have

T 1
- / / (wa,¢+ L Oy Vo— AgBY — inph m) dx dr
0 T2 2l (21)

= [ e 0) v nam)ax
with
_/OT/Tz (pu-0,® +pu@u: Ve —vVu: Ve —2X0 - Im (VYBY) + apu- @) dx dt
= [ s ©) = p(ryu () 8 (1)) 8 22)

and

—/ / (pOio + pu-Vo +2Xo Re(&qu))dxdr:/ (poc (0) — p(T) o (T))dx,
0 JT? T? 23

where 19 € H*(T?), ug € H}(T?) and py € L>°(T?) are the initial data. The test functions

are:

(a) a complex-valued scalar field ¢ € H' (0, T;L*(T?)) N L*(0,T; H'(T?)),

(b) a real-valued, divergence-free (2D) vector field ® € H'(0,7;L3(T?))N
L*(0,T;H}(T?)), and

(c) areal-valued scalar field o € H'(0,T;L*(T?)) N L*(0, T; H' (T?)).

Remark 2.2. We note that the last two terms in (NSE) are gradients, just like the pressure term,
and thus vanish in the definition of the weak solution (since the test function is divergence-
free). Henceforth, we absorb these two gradient terms into the pressure, relabeling the new
pressure as .

We are now ready to state our main results.

3 See remark 2.6.
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Theorem 2.3 (global existence). Fix any p € [1,4), and let 1)y € H3 (T?) with uy € H(T?).
Suppose 0 < m; < pg < M; < oo a.e. in T2 Then, there exist a global weak solution (V,u, p)
to the Pitaevskii model such that the density is bounded between my € (0,m;) and My := M; +
m; — my, if the initial data satisfy the smallness criterion

||w0|| s+ HMOHHI + ||7,Z}()HL,;+2 g €0 ()\,,U,V,I’l’li,Mi,ﬂlf,O(,p) . (24)
H? X ‘X

Also, the solution has the regularity

¥ € C([0,00); H? (T2)) N LX(0, 00; H? (T?)), 2.5)
u € C([0,00); HY(T?)) N L*(0, 00; H3(T?)), (2.6)
p € L°(]0,00) x T*) N C([0,00); L"(T?)), (2.7)

for 1 < r < oo. Additionally, the solution also satisfies the energy equality

1 2 1 2 24 p+2
2 IV P@Oul + F IVl + =5 1@,

VIVl ol 2NBUE 8
_ 1 2 1 2 2u p+2
= EHVPOMOHLE + EHV%HQ ‘*‘m”l/’O\ e a-e 1€ [0,00).

For the case of higher-order nonlinearities, i.e. when p > 4, we obtain ‘almost global’
existence.

Theorem 2.4 (almost global existence). In the case of p =4, the solution to the Pitaevskii
model has the same regularity properties as in theorem 2.3, except that their existence is guar-
anteed on [0,T) such that T ~ exp(c~2), where ¢ is the size of the (sufficiently small) initial
data. i

For p >4, the existence time scales polynomially with the size of the data, as T ~ e 7. In
both cases, these solutions also satisfy the energy equality on [0, T].

While deriving the a priori estimates, we have to distinguish between the cases 1 < p < 2,
p=2,2<p<4,p=4,and p > 4. This is due to the poor control we have on the superfluid
mass. Given that we are on T2, and our equations do not preserve functions with vanishing
mean, the L? norm becomes the limiting factor even in the decay of higher norms. In the case
of the wavefunction, this corresponds to the mass of the superfluid. Similarly, for the velocity,
we do not get coercive estimates from the viscosity term alone, at least at the level of the kinetic
energy estimate. Thus, we introduce a linear drag term.

Remark 2.5. Since the self-interaction term in (NLS) involves a discontinuity due to the com-
plex magnitude, evaluating the H> norm as in (3.51) requires p > 1. In particular, points of
superfluid vacuum (¢ = 0) may lead to problems. As an illustration, consider D (|f|f) for a
real-valued function f, which can be regularized as D? (( £+ E)g f) Upon differentiation, the
most problematic term is (f* + )2 ~2f3(Df)2. To be able to handle this term in the limit & — 0,
at the points where f =0, we require that 2 (’5’ - 2) +3=p—12>0. This argument can be
easily extended to a complex-valued function.

Remark 2.6. The regularity of the solutions seem to suggest that the wavefunction and velocity
are strong solutions. Indeed this is true, as they are strongly continuous in their topologies. On
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the other hand, the density is truly a weak solution and is the reason for referring to the triplet
as a weak solution. This low regularity of the density influences the nature of the calculations
that are employed.

The proofs of both theorems 2.3 and 2.4 follow from detailed a priori estimates, and a
semi-Galerkin scheme to construct the solutions. The a priori estimates only differ slightly for
various ranges of the values of p, as will be illustrated. The general approach to the problem
is motivated by that of [Kim87], but we do not allow the density to vanish anywhere. This
is because the presence of u in the nonlinear coupling means we are required to control it
in L°°(T?) to prevent the formation of vacuum (and regions of negative density). Beginning
from the usual mass and energy estimates, we derive a hierarchy of several energies for the
wavefunction and velocity.

2.2. Significance of the results

The holy grail of superfluid modelling is to find a unified description that works at all length
scales, and rigorous validation of any proposed models is crucial to this process. The thrust of
this paper is the analysis of Pitaevskii’s description of superfluidity, the most important feature
of which is to characterize the mass transfer between the two fluids. In the course of proving the
main theorems, we quantify the conversion of superfluid into normal fluid (lemma 3.1), con-
firming the interaction-induced relaxation mechanism. We establish the validity of the model
in the limit # — oo even as the superfluid mass decreases (polynomially) quickly. The trans-
ition in the behaviour of the solutions, from global to almost-global, as the self-interactions are
increased in strength, is in accordance with the decreasing mass decay. However, the threshold
p =4 still begs for a physical explanation. Of the assumptions underlying our theorems, relax-
ing the demands of small data and positive normal fluid density would be important future
advancements in the context of the Pitaevskii model.

The rigorous analysis of superfluid models is a fairly new topic, and we expect for this
work to pave the way for further results in this direction. Some questions of interest, particu-
larly of consequence to physicists and engineers, are the issues of stability and compressibility.
For example, in [Pit59], Pitaevskii investigated the propagation of sound waves in superfluid
Helium by studying the case when the superfluid has only small density gradients. It has to be
noted that his derivation of the model accounted for the contributions to the internal energy
of the system from both fluids. Thus, by utilizing appropriate self-interactions (for instance,
non-local potentials, or including the normal fluid density), it would be important to test the
model against experimental findings. A mathematical guarantee of the existence of solutions
to the Pitaevskii model is essential to complement the efforts to numerically simulate such
complicated systems [BSZ+23]. It is worth mentioning that a better understanding of super-
fluidity could be revolutionary to most modern experiments in physics (including the Large
Hadron Collider [Leb94, RM18]), and also to the fields of quantum computing [HDT21], grav-
itational wave astronomy [SDLPS17], and dark matter [VKEE-+23]. All of these use helium as
a cryogen, often as a superfluid-normal fluid mixture due to the superfluid’s excellent thermal
conductivity [Vin04].

2.3. The strategy

The nonlinear coupling terms in (NLS) and (NSE) may be the most obvious differences
between this model and other standard fluid dynamics models, but the source term in (CON)
is the most troublesome. The backbone of our approach towards proving global existence is

9
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ensuring a positive lower bound for the density at all times. This involves a meticulous hand-
ling of the a priori estimates so as to obtain coercive terms that lead to global-in-time bounds.
Throughout the calculations, we ensure that the density norms are only in Lebesgue spaces: p
is not smooth enough to be differentiated (even weakly). Before we outline the strategy, we
discuss some properties of the coupling operator B. Henceforth, we refer to the linear (in 1))
part of B as By. Thus,

1 1
BL:Bf,u|1/)|”:—§A+§\u|2+iu~V. (2.9)

Lemma 2.7 (B, is symmetric and B is coercive). We have

(1) (¢,BLy) = (BLo, ) for all ¢, € H'(T?),
(2) Re(ih,BY) = plly |12 for all ¢ € H'(T?).

p+2
7

Proof. Both calculations follow using integration by parts.
(1) By (2.9) and incompressibility of u, we have
_ 1 1
080} = [ dseo = [ 6]-Jav+ St i)
T? T2
1 - 1 I - -
= [ |-380+ 3luPs—iu-va| v = [ (Bd)v = (Brow)
T2 2 2 T2
(2) Similarly,
- -1 1 .
Re(,B)) = Re/T;Zz/)Bz/) = Re/T2w [—zmp + E|u|2¢ +iu-Vip +u|w|”z/)]
1 1 _
=3IVl + 5 [ PR ~1m [ a0+ ol
2 X 2 T2 T2 Ly
> g2,

In the last inequality, we used Holder’s and Young’s inequalities to cancel the third term
with the first two terms:

_ 1 1
i [ Vo> = b B~ S0l

O

Remark 2.8. Given that B provides a relaxation mechanism, it is tempting to treat it, or at
least its linear part By, as a dissipative second-order elliptic operator whose eigenfunctions
can be used as a basis for the semi-Galerkin scheme. Even though B; is symmetric and has
a non-negative real part, this cannot work since it has time-dependent coefficients, and so its
eigenvalues and eigenfunctions also depend on time. Moreover, B; does not have a spectral
gap at 0. Its eigenvalues are not known to be bounded from below by a positive number.

