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Abstract—In a seminal paper, Kannan and Lovász (1988)
considered a quantity µKL(Λ,K) which denotes the best
volume-based lower bound on the covering radius µ(Λ,K) of
a convex body K with respect to a lattice Λ. Kannan and
Lovász proved that µ(Λ,K) ≤ n ·µKL(Λ,K) and the Subspace
Flatness Conjecture by Dadush (2012) claims a O(log(2n))
factor suffices, which would match the lower bound from the
work of Kannan and Lovász. We settle this conjecture up
to a constant in the exponent by proving that µ(Λ,K) ≤

O(log3(2n)) · µKL(Λ,K). Our proof is based on the Reverse
Minkowski Theorem due to Regev and Stephens-Davidowitz
(2017). Following the work of Dadush (2012, 2019), we obtain
a (log(2n))O(n)-time randomized algorithm to solve integer
programs in n variables. Another implication of our main result
is a near-optimal 昀氀atness constant of O(n log3(2n)).

Index Terms—integer programming

I. Introduction
Lattices are fundamental objects studied in various

areas of mathematics and computer science. Here, a lattice
Λ is a discrete subgroup of Rn. If B ∈ Rn×k is a matrix
with linearly independent columns b1, . . . , bk, then we may
write a lattice in the form Λ(B) := {∑k

i=1 yibi : yi ∈ Z}.
In mathematics, lattices are the central object of study
in the geometry of numbers with many applications for
example to number theory, see e.g. [KL88]. On the com-
puter science side, lattices found applications for example
in lattice-based cryptography [Reg09b] and cryptanaly-
sis [Odl90]. One of the most important algorithms at least
in this area is the LLL-algorithm by Lenstra, Lenstra and
Lovász [LLL82] which 昀椀nds an approximately orthogonal
basis for a given lattice in polynomial time. One of the
consequences of the LLL-reduction is a polynomial time
2n/2-approximation algorithm for the problem of 昀椀nding
a (nonzero) shortest vector in a lattice. We should also
mention that the problem of 昀椀nding a shortest vector in
any norm can be solved in time 2O(n) using a variation
of the sieving algorithm [AKS01] while in the Euclidean
norm, even the closest vector to any given target vector
can be found in time 2O(n) [MV13]. A more general
problem with tremendous applications in combinatorial
optimization and operations research is the one of 昀椀nding
an integer point in an arbitrary convex body or polytope.
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Lenstra [Len83] used the then-recent lattice basis reduc-
tion algorithm to solve any n-variable integer program in
time 2O(n2). This was later improved by Kannan [Kan87]
to nO(n) and then by Dadush [Dad12] and by Dadush,
Eisenbrand and Rothvoss [DER22] to 2O(n)nn.

A parameter appearing in the geometry of numbers is
the covering radius

µ(Λ,K) := min
{
r ≥ 0 | Λ + rK = span(Λ)

}

of a lattice Λ ⊆ Rn with respect to a compact convex
set K ⊆ Rn with span(Λ) = affine.hull(K). This quantity
seems to be substantially harder computationally, in the
sense that the question whether µ(Λ,K) is at least/at
most a given threshold seems to be neither in NP nor
in coNP. In terms of approximating µ(Λ,K), one can
quickly observe that one has the lower bound of µ(Λ,K) ≥
( det(Λ)
Voln(K) )

1/n, simply because for r < ( det(Λ)
Voln(K) )

1/n, the
average density of the translates Λ + rK is less than
1. However, this lower bound may be arbitrarily far
o昀昀 the real covering radius, for example if Λ = Z2

and K = [− 1
M , 1

M ] × [−M,M ] with M → ∞. On the
other hand, for any subspace W ⊆ Rn one trivially
has µ(Λ,K) ≥ µ(ΠW (Λ),ΠW (K)), where ΠW is the
orthogonal projection into W . Hence, following Kannan
and Lovász [KL88], one might instead consider the best
volume based lower bound for any projection, i.e.

µKL(Λ,K) := max
W⊆span(Λ) subspace

d:=dim(W )

( det(ΠW (Λ))

Vold(ΠW (K))

)1/d

Kannan and Lovász [KL88] indeed provide an upper bound
of

µKL(Λ,K) ≤ µ(Λ,K) ≤ n · µKL(Λ,K)

On the other hand, they also construct a simplex K ⊆ Rn

for which µ(Zn,K) ≥ Ω(log(2n)) · µKL(Z
n,K) holds.

Dadush [Dad12] states the following conjecture, attribut-
ing it to Kannan and Lovász [KL88]:

Conjecture 1 (Subspace Flatness Conjecture). For any full
rank lattice Λ ⊆ Rn and any convex body K ⊆ Rn one
has

µKL(Λ,K) ≤ µ(Λ,K) ≤ O(log(2n)) · µKL(Λ,K)



Dadush also realized the tremendous implications of
this conjecture to optimization and showed that it would
imply a O(log(2n))n-time algorithm to solve n-variable
integer programs, assuming that the subspace W attain-
ing µKL(Λ,K) could also be found in the same time.
Later, Dadush and Regev [DR16] conjectured a Reverse
Minkowski-type Inequality, which intuitively says that
any lattice without dense sublattices should contain only
few short vectors. Among other applications, they proved
that this conjecture would imply Conjecture 1 (with some
logarithmic loss) at least for the case that K is an ellipsoid.
The conjecture of [DR16] was then resolved by Regev and
Stephens-Davidowitz [RS17] with a rather ingenious proof.
More precisely, they prove the following:

Theorem 1 (Reverse Minkowski Theorem [RS17]). Let Λ ⊆
Rn be a lattice that satis昀椀es det(Λ′) ≥ 1 for all sublattices
Λ′ ⊆ Λ. Then for a large enough constant C > 0 and
s = C log(2n) one has ρ1/s(Λ) ≤ 3

2 .

Here, one has ρt(x) := exp(−π‖x/t‖22) where t > 0
and for a discrete set S ⊆ Rn we abbreviate ρt(S) :=
∑

x∈S ρt(x). To understand the power of this result com-
pared to classical arguments, note that from det(Λ′) ≥ 1
for all Λ′ ⊆ Λ one can derive that each vector x ∈
Λ \ {0} has length ‖x‖2 ≥ 1 and so by a standard
packing argument we know that for any r ≥ 1 one has
|Λ ∩ rBn

2 | ≤ (3r)n, which is exponential in n. On the
other hand, again under the assumption that det(Λ′) ≥ 1
for all Λ′ ⊆ Λ, the Reverse Minkowski Theorem implies
that |Λ ∩ rBn

2 | ≤ exp(Θ(log2(2n)) · r2) which is quasi-
polynomial in n. Also, [RS17] tighten the reduction to the
Subspace Flatness Conjecture and show that it holds for
any ellipsoid with a factor of O(log3/2(2n)). While for any
convex body K, there is an ellipsoid E and a center c so
that c + E ⊆ K ⊆ c + nE [Joh48], this factor of n is
the best possible, and hence there does not seem to be a
blackbox reduction from the general case of Conjecture 1
to the one of ellipsoids.
A. Our contribution

Our main result is as follows:

Theorem 2. For any full rank lattice Λ ⊆ Rn and any
convex body K ⊆ Rn one has

µKL(Λ,K) ≤ µ(Λ,K) ≤ O(log3(2n)) · µKL(Λ,K).

We will break the proof into two parts that can be found
in Section IV. Our result is constructive in the following
sense:

Theorem 3. Given a full rank lattice Λ := Λ(B) and a
convex body K ⊆ Rn with c+r0B

n
2 ⊆ K ⊆ r1B

n
2 , there is

a randomized algorithm to 昀椀nd a subspace W ⊆ Rn with
d := dim(W ) so that

µ(Λ,K) ≤ O(log4(2n)) ·
( det(ΠW (Λ))

Vold(ΠW (K))

)1/d

.

The running time of that algorithm is 2O(n) times a
polynomial in log( 1

r0
), log(r1) and in the encoding length

of B.

Here, a separation oracle suffices for K. See Sec-
tion V for a proof. Following the framework layed out
by Dadush [Dad12], this implies a faster algorithm to 昀椀nd
a lattice point in a convex body:

Theorem 4. Given a convex body K ⊆ rBn
2 represented

by a separation oracle and a lattice Λ = Λ(B), there is
a randomized algorithm that with high probability 昀椀nds
a point in K ∩ Λ or correctly decides that there is none.
The running time is (log(2n))O(n) times a polynomial in
log(r) and the encoding length of B.

The proof can be found in Section VI. Applying Theo-
rem 4 to integer programming we obtain the following:

Theorem 5. Given A ∈ Qm×n, b ∈ Qm and c ∈ Qn, the
integer linear program max{cTx | Ax ≤ b, x ∈ Zn} can
be solved in time (log(2n))O(n) times a polynomial in the
encoding length of A, b and c.

An immediate consequence of our main result (Theo-
rem 2) is that K can be replaced by a larger symmetric
body without decreasing the covering radius signi昀椀cantly:

Theorem 6. For any full rank lattice Λ ⊆ Rn and any
convex body K ⊆ Rn one has

µ(Λ,K −K) ≤ µ(Λ,K) ≤ O(log3(2n)) · µ(Λ,K −K).

Another consequence is that the 昀氀atness constant
in dimension n is bounded by O(n log3(2n)), which is
an improvement from the previously known bound of
O(n4/3 logO(1)(2n)) obtained by combining the result of
Rudelson [Rud98] with [BLPS99].

