
GAMORA: Graph Learning based Symbolic Reasoning for
Large-Scale Boolean Networks

Nan Wu1, Yingjie Li2, Cong Hao3, Steve Dai4, Cunxi Yu*2, Yuan Xie5
1University of California, Santa Barbara, 2University of Utah, 3Georgia Institute of Technology,

4NVIDIA, 5Alibaba DAMO Academy
nanwu@ucsb.edu, yingjie.li@utah.edu, callie.hao@gatech.edu, sdai@nvidia.com, yuanxie@gmail.com

*correspondence: cunxi.yu@utah.edu

Abstract—Reasoning high-level abstractions from bit-blasted Boolean

networks (BNs) such as gate-level netlists can significantly benefit

functional verification, logic minimization, datapath synthesis, malicious

logic identification, etc. Mostly, conventional reasoning approaches leverage

structural hashing and functional propagation, suffering from limited

scalability and inefficient usage of modern computing power. In response,

we propose a novel symbolic reasoning framework exploiting graph neural

networks (GNNs) and GPU acceleration to reason high-level functional

blocks from gate-level netlists, namely GAMORA, which offers high rea-

soning performance w.r.t exact reasoning algorithms, strong scalability to

BNs with over 33 million nodes, and generalization capability from simple

to complex designs. To further demonstrate the capability of GAMORA, we

also evaluate its reasoning performance after various technology mapping

options, since technology-dependent optimizations are known to make

functional reasoning much more challenging. Experimental results show

that (1) GAMORA reaches almost 100% and over 97% reasoning accuracy

for carry-save-array (CSA) and Booth-encoded multipliers, respectively,

with up to six orders of magnitude speedups compared to the state-of-the-

art implementation in the ABC framework; (2) GAMORA maintains high

reasoning accuracy (>92%) in finding functional modules after complex

technology mapping, and we comprehensively analyze the impacts on

GAMORA reasoning from technology mapping. GAMORA is available at

https://github.com/Yu-Utah/Gamora.

I. INTRODUCTION

Reasoning high-level abstractions (e.g., functional blocks) from
bit-blasted Boolean networks (BNs) (e.g., unstructured gate-level
netlists) has demonstrated its wide applications in improving functional
verification efficiency [7], [16] and identifying malicious logics such
as detecting hardware trojan and intellectual property infringement
usage [3], [14]. In the era of globalization and democratization of
integrated circuit (IC) development and fabrication, such reasoning
is expected to bring broader impacts on hardware security, which is
at the heart of modern computing systems: more than 40 percent of
FPGA/ASIC projects are working under safety-critical development
process standards or guidelines [9].

Due to the optimization conducted by RTL synthesis tools, reasoning
high-level abstractions such as functional blocks from unstructured
or flattened netlists is extremely challenging, since hierarchy and
module information is lost during multi-level logic minimization
and technology mapping, which is also complicated by functional
blocks overlapping and gate sharing. The problem goes further
due to the explosion in runtime for large-scale BNs. Conventional
reasoning approaches leverage structural analysis and functional
propagation. Structural approaches either adopt shape hashing based
on circuit topology to find structurally similar wires to form word-level
abstractions [15], or rely on reference libraries to map sub-circuits
with reference circuits [6]. Functional approaches focus on identifying
functionally equivalent gates and wires by cut enumeration [10],
[20]. The combination of structural and functional analysis [15],
[20], [26] is more prevalent for efficient word-level abstraction and
propagation. Despite the achieved success, the performance of these

1 2 3

4 5

6

7 8

9
AND

(a) Flattened gate-level netlist (b) Boolean functional and structural aggregation

Encoding
Boolean
Function

al Info

Gamora

Conventional Reasoning
Functional

Propagation
Structural

Hashing

Functional
Aggregation

Structural
Aggregation

•High accuracy
• Scalability
•Generalization

• Low scalability
• Low parallelism

INV

Fig. 1: The inputs to GAMORA are flattened gate-level netlists, with
each node as an AND gate and dashed edges as inverters. By encoding
Boolean functional information as node features, GAMORA can
simultaneously handle functional and structural aggregation, analogous
to functional propagation and structural hashing in conventional
reasoning but with strong scalability.