Thus, by integrating (CON) over T2, the advective term vanishes and using lemma 2.7, we

have
d

— [ pdx=2\Re | By >0. (2.10)
dr T2 T2

10
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This implies that the overall mass of the normal fluid does not decrease with time. Put differ-
ently, the coupling causes superfluid to be converted into normal fluid, on average. However,
the RHS of (CON) need not be non-negative pointwise in T2. So it is not inconceivable that
the density of the normal fluid may locally vanish, or even take negative values! To prevent
physically unrealistic density fields, and because our estimates require a strictly positive dens-
ity, we fix a positive lower bound for p. Based on this, we define our existence time 7, so that
p does not drop below the lower bound until time 7. Our goal is to show that this lower bound
can be maintained for arbitrarily long, provided we begin from sufficiently small data.

Definition 2.9 (existence time). Start with an initial density field 0 < m; < po(x) < M; < oo.
Given 0 < my < m;, we define the existence time for the solution as

T, ::inf{t>0|iqrr£fp(t,x):mf}. (2.11)

A formal solution to the continuity equation can be written using the method of character-
istics. Let X, () be the characteristic starting at o € T2. To wit, the characteristic solves the
differential equation

d
70 () =u(t.X,(1) (2.12)
X, (0) =y e T

Here, u is the velocity of the normal fluid. So, along such characteristics,

p(t,Xy (1)) = po (y) +2A Re/oll/JBllf (7, Xy (7)) dr. (2.13)

From (2.11) and (2.13), it is clear that a sufficient condition to ensure the density is bounded
from below by my is

T
2\ / |VBY| (1,X, (1)) dT < m; — my, (2.14)
0
for all 7 < T,. This can in turn be ensured through the sufficiency
2M[9llzz, e 1BYN s, 10 < mi =y (2.15)

So, we are looking to show that (2.15)—actually a stronger version of it—holds irrespective
of 7, so that we can conclude that the density is always greater than my. This is achieved by
selecting small enough data, and allows us to deduce the global existence of solutions. Since
By involves a second-order derivative, its LS boundedness leads us to high-regularity spaces.
The momentum equation (NSE) is used to estimate ||u([;2> and [|u| 251, which are useful in
handling parts of ||Bt)||,. As a by-product of these calculations, we are also able to bound
[ Ou]| 1212, which plays a part in the compactness arguments for the strong time-continuity of u.
The Schfﬁdinger equation (NLS) is used to derive increasingly higher-order a priori estimates
of 9. In all these calculations, we work with density that is only in L.

3. A priori estimates

Throughout this section, we derive the required a priori estimates, using formal calculations.
We assume the wavefunction and velocity are smooth functions and that the density is bounded
from below by m; > 0 in [0, 7]. Here, T is any time less than the local existence time 7, and
is extended to global existence in section 3.5.

1
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3.1 Superfluid mass estimate

Lemma 3.1 (Algebraic decay rate of superfluid mass). The mass of the superfluid
S = v (0]
decays algebraically in time as (1 + t)fﬁ, and is bounded from above by the initial mass Sy.

Proof. Multiplying (NLS) by 1), taking the real part, and integrating over T? gives

1d, o
5§II¢I|L;+A/T2 Re (¢By) =0. (3.1)

The Laplacian term on the RHS of (NLS) vanishes using integration by parts. By lemma 2.7,

the second term in (3.1) is bounded from below by the L"X’+2 norm, so we get

2dtllwlly + Al <. (3.2)

Since we are in a domain of unit volume, Holder’s inequality leads to

|"+2 (3.3)

dt2

It is now easy to conclude that the mass of superfluid (using the quantum mechanical inter-
pretation of the wavefunction) decays algebraically in time. Namely,

S
SO =0 s —2— . rep, (3.4
(1+SO)

where Sy := || |7, is the initial mass of the superfluid. O

3.2. Energy estimate

In this subsection (section 3.2), we derive the governing equations for the energy

2p 2
*H\/ Hy+*|\WJ( W+ =l 17,5 (3.5
x P + 2 x
In section 3.3, we work with a higher-order energy X(#), combining it with E(#) in section 3.3.3.

We begin by acting with the gradient operator on (NLS), multiplying by V1), and taking the
real part. This gives

1 1 . _ _
E&\WIZ =—3Im (V- VAY) — ARe (Vip - V (BY)) — pV | [P - Im (V1)) .

Integrating over T2, we observe that the first term on the RHS vanishes upon integration by
parts due to the periodic boundary conditions. The second term on the RHS is similarly integ-
rated by parts to yield

31701 = ARe [ Agsy—am [ Olop- 09y, (6

12
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Now, we rewrite the first term on the RHS by expressing the Laplacian in terms of the operator
B, giving us a dissipative contribution to the energy estimate. Namely,

ARe [ AYBy = -2\ Re/ <B1/)lu|21/;+iu'V1/_Ju|w|p1/_1> By
T2 T2 2

= —2[1B¢|72 +)\/Tz|u|2 Re (1B1) +2)\/Tzu~lm (VyBy) (3.7

—|—2,u)\/Tz|1/)|” Re (YBY).

We also have to account for the potential (self-interaction) energy of the wavefunction. To
obtain this, we multiply (NLS) by 2¢ and take the real part to obtain

Ol P+ V -Im (Y Vy)) = —2A Re (YBY).
Multiplying the above equation with gt |P and integrating over T? leads to
2p d
p+2dt
Combining (3.6)—(3.8) gives the energy equation for the superfluid,

etz — / Im (§V9) - Vo P = —2u) / W0 Re ($B4) . (3.8)
T2 T2

d /1 2 _ _
S SIvelh + o pllP S ) 2Byl = A | ul Re (¢BY) +2X | u-Im (V§BY).
2 T p2 S -

dr
(3.9)

The terms on the RHS are cancelled once we include the energy of the normal fluid. We first
rewrite (NSE) in the non-conservative form, and apply the Leray projector (see remark 2.2) to
get

P (pOu+ pu-Vu—vAu+ apu) =P (—2XIm (Vi)Bp) — 2 u Re (yB)).  (NSE’)

Here, P is the Leray projector, which projects a Hilbert space into its divergence-free sub-
space, thus removing any purely gradient terms. We also apply the Leray projector to (NSE) to
obtain

P (0, (pu) +V - (pu@u) — vAu+ apu) =P (—2A\Im (Vy)By)).  (NSE-L)

Taking the inner product of both (NSE’) and (NSE-L) with u, using incompressibility, and
adding them, we arrive at the energy equation for the normal fluid,

3 gy IVl IVl + ol Al = <27 [ e (V586) <3 [ P Re(iB0). 3.10)

Therefore, by adding (3.9) and (3.10), we obtain the energy equation
dE

= T VIVullz: + allyv/pullz; + 27y |7 = 0. (3.11)
Thus, the energy is bounded from above as
E@+v|Vulyy p+elvouly o+2MBYIE -0 =E, r€[0,1], (12

with
Ey:= lH\ﬁpouonz + 1||w}0||22 + 21 lloll?F2 (3.13)
2 T2 B pt2 I

13
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denoting the initial energy of the system. Next, we wish to show that the energy actually decays
algebraically in time, under a certain smallness condition on the initial data. First, note that

[ 1op Re (@80) = Re [ 1615 [~ 580 + SluPo +iu- V|

:1 P 2 1 p. 2 l 20 P42
5 L rIver+g [ Viop-sk+3 [ W)
" reimgos

_ 1 2 2p i1 2 l 2 2

_i/qrzW'p'Wl " (p+2)2”V<W’| ' )”Lf+2/qrz|”‘ ort
- [ 1o (50)