Theorem 7. For any convex body K ⊆ Rn and any full
rank lattice Λ ⊆ Rn one has

µ(Λ,K) · λ1(Λ
∗, (K −K)◦) ≤ O(n log3(2n)).

It is well known that Theorem 7 can also be rephrased
in the following convenient form:

Corollary 8. Let K ⊆ Rn be a convex body with K∩Zn =
∅. Then there is a vector c ∈ Zn \ {0} so that at most
O(n log3(2n)) many hyperplanes of the form 〈c, x〉 = δ
with δ ∈ Z intersect K.

We will prove Theorem 6, Theorem 7 and Corollary 8
in Section VII.

II. Preliminaries
In this section, we introduce the tools that we rely on

later. We write A ≲ B if there is a universal constant



C > 0 so that A ≤ C · B holds. We write A � B if both
A ≲ B and B ≲ A hold.

A. Lattices
For a lattice Λ = Λ(B) given by a matrix B ∈ Rn×k

with linearly independent columns, we de昀椀ne the rank as
rank(Λ) := k = dim(span(Λ)) and the determinant as
det(Λ) =

√

detk(BTB). A lattice Λ ⊆ Rn with rank(Λ) =
n has full rank. For a lattice Λ ⊆ Rn, we de昀椀ne the dual
lattice as Λ∗ := {x ∈ span(Λ) | 〈x, y〉 ∈ Z ∀y ∈ Λ}. Recall
that det(Λ) · det(Λ∗) = 1. A consequence of the Poisson
Summation Formula is as follows:

Lemma 9. For any full rank lattice Λ ⊆ Rn, vector u ∈ Rn

and any s > 0 one has

|ρs(Λ + u)− sn det(Λ∗)| ≤ sn det(Λ∗) · ρ1/s(Λ∗ \ {0}).

A set K ⊆ Rn is called a convex body if it is convex,
compact (i.e. bounded and closed) and has a non-empty
interior int(K). A set Q is called symmetric if −Q = Q.
For a symmetric convex set Q, the norm ‖x‖Q is de昀椀ned
as the least scaling r ≥ 0 so that x ∈ rQ. For a lattice Λ
and a symmetric convex body Q we denote the length of
the shortest vector by

λ1(Λ, Q) := min
x∈Λ\{0}

‖x‖Q.

Later we will also need a classical bound on short vectors
in a lattice:

Theorem 10 (Minkowski’s First Theorem). Let Λ ⊆ Rn

be a full rank lattice and Q ⊆ Rn be a symmetric convex
body. Then λ1(Λ, Q) ≤ 2

(
det(Λ)
Voln(Q)

)1/n

.

We recommend the excellent notes of Regev [Reg09a]
for background.

B. Stable lattices and the canonical 昀椀ltration
A subspace W ⊆ Rn is a lattice subspace of a lattice

Λ ⊆ Rn if span(W∩Λ) = W . Similarly, a sublattice Λ′ ⊆ Λ
is called primitive if there is a subspace W with Λ∩W =
Λ′. For a lattice Λ and a primitive sublattice Λ′ ⊆ Λ, we
de昀椀ne the quotient lattice as Λ/Λ′ := Πspan(Λ′)⊥(Λ). In
many ways one can imagine that the quotient operation
factors Λ into two lattices Λ′ and Λ/Λ′. In particular Λ′

and Λ/Λ′ are orthogonal and det(Λ) = det(Λ′)·det(Λ/Λ′).
A lattice Λ ⊆ Rn is called stable if det(Λ) = 1 and

det(Λ′) ≥ 1 for all sublattices Λ′ ⊆ Λ. That means a stable
lattice does not contain any sublattice that is denser than
the lattice itself. One can easily verify that for example
Zn is stable. We denote nd(Λ) := det(Λ)1/rank(Λ) as the
normalized determinant. One can prove that the extreme
points of the 2-dimensional convex hull of the points
{
(rank(Λ′), ln(det(Λ′))) | sublattice Λ′ ⊆ Λ

}
correspond

to a unique chain of nested sublattices {0} = Λ0 ⊂ Λ1 ⊂
. . . ⊂ Λk = Λ. That chain is called the canonical 昀椀ltration.

It is useful to observe that each Λi in this sequence is
the unique densest sublattice of Λ with given dimension
rank(Λi). Moreover, the quotient lattices Λi/Λi−1 are
all scalars of a stable lattice and one can prove that
nd(Λi/Λi−1) are strictly increasing in i. We refer to the
thesis of [Ste17] for details.

rank(Λ′)
b

b

b

b

b

ln(det(Λ′))

Λ0 = {0}

Λi−1

Λi

Λk = Λ

It will be useful to replace the canonical 昀椀ltration by an
approximate 昀椀ltration where the normalized determinants
grow exponentially. We make the following de昀椀nition:

De昀椀nition 11. We call a lattice Λ ⊆ Rn t-stable with t ≥ 1
if the following holds:
(I) For any sublattice Λ̃ ⊆ Λ one has nd(Λ̃) ≥ t−1.

(II) For any sublattice Λ̃ ⊆ Λ∗ one has nd(Λ̃) ≥ t−1.

Note that a lattice is 1-stable if and only if it is stable.
We can similarly de昀椀ne t-stable 昀椀ltrations:

De昀椀nition 12. Given a lattice Λ ⊆ Rn, we call a sequence
{0} = Λ0 ⊂ . . . ⊂ Λk = Λ a t-stable 昀椀ltration of Λ if the
following holds:
(a) The normalized determinants ri := nd(Λi/Λi−1)

satisfy r1 < . . . < rk.
(b) The lattices 1

ri
(Λi/Λi−1) are t-stable for all i =

1, . . . , k.
We call a t-stable 昀椀ltration well-separated if additionally
the following holds:
(c) One has ri ≤ 1

2ri+2 for all i = 1, . . . , k − 2.

For example, the canonical 昀椀ltration is 1-stable. It turns
out we can make any t-stable 昀椀ltration well-separated:

Theorem 13. Given a lattice Λ ⊆ Rn and a t-stable
昀椀ltration {0} = Λ0 ⊂ . . . ⊂ Λk = Λ, in polynomial
time we can compute a 2t-stable well-separated 昀椀ltration
{0} = Λ̃0 ⊆ . . . ⊆ Λ̃k̃ = Λ.

We defer the proof to Appendix A. Using the canonical
昀椀ltration as input to Theorem 13 yields:

Corollary 14. For any lattice Λ ⊆ Rn, there exists a 2-
stable well-separated 昀椀ltration {0} = Λ0 ⊂ . . . ⊂ Λk = Λ.

We collect a few more properties of t-stable lattices:



Lemma 15. There is a universal constant C > 0 so that
the following holds: Let Λ be a t-stable lattice for t ≥ 1.
Then for s = C log(2n) one has
(a) Λ∗ is t-stable.
(b) ρ1/(st)(Λ) ≤ 3

2 .
(c) For any u ∈ Rn one has ρst(Λ+u)

ρst(Λ) ≥ 1
3 .

Proof. (a) is immediate from the de昀椀nition of t-stability.
Next, let s = C log(2n) be the parameter from Theorem 1.
For (b), we can see that for any Λ′ ⊆ tΛ one has det(Λ′) ≥
1 and so the Reverse Minkowski Theorem (Theorem 1)
applies to the lattice tΛ. Then ρ1/(st)(Λ) = ρ1/s(tΛ) ≤ 3

2
which gives (b). For (c), applying Lemma 9 twice gives

ρst(Λ + u)

ρst(Λ)
≥ (st)n det(Λ∗) · (1− ρ1/(st)(Λ

∗ \ {0}))
(st)n det(Λ∗) · (1 + ρ1/(st)(Λ∗ \ {0}))

(a)+(b)

≥ 1− 1
2

1 + 1
2

=
1

3
.

C. The ℓ-value and volume estimates
We review a few results from convex geometry that

can all be found in the textbook by Artstein-Avidan,
Giannopoulos and Milman [AAGM15]. We denote Bn

2 :=
{x ∈ Rn | ‖x‖2 ≤ 1} and Sn−1 := {x ∈ Rn | ‖x‖2 = 1} as
the Euclidean ball and sphere, resp. Let νn := Voln(B

n
2 ).

The relative interior of K is rel.int(K) := {x ∈ K | ∃ε >
0 : (x+ ε ·Bn

2 ) ∩ affine.hull(K) ⊆ K}.
We de昀椀ne the mean width of a convex body K as

w(K) := Eθ∼Sn−1 [max{〈θ, x− y〉 : x, y ∈ K}]. For a
compact convex K ⊆ Rn with 0 ∈ rel.int(K) we denote
its polar by K◦ := {y ∈ span(K) : 〈x, y〉 ≤ 1 ∀x ∈ K}.
Recall the following basic facts.

Lemma 16 (Properties of polarity). For two convex bodies
K,Q ⊆ Rn with 0 ∈ int(K) and 0 ∈ int(Q) the following
holds:
(a) One has (K◦)◦ = K.
(b) For any subspace F ⊆ Rn one has ΠF (K)◦ = K◦∩F .
(c) One has (K ∩Q)◦ = conv(K◦ ∪Q◦).
(d) One has (−K)◦ = −K◦.