conventional approaches is restricted by limited scalability and
inefficient utilization of modern computing power: (1) structural
hashing is very time/memory-consuming for large BNs with billions
of nodes; (2) functional propagations by symbolic evaluation are
solver-ready but extremely expensive, in particular for bit-blasted
non-linear arithmetic BNs; (3) all these algorithms do not effectively
utilize modern computing power due to the difficulty of parallelism.

Recently, we have witnessed the emergence of machine learning
(ML) applied for computer systems and electronic design automation
(EDA) tasks [23], as an alternative to conventional design solutions.
Since circuit netlists or BNs can be easily represented as graphs, graph
neural networks (GNNs) are naturally suitable to classify sub-circuit
functionality from gate-level netlists [2], analyze impacts of circuit
rewriting on functional operator detection [27], and predict boundaries
of arithmetic blocks [12].

Motivated by the limitations of conventional approaches and the
potentials of GNNs applied on circuit designs, we propose a graph
learning-based symbolic reasoning framework to reverse engineer
functional blocks from gate-level netlists, namely GAMORA, which has
high reasoning accuracy, strong scalability to BNs with billions of
nodes, and generalization capability from simple to complex designs.
GAMORA employs a multi-task GNN to guarantee reasoning accuracy
while simultaneously handling structural and functional information
from BNs. Once well trained, GAMORA becomes adept at generalizing
to large-scale and complex BNs, leveraging the accelerated inference
and parallel processing offered by modern computing systems. We
summarize our contributions as follows.

• Novel multi-task GNN for structure and function fusion.

The message passing mechanisms in GNNs enable simultaneous
Boolean functional and structural aggregation, corresponding to
the symbolic propagation and structural hashing in conventional

ar
X

iv
:2

30
3.

08
25

6v
2

 [c
s.A

R
]

12
 Ju

n
20

23

https://github.com/Yu-Utah/Gamora

reasoning methods, as shown in Figure 1. The multi-task setting
allows knowledge sharing across different reasoning sub-tasks to
guarantee high reasoning accuracy.

• Billion-node scalability and parallelism. We develop domain-
specific techniques to compress node features, significantly reducing
compute costs. The exploitation of graph learning draws better
support from modern computing systems, such as GPU deployment,
for scalability to large BNs and parallel execution.

• Generalization capability. Unlike many ML-based approaches
that are trained with complex designs and infer on simpler ones,
GAMORA can easily generalize from simple to complex BNs and
handle the reasoning complexity introduced by more advanced de-
signs (such as Booth-encoded multipliers) and technology mapping.

• Evaluation. Regarding reasoning performance, GAMORA reaches
almost 100% and over 97% reasoning accuracy for carry-save
array (CSA) and Booth multipliers, respectively; after technology
mapping, the reasoning accuracy is still over 92%. Regarding
runtime and scalability, GAMORA can perform reasoning for large
BNs with tens of millions of nodes/edges within one second, with
a speedup of up to six orders of magnitude compared to the logic
synthesis tool ABC [4].

II. PRELIMINARY AND MOTIVATION

A. Boolean Networks and And-Inverter Graphs
BNs are well-studied discrete mathematical models with broad

applications in chemistry, biology, circuit design, formal verification,
etc. For purposes of synthesis and verification, a concise and uniform
representation of BNs consisting of inverters and two-input AND-
gates, known as and-inverter graphs (AIGs), has found successful
use in diverse EDA tasks, since AIGs allow rewriting, simulation,
technology mapping, placement, and verification to share the same
data structure [18]. In an AIG, each node has at most two incoming
edges; a node without incoming edges is a primary input (PI); primary
outputs (POs) are denoted by special output nodes; each internal node
represents a two-input AND function. Based on De Morgan’s laws,
any combinational BN can be converted into an AIG [4] in a fast and
scalable manner.