21V (1154 1,

where we used an argument similar to the one from the proof of lemma 2.7 to get the last
inequality. We now use (2.9) to see that

||Bi/)||%3 = HBLi/)H%; +N2H¢||ig;§ +2M/2|¢\p Re (¥B.¢)
1 [
> 1Byl + 2 IP% + Liv (w ‘g+1) I a1
> LD, — Clll1 — Cllu- o, + =el253 + 219 (ko4 2
= 8 L2 L2 u L2 C [+ C -

Combining (3.11) and (3.14), we get

dE A
& v Vull +ally/aull; + S I

< NPl + - Vol3y =+ 1o,

1 1
2 2p+2 E+1Y12
B+ Sl + 29 (w5 I3,

(3.15)

We then bound the first term on the RHS using Holder inequality and Gagliardo—Nirenberg
(GN) interpolation as

4 8
A T P A T A (3.16)

For the second term in (3.15), we interpolate the L} norm, while also applying the Holder,
Poincaré, and Young inequalities, as well as the GN interpolation inequality, to get

2 4
Ll 9 17 g

ERTTE R I. 2 2 2 2
<l bl IV OIS D01, < Colluliallaly IV, + wIDP0IE G

L S |lullZe I VlZ; < llul

12

3 3
< CuE IV/pullZ + CuEf [V

72+ KDY

For sufficiently small values of « and Ey, the RHS of (3.17) can be absorbed into the LHS
of (3.15). We also use the Poincaré inequality to convert the last term on the LHS of (3.15)

14
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into a coercive term for the internal energy term [% ||¢H’Z 2 in E(1). To this end, we observe

that
p+2 541 541 : S+1
||¢HL:;+2 S|P = frlv]? + || frl¥]?

<l (1 1) I+l 52 + Cullell

2

SIV (1) I + 27,
(3.18

2 2

In the last inequality, we interpolated between the 127 and L2 norms, which may be done
when p > 2. By choosing « sufficiently small, we can absorb the second term on the RHS into
the LHS. For p < 2, we can simply replace |||/ Til by ||7,ZJ||i;|r2 since we are on a finite-size
domain. Thus, irrespective of the value of p, (3. 15) becomes
dE , 1 PR SN | 42 242
T+ SIVull; + Slvpull, + 21Dl + SR + Sl 1o

1 4 8
< CIRBIE + Clul el 1 -
While we have the required coercive terms on the LHS, we cannot yet obtain a decay estimate

for E(t), since the second term on the RHS is out of reach using E only. In order to control it,
we set up an analogous inequality for a higher-order energy.

3.3. Higher-order energy estimate

In this subsection, we obtain further bounds for v and u, this time with one more derivative
than the energy E.

3.3.1. The Schrédinger equation.  Similarly to the case of the energy equation, we act
upon (NLS) with the Laplacian —A, multiply by —Aq), take the real part and integrate over
the domain to get

5 dtllAwHLz: “ARe / (A%) By + plm / (A2)) [Py =: L5+ L. (3.20)

Once again, the first term on the RHS of (NLS) vanishes due to the boundary conditions.
We now estimate the terms on the RHS of (3.20). For the first term,

13=/\Re/T2v(A¢)-V(Bw)

:)\Re/WV(A@ v (-Mw + 3Py i vy +ﬂ|ww)

2
1
||D3¢HL2+)‘RC/ (Az/)) <2|u|2¢ +iu-Vip —l—,u|1/)|pw>
< —ZHDSi/JHi; + IV ([ulPp) |7 + CIIV (- V)72 + CIV ([0 [P9) 172,

which gives a dissipative term for ¢. For the term /4, we again integrate by parts, followed by
Holder’s inequality to obtain

— A
L= —pim [ (80) -V () < S0+ IV (0 PO

15
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Thus, (3.20) becomes

d 1
AL+ GIDIL S IV (1) 1% + IV (- V) IE + IV (19 P9)IIE

(3.21)
=:Is+1lg+ 1.
The first of these terms is bounded as
Is S [l IV ullZs 140176 + el s V40 76
ERTTE 3 5 2 ERTITE 3 i
< el s el o I At e 1 By + Nl el I8 A 5 (3.22)

2 14 2 6 2 4 § 3 3
< Cocllull leell e [V uall 2 10115y + sl Aullz + Cllall el g [V [ A 72

using the Poincaré and GN interpolation inequalities. We have also applied Young’s inequality
to extract out dissipative terms in the last step. We again use x to denote a small number whose
value shall be fixed later on, and C,, is a constant whose value depends on x and the system
parameters. Similarly, for the second term on the RHS of (3.21), we have

Is SIVullZ: V917 + llullzs [D* 17
< % 2 % % 2 % % % % 3 % 323
S IVl D20l 3 IV ID20 s + sl | Al 1D (3.23)
< CullVullZ V9 2| AY7: + £l Aull7: + Collulliz lullFa | AY 7 + £ D*]|7-

Finally, we apply the Sobolev embedding and Poincaré inequalities to bound 7. This leads
to

12

2 2 2
O L T A 2 P P AT (3.24)

Combining all these inequalities into (3.21) results in
d 2 10
318¢Ie + GID YL

< Cuc (Nl [l 101 + 190l 1V 0l 2 101 + alz el AW ) (3.25)

Syl 3 5 2p 2 2
o+ Clull el IV AL, + Clb 2 1A%, + sl Auly,

where we have absorbed x|/ D4 ||7, into the LHS with a sufficiently small .

3.3.2. The NSEs.  We shall now derive a higher order estimate for the velocity field, which

shall be combined with (3.25). Starting with (NSE’), we first multiply it by J,u and integrate
over the domain to obtain

vd -
/ plou|* + Ed—HVuH%z = f/ p(u-Vu)-Gu—2X\ [ Ou-Im(VyBy)
T2 t * T2 T2

—2/\/ 3,u-uRe(1ﬁB¢) —a/ pu - O
T2 T2
=:ly+ 1o+ 1o+ 1.
Recalling that my < p < My = M; + m; — my, we control the RHS. For the first term,

(3.26)

1 1
1 < g IVAol +C [ 1PVl < VAol + Clulfy Vulf,

ullfp |Vl 22 + ]| Al |7

1
< g IvA0ul: + Cellul

16
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In going to the last inequality, we used the GN interpolation and Poincaré inequalities.
Finally, Young’s inequality lets us extract the required dissipative term. For the second integral
in (3.26),

1
Iy < §||\/ﬁ&u

1
< 3 IvAdul; + vy

B+ ClIVY Bl

2 4 4 2
1Al Bl 13w,

1 2 4
< glvaoullE, + CullBulE; (Il 18015 + 196l 18V ) + IV (B2,

where the By term is handled via the GN interpolation and Young’s inequalities. In the third
integral in (3.26),

1
ho < g lIVpOui; + Clluligllvllz 1B I

2 4
Sl 0+ Nl ey 115 )

1
< g IlvpoullE, + Cul1B, (|l
+ K|V (BY)I2:

where the term Bt is handled just like in /9. Finally, for the last term in (3.26),

« ad «
I = —— (9 2:777 2 - 3 2
w==5 [ ool =55 [ ol <5 [ @)l
ad

e _
- —E@H\/ﬁuﬂiz — E/ (V - (pu) — 2\ Re (¢Bw)) |u|? (3.27)
. T
ad o —
S GIAlE+ 5 [ oVl +ax [ Re () uf

2 dt x 2 T2 T2
We estimate the second term on the RHS of (3.27) using the Holder and GN interpolation
inequalities. This gives

«
E/Tz pu- N |ul? < Nullza [Vl 2 < llullz lull e |Vl 2.

Similarly, for the third term in (3.27),

— 4 8
aA/z Re (VBY) |ul® < 19 llusllullze 1Bv 2 < Cullw Iz Null 2 lull + w11 BEIZ, -
T x x ¥

Substituting the above estimates into (3.26), we arrive at

d d
v IVulze + IVpoul; + ol voullz

2 4
< CallBo I3 (el 1AvI, + Vel lavlE,)
2 4
o+ Cell B2 (il el 1613+ Nl el oo ) (3.28)

4 8
o+ (1l N By 1, + gl |2+ 1900y ol e, )
+kl|BYIIE + £V (BY)|Z: + kll Aul

where C,;, depends on x and the system parameters.