We write N(0, In) as the standard Gaussian distribution
on Rn. The ℓ-value of a symmetric convex Q ⊆ Rn is
de昀椀ned as

ℓQ = E
x∼N(0,In)

[‖x‖2Q]1/2

One may think of ℓQ as the “average thinness” of Q. It
turns out that the ℓ-value is also related to the mean
width. To see this, note that ‖ · ‖Q◦ is the dual norm to
‖ · ‖Q, i.e. for all x ∈ Rn one has ‖x‖Q◦ = max{〈x, y〉 :
y ∈ Q} Then

ℓQ◦ = E
x∼N(0,In)

[‖x‖2Q◦ ]1/2

= E
x∼N(0,In)

[
max{〈x, y〉2 : y ∈ Q}

]1/2

We can see that the right hand side of (1) almost matches
the de昀椀nition of w(Q). In fact, one can prove:

Lemma 17. For any symmetric convex body Q ⊆ Rn one
has ℓQ◦ � √n · w(Q).

For a positive semide昀椀nite matrix Σ we write N(0,Σ)
as the Gaussian with mean 0 and covariance matrix Σ and
for a subspace U ⊆ Rn we write IU as the identity matrix
on that subspace. Occasionally we will need to refer to
the ℓ-value of a compact symmetric convex set Q that is
not necessarily full-dimensional. In that case we extend
the de昀椀nition to ℓQ = Ex∼N(0,Ispan(Q))[‖x‖2Q]1/2.

We say that a symmetric convex body Q is in ℓ-position
if ℓQ · ℓQ◦ ≤ O(n log(2n)). One of the most powerful tools
in convex geometry is that every symmetric convex body
can indeed be brought into ℓ-position:

Theorem 18 (Figiel, Tomczak-Jaegerman, Pisier). For any
symmetric convex body Q ⊆ Rn, there is an invertible
linear map T : Rn → Rn so that ℓT (Q) · ℓ(T (Q))◦ ≤
O(n log(2n)).

By Lemma 17, the conclusion of Theorem 18 is equiv-
alent to w(T (Q)) ·w(T (Q)◦) ≤ O(log(2n)). Moreover one
can prove that for any symmetric convex body Q one has
w(Q) · w(Q◦) ≳ w(Bn

2 )
2 ≳ 1. Then one can interpret

Theorem 18 as every symmetric convex body can be
linearly transformed so that in terms of mean width and
average thinness it is within a O(log(2n))-factor of the
Euclidean ball. For the sake of comparison, we note that
the bound that could be obtained via the more classical
John’s Theorem [Joh48] would be of the order of

√
n. We

would like to point out that Theorem 18 is only known for
symmetric convex bodies, and it is open to what extent
it generalizes to the non-symmetric case.

We state two estimates concerning monotonicity of the
ℓ-value that will be crucial for our later arguments:

Lemma 19. Let Q ⊆ Rn be a symmetric convex body.
Then for any subspace U ⊆ Rn, one has ℓQ∩U ≤ ℓQ.

Proof. Indeed, one has

ℓ2Q = Ez∼N(0,IU )

[
Ey∼N(0,I

U⊥ )[‖z + y‖2Q]
]

≥ Ez∼N(0,IU )

[∥
∥z + Ey∼N(0,I

U⊥ )[y]
︸ ︷︷ ︸

=0

∥
∥
2

Q

]
= ℓ2Q∩U ,

where the inequality follows from Jensen’s inequality and
the convexity of y 7→ ‖z + y‖2Q.

Lemma 20. Let Q ⊆ Rn be a symmetric convex body. For
any subspaces V ⊂W ⊆ Rn, one has ℓΠ

V ⊥ (Q∩W ) ≤ ℓQ.

Proof. We have ℓΠ
V ⊥ (Q∩W ) ≤ ℓQ∩W∩V ⊥ ≤ ℓQ using that

ΠV ⊥(Q ∩W ) ⊇ Q ∩W ∩ V ⊥ and using Lemma 19.



The following classical result says that among all bodies
with identical volume, the Euclidean ball minimizes the
mean width.

Theorem 21 (Urysohn Inequality I). For any convex body
K ⊆ Rn one has

w(K) ≥ 2 ·
( Voln(K)

Voln(Bn
2 )

)1/n

.

A slight variant of this inequality will be handy for us:

Corollary 22 (Urysohn Inequality II). For any symmetric
convex body Q ⊆ Rn one has Voln(Q)1/n ≲

ℓQ◦

n .

Proof. Applying Urysohn’s Inequality I we obtain

Voln(Q)1/n
Thm 21
≲ w(Q) ·Voln(Bn

2 )
1/n

︸ ︷︷ ︸

≲1/
√
n

Lem 17
≲

ℓQ◦

n

Here we use in particular that Voln(B
n
2 ) ≤ ( 2e√

n
)n.

The following can be found e.g. in [AAGM15], Chapter
8:

Theorem 23 (Blaschke-Santaló-Bourgain-Milman). For
any symmetric convex body K ⊆ Rn one has

Cn
1 ν

2
n ≤ Voln(K) ·Voln(K◦) ≤ Cn

2 ν
2
n

where C1, C2 > 0 are constants.

Let b(K) := 1
Voln(K)

∫

K
x dx denote the barycenter or

centroid of a convex body K. We will run into the issue
that we need to control the volume of a non-symmetric
convex body K, but Theorem 18 only holds for symmetric
ones. A popular strategy in convex geometry is to translate
K so that b(K) = 0 and then consider the inner
symmetrizer K∩−K which by construction is a symmetric
convex body contained in K which captures much of
the geometry of K. For example a classical result by
Milman and Pajor says that Voln(K∩−K) ≥ 2−nVoln(K).
However, in our case we need a more powerful estimate
that was proven by Vritsiou [Vri23] in the context of
showing the existence of regular M -ellipsoids for non-
symmetric convex bodies.

Proposition 24 ( [Vri23], Corollary 11). Let K ⊆ Rn be
a convex body so that b(K) = 0 and let F ⊆ Rn be a
d-dimensional subspace. Then

Vold(ΠF (K))1/d ≲
(n

d

)5

·log
(en

d

)2

·Vold(ΠF (K∩−K))1/d.

On a previous preprint, we had shown an inequality
with better exponent when the body is centered so that
b(K◦) = 0, i.e. the origin is the Santaló point of K.
However, algorithmically the barycenter is much easier
to compute and the exponent only a昀昀ects the implicit
universal constant in our main result, hence we choose to

work with Vritsiou’s estimate. For the interested reader,
the bound with the Santaló point as center can be found
in v2 on arXiv and also independently in [Vri23].

We prove a custom-tailored inequality for later:

Lemma 25. Let K ⊆ Rn be a convex body with b(K) = 0

and let F ⊆ Rn be a d-dimensional subspace. Then

(Vold(ΠF (K)))1/d ≲
(n

d

)6

· ℓ(K∩−K)◦

d
.

Proof. We abbreviate Ksym := K∩−K. Using the volume
estimate from Proposition 24 with the assumption that the
barycenter of K lies at the origin, we obtain

(Vold(ΠF (K)))1/d
Prop 24
≲

(n

d

)6

· (Vold(ΠF (Ksym)))1/d

Cor 22
≲

(n

d

)6

·
ℓ(ΠF (Ksym))◦

d

Lem 16
=

(n

d

)6

·
ℓK◦

sym∩F

d
Lem 19
≤

(n

d

)6

·
ℓK◦

sym

d
.

Here we also used the fact that (ΠF (Ksym))◦ = K◦
sym ∩

F .

D. Properties of the covering radius
While the set K may not be symmetric, the sets Λ and

Rn are symmetric, which implies the following:

Lemma 26 (Properties of the covering radius). Consider a
lattice Λ ⊆ Rn and a compact convex set K ⊆ Rn with
span(Λ) = affine.hull(K). Then
(a) µ(Λ,K) = µ(Λ,K + u) for all u ∈ span(Λ).
(b) µ(Λ,K) = min{r ≥ 0 | (x + rK) ∩ Λ 6= ∅ ∀x ∈

span(Λ)}.

We need a triangle inequality for the covering radius:

Lemma 27. Let Λ ⊆ Rn be a lattice and let Λ′ ⊆ Λ be
a primitive sublattice. Then for any compact convex set
K ⊆ Rn with 0 ∈ rel.int(K) and span(Λ) = span(K) one
has

µ(Λ,K) ≤ µ(Λ′,K ∩W ) + µ(Λ/Λ′,ΠW⊥(K)),

where W := span(Λ′).

Proof. W.l.o.g. we may assume that Λ has full rank, so 0 ∈
int(K). Following the characterization in Lemma 26.(b),
we 昀椀x an x ∈ Rn. For r1 := µ(ΠW⊥(Λ),ΠW⊥(K)) we
know that ΠW⊥(x + r1K) ∩ ΠW⊥(Λ) 6= ∅. That means
there is a u1 ∈ r1K and a lattice point y ∈ Λ so that
ΠW⊥(x+u1) = ΠW⊥(y). Next, for r2 := µ(Λ∩W,K ∩W )
we know that (x+u1−y+r2 ·(K∩W ))∩(Λ∩W ) 6= ∅ which
is equivalent to (x+u1+r2·(K∩W ))∩(y+(Λ∩W )) 6= ∅. Let
u2 ∈ r2·(K∩W ) be the vector so that x+u1+u2 ∈ Λ. Then
u1+u2 ∈ (r1+r2)K by convexity, so (x+(r1+r2)·K)∩Λ 6=
∅.
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The natural extension of Lemma 27 to a 昀椀ltration is as
follows:

Lemma 28. Let Λ ⊆ Rn be a lattice with any sequence
of sublattices {0} = Λ0 ⊂ Λ1 ⊂ . . . ⊂ Λk = Λ. Then for
any compact convex set K ⊆ Rn with 0 ∈ rel.int(K) and
span(Λ) = span(K), one has

µ(Λ,K) ≤
k∑

i=1

µ
(
Λi/Λi−1,Πspan(Λi−1)⊥(K ∩ span(Λi))

)
.