In AIGs, cut enumeration can be used to detect Boolean functions.
A feasible cut of node n is a set of nodes in the transitive fan-in cone
of n, whose truth value assignments completely determine the value
of n. A cut is K-feasible if there are no more than K inputs. Figure 2
depicts an example of reasoning XOR functions and full adders from
AIGs. In Figure 2(a), the AIG has a 3-feasible cut of node 9 and a
2-feasible cut of node 6; after truth table computation, the functions
of node 6 and node 9 are IN1→IN2 and IN1→IN2→IN3, respectively.
Thus, as shown in Figure 2(b), node 6 is an XOR2 function, and node
9 is an XOR3 function. Figure 2(c) shows a full adder bitslice, with
the sum as an XOR function and the carry-out as a majority (MAJ)
function. By pairing an XOR3 with a MAJ3 with identical inputs,
a full adder bitslice can be extracted, which is then aggregated for
word-level abstraction.

B. Word-Level Abstraction
Word-level abstraction significantly reduces the complexity of large-

scale BNs by grouping wires into meaningful words and keeping
useful information related to control logic, which is widely applied
in reasoning functional units from gate-level netlists [15], [20], [26].
Conventional word identification uses structural shape hashing and
functional bitslice aggregation. Structural shape hashing assigns each
edge in the BN a shape, which is defined as the directed graph
constructed by the backward reachable nodes from this edge within

1 2 3

4 5

6

7 8

9
AND

(a) Flattened gate-level netlist (b) Boolean functional and structural aggregation

Encoding
Boolean
Function

al Info

Gamora

Conventional Reasoning
Functional

Propagation
Structural

Hashing

Functional
Aggregation

Structural
Aggregation

•High accuracy
• Scalability
•Generalization

• Low scalability
• Low parallelism

INV

1 2 3

4 5

6

7 8

9

1 2 3

4 5

6

7 8

9

IN1 IN2 IN3

OUT9

1 2 3

4 5

6

78

910
SUMCARRY

(a) AIG of XOR (b) XOR3: 3-input XOR (c) AIG of a full adder

MAJ3(1, 2, 3) XOR3(1, 2, 3)

Fig. 2: Netlists of XOR and a full adder. (a) AIG of XOR3 function.
(b) XOR3 function: OUT9 = XOR3(IN1, IN2, IN3). (c) Full adder
with a sum function (i.e., XOR3) and a carry-out function (i.e., MAJ3).

certain depth/steps. Functional bitslice aggregation adopts functional
matching to group functionally equivalent nodes and edges by cut
enumeration. Typically, structural hashing and functional aggregation
are iteratively propagated across neighborhood nodes using symbolic
evaluation [15], [20], [26]. However, for large-scale BNs, structural
hashing is memory-consuming; functional bitslice aggregation is not
efficient due to the requirement of bit-blasting; the computation of
symbolic evaluation is also expensive. Motivated by the limited

scalability and the difficulty of parallelism, we propose to exploit
graph learning and GPU acceleration for highly scalable reasoning.

C. Graph Neural Network

Since BNs and circuit netlists are naturally represented as graphs,
GNNs can be leveraged to classify sub-circuit functionality from
gate-level netlists [2], predict the functionality of approximate
circuits [5], analyze impacts of circuit rewriting on functional operator
detection [27], and predict boundaries of arithmetic blocks [12].
Promising as they are, these approaches focus on graphs with tens
of thousands of nodes, and conduct training on complex designs
and inference on relatively simpler ones, in which the generalization
capability from simple to complex designs is not well examined.