17
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So far, we have obtained equations for || Vu||;> and [[A%)[|;2, while including the higher-
order dissipation corresponding to the wavefunction, ||V (By)||2, or ||D*t||?,. What remains

is to consider the higher-order velocity dissipation ||Aul|7,. To this end, we multiply (NSE’)
by —AAu, with 0 to be determined, and integrate over the domain. This gives

91/||Au||i§ :9/11‘2 p@,u-Au—!—G/sz(u-Vu)-Au—|—2)\9/TzIm (VYBY) - Au

+2/\9/ Re(¢3¢)u.Au+ag/ pu- Au (3.29)
T2 T

=il + 1Lz +1is+ 15+ e

When estimating the RHS, the goal is to extract ||Aul|7, with a small coefficient, so it can
be absorbed into the LHS. Thus, we have ‘

v
I < EIIAMHQ + CO|l/pOsul |7

The second integral is manipulated just as /g and yields

Ov
1 < ) Aull, + G / WP |Vup
20 x T2

Ov
< TOHA“Hig‘FCeHM 22 leel| 7 [ V7] 7.

The bound for the integral /4 follows from the GN interpolation, Poincaré, and Young inequal-
ities, as

v
Ly < TOHAMH%Z + Col| V76 1B 73
O | Al Al Bl L Bl
< )l + oIVl s s e B 1B

v 2 4
< Jollauly + CuolByl: (VY51 A% + (VY

AY|E) + IV (B)];.

2

In a similar manner, we have

v
Iis < EHAMHE + CollullZ [l

26 [1BY|[Ze

v 2 RIS 2 3 i
< 1w, + Colluly ul N1, 1Bl 1B 1y

v 2 4
< Tl Co 1B, (Il iy 1 i ety 1560 ) + 9 (B -
Finally, for the last integral in (3.29),

v

o < 01 Al + €Ol 7,
Thus, (3.29) becomes
O | Al < CooBUIE: (V01512005 + [Vl vl
5 [1Aull; < CoplBYiz (IVOILNADIL + [Vl | Al

2 4

o+ o 1B (1l el 19015+ 2 el 15 ) (3.30)

2+ Ol /Pl + COll /ol + K]V (Bo)

18
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We now add (3.25), (3.28) and (3.30). We also observe that
IV B2 SID*IIE + IV ([P 17 + 1V (- V) 7 + IV ([0 [P) 12,

where the last three terms on the RHS are the same as I5, I, and I7 in (3.21). We bound them just
as in (3.22)—(3.24). Choosing 6 sufficiently small, and subsequently ~ also small enough, we
absorb ||/pO,ul|%, and || Aul|, on the RHS into the corresponding terms on the LHS. Finally,
what remains is )

d 1 1 1
& (IAGI3; + vIVul, + ally/pull; ) + =— D013 + =— I/poullE; + =— | Aul?;
d[ ‘x ‘x X CK79 X CK79 ‘x CI{79 x
4 8
< Cuco (ol N7l ol |l + (03 el )

2 4
1BIZ IVl 1A% + IV lz A )
2 4
o+ Cr 1B (el el 101+ el el 1015 )

+Cu (Hu”i%”u“il_i”quiwaHZ; HIVull Vel | AYIIZ +

+Cr0

p llull 12013, )

4 8 2 4
ERTTE 3 H 2
+ Callull il IV I AV, + Cellwl I Aw IR,
+COll/pullz; + Kl|BY |2, (3.31)

where we absorbed || D¢ ||2, with an appropriate choice of «. This is the higher-order energy
estimate. )

3.3.3. The Grénwall inequality step.  Having derived the equations for the higher-order norms
of u and v, and while accounting for the relevant dissipative terms, the goal now is to use a
Gronwall-type argument.

Lemma 3.2 (Algebraic decay rate for energies). The sum of the energy E(t) and the higher-
order energy X(t) := || Av(1)||2, 4 v||Vu(1)||2, decays algebraically in time as (1 + t)_(H'%).

Proof. We begin by denoting

1
vi= < (1D + oo
so we can rewrite (3.31), after updating 6, x, Ey, and Sy to be sufficiently small, as

dx d
— +a—||Vpullf; +Y < CSX + Q1 (X + E) + ||BY |, 02 (X + E)
dr dt x x (3.32)

« 14
+ EH\/Z’“H%g + EHV“Hig + Al[BY|

B+l Aul?,).,

2
L2

where O (X4 E) is a strictly super-linear polynomial, while Q,(X + E) contains both linear
and super-linear terms. To arrive at (3.32), we have also expanded the Sobolev norms as

ey = Nl + 15l <oy /pully, + 07 (VIIVUlE,) SE+X (3.33)
for the velocity, and
[ll7n < 10lI7 + VYl SS+E (3.34)
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for the wavefunction. Next, we add (3.11) and (3.32) to end up with

d 1 1 1
S XAB) + Y+ 2l Vally + 2l Al + 1By,

dt (3.35)
< CS"X+ Q1 (X+E) +|BY[1:0: (X+E).

We use the Poincaré inequality to rewrite Y in order to get decaying norms. Indeed,
2 2
YZ Az + [ Vullz 2 X.

Additionally, we also use the analysis in (3.14)~(3.19) to rewrite ||By||2, on the LHS of (3.35)
in terms of || D?¢)||7,, which in turn can be downgraded to || V4|2, using the Poincaré inequal-
ity. One can also represent ||By||%, on the RHS of (3.35) by

1BYII7 S NAYIE + a7 + llu- VollZ: + Hwnig;%
SX+ (So+Eo) (X+E)’ + (X+E)* + [ ¢]7; ol
<X+ (So+Eo+1)(X+E)* + S5 4+ 807,

where we have used the estimates (3.16) and (3.17), and the GN inequality. After all of the
above manipulations, (3.35) now reads

d%(X—FE) +B(X+E)<CS T 4 CS(1+8) (X+E)+ 01 (X+E)+ 0y (X+E), (3.36)

where /3 depends on the system parameters, and the polynomials Q; and Q, are strictly super-
linear. The first term on the RHS results from the estimates in (3.18). As for the second term
on the RHS, we note that this can be absorbed into the LHS by tweaking Sj.

For notational convenience, we write Z := X + E and use Q := Q; + O, to denote the strictly
super-linear polynomial in the RHS of (3.36), leaving us with

B+1
dz CS;
5 THZ< WJFQ(Z). (3.37)
(1+557)
The Duhamel solution for Z(¢) obeys
g+1 t 8713([73) 4
Z(1)<e PZy+CS} / —————rds+ / e P90 (Z(s))ds. (3.38)
2 »
° (1+555) 0

We set the size of the initial data as Z(0) =: Zy < . We need to use a bootstrap argument to
show that Z(¢) < 3efor ¢ € [0, 7]. Specifically, we prove that the hypothesis Z(¢) < 4¢ fort < f
leads to the stronger conclusion Z(#) < 3¢ for t < t;, where ¢, € [0, 7]. To this end, we estimate
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each integral on the RHS of (3.38). The first integral is split into two parts to take advantage
of the exponential decay factor. Thus,

! —B(t—s) 3 —B(1—s) t —B(1—s)
eizds = eizds_i_ eizds
0 ( P 1+; 0 ( 1+; : » |+;

1+55s) 1+55s) £ (1+559)

‘ 2 1 !
Se‘ﬁ(t—i)/o ds—l—ﬁ/" e B=9) gy (3.39)
7

The last inequality is a result of the exponential decay of the first term, compared to the
algebraic decay of the second. The second integral in (3.38) is more straightforward, with

/ B0 (2(5)) ds < 0 (4) / B4 < O 4e).
0 0

Now we choose € small enough (call it gy) so that the RHS < e. Similarly, the contribution
from the first integral term in (3.38) is made less than ¢ for all Sy < €9 < 1 small enough.
This completes the bootstrap argument, and we can see that indeed Z(¢) < 3e. For ¢y suffi-
ciently small, the linear dissipation in (3.37) dominates the nonlinearities, and we may write
the equation as

B+1
dz 1 CS;
E—I—E‘Zg P (3.40)
(1+557)
whose solution, following (3.37)—(3.39), obeys
£+1
; CS; 3
Z(0)<Zoe E+——0— <7y 455 (3.41)
» »
(1 + 53 t) '

Returning to (3.35), we now absorb the last term on the RHS into the LHS, which is possible
for small enough data since SUpo< thZ(t) < 3¢p. Furthermore, in the regime of small data, the
super-linear polynomial Q| can be dominated by the linear term on the RHS, which leaves us
with

dz

1 1 1
S Y+ LIVl + Sl + B < cshz (3.42)

Employing the bound for Z from (3.41) in the RHS of (3.42) and integrating over [0, 7], we
estimate the dissipation as

3 2 2 2 2

”D wHL?O,T]L«% + H\/ﬁatuHL%o,T]Li + ||AMHL%O,T]L§ + HVMHL%O,T]L.%

+lvouls o+ 1BUIE e (3.43)
<Zo+ZoSh+ i < 7o+ ST

The last inequality holds because Sy < 1. Thus, we can achieve small values for the RHS
of (3.43) by selecting appropriate Zy and Sp.
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Another useful estimate for the dissipative terms results from integrating (3.42) over the
time interval [f,2¢], where ¢ > 1. This gives
30012 2 2 2
D 1/’||Lf,,2,]L§ + ||\/ﬁat’4HLi,mL§ + ||AMHL%72[]L§ + ||vu||Lfr72t]Lf
+Ivpull o+ 1BV
B+1
SZ
0 —.
(1+557)°

This time-decaying bound on the dissipation is necessary to obtain a sharp control of the
dynamics at large times. O

(3.44)
<Zoe T+

3.4. The highest-order a priori estimate for v

From the previous analysis, we have obtained By € L%O T]H}C. However, as pointed out in the

discussion following definition 2.9, we seek By € L%O‘T]L;’C. To this end, we would like to
obtain an even higher order a priori estimate, only for ).