Proof. We can use the previous lemma to show by
induction over i0 = k, k − 1, . . . , 1 that
µ(Λ,K) ≤ µ(Λi0−1,K ∩ span(Λi0−1)) +

k∑

i=i0

µ
(
Λi/Λi−1,Πspan(Λi−1)⊥(K ∩ span(Λi))

)
.

Indeed, for i0 = k this is exactly Lemma 27. If it holds
for some i0 > 1, then

µ(Λi0−1,K ∩ span(Λi0−1))

≤ µ(Λi0−2,K ∩ span(Λi0−2)) +

µ
(

Λi0−1/Λi0−2,Πspan(Λi0−2)⊥(K ∩ span(Λi0−1))
)

,

since span(Λi0−2) ⊂ span(Λi0−1). So the claim follows by
induction, and taking i0 := 1 yields the statement.
E. Properties of µKL

We also need the following fact:

Lemma 29. For any lattice Λ ⊆ Rn, compact convex set K
with span(Λ) = affine.hull(K) and subspace V ⊆ span(Λ)
one has µKL(ΠV (Λ),ΠV (K)) ≤ µKL(Λ,K).

Proof. Let W ⊆ V be the subspace attaining the left side
with dimW = d. Then

µKL(ΠV (Λ),ΠV (K)) =
( det(ΠW (ΠV (Λ)))

Vold(ΠW (ΠV (K)))

)1/d

=
( det(ΠW (Λ))

Vold(ΠW (K))

)1/d

≤ µKL(Λ,K),

since ΠW (ΠV (x)) = ΠW (x) for all x ∈ Rn as W ⊆ V .

F. Approximate stable lattices and the covering radius
Using the Reverse Minkowski Theorem it would not be

hard to prove that for any stable lattice Λ ⊆ Rn one
has µ(Λ, Bn

2 ) ≤ O(
√
n log(2n)). In this section, we show

how to generalize this to t-stable lattices and to general
symmetric convex bodies. For a symmetric convex body
Q, we consider the following quantity

β(Q) = sup
Λ⊆Rn lattice

sup
u∈Rn

ρ1((u+ Λ) \Q)

ρ1(Λ)

Note that always 0 < β(Q) ≤ 1. Intuitively, a body Q with
β(Q)� 1 is large enough that for any lattice a substantial
fraction of the discrete Gaussian weight has to fall in Q. As
part of the celebrated Transference Theorem, Banaszczyk
showed how to relate the ℓ-value of a body to its β-value:

Lemma 30 (Banaszczyk [Ban96]). For any ε > 0, there is
a δ > 0 so that the following holds: for any symmetric
convex body Q ⊆ Rn with ℓQ ≤ δ one has β(Q) ≤ ε.

Next, we can get a fairly tight upper bound on the
covering radius of a t-stable lattice:

Proposition 31. Let Λ ⊆ Rn be a full rank lattice that is
the r-scaling of a t-stable lattice and let Q ⊆ Rn be a
symmetric convex body. Then µ(Λ, Q) ≤ O(log(2n)) · t · r ·
ℓQ.

Proof. Let ε > 0 be a small enough constant that we
determine later. Let δ be the constant so that Lemma 30
applies (w.r.t. ε). The claim is invariant under scaling Q,
hence we may scale Q so that ℓQ ≤ δ and consequently
β(Q) ≤ ε. We may also scale the lattice so that Λ is t-
stable (i.e. r = 1). It suffices to prove that under these
assumptions, µ(Λ, Q) ≤ s · t where s := C log(2n) is the
parameter from Lemma 15. Now suppose for the sake of
contradiction that there is a translate u ∈ Rn so that
(u+ Λ) ∩ stQ = ∅. Since β(Q) ≤ ε, we know that

ρ1

(( u

st
+

Λ

st

)

\Q
)

≤ ερ1

(Λ

st

)

.

Multiplying the sets and parameters by st gives

ρst((u+ Λ) \ stQ) ≤ ερst(Λ). (∗)

Using that Λ is t-stable, we get

1

3
ρst(Λ)

Lem 15
≤ ρst(u+ Λ)

(u+Λ)∩stQ=∅
= ρst((u+ Λ) \ stQ)
(∗)
≤ ερst(Λ).

Then choosing ε ∈ (0, 1
3 ) gives a contradiction.



III. Overview

Goal of this section is to provide the reader with an
overview and some intuition concerning the proof of our
main result, Theorem 2. First, we want to prove the
inequality from Theorem 2 (with an even better exponent)
in the special case that both the lattice and the body K
are well-scaled. We will not actually use Prop 32 later in
this form, but it will provide us with the idea for a general
proof strategy.

Proposition 32. Let Λ ⊆ Rn be a full rank 2-stable lattice
and let K be a convex body with b(K) = 0 so that K∩−K
is in ℓ-position. Then µ(Λ,K) ≤ O(log2(2n)) ·µKL(Λ,K).

Proof. We denote the inner symmetrizer by Ksym := K ∩
−K. Then applying the estimate for stable lattices from
Prop 31 we can upper bound the covering radius:

µ(Λ,K)
K⊇Ksym
≤ µ(Λ,Ksym)

Prop 31
≲ log(2n) · ℓKsym

Next, we lower bound µKL(Λ,K) by simply choosing the
subspace W := Rn as witness. Then

µKL(Λ,K) ≥
( det(Λ)

Voln(K)

)1/n

(∗)
≳

1

Voln(Ksym)1/n

Cor 22
≳

n

ℓK◦
sym

ℓ-position
≳

ℓKsym

log(2n)
,

where we use in (∗) that det(Λ) ≥ 2−n and Voln(Ksym) ≥
2−nVoln(K). Combining both inequalities gives the claim.

Next, we want to develop a proof strategy that works
for general Λ and K. Translating K and applying a linear
transformation to both Λ and K does not a昀昀ect the claim,
hence we may assume that K has the barycenter at 0 and
the symmetrizer Ksym := K ∩ −K is in ℓ-position. But
in general, Λ will not be a 2-stable lattice and we cannot
expect that one can always choose the subspace W = Rn

as witness like in Prop 32.
But we know by Cor 14 that the lattice Λ admits a 2-

stable well-separated 昀椀ltration {0} = Λ0 ⊂ . . . ⊂ Λk =
Λ. Let us abbreviate di := rank(Λi/Λi−1) and ri :=
det(Λi/Λi−1)

1/di . Then each quotient lattice 1
ri
Λi/Λi−1 is

a 2-stable lattice of dimension di and hence an argument
similar to Prop 32 becomes feasible.

We can use the triangle inequality that we developed
in Lemma 28 to obtain

µ(Λ,K)
K⊇Ksym
≤ µ(Λ,Ksym)

Lem 28
≤

k∑

i=1

µ(Λi/Λi−1,Ki)

Prop 31
≲ log(2n)

k∑

i=1

riℓKi

≲ log(2n) · rkℓK ,

where Ki := Πspan(Λi−1)⊥(Ksym∩ span(Λi)). Here we have
used that the sequence r1 < . . . < rk is geometrically
increasing. This provides a convenient upper bound on the
covering radius in terms of the relative determinant of the
last quotient lattice in the 昀椀ltration (which is the sparsest
one). However we cannot avoid wondering whether we gave
up too much by bounding ℓKi ≤ ℓK .

Next, we want to lower bound µKL(Λ,K). The only
natural choices for a witness subspace seem to come from
the 昀椀ltration. Hence for some index i ∈ {1, . . . , k} we
want to understand what can be obtained by choosing
W := span(Λi−1)

⊥, meaning we project out the densest
i − 1 of the quotient lattices. Then abbreviating d :=
dim(W ) = di + . . .+ dk we have

µKL(Λ,K) ≥
( det(ΠW (Λ))

Vold(ΠW (K))

)1/d

(∗)
≳ ri ·

( d

n

)6 d

ℓ◦Ksym

ℓ-position
≳ ri · log(2n) ·

( d

n

)7

· ℓKsym .

In (∗) we use that ΠW (Λ) = Λ/Λi−1 and so det(ΠW (Λ))1/d

is a geometric mean of factors that are all at least ri. Here
we also use Lemma 25 to bound Vold(ΠW (K)). It seems
the only direct comparison can be obtained when letting
i := k in which case we have

µ(Λ,K) ≲ log2(2n) ·
( n

dk

)7

· µKL(Λ,K).