GNNs operate by propagating information along the edges of a
given graph. Each node is initialized with a representation, which
could be either a direct representation or a learnable embedding
obtained from node features. Then, a GNN layer updates each node
representation by integrating node representations of both itself and its
neighbors in the graph. The propagation along edges extracts structural
information from graphs, corresponding to structural shape hashing in
conventional reasoning; after encoding Boolean functionality into node
features, neighborhood aggregation is analogous to functional aggre-
gation in conventional reasoning. Thus, the inherent message-passing
mechanism in GNNs enables simultaneously handling structural and
functional information. Motivated by the analogy between GNN

computation and conventional reasoning, we propose a multi-

task GNN for high-performance reasoning w.r.t. exact reasoning
algorithms, with strong generalization capability from simple to
complex designs.

III. PROPOSED APPROACH

A. Overview

Problem Formulation. Figure 3(a) illustrates the overview of
GAMORA. The inputs are flattened gate-level netlists in AIG format,
without any micro-architectural or RTL information. These AIGs are
generated by the logic synthesis tool ABC [4]. The goal is to exploit
a multi-task GNN to reason high-level abstractions by performing
node-level classification on AIGs, after which functional blocks (e.g.,
adders) can be extracted based on the annotated AIGs.

10

1 2 3 4 5 6

7 8 9 21 14 13 30 26 38

11

12

1516

17

19 18

20

2223

24

25

2728

29

3940

3132

41

33

3435

36 37

4243

4544

46 47 48 49 50 51

Task 1: Root classification

Task 2: XOR classification

Task 3: MAJ classification

AIG Multi-label
annotated

AIG

Adder
extraction

20_25

12_10

24_22 29_27

36_37

44_45

1 2 3 4 5 6

7 8 9 21 14 13 30 26 38

46 47 48 49 50 51

10

1 2 3 4 5 6

7 8 9 21 14 13 30 26 38

11

12

1516

17

19 18

20

2223

24

25

2728

29

3940

3132

41

33

3435

36 37

4243

4544

46 47 48 49 50 51

20_25

24_22 29_27

36_37

44_45

1 2 3 4 5 6

7 8 9 21 14 13 30 26 38

46 47 48 49 50 51

1011

12

Misprediction

Mismatch

GraphSAGE

(b) AIG of 3-bit multiplier

(a) Overview of Gamora

(c) Multi-label annotated AIG
(ground truth)

(d) Adder tree extracted from the
annotated AIG (ground truth)

(e) Adder tree extracted from the
annotated AIG (predicted by Gamora)

XOR

MAJ
Root ID ID

Other

Functional information
• PI/PO/intermediate nodes
• Whether each input edge is

complemented

Structural information
AIG topology

…

FA HAXOR MAJ Root of Adder ID ID Other Full Adder Half Adder

Fig. 3: Overview of GAMORA. (a) GAMORA takes in flattened netlists in AIG format and performs multi-task node classification to reason the
Boolean function of each node, after which the adder trees within multiplier netlists can be automatically extracted to improve the efficiency
of word-level abstraction. (b) AIG of a 3-bit CSA multiplier after synthesis. (c) Annotated AIG with the Boolean function of each node,
using the ground truth provided by ABC. (d) Adder tree extracted based on the exact reasoning, including three FAs and three HAs. (e)
Adder tree extracted based on the reasoning performed by GAMORA.

Case Study on Multipliers. Integer multipliers are indispensable
to computationally intensive applications, such as signal processing
and cryptography applications. Recent years also witness the strong
demand for large integer multipliers in homomorphic encryption [1].
In general, formal multiplier verification is challenging, especially for
structurally complex designs such as Booth multipliers [7], [16], [21].
Symbolic computer algebra (SCA) has been successfully employed
to verify a variety of integer multipliers [7], [13], [16], [17], [26],
which relies heavily on detecting full adders (FAs) and half adders
(HAs) in multiplier netlists. The state-of-the-art implementation in
ABC framework [26] develops a fast algebraic rewriting approach to
extracting adder trees from flattened multiplier netlists by detecting
pairs of XOR and MAJ functions, which can handle large bitwidth
multipliers (up to 2048-bit) but with extremely long runtime. Thus,
targeting integer multipliers, we leverage GNNs to identify XOR
and MAJ functions to extract adders from flattened netlists, which
improves the efficiency of word-level abstraction from BNs and has
strong scalability enabled by GPU acceleration.