Lemma 3.3 (Algebraic decay rate for highest-order norm of ). For Sy, Ey, and Zy small
enough, and with s = 2, the homogeneous Sobolev norm ||1)(t)||z. decays algebraically in

time as (1 + t)727% . In addition, if |||z is sufficiently small, the higher-order dissipation

1]

12 s+ may be made as small as required, independent of the time T.
o,

3
The choice of s = 3 is dictated by u € L{°HL N L?H2 C L}H? . This inclusion is precisely
what we need to control the term |u|?1) in the coupling using the a priori estimates up to this
point.

Proof. With s = 2, we apply (—A)* to (NLS), to get
N s 1 s s
O(=A) 0 +A(A) (BY) =~ A(AP Y + 5 (AP ([0 w). (345)

Just as in sections 3.2 and 3.3.1, we multiply by (—A)*), and integrate the real part over T2.
As aresult, the second term on the LHS yields

Re [ (~A)' 5 (~A) (B9) = Re((~A)' 4. (~2)' (B4))
" 1 1 1 1 (346)
= Re((—A)"H 45, (—A)F (BY) ) = Re((—A)"F (=), (~A)F (BY)).

Using the self-adjoint property of the Laplacian allows us to conclude that the first term on the
RHS of (3.45) vanishes, since

[ (=AY 5 (=80 0 =tm (=AY (A1) = Im (-8 . -y )~
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For the second term on the RHS of (3.45), we have

Im [ (A D (=AY ([ [P9) = ((=A) ¢, (—A) ([ [P¥))

= ((=A) 2, (A E () ) = (—A) " (=A)w, (=A) " (0 w)).

In the last expression of (3.46), we expand the operator B and use Holder’s inequality to arrive
at

d s a1 s—1 2
1A Yl + Gl (=4 (=A)
SNAYT2 (P Iz + 1(=A)72 (e V)l + 1(=A) 72 ([ P9) -

Rewriting the LHS in terms of the homogeneous Sobolev norms and the RHS in terms of the
usual Sobolev norms, we have

(3.47)

d 1
e+ Gl S MPY e + - Vo lia: + 11 Pyl (3.48)

Since 2s — 1 = %, the algebra property of Sobolev norms is applicable. Using this, (3.4)
and (3.41), we estimate the RHS of (3.48). The first term requires interpolation* and yields

el < IIMHiI% IIW\Z% S Ml el Ze 19 e S Z () (S (0) + Z (1)) Jullze

242
. s2 (3.49)
<l zetr —20 |l
<1+S§t> !

where we have retained only the terms that decay the slowest. In arriving at the last inequality
in (3.49), we use the fact that Z; < 1. For the second term in the RHS of (3.48), we similarly
obtain

- Vi)l Fas S IIMIIZg 191 < Nl 1911 (3.50)

3

While the H? norm could have been interpolated between Hi and H)%, it does not provide
an improved estimate since ||u(|;2;n and [[ul| ;24 are both bounded by (3.43). In the last term
of (3.48), in view of remark 2.5, we have

2p+2 Pt
1P S I S (I3 + 1A93, )

N » o S(§+1)(p+1)
S A U S
» 5 i stp
(1+S(§t) (1+55t) (3.51)
L SP-H
S’Zoe ot OE 2+%,
<1+S(§t>

4 In [JT22a], the high norm of the velocity was estimated using the Lions-Magenes lemma, which cannot be applied.
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where the penultimate inequality is obtained using (3.4) and (3.41). Therefore, (3.48) becomes

P
d, Lo <2 2 —% SSH 2
1P + GG S llulli [0 + | Zoe™e + — 7 | llullze
1+Sgt) : 3.52)
st '
tZpemEp—0
0 p N2+
(1+557)

With the Poincaré inequality, we replace the dissipative term on the LHS with W(z) :=
[4(2) |25, which yields

242
dw 1 1 S;
Fran EWS ullzg W+ | Zoe™ € + % |72
(1 +S§t) !
. (3.53)
; s
+Zpe ¢ + 0 -
p\2+3
1+S40)
whose solution obeys, using the Gronwall inequality,
Cllullyy o .
W) <e on's Woe™ ¢
Ly2
Cllul? , f ;"
Ce L%OﬂH,%/ e—%(t—s) Zope € +% ||u||12'-lfds
0 (1 +S§s> !
c 2 t p+1
+Ce HMHL%WH%/ e =) | Zye + % - | ds,
0 P

p 2+
(1 +S(§s>

where Wy := ||¢o||ip5 We employ calculations similar to (3.39) to estimate the integrals,
i.e. splitting them over [0, %] and [4,7]. We also use (3.43), in particular lull? o SZo+
o,n"x

S’(;H < 1, to simplify the exponential factors outside the integrals. In all, we end up with

242
_L _L £4+2 L S5
W(l) < Wpe™ ¢ +ZOHM||%‘%0 ,]er c —|—S(§+ ||u |i2 me € + — 0,, 0T ||u 12‘2 2
. [0.4] (1—|—Sgt> v [4.1]
3.54
, ot st 329
+Zpe™ ¢ JrSgJr Eeii + 07227

2\ 2+
(1+557)
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for all 7 € [0,7]. We simplify further by making use of (3.43) and (3.44) for |[ul|?, . and
0,417
||u\|i2 12> tespectively. This leads to
(.07

1 (1) 3, S Woe ™t + (Z0+5572) (2o +8571) e

S§+2 , S%H , e
(1+s51) (1+s5)" (1+s5r)" 7 B39

» . spt3 sptt
< (WO+Z°+SOZ +3> et Op et Op 242"
(1+s5r) " (1eser)

We use (3.55) in (3.52) and integrate over [0, 7] to obtain the final dissipative estimate

+1 5+2
||1/;|\§%0 e < Wo+ (Wo +Zo+Sh ) Hulliﬁ]n;@ + (Zo+Sd ) | |i%0ﬂH§

2

2 p o\ —1-2
+Zo(1—e*%)+S§+1 (1—(1+S5T> ’) (3.56)
<Wot+Zo+852 "
This shows that with small enough data one can achieve an arbitrarily small value (inde-
pendent of 7)) for this highest-order dissipation.
Similarly to (3.44), it is possible to also get a time-decaying estimate by integrating (3.52)
over the time interval [z,2¢] for ¢ > 1. This leads to

£+2
s S5
01, s S 10O+ | 19 + Zoe™ 4 —2 |l
(esi) )
2t Sp+l
_ s 0
+/ Zpe  © + ﬁds (3.57)
t (1 +Sgs) P
S%+1
S (Wo+Zp)e x + 07#,
(1455

where we have used (3.44) and (3.55), and retained only the slowest decaying terms. O

The high-norm control in (3.56) and (3.57) is important because the inequalities can be
translated into the desired bounds (on two fewer derivatives) for Bi). Indeed,

1BYI2a1 < B2 + 1Bl B

(3.58)
S UBOIR A 461 3e + MaePabl Zms + e b2+ 18P
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where for the last three terms, we replaced the homogeneous Sobolev norms by the larger
inhomogeneous norms. Combining the analysis in (3.49)—(3.51) with (3.4), (3.43), (3.56)
and (3.58), we get the sought-after dissipation bound

2 S+1
IIBwIILfO’nH;x-n SWo+Zo+S; . (3.59)

Since 2s — 1 = 3 , Sobolev embedding allows us to conclude that B} is bounded in L[o T]L
Similarly, 1ntegrat1ng (3.58) over [t,21] for t > 1, we get

S’; +1

1BYIIE | et S (Wo+Zo)e™ % + ——— (3.60)

2
(1+S§t)”

The estimates in (3.59) and (3.60) are used to ensure that the density remains bounded from
below.