Hence, we can conclude Theorem 2 if dk is close n, i.e. the
last quotient subspace is large. But of course this is not
necessarily true. In fact, the issue is more substantial.
If Ksym is in ℓ-position with ℓKsym and ℓK◦

sym known
and W is a d-dimensional subspace, then this determines
Vold(ΠW (K))1/d only up to a polynomial factor in n

d .
Hence the information that we considered so far is simply
too weak to approximate µ(Λ,K) up to a polylogarithmic
factor. But fortunately there is a 昀椀x: instead of upper
bounding the whole covering radius µ(Λ,K), we only
estimate the covering radius corresponding to the less
important half of the 昀椀ltration. This means we will need
to iterate the argument, which comes at the expense of a
another logarithmic factor, but it will work!



IV. Proof of the main theorem
We will spend the next two subsections proving our

main Theorem 2 by induction over n. At each step, we
split the lattice Λ and the convex body K into a subspace
section of dimension at least n/2 and a projection where
most of the work will go into analyzing the subspace
section.
A. The inductive step

First, we give a self-contained description of the induc-
tive step, then later in Section IV-B we describe the main
part of the induction.

Proposition 33. There is a universal constant C0 > 0 so
that the following holds: For any full rank lattice Λ ⊆ Rn

and any convex body K ⊆ Rn with b(K) = 0, there exists
a primitive sublattice Λ′ ⊆ Λ with rank(Λ′) ≥ n/2 so that

µ
(
Λ′, (K ∩ −K) ∩ span(Λ′)

)
≤ C0 log

2(2n) · µKL(Λ,K).

Proof. Set Ksym := K ∩ (−K). The claim is invariant
under applying a linear transformation to K and Λ. Hence
we may assume that Ksym is in ℓ-position, i.e. ℓKsym ·
ℓK◦

sym ≤ O(n log(2n)). Consider a well-separated 2-stable
昀椀ltration {0} = Λ0 ⊂ . . . ⊂ Λk = Λ which exists by
Cor 14. We will later choose the lattice Λ′ from one of the
lattices Λi in the 昀椀ltration, but we postpone the choice
for now. We de昀椀ne

di := rank(Λi/Λi−1) and
ri := nd(Λi/Λi−1) = det(Λi/Λi−1)

1/di ,

which are the rank and normalized determinants of the
quotient lattices in the 昀椀ltration. Recall that r1 < r2 <
. . . < rk with ri ≤ 1

2ri+2 for all i.
Claim I. For any i ∈ {1, . . . , k} one has
µ(Λi,Ksym ∩ span(Λi)) ≲ log(2n) · ri · ℓKsym .
Proof of Claim I. We abbreviate Kj :=
Πspan(Λj−1)⊥(Ksym ∩ span(Λj)). Then Kj is convex
and symmetric and 1

rj
(Λj/Λj−1) is a 2-stable lattice.

Hence we can bound the covering radii of the individual
quotient lattices by

µ
(
Λj/Λj−1,Kj

) Prop 31
≲ log(2n) · rj · ℓKj

Lem 20
≤ log(2n) · rj · ℓKsym .

Then using the triangle inequality for the covering radius
we bound

µ(Λi,Ksym ∩ span(Λi))
Lem 28
≤

i∑

j=1

µ (Λj/Λj−1,Kj)

(1)
≲ log(2n) · ℓKsym ·

i∑

j=1

rj

≲ log(2n) · ℓKsym · ri,
using in the last step that r1 < . . . < ri and rj ≤ 1

2rj+2

for all j.

In the following we abbreviate d≥i :=
∑k

j=i dj .
Claim II. For any i ∈ {1, . . . , k} one has µKL(Λ,K) ≳

ri
log(2n) · (

d≥i

n )7 · ℓKsym .
Proof of Claim II. We choose the subspace W :=
span(Λi−1)

⊥ as witness and note that ΠW (Λ) = Λ/Λi−1.
Abbreviating d := dim(W ) = rank(Λ/Λi−1) = d≥i we
have

det(Λ/Λi−1)
1/d =

( k∏

j=i

r
dj

j

)1/
∑k

j=i dj

≥ ri, (1)

where the middle expression denotes a geometric average
of values ri < ri+1 < . . . < rk. Then lower bounding the
covering radius proxy with the witness W gives

µKL(Λ,K) ≥
( det(ΠW (Λ))

Vold(ΠW (K))

)1/d

(1)
≥ ri

Vold(ΠW (K))1/d

Lem 25
≳ ri ·

( d

n

)6

· d

ℓK◦
sym

ℓ-position
≳

ri
log(2n)

·
( d

n

)7

· ℓKsym ,

using ℓKsym · ℓK◦
sym ≲ n log(2n) in the last step.

Combining Claim I and Claim II with the same index
i gives

µ(Λi,Ksym ∩ span(Λi)) ≲ log2(2n) ·
( n

d≥i

)7

· µKL(Λ,K).

Now, let i∗ ∈ {1, . . . , k} be the minimal index so that
rank(Λi∗) ≥ n

2 . Then d≥i∗ ≥ n
2 by minimality. Hence

Λ′ := Λi∗ satis昀椀es the claim.

B. Completing the main proof

Using Proposition 33 we can 昀椀nish the proof of our main
theorem.

Proof of Theorem 2. Consider a full rank lattice Λ ⊆ Rn

and a convex body K ⊆ Rn. We will prove by induction
over n that

µ(Λ,K) ≤ C0 log
3(2n) · µKL(Λ,K),

where C0 ≥ 1 is the constant from Proposition 33. The
claim is true for n = 1, hence assume n ≥ 2 from now on.
The claim is invariant under translations of K, hence we



may assume that b(K) = 0. Let Λ′ ⊆ Λ be the primitive
sublattice from Prop 33 and set W := span(Λ′). Then

µ(Λ,K)
Lem 27
≤ µ(Λ ∩W,K ∩W ) +

µ(ΠW⊥(Λ),ΠW⊥(K))
K⊇Ksym
≤ µ(Λ ∩W,Ksym ∩W ) +

µ(ΠW⊥(Λ),ΠW⊥(K))
Prop 33
+ind.
≤ C0 log

2(2n) · µKL(Λ,K) +

C0 log
3(2 dim(W⊥)

︸ ︷︷ ︸

≤n/2

) ·

µKL(ΠW⊥(Λ),ΠW⊥(K))
︸ ︷︷ ︸

≤µKL(Λ,K)

Lem 29
≤ C0 log

2(2n) ·
(

1 + log(n)
)

︸ ︷︷ ︸

=log3(2n)

·

µKL(Λ,K).

We should point out that Regev and Stevens-
Davidowitz [RS17] prove that in the Euclidean case one
has µ(Λ, Bn

2 ) ≤ O(log3/2(2n)) · µKL(Λ, B
n
2 ). Our proof

could be seen as a generalization of their argument in
the sense that [RS17] also relate both notions of covering
radii to the quantities ri and di as de昀椀ned in Prop 33 by
proving that

µ(Λ, Bn
2 ) ≤ O(log(2n)) ·

√
√
√
√

k∑

i=1

dir2i

≤ O(log3/2(2n)) · µKL(Λ, B
n
2 ).

On the other hand, for them the “standard” canonical
昀椀ltration suffices and they do not require an inductive
step. Implicitly, our induction causes O(log(2n)) many
re-centering and rescaling operations using the result of
Figiel, Tomczak-Jaegerman and Pisier (Theorem 18). This
circumvents the issue that the covering radius might be
dominated by a subspace of dimension d with d � n,
which may not a昀昀ect the ℓ-position of the body suf-
昀椀ciently. Then implicitly the induction will contain an
iteration where d is relatively large compared to the
current ambient dimension. It may also be instructive
to reconsider the proof of Prop 33 in the case that
K = Bn

2 . Then in (1), we would obtain the inequality
µ(Λj/Λj−1,Kj) ≲ log(2n) ·rj ·

√
n while actually the much

stronger bound of µ(Λj/Λj−1,Kj) ≲ log(2n) · rj ·
√
dj

holds. The trick is that using a well-separated 昀椀ltration
the arising loss can be efficiently bounded.

V. Finding the subspace W in single-exponential time
In this section, we prove Theorem 3, which guarantees

that a suitable subspace subspace W can be found in time
2O(n) at the expense of an additional logarithmic factor in
the approximation guarantee. It will be convenient to 昀椀rst

apply a linear transformation to well-scale K. This can be
done in polynomial time and is a standard argument, see
Lemma 40 for details. Hence, for us it suffices to prove
the following:

Theorem 34. Given a full rank lattice Λ ⊆ Rn and a convex
body K ⊆ Rn such that Bn

2 ⊆ K ⊆ (n + 1)3/2Bn
2 , there

exists a randomized 2O(n)-time algorithm to compute a
subspace W ⊆ Rn with d := dim(W ) so that

µ(Λ,K) ≲ log4(2n) ·
( det(ΠW (Λ))

Vold(ΠW (K))

)1/d

.

The main technical tool will be the following result of
Dadush, which is the only step in the algorithm which
takes exponential time:

Theorem 35 (Theorem 6.4. in [Dad19]). Given a lattice
Λ ⊆ Rn one can compute an O(log(2n))-stable 昀椀ltration
of Λ in 2O(n) time with probability at least 1− 2−Ω(n).