3.5. Ensuring positive density

We now have all the a priori estimates to return to (2.15). For it to hold true, a sufficient
condition is
S

(Wl oz + 1A, 2z ) 1B, 5 iy (3.61)

3
2
[o 7

Depending on the value of p, we now divide the analysis into several cases: 1 <p <2,p=2,
2<p<4,p=4,and p>4.

3.5.1 Thecase 1 <p <2  Owing to the Poincaré inequality and (3.43), we have
18G5 SIDWIE 2 SZ+85T, (3.62)

and this bound holds for all p > 1. For the first term of (3.61), we integrate (3.4), yielding

[N

s

1 1_2
||’l/}HL L2N20 p :

- — | <8 (3.63)
(1+s57)"

smce 2 > 1. From (3.59), (3.62) and (3.63), we conclude that the condition in (3.61) can be

achleved if Wo+27Zy 4—S0 Ty is sufficiently small. Thus, the density satisfies m; < p <M, +
m; — my for all T > 0, as long as the initial data are small enough
For p > 2, the integral of the superfluid mass, i.e. ||1(?)|? 72> cannot be bounded uniformly

in [0, 7]. This is where the decaying estimates in (3.44) and (3 60) prove to be useful.

3.5.2. The case p=2. We split the time integral in (3.61) over the ranges 0 < ¢ < 1 (short-
time) and # > 1 (long-time). We start with the long-time estimate the LHS of (3.61) with p = 2.
For the first term, we have

2 2%
S 1+ 2Spt
2, < ¢ <log | ——=2 ) < log2. 3.64
ol 5 [ e Stoe (T ) Stoe (364
Using the Poincaré inequality and (3 44) gives

2

2t
A% < D3 <z —c .

(3.65)
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From (3.60), (3.64), and (3.65), we obtain

1) = meﬁwaHme,mey 18z 2e) 18U
[12r]
S2 2 SZ 2
log2 + Z Wo + Z
(og +20e C+1+Sot> (( 0FZo)e 2C+1+Sot>
So

S (Wo+Zo)te e 4 —20
(1+Spr)?

| 1
(W() + Zo) 2+ Sé
—_—
13

A

This leads us to
oN+1 N

1 1
/ ||w||Loo||Bw||Lw—Zl (25) £ (Wo+2Zo+50) < (Wo+Zo+50), (3.66)
1

k:O

which is the long-time contribution (independent of N) of the constraint in (3.61). It can be
made as small as required with an appropriate choice of Wy + Zy + Sp.
Finally, we verify the short-time control as well. The superfluid mass bound in (3.4) means

that
1 1
2
[t [
0 0

Similarly, using (3.43), we get

So
<1 14+S5y). 3.67
OVRS og(1+So) (3.67)

1 1
[ 1aviz < [0l 52053 69
0 0

From (3.59), (3.67), and (3.68), we have

1 1 1
/ [l 1Bl < (log (1+S0) +Zo+55)* (Wo+Zo+S5)°,  (3.69)
0

which can be made small enough to satisfy (3.61). This lets us conclude that the density is
bounded from below uniformly in time, for the case p = 2. Thus, we have the necessary global
bound.

3.5.3. Thecase 2 <p <4. We begin, once again, with the long-time analysis, i.e. for t > 1.
From (3.4), we have

1—

s

S
Wl 2 S (3.70)
’ ( 1482 t) ’
Using the Poincaré inequality and (3.44),
S§+1
IIAzblle RS HD31/}||L2 2 SZe” ¢4 0 (3.71)

= e

14
(1+557)
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Combining (3.60), (3.70) and (3.71), we have
1_p p4l 2yl
S2 4 1 S4 2 S4 2
1) < O +Zge w4 —20 — | | Wo+Zo)2 e + 0
(1+s51)" (1+551)" (1+551)"
4 )4
., 8t Sk (3.72)
< (,II-FZSe_ZC-I- ?) <(W0+Z())£€_4C+?>
tr 2 tr tr
< (Wo+2p)2 +SS
~ [1%_7

Once again, the slowest decaying term is the dominant one. Therefore, we have

2N+]

=
I

N N 1
1 4 1 P\ 2
ol B = D1 (2) < (Wo+20)F +57) S0 EE (Wo+20+55)"
k=0 k=0

(3.73)

The sum converges (uniformly in N) because p < 4. Hence, we obtain good long-time control
of the LHS of (3.61) for2 < p < 4.

What remains is to check that we also maintain short-time control. To this end, we have

from (3.4),
1 1 2
S I3 p\1-3
[l [ st (i) <), 374
0 0 (1+S§t>"
and from (3.43),
1 1 .
[l s [ 1avi sz 557 (375)
0 0

Combining (3.59) with (3.74) and (3.75) yields

! 1_» N 3 1 ptl 1 Pyl
[ 1l 130l < ( 53 4((1+S5) —1) +2+5,0 | (Wo+20)! +55"H)
0

1_p 2_q % 1 ptl 1 Lyl

<c(ss (1resg =) s ) (Wo+20)t+5577)
1 ptl 1 B+l
<c(1+z5+57 ) (Wo+20)* +557)

1
< (W0+zo+sg“)2,

which is the short-time control we are seeking. This implies global solutions, since the density
is bounded from below uniformly in time.
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3.5.4. The case p > 4. The arguments for short-time control in section 3.5.3 remain valid
even for p > 4. However, the long-time estimates breaks down. Specifically, the geometric
series in (3.73) diverges. We see that for T = 2N*t!,

1
N +ZZ+S4 (Wo+Zo+S5)* logT, p=4

e SY A S N (3.76)

= : (WO+ZO+S(§)2T’ZT, >4

/ e 1B

Therefore, in this scenario, global-in-time estimates elude us due to the logarithmic/poly-
nomial dependence on 7. We can, however, guarantee almost global existence of solutions.
Given a set of system parameters, we can ensure that p > my for any finite time 7' > 0 as long
as we start from small enough initial data (depending on T'). In other words, if the size of the
datais e, then we have T ~ e%ﬁ forp=4and T ~ e~ 73 for p > 4. This is the scaling expressed
in theorem 2.4.

4. Existence of weak solutions (proof of theorems 2.3 and 2.4)

Having derived the required a priori estimates, we now establish the existence of a weak solu-
tion for a truncated form of the governing equations, and then pass to the limit.

4.1. Constructing the semi-Galerkin scheme

The finite-dimensional wavefunction and velocity are constructed using eigenfunctions of the
Laplacian and the Leray-projected Laplacian, respectively.

4.1.1. The approximate wavefunction. — Consider the negative Laplacian —A on the torus
T2, with the domain D(—A) = H>. It has a discrete set of non-negative and non-decreasing
eigenvalues {/3;}, and the corresponding eigenfunctions {b;} € C>°(T?) can be chosen to be
orthonormal in L2 and orthogonal in H'. We define the approximate wavefunction as

N
Mtx) =D dY (1) be(x), .1
k=0
for N e NU{0} and &} (1) € C.

4.1.2. The approximate velocity. ~ We consider the Leray-projected Laplacian (or Stokes oper-
ator) A = —PA with the domain D(A) = L3 N H* (see [RRS16, chapter 2], for instance).

The Stokes operator (like the Laplacian) has a discrete set of non-negative and non-
decreasing eigenvalues {¢; }, and the corresponding divergence-free, vector-valued eigenfunc-
tions {a;} € C**(T?) can be chosen to be orthonormal in L] , and orthogonal in H,. We define
the approximate velocity as

N
uV (1,x) = chN (1) ar (x), 4.2)
k=0

for Ne NU{0} and c}'(¢) € R
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4.2. The initial conditions

4.2.1. The initial wavefunction and initial velocity. ~ We begin by defining PV (respectively, Q")
to be the projections onto the space spanned by the first N + 1 eigenfunctions of A (respectively,
—A). Then, we truncate the initial conditions for the velocity and wavefunction accordingly:

ul == PNuy, Y = QN 4.3)

Since uy € H.(T?) and ¢ € H 3(T2), it is necessary to establish that the truncated initial con-
ditions converge to the actual ones in the relevant norms.

Lemma 4.1 (the projections Q" and P" are convergent). If ¢ € H} and u € H; , for any
0<r,s < oo, then

.
D 10l S ||| and QNp —— <, and
N—oo
@) [1PYull, < [l and PYu—=— .
- - — 00

The proof utilizes the equivalence of norms between Sobolev spaces and fractional powers of
the negative Laplacian/Stokes operator (see theorem 2.27 in [RRS16]). Given the regularity
of 1y and up, we deduce the convergence of the approximate initial conditions by applying
lemma 4.1.

4.2.2. The initial density. Given the initial density field pg € L C LT for 1 <r < oo,
we consider an approximating sequence p) € C!, such that oy ;L—é p, and m; < pf < M,.
— 00

(Recall that m; < pg < M;.) This approximating sequence may be constructed by mollification.

4.3. Approximate equations

4.3.1. The continuity equation. ~ Having described the (approximate) initial conditions and
the semi-Galerkin scheme, we now establish the existence of solutions to the ‘approximate’
equations, starting with the continuity equation. It is given by

opN +u"-Vp¥ =2\ Re (WBNQ/JN) ,
pN (va) = pg (x) >

where BY = — A + 1|uV|? + i - V + p|ypV P Just as in (2.15), we see that the constraint that
fixes the local existence time Ty for (4.4) is

2/\||1/}N||L[D(:TN]L~?O |BNwN||L7[0,TN]L’?O < m; —my. 4.5)
Since the norms in (4.5) are bounded by the size of the initial data, the time T}y is independent
of N. Hence, we use T to denote the time of existence, with T arbitrarily large for 1 <p < 4
and T bounded for p > 4 (as specified in theorem 2.4).

We now establish the analogues of lemmas 2.2 and 2.3 from [Kim87]. These constitute the
existence of a unique solution to (4.4) and a Picard iteration scheme for the same, respectively.

“4.4)

Lemma4.2. Letu" € C([’0 7 C! and YNBVyN € LEO,T]L)?O (uniformly in N), with ¥V - u (1, T?) =
0 fort € [0,T]. Then, (4.4) has a unique solution p" € CEO,T] CL.
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Proof. Consider the evolution equation for the characteristics of the flow,

oy
T (1,5 (1)), “6)
N (0) =yV e T2

Since u" € Cjj 11Cy, there exists a unique solution x"(t,y") € Cy, ;1 C;. Owing to the incom-

)J"; = 1, allowing us to conclude that the char-
Byj

[0,7] X’

pressibility of the flow u", it follows that det (

acteristics are C! diffeomorphisms and therefore, invertible. This means
yNzyN (t,xN) = S,_])/V

is well-defined. We now write the solution to (4.4) along characteristics as

oV (t,x) = pl (yN (t,x)) +2X /Ot Re (WBNWV) (T,yN(t— T,X)) dr. 4.7)

That (4.7) uniquely solves (4.4) can be verified using the property of the ‘inverse-
characteristics’ y(#,x). For any 7 € R,

y(t—7+At,x) —y(t—T7,x)

0
% (t—7,x)= lim

At—0 At
. t+ At,y) — x(t, t—T17+AtLx)—y(t—T1,x
— lim ¢ y) —x(5y) y( ) —¥( ) 48)
A0 At x(t+ Aty) —x(t,y)
aty (t — T,.X)
=u(t,x) ———— = —u(t,x) - Vyy(t—71,x),
(1) 25 s = (1) V(1= 7.3)
where the last equality is due to Euler’s chain rule. 0

Now, we consider a convergent sequence of velocities and wavefunctions that belong to the
finite-dimensional subspaces spanned by the truncated Galerkin scheme. Given such a conver-
gent sequence, we show that the sequence of density fields satisfying (4.4) is also convergent,
and this shall be used to complete a contraction mapping argument below.

Lemma 4.3. ForneN, letul) € C([)o 7] C! and YyNBNyN € LEO T]L;’o (uniformly in n), with V -
ul(1,T%) = 0 for t € [0, T]. Denote by pl € C[l0 7 C! the unique solution to the system

apY +u - Vp =2XRe (wNBN ) :
A (0,x) = pj (x) € CL.

(4.9)

[0/

ChonCe
——u and [O—I> N, then p & o, where pV solves (4.4).

If w)
Proof. We begin by defining ¥V :=2)\ Re(VBY¢Y). Since u € COC!, there exists a

sequence of characteristics x\(#,y) € C'C! corresponding to the flow, i.e. solving dj: =

u¥(t,xY) with x(0,y) =y. The assumed convergence of uY allows us to conclude that
C] ]
1 —— xV. Consider the map y++ x(z,y) and define its inverse yY(z,x); this is just the

1nverse of the characteristic, i.e. if the flow were reversed. Due to the flow being incompress-
'N . . . . .
ible, we know that the matrix %}; is invertible. Also, as shown in the proof of the previous

lemma, 2y = —u - V,y¥. This implies that the derivatives of y with respect to both space

and time are bounded uniformly in n, ¢ and x. Thus, by the Arzela-Ascoli theorem, we can
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extract a subsequence that converges uniformly: yY —— yV. Just as in (4.8), we can show
n— o0
that the solution to (4.9) is

o ( py (3 (t,x)) + /Ol N (7,3 (1 — 7,x)) dr. (4.10)

Therefore,
t
A (13) — o () = o O (1.0)) + /0 WY (o (1 — 7)) dr
1
— O (1) - / WY (r N (1 — 7.2)) dr,

which leads to

P, (YN) ( leg, + T (1.3m) =7 (15" gy

— e,
+T(||wm|mfc

ol —

V=P, + 1Y - )

— 0.

n— o0

Given the convergence of y" derived above, and because p) € CL, the first term on the RHS
vanishes. The second and third terms vanish on account of the following argument. Note that
UV has its highest order term of the form Y A (second derivative), and so the assumed
convergence of ¥ in the CYC? norm implies that ¥ converges in C?C!. This also guarantees
that ||V U}|| e o is finite, uniformly in n. O

4.3.2. The Navier-Stokes equation. ~ We now consider an ‘approximate momentum
equation’, composed of the approximate wavefunction and velocity fields defined by (4.1)
and (4.2), respectively. Namely,

P (pNa,uN M v - yAuN) — 2PV (Im (VWBNM) +u" Re (WBWN)) . @.11)

Recall that the incompressiblity condition is built-in, because the eigenfunction basis used
to construct the velocity fields are divergence-free. Now, taking the L? inner product of (4.11)
with g; (x) for 0 < j < N, we arrive at a system of equations for the coefficients describing the
time-dependence of the approximate velocity fields, as

N
> RY(1) %cﬁ (1) = —vaycl Z ) (1) = 228N (1,¢V), (4.12)
k=0

k,i=0

where
R0 = [ Maan M0 = [ Ma-Tara,
and
70 = [ (1 (VITB) 4 Re (7700 ).
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Since we have both lower and upper bounds on the density in the chosen interval of time,
we can use lemma 2.5 in [Kim87] to show that the matrix R (¢) is invertible. Therefore, we
arrive at

S = (®) D (R (WY N o) A R) S (), @)

which is the desired evolution equation (written vectorially) for the coefficients c]N (1).

4.3.3. The nonlinear Schrédinger equation.  As in the previous section, we derive an evolu-
tion equation for the coefficients of the approximate wavefunction, by considering an ‘approx-
imate NLS’. Namely,

N = %Aw — 0¥ (ABYYY + (A i) g Py (4.14)

Recall that B;, = B — |t |P, i.e. the linear (in v) part of the coupling operator. Performing an
L? inner product with b;(x), we get

N p
d —\ 5
Sa¥( = —Bde )\Z ~A+i)n Y. Gim (d,?dgv) @), (@415

k,l,m=0
where
1 1 .
Ly ()= / b,Bybk:E@(sijri / ™ [*biby + i / (u" - Vby) by
T2 T2 T2

and

L
Gitim = / b; (bibi)? by,
T2
Written vectorially, the evolution equation for the coefficients dj[-V (¢) becomes

d 1 —\4
adN: oF Bd"—ALN-d"— (A +i)u G ((deN)z ®dN), (4.16)
l

where Bj; = 3;6j;.