The following algorithm mimics the proof in Section 4:

Find-Subspace
Input: Convex body K ⊆ Rn so that
Bn

2 ⊆ K ⊆ (n+ 1)3/2Bn
2 , full rank lattice Λ ⊆ Rn

Output: Subspace W ⊆ Rn satisfying Theorem 34
(1) Compute an approximate barycenter x̃ such that
‖b(K)− x̃‖2 ≤ 1

(2) Shift K ′ := K − x̃
(3) Set Ksym := K ′∩ (−K ′) and compute an invertible

linear map T so that

ℓT (Ksym) · ℓ(T (Ksym))◦ ≤ C · n log(2n)

(4) Set K ′ ← T (K) and Λ′ ← T (Λ)
(5) Compute an O(log(2n))-stable 昀椀ltration

{0} = Λ0 ⊂ . . . ⊂ Λk = Λ′

(6) Compute a well-separated O(log(2n))-stable
昀椀ltration {0} = Λ′

0 ⊂ . . . ⊂ Λ′
k′ = Λ′

(7) Set i∗ as the minimal index with rank(Λ′
i∗) ≥ n

2
(8) Set Wi∗ := span(Λ′

i∗)
⊥.

(9) Recursively call WΠ :=
Find-Subspace(Πspan(Λ′

i∗
)⊥(K

′)),Πspan(Λ′
i∗

)⊥(Λ
′)).

(10) Return W := T−1W ′ where
W ′ := argmin

W∈{Wi∗ ,WΠ}

{(
det(ΠW (Λ′))

Voldim(W )(ΠW (K′))

)1/ dim(W )}

.

We will need several volume computations in the algo-
rithm, for which we use the following theorem:

Theorem 36 ( [KLS97]). Given a convex body K ⊆ Rn

with r · Bn
2 ⊆ K ⊆ R · Bn

2 , there exists a random-
ized algorithm which outputs a positive number ζ with
Voln(K)/ζ ∈ [1 − ε, 1 + ε]. The runtime is polynomial in
n, 1/ε, log(1/r) and log(R).



In fact, [KLS97] also computes an approximation to the
barycenter of K:

Theorem 37 ( [KLS97]). Given a convex body K ⊆ Rn

with Bn
2 ⊆ K ⊆ (n+ 1)3/2 · Bn

2 and δ > 0, there exists a
randomized algorithm with running time polynomial in n
and 1

δ , which returns an approximate barycenter x̃ such
that ‖b(K)− x̃‖2 ≤ δ.

Now, we can prove the main result for this section:

Proof of Theorem 34. First we justify the running time
of 2O(n), later we discuss the approximation guarantee.
We 昀椀rst apply Theorem 37 to compute an approximate
barycenter x̃ and shift K ′ := K − x. Theorem 35 yields
a 昀椀ltration for step (5), which can be re昀椀ned into a well-
separated 昀椀ltration by Theorem 13. Step (10) requires
computation of determinants, which can be done in
polynomial time via Gaussian elimination, and the volume
of a convex body, which can also be done in randomized
polynomial time using Theorem 36. The runtime T (n)
of Find-Subspace satis昀椀es the recursion T (n) ≤ 2O(n) +
T (n/2), which can be resolved to T (n) ≤ 2O(n).

Next, we justify the approximation guarantee. From the
same argument in Section 3 and 4 one can see that the
returned subspace satis昀椀es

µ(Λ,K) ≲ log4(2n) ·
( det(ΠW (Λ))

Vold(ΠW (K))

)1/d

,

where we have taken into account that we pay an addi-
tional log(2n) factor from Proposition 31 as our 昀椀ltration
is only guaranteed to be O(log(2n))-stable. Another subtle
point is that we are using only an approximate barycenter.
Hence it remains to generalize Proposition 24 and show
that the approximation costs us at most another constant
factor:
Claim. Let K ⊆ Rn be a convex body so that Bn

2 ⊆ K and
‖b(K)‖2 ≤ 1. Let F ⊆ Rn be a d-dimensional subspace.
Then denoting Ksym := K ∩ (−K),

Vold(ΠF (K))1/d ≲
(n

d

)5

· log
(en

d

)2

·Vold(ΠF (Ksym))
1/d.

Proof of Claim. By Proposition 24, we know that denoting
K̃sym := (K − b(K)) ∩ (−K + b(K)), we have

Vold(ΠF (K))1/d ≲
(n

d

)5

· log
(en

d

)2

·Vold(ΠF (K̃sym))
1/d.

Since −b(K) ⊆ Bn
2 ⊆ K, it follows that K −

b(K) ⊆ K + K = 2K, so that K̃sym ⊆ 2Ksym and
Vold(ΠF (K̃sym))

1/d ≤ 2 ·Vold(ΠF (Ksym))
1/d.

VI. Integer programming in time (log(2n))O(n)

Next, we show that integer programming can be solved
in time (log(2n))O(n). In fact, this is a known consequence
of Theorem 3. We do not claim any original contribution
for this section, but we reproduce the arguments of
Dadush [Dad12] to be self-contained. As it is common

in the literature, we only state the dependence of running
times on n; all running times that involve a convex set
K ⊆ rBn

2 and a lattice Λ = Λ(B) also contain a not
mentioned factor that is polynomial in log(r) and in the
encoding length of B.

First, we describe the intuition behind Dadush’s algo-
rithm. Consider a convex body K ⊆ Rn and a lattice
Λ ⊆ Rn; the goal is to 昀椀nd a point in K∩Λ. We compute a
subspace W ⊆ Rn in time 2O(n) that certi昀椀es the covering
radius µ(Λ,K) up to a factor ρ(n) := Θ(log4(2n)). Con-
sider the points X := ΠW (K) ∩ ΠW (Λ) in the projection
on W . For each x ∈ K ∩ Λ, we also have ΠW (x) ∈ X.
Note that the reverse may not be true in the sense that it
is entirely possible that K ∩Λ = ∅ while X 6= ∅. However,
we are guaranteed that all lattice points in K must be in
one of the (n−d)-dimensional 昀椀bers of the projection, i.e.

K ∩ Λ ⊆
⋃

y∈X

(
(K ∩Π−1

W (y)) ∩ Λ
)
.

K W

0

b b b b b b

b b b b b b

b b b b b b

b b b b b b

b

b

b

b

b

b

b

X

ΠW (K)

The algorithm enumerates X and then recurses on all the
昀椀bers. In order for this algorithm to be efficient we need to
(i) bound the cardinality |X| and (ii) be able to enumerate
X. For (ii), note that it is possible that W = Rn and hence
we would not gain anything by treating ΠW (K)∩ΠW (Λ)
as a general integer programming problem.

For convex bodies A,B ⊆ Rn, the covering number
N(A,B) := min{N | ∃x1, . . . , xN ∈ Rn : A ⊆ ⋃N

i=1(xi +
B)} is the minimum number of translates of B needed
to cover A. For a convex body K ⊆ Rn and a full rank
lattice Λ ⊆ Rn we de昀椀ne

G(Λ,K) := max
x∈Rn

|(K + x) ∩ Λ|.

In words, G(Λ,K) denotes the maximum number of lattice
points that any shift of K contains. Note that even if K ∩
Λ = ∅, G(Λ,K) might still be arbitrarily large. However,
algorithmically the quantity G(Λ,K) is useful:

Theorem 38 ( [DPV11], [DV13]). Given a convex body
K ⊆ Rn and a full rank lattice Λ ⊆ Rn, one can enumerate
all points in K ∩ Λ in deterministic time 2O(n) ·G(Λ,K).

We brie昀氀y sketch the algorithm behind Theorem 38:
We use the method of Dadush and Vempala [DV13] to



compute an M -ellipsoid E of K which has the property
that N(K,E), N(E,K) ≤ 2O(n). Their deterministic al-
gorithm takes time 2O(n). In particular this means that
2−Θ(n) ≤ G(Λ,K)

G(Λ,E) ≤ 2Θ(n). Next, we compute1 the trans-
lates x1, . . . , xN with N ≤ 2O(n) so that K ⊆ ⋃N

i=1(xi+E).
Then we can use the following argument by Dadush, Peik-
ert and Vempala [DPV11] to enumerate all lattice points
in (xi +E)∩Λ. After applying a linear transformation, it
suffices to compute all points in (t+ Bn

2 ) ∩ Λ for t ∈ Rn.
Let R ⊆ Λ \ {0} be the Voronoi-relevant vectors, which
are all the vectors that de昀椀ne a facet of the Voronoi cell
of Λ. It is known that |R| ≤ 2n+1 and moreover the set
R can be computed in time 2O(n) by the algorithm of
[MV13]. Next, consider the graph H = (Λ, E) with edges
E = {{x, y} : x, y ∈ Λ and x − y ∈ R}. Then it follows
from the work of [MV13] that the subgraph induced by
Λ ∩ (t + Bn

2 ) is connected. Hence, one can compute the
closest lattice point to t (again using [MV13]) and then
traverse the subgraph.

Next, we require an upper bound on G(Λ,K) in terms
of the volume of K and density of Λ. Surprisingly, such an
upper bound exists if we additionally control the covering
radius. We reproduce Dadush’s proof as the argument is
key to understanding the algorithm:

Lemma 39. For any full rank lattice Λ ⊆ Rn and any
convex body K ⊆ Rn one has

G(Λ,K) ≤ 2n max{µ(Λ,K)n, 1} · Voln(K)

det(Λ)
.