4.3.4. Fixed point argument for the coefficients.  For a fixed N, a standard contraction map-
ping argument shows that (4.13) and (4.16) have unique solutions that are continuous in [0, 7].
For a pair (u),4"), equivalently (c,d"), using lemma 4.2, we can find a solution p. Owing

to the smoothness (in space) of the elgenfunctions used in the approximate velocity and wave-
cc! . . .
function, we conclude that Y —) u" and 1/JN *s 9N, Therefore, performing an iteration

on the triplet (c,dY, p) and usmg lemma 4.3, we conclude that the sequence p) converges

n“n

to p € Cy 1 O

4.4. Compactness arguments

We now extract convergent subsequences from the a priori estimates in section 3. Beginning
with the density, we know that p € C°([0,7]; C%) C L*°(0,T; L") for 1 < r < 0o, meaning that

N ——p. 4.17)
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Moreover, from (4.4),

19, S IV - ) fl+||Re<WBNw>||LW;I

<M+ T,

[0, T]

SN MN||L eIV P lligs e +||¢N||L[0,1Lso

0,175

(4.18)

‘ NwNHLZ L2~

The second inequality is due to the (compact) embedding L2 C H,! for T2. All the terms
in the last line are finite (uniformly in V) by virtue of the a priori estimates. Therefore, using
the Aubin-Lions-Simon lemma, we conclude the strong convergence of a subsequence of the
density as

A1
NG, (4.19)
Consider arelabeled subsequence p" that strongly converges to pin C([0,7]; H; '), so that (4.1)

and (4.2) are also appropriately relabeled. For a.e. s,7 € [0,7] and any w € H }C,

06 v = [ taprdT,w>

H—'xH!

15 N 1 N
< [ 10Nl < (=) 1057,
S |

showing that {p™(t),w) 1y is uniformly continuous in [0, 7], uniformly in N due to (4.18).
Due to the embedding H}C C L for all 1 < r < oo, we conclude, using the Arzela-Ascoli the-
orem, that p" is relatively compact in C,,([0, T];L%).

We move on to the velocity. Based on the a priori estimates, we extract a subsequence of u"
that weakly converges to u € Liy Hy N Lj, nHj . with du € L, L. Applying the Lions-
Magenes lemma (see [Tem77, chapter 3]), we deduce that u € C([0,7]; H} ). Based on the
L>°L> bound on the density, and the above strong convergences, it is easy to see that p"uY
and pMu @ u" converge in C([0,T];L?) to pu and pu ® u, respectively.

Next, we consider the Wavefunction Again, we extract a subsequence that converges

weakly to ¢ € LT H nL? TH2 From this and (NLS), we have 9,3 € L2 H Thus the

[0,7] [0,7] [0,7]

Lions-Magenes lemma yields ¢ € C([0,T]; Hz 2) Additionally, we also have BNy —> By,
due to the regularity of u and .

o " Lo . Ly
As for the initial conditions, by construction itself (section 4.2.2), we have p) — py for
5

1 < r< oo. Also, lemma 4.1 states that ¢ and u converge to ¢y and uo in H; and Hy,,
respectively. For the momentum, we have

(4.20)

N ’
L;

< ||P0N_

Il ot up —

where 1 + 1. = 1. Using the embedding H! C L to handle the velocity in the first term of the
RHS, it is easy to see that the initial momentum converges in the L norm.

The approximate solutions (4", u", p") are smooth enough to satisfy (2.1)~(2.3). The afore-
mentioned compactness results allow us to pass to the limit of N — oo and arrive at the weak
solutions (v, u, p).
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4.5. Renormalizing the density

At this point, we know that p = pin L°L>°. We wish to use the technique of renormalization
to extend this to p¥ — p in CL’, for 1 < r < co. To achieve this, we will adapt a classical
argument (see, for instance, theorem 2.4 in [Lio96b]). We begin by defining a sequence of
unit-mass mollifiers ¢j,(x) = h%( (%), where i will eventually be taken to 0. Next, for a given
weak solution p € L°L2°, we mollify (CON) to obtain

Opn+u-Vp, =V, +Ry, (4.21)

where g, := g (., ¥ :=2) Re(¢By), and Ry :=u-Vp, — (u- Vp), is a commutator. We
multiply this by n’(p;), for a C! function 7 : R + R. This yields

Om (pn) +u-Vn(on) =n" (pn) Y +n" (pn) R (4.22)

The Sobolev embedding H2 C WL for any ry € [1,00) implies that u € L2W!"1. From
lemma 2.3 in [Li096b], we note that R;, vanishes in L2L" (and also in L>°L2) as h — 0, by
choosing | > 2. Similarly, ¥ converges to ¥ in C?L2. Finally, note that n’(pj,) is uniformly
continuous since p (and py,) take values in a compact subset of R. Therefore, using a test func-
tion o, we may pass to the limit 2z — 0 in (4.22). In other words, if p is a weak solution of the
continuity equation, then n(p) solves (in a weak sense)

m(p)+u-Vn(p)=n'(p)¥. (4.23)

This is the renormalized continuity equation.
Taking the difference of (4.21) for iy, hy > 0, we write the analog of (4.22) for 1(pn, — pn,),
with 7(x) = x*" where n € N. Integrating over T? leads to

d n 2n—1
&thl _phZHig" = /[[\2 2n (phl _phz) ' ((\Ilhl - \I’hz) + (Rhl _ha))

5 ||Ph1 - phzl ignil (H\Ijhl - \I/hz L + HRhl _Rh2||L§”) )

which implies

20 S P (0) % Gy — p(0) % G, |

T
+/0 (W5, — Ty

Since we know 1 € L?H> and By € L’H. f , it follows from the Sobolev embedding and
Holder’s inequalities that ¥ = ¢)B) € L}L;‘ for any r; € [1,00). Between this, the commut-
ator estimate in lemma 2.3 of [Lio96b], and the boundedness of py, we find that all of the
terms on the RHS of (4.24) vanish as &, h; — 0, giving us a Cauchy sequence in C([0, 7]; L>").
Hence, pj, converges to p in C([0,T];L2"). We have, so far, proved that our ‘original approx-
imations’ of the continuity equation p" converge in C,,([0,7];L’) to p, and that p also belongs
to C([0,7];L2"). To achieve what we set out to prove, i.e. that pV converges strongly in
C([0,TJ;L%) to p, it remains to show that the L] norms are continuous in time. It is sufficient to
illustrate this for r =2 (or n = 1), in order to deduce it for the other values of r. Explicitly, if
there is a sequence of times £V — ¢, then we need p" (") to converge in L? to p(t). Returning
to (4.4), we look at its renormalized version with 7(x) = x%, and integrate over T2 (and then
from 0 to V) to get

/Tz (PN(IN))Zz/TZ (plov)2+2)\/0tN/szNRe(¢1\’BNwN).
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Since we know that p € C([0,T];L2), we can do the same calculation with (CON), except over
the time interval O to ¢. This yields

[wwr= [ wrea [ [ preme).

Subtracting the last two equations, and taking the limit N — oo, we observe that the first terms

LZ
on the RHS cancel (recall from section 4.2.2 that p) — p). What remains is,

ain ([ 0@~ [ 607) =2rein [ [ (=05
+2ARe Jim / /T 2 7) B

+2AReN1Lm// (BNyN —By)

+2ARe lim/ /pEBw.
N—oo T2

Thanks to the uniform boundedness of VBN in L1 HX , we can use the strong conver-
gence in (4.19) to handle the first term on the RHS. The second and third terms follow from
simple Holder’s inequalities, and the strong convergence of ¢V of B¥". Finally, the last term
is integrable on [0, 7], so as #¥ — ¢, it vanishes. In summary,

PN (4.25)

which, along with the weak-in-time continuity deduced earlier, implies strong convergence of
PN to pin COL2" for all n € N. Interpolating between Lebesgue norms extends this result to
COL: for all r € [1,00).

4.6. The energy equality

The smooth approximations to the weak solutions satisfy an energy equation, given by (2.8),

ie.
2u
(IVAD 01 + 3190 Ol + 2 1V 0112

IVl 2N BN (4.26)

2p 2
= S I+ IV + SR,

for a.e. +€[0,7]. From our choice of the initial conditions and their approximations (see
section 4.2), we can ensure that as N — oo, the RHS converges to the initial energy Ej defined
in (3.13). Indeed, for the first term,

/1R, — /Aol = H /

S ||P0 -
N—oo 0

4.27)

N||2
O X

Lee || + uol| 2116 — uol| 2
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Moreover, based on the results of section 4.4, we can conclude that all the terms on the
LHS of (4.26) converge strongly to the corresponding terms with the approximate solutions
replaced by the weak solution. The first term on the LHS can be dealt with the same way as
the first term on the RHS in (4.27), by simply including a sup, outside the absolute values. []

This completes the construction of the solutions. Together with the global/almost global
estimates from section 3, we can conclude the results of theorems 2.3 and 2.4.
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