Proof. After a linear transformation and scaling by
max{µ(Λ,K), 1}, the statement is equivalent to the fol-
lowing simpler claim:
Claim. For any convex body K ⊆ Rn with µ(Zn,K) ≤ 1
and any x ∈ Rn one has |K ∩ (x+ Zn)| ≤ 2nVoln(K).
Proof of Claim. The claim is invariant under translating
K, hence we may assume that 0 ∈ K. Let ≡ be the
equivalence relation on pairs x, y ∈ K that is de昀椀ned by
x ≡ y ⇔ x− y ∈ Zn. We de昀椀ne a set V ⊆ K by selecting
one element from each equivalence class w.r.t. ≡. It would
not matter much which element was selected, but let us
make the canonical choice of choosing the lexicographically
minimal one. In other words, we choose

V =
{
x ∈ K | x ≤lex y ∀y ∈ (x+ Zn) ∩K

}

where ≤lex is the standard lexicographical ordering.

1At least in the case that E is an M -ellipsoid for K, one may 昀椀nd
those translates with N ≤ 2O(n)N(K,E) with ease. After applying
a linear transformation, we may assume that E =

√
nBn

2 . Then take
all translates x+ E with x ∈ Zn that intersect K.

K

V
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

0

As we select at most one element from each equivalence
class, we certainly have Voln(V ) ≤ 1. On the other hand,
µ(Zn,K) ≤ 1 implies that for all x ∈ Rn one has (x+Zn)∩
K 6= ∅. That in turn means that every equivalence class
has a member in K and so Voln(V ) ≥ 1. Together this
gives Voln(V ) = 1. Next, we note that by construction all
translates x + V with x ∈ Zn are disjoint. Moreover, for
x ∈ K ∩ Zn one has that x+ V ⊆ K +K = 2K. Then

|K ∩ Zn| =
∑

x∈K∩Zn

Voln(x+ V )
︸ ︷︷ ︸

=1

disj.
= Voln

( ⋃

x∈K∩Zn

(x+ V )
)

≤ Voln(2K),

which gives the claim.

One technicality we have to deal with is that Theorem 3
requires a lower bound on the inradius of K. Hence we run
a preprocessing step: if there is no suitable lower bound for
the inradius, then the lattice points of K are all contained
in an easy-to-昀椀nd hyperplane.

Lemma 40. Given a compact convex set K ⊆ rBn
2 and a

lattice Λ = Λ(B). Then in time polynomial in n, times
a polynomial in log(r) and the encoding length of B one
can 昀椀nd at least one of the following:
(a) An ellipsoid E and center c so that c+ 1

(n+1)3/2
E ⊆

K ⊆ c+ E.
(b) A vector a ∈ Rn \ {0} and β ∈ R so that K ∩ Λ ⊆
{x ∈ Rn | 〈a, x〉 = β}.

Proof. We may assume that rank(Λ) = n, otherwise
any a orthogonal to span(Λ) will satisfy (b). Next, we
use a variant of the ellipsoid method from [GLS88] (see
also Lemma 2.5.10 in [Dad12]) to 昀椀nd a pair (c, E) in
time polynomial in n, log(r) and log( 1ε ) so that either
(a) holds, or K ⊆ c + E and Voln(E) ≤ ε. Suppose
the latter happens. Then using Minkowski’s Theorem
(Theorem 10) in (∗) and the Blaschke-Santaló-Bourgain-
Milman Theorem (Theorem 23) in (∗∗) we obtain

λ1(Λ
∗, E◦)

(∗)
≲

( det(Λ∗)

Voln(E◦)

)1/n

(∗∗)
≲

( Voln(E)

det(Λ) · ν2n

)1/n

≲ n ·
( ε

det(Λ)

)1/n

≤ 1

2
· 2−n/2,



for a suitable choice of ε > 0. Then the LLL-
algorithm [LLL82] can 昀椀nd a dual lattice vector a ∈
Λ∗ \ {0} with ‖a‖E◦ ≤ 2n/2 · λ1(Λ

∗, E◦) ≤ 1
2 . That vector

a with β := d〈a, c〉c will satisfy (b).

We are now ready to state the complete algorithm. As
mentioned earlier, we denote ρ(n) := Θ(log4(2n)) as the
approximation factor from Theorem 3.

Dadush’s algorithm
Input: Compact convex set K ⊆ Rn, lattice Λ ⊆ Rn

Output: Point x ∈ K ∩Λ or decision that there is none
(1) Use Lemma 40. If case (b) happens, obtain hyper-

plane H with K ∩Λ ⊆ H. Recurse on Dadush(K ∩
H,Λ ∩H) and return the answer.

(2) Compute a subspace W ⊆ Rn with d := dim(W )

and R := ( det(ΠW (Λ))
Vold(ΠW (K)) )

1/d so that R ≤ µ(Λ,K) ≤
ρ(n) ·R.

(3) Set K̃ := min{ρ(n) · R, 1} · (K − c) + c for some
c ∈ K.

(4) Compute an M -ellipsoid E ⊆W for ΠW (K̃).
(5) Compute N ≤ 2O(d) points x1, . . . , xN ∈W so that

ΠW (K̃) ⊆ ⋃N
i=1(xi + E).

(6) Compute X := ΠW (K̃) ∩ ΠW (Λ) =
(⋃N

i=1((xi +

E) ∩ΠW (Λ))
)
∩ΠW (K̃).

(7) Recursively call Dadush(K̃ ∩ Π−1
W (x),Λ ∩ Π−1

W (x))
for all x ∈ X and return any found lattice point (if
there is any).

Here, to be more informative, we have expanded the
blackbox from Theorem 38 into lines (4)-(6). The reader
may also note a subtlety here that we have not discussed
so far: if K is very large so that µ(Λ,K)� 1, then we may
shrink K to a smaller body K̃ ⊆ K as long as we ensure
that still µ(Λ, K̃) ≤ 1. We can now 昀椀nish the analysis:

Theorem 41. Dadush’s algorithm 昀椀nds a point in K ∩ Λ
in time (log(2n))O(n) if there is one.

Proof. If the algorithm recurses in (1), the claim is clear by
induction. So assume otherwise. First we argue correctness
of the algorithm. Let s := min{ρ(n) · R, 1} ∈ [0, 1] and
recall that K̃ ⊆ K is a scaling of K by a factor of
s. After step (3), the algorithm searches for a lattice
point in K̃ rather than in the original body K. If
s < 1, then the covering radius of the shrunk body is
µ(Λ, K̃) = 1

ρ(n)·Rµ(Λ,K) ≤ 1. In other words, even though
we continue the search in the strictly smaller body K̃, we
are still guaranteed that K̃ ∩Λ 6= ∅. Next, we discuss the

running time of the algorithm. We estimate that

G(ΠW (Λ),ΠW (K̃))
Lem 39
≤ 2d ·max

{
µ(ΠW (Λ),ΠW (K̃))d, 1

}
·

Vold(ΠW (K̃))

det(ΠW (Λ))

≤ 2d ·max
{( ρ(n)R

s
︸ ︷︷ ︸

≥1

)d

, 1
}

·

sd · Vold(ΠW (K))

det(ΠW (Λ))
︸ ︷︷ ︸

=R−d

= 2d · (ρ(n)R)d ·R−d

= (2ρ(n))d.

Here we use that µ(ΠW (Λ),ΠW (K̃)) ≤ µ(Λ, K̃) = 1
s ·

µ(Λ,K) ≤ ρ(n)·R
s . Then |X| ≤ G(ΠW (Λ),ΠW (K̃)) ≤

2dρ(n)d and by Lemma 39, the computation of X in (4)-
(6) takes time 2O(d)ρ(n)d. Now, let T (n) be the maximum
running time of the algorithm on n-dimensional instances.
Then we have the recursion

T (n) ≤ max
d∈{1,...,n}

{

2O(n) + (O(1) · ρ(n))d · T (n− d)
}

and T (1) = Θ(1),

which indeed resolves to T (n) ≤ O(ρ(n))n.

We also explain how Dadush’s algorithm can be used to
solve integer linear programs in time (log(2n))O(n). Again,
the arguments used are standard. Details on the estimates
can be found in the book of Schrijver [Sch99].

Proof of Theorem 5. Consider an arbitrary integer linear
program max{cTx | Ax ≤ b, x ∈ Zn}. One can compute
a number M in time polynomial in n and the encoding
length of A and b so that if the IP is bounded and feasible,
then the optimum value is the same as max{cTx | Ax ≤
b, ‖x‖∞ ≤ M,x ∈ Zn}. Next, by applying binary search,
it suffices to 昀椀nd an integer point in the compact convex
set K = {x ∈ Rn | cTx ≥ δ,Ax ≤ b, ‖x‖∞ ≤M} for which
Theorem 4 applies.

VII. Implications of Theorem 2

Here we derive a few implications of our main result.
The following classical inequality will be useful here:

Lemma 42 ( [RS57]). For any convex set K ⊆ Rn we have
Voln(K −K) ≤

(
2n
n

)
·Voln(K).

We restate Theorem 6, which yields a nearly tight
relationship between the covering radii of K and K −K.
We remark that it remains an open question whether the
two quantities are equal up to a constant.



Theorem (Theorem 6). For any full rank lattice Λ ⊆ Rn

and any convex body K ⊆ Rn, one has

µ(Λ,K −K) ≤ µ(Λ,K) ≤ O(log3(2n)) · µ(Λ,K −K).

Proof. Let W denote the subspace attaining µKL(Λ,K)
with dimW = d. We can use Theorem 2 to upper bound

µ(Λ,K) ≲ log3(2n) · µKL(Λ,K)

= log3(2n) ·
( det(ΠW (Λ))

Vold(ΠW (K))

)1/d

Lem 42
≲ log3(2n) · 4 ·

( det(ΠW (Λ))

Vold(ΠW (K −K))

)1/d

≲ log3(2n) · µKL(Λ,K −K)

≲ log3(2n) · µ(Λ,K −K).

This in turn implies that the 昀氀atness constant in
dimension n is bounded by O(n log3(2n)):

Theorem (Theorem 7). For any convex body K ⊆ Rn and
any full rank lattice Λ ⊆ Rn, one has

µ(Λ,K) · λ1(Λ
∗, (K −K)◦) ≤ O(n log3(2n)).

Proof. First we show a slightly worse bound of
O(n log4(2n)). Banaszczyk [Ban96] proved that for any
symmetric convex body Q ⊆ Rn one has µ(Λ, Q) ·
λ1(Λ

∗, Q◦) ≤ O(n log(2n)). Setting Q := K −K (which is
a symmetric convex body) one then has by Theorem 6

µ(Λ,K) · λ1(Λ
∗, Q◦) ≤ O(log3(2n)) · µ(Λ, Q) · λ1(Λ

∗, Q◦)

≤ O(n log4(2n)).

Now we give the argument of the stronger bound of
O(n log3(2n)) which is due to Dadush. Let W denote
the subspace attaining µKL(Λ,K) with dimW = d. By
Theorem 2,

µ(Λ,K) ≲ log3(2n) · µKL(Λ,K)

= log3(2n) ·
( det(ΠW (Λ))

Vold(ΠW (K))

)1/d

Lem 42
≲ log3(2n) · 4 ·

( det(ΠW (Λ))

Vold(ΠW (Q))

)1/d

Lem 23� log3(2n) · d ·
(Vold(Q

◦ ∩W )

det(Λ∗ ∩W )

)1/d

Thm 10
≲ n log3(2n) · 2

λ1(Λ∗ ∩W,Q◦ ∩W )
.

Here, we have used that ΠW (Λ)∗ = Λ∗ ∩ W . Since
λ1(Λ

∗, Q◦) ≤ λ1(Λ
∗∩W,Q◦∩W ), the theorem follows.

We also explain the proof of Corollary 8 which again is
standard:

Corollary (Cor 8). Let K ⊆ Rn by a convex body with
K ∩ Zn = ∅. Then there is a vector c ∈ Zn \ {0} so
that at most O(n log3(2n)) many hyperplanes of the form
〈c, x〉 = δ with δ ∈ Z intersect K.

Proof. We apply Theorem 7 for the lattice Λ := Zn so that
Λ∗ = Zn. Then K∩Zn = ∅ implies that µ(Zn,K) > 1 and
so λ1(Z

n, (K−K)◦) ≲ n log3(2n). Let c ∈ Zn \{0} be the
vector attaining this bound. Then revisiting the de昀椀nition
of the dual norm (Sec II-C) we have max{〈c, x− y〉 : x, y ∈
K} = ‖c‖(K−K)◦ . That means at most ‖c‖(K−K)◦ + 1 ≲

n log3(2n) hyperplanes of the form 〈c, x〉 = δ with δ ∈ Z

intersect K.
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Appendix
In this chapter, we prove Theorem 13. The proof idea is

rather simple: given a t-stable 昀椀ltration {0} = Λ0 ⊂ . . . ⊂
Λk = Λ, we select one index from every density class in
order to make the 昀椀ltration well-separated. But before we
come to the main argument, we require two lemmas.

Lemma 43 (Grayson’s parallelogram rule [Cas04]). For any
two lattices Λ,Λ′ ⊆ Rn,

det(Λ) · det(Λ′) ≥ det(Λ + Λ′) · det(Λ ∩ Λ′).

A proof may also be found in Chapter 2 of [Ste17]. The
t-stable 昀椀ltration can be used to obtain lower bounds on
the determinant of any sublattice:

Lemma 44. Let Λ ⊆ Rn be any lattice and let {0} = Λ0 ⊂
Λ1 ⊂ . . . ⊂ Λk = Λ be a t-stable 昀椀ltration. Then for any
sublattice Λ̃ ⊆ Λ we have the inequality

nd(Λ̃) ≥ t−1 · nd(Λ1).

Proof. Let ri := nd(Λi/Λi−1) =
det(Λi/Λi−1)

1/rank(Λi/Λi−1) be the normalized
determinant. We prove by induction on i ∈ {1, . . . , k}

that the result holds for all lattices Λ̃ ⊆ Λi. The base case
follows as Λ1 = Λ1/Λ0 is a scalar of the t-stable lattice

1
nd(Λ1)

Λ1. Now suppose that Λ̃ ⊆ Λi for some i > 1. Note
that Λ+ := Λ̃ + Λi−1 satis昀椀es Λi−1 ⊆ Λ+ ⊆ Λi, so that
Λ+/Λi−1 ⊆ Λi/Λi−1 and nd(Λ+/Λi−1) ≥ t−1 ·ri > t−1 ·r1.
By Lemma 43,

det(Λ̃) · det(Λi−1) ≥ det(Λ̃ + Λi−1) · det(Λ̃ ∩ Λi−1).

Factoring out Λi−1 gives

det(Λ̃) ≥ det(Λ+/Λi−1) · det(Λ̃ ∩ Λi−1).

Hence

nd(Λ̃) ≥ nd(Λ+/Λi−1)
rank(Λ+/Λi−1)/rank(Λ̃) ·

nd(Λ̃ ∩ Λi−1)
rank(Λ̃∩Λi−1)/rank(Λ̃)

≥ t−1 · r1,
where we used the inductive hypothesis on Λ̃∩Λi−1 ⊆ Λi−1

together with the fact that rank(Λ+/Λi−1) + rank(Λ̃ ∩
Λi−1) = rank(Λ̃).

Now, we come to the main argument:

Proof of Theorem 13. Let ri := nd(Λi/Λi−1) and di :=
rank(Λi/Λi−1). For ℓ ∈ Z denote Iℓ := {i ∈ [k] : 2ℓ ≤
ri < 2 · 2ℓ}. We de昀椀ne a sequence of indices 0 = ℓ(0) <
ℓ(1) < . . . < ℓ(k̃) = k that contains precisely the largest
index i in each Iℓ with Iℓ 6= ∅ plus the index ℓ(0) = 0. We
set Λ̃j := Λℓ(j) and r̃j := nd(Λ̃j/Λ̃j−1). First, consider an
index ℓ with Iℓ 6= ∅. Let imin, imax ∈ Iℓ be the minimal
and maximal indices in Iℓ. Then

det(Λimax
/Λimin−1)

1/rank(Λimax/Λimin−1)

=
( imax∏

i=imin

det(Λi/Λi−1)
)1/

∑imax
i=imin

rank(Λi/Λi−1)

=
( imax∏

i=imin

rdi
i

)1/
∑imax

i=imin
di

.

Note that this value is a weighted geometric average of
ri-values for i ∈ Iℓ. From this it immediately follows
that r̃1 < . . . < r̃k and r̃j ≤ 1

2 r̃j+2 for all j, i.e. (a’)
holds. It remains to show that the quotient lattices are
scalars of 2t-stable lattices. Fix some index j ∈ [k̃] and
let Λ′ := 1

r̃j
(Λ̃j/Λ̃j−1). First note that by assumption,

the 昀椀ltration {0} = Λ′
0 ⊂ · · · ⊂ Λ′

k′ := Λ′ given by
Λ′
i :=

1
r̃j
(Λℓ(j−1)+i/Λℓ(j−1)) with k′ := ℓ(j)−ℓ(j−1) is also

t-stable because Λ′
i+1/Λ

′
i =

1
r̃j
(Λℓ(j−1)+i+1/Λℓ(j−1)+i).

We will prove the following two statements.
(I) For any sublattice Λ̃ ⊆ Λ′ one has nd(Λ̃) ≥ (2t)−1.

(II) For any sublattice Λ̃ ⊆ (Λ′)∗ one has nd(Λ̃) ≥ (2t)−1.
First we show (I). We apply Lemma 44 on Λ′ to obtain

nd(Λ̃) ≥ t−1 · nd(Λ′
1) ≥ t−1 · rℓ(j−1)+1

r̃j
≥ (2t)−1,

since both numerator and denominator belong to the same
interval [2ℓ, 2 · 2ℓ) for some ℓ ∈ Z. Next, we prove (II).



Given the 昀椀ltration {0} = Λ′
0 ⊂ · · · ⊂ Λ′

k′ = Λ′ with
Ui := span(Λ′

i), the dual 昀椀ltration is given by {0} =
(Λ′)∗0 ⊂ · · · ⊂ (Λ′)∗k′ = (Λ′)∗ with (Λ′)∗i := Λ∗ ∩ U⊥

k′−i

and determinant det((Λ′)∗i ) = det((Λ′)∗) · det(Λ′
k′−i) =

det(Λ′
k′−i), see for example [Dad19]. Since quotients of

the dual 昀椀ltration are duals of the quotients of the original
昀椀ltration, the dual 昀椀ltration is also t-stable. We then apply
Lemma 44 on (Λ′)∗:

nd(Λ̃) ≥ t−1 · nd((Λ′)∗1)

= t−1 · (r′k′)−1

= t−1 ·
(rℓ(j)

r̃j

)−1

rℓ(j)≤2·r̃j
≥ (2t)−1.