B. Multi-Task Learning for Boolean Reasoning
Boolean reasoning requires gathering structural and functional

information from neighbor nodes, a process that can be imitated
by the message-passing mechanism in GNNs. The task of reasoning
high-level abstractions from flattened netlists, i.e., pinpointing adders
from AIGs, involves a two-step procedure [15], [20], [26]: (1) detecting
XOR/MAJ functions to construct adders, and then (2) identifying their
boundaries. Therefore, we propose to apply multi-task learning (MTL)
for Boolean reasoning to approach its nature, in which knowledge
sharing across sub-tasks provides higher reasoning precision. This
section details (1) how structural and functional information are fused
in node embeddings, (2) how the two-step reasoning is formulated
as a multi-task node classification, and (3) the post-processing after
performing reasoning on each node in AIGs.

1) Fusing Structural and Functional Information: We leverage
the message propagation and neighborhood aggregation in GNNs
to generate the node embeddings of AIGs that simultaneously fuse
structural and functional information. First, the structural information
is distilled by passing node embeddings along edges that connect
them. Second, the Boolean functional information can be encoded in
node features. For each node, there are three node features represented
in binary values denoting node types and Boolean functionality.
The first node feature indicates whether this node is a PI/PO or
intermediate node (i.e., AND gate). The second and the third node
features indicate whether each input edge is inverted or not, such that
AIGs can be represented as homogeneous graphs without additional
edge features. These compressed node features not only encapsulate
Boolean functionality of each node but also enable high compute
and memory efficiency. Figure 3(b) shows the AIG of a 3-bit CSA
multiplier, in which the structural information is presented in the AIG
topology and the functional information is encoded in node features.
For example, node 1 is a PI with the feature vector [0, 0, 0]; node 7
is an internal node without negation on inputs, so the feature vector
is [1, 0, 0]; node 17 has two inputs inverted, with the feature vector
[1, 1, 1].

With the emphasis on generalization from simple to complex
designs, the specific model employed is GraphSAGE [11]. Given
a GraphSAGE model with K layers, the node embeddings propagated
between different layers are computed as follows:

hk
N (v) ↑ AGGREGATEk({hk→1

u , ↓u ↔ N (v)});
hk
v ↑ ω(Wk · CONCAT(hk→1

v , hk
N (v))).

(1)

Here, N (v) is the immediate neighborhood of node v; AGGREGATEk

and W
k are the aggregation function and the weight matrix for layer

k, respectively, where ↓k ↔ {1, ...,K}. After stacking K layers, the

structural and functional information within K-hop search depth is
fused in the embedding of each node.

2) Multi-Task Classification: We identify the Boolean function of
each node by multi-task node classification to approach the nature
of the problem: there are two steps involved in reasoning functional
blocks from unstructured AIGs. The first step detects XOR and MAJ
functions from AIGs, which will be used to construct adders. Since
each XOR/MAJ function consists of multiple nodes in AIGs, only
the root nodes of these functions are labeled as XOR/MAJ with other
nodes marked as plain nodes. In addition to the exact XOR/MAJ
functions, negation-permutation-negation equivalent functions are also
labeled as XOR/MAJ. The second step aims to automatically identify
the boundaries of HAs and FAs, and thus we label roots (i.e. the sum
and the carry-out functions) and leaves of each adder. Figure 3(c)
shows a multi-label annotated AIG of a 3-bit multiplier, using the
ground truth provided by ABC. Notably, one node can have multiple
labels. For example, node 20 is labeled with XOR and the root of an
adder; node 17 is labeled with XOR.

The MTL not only follows the intuition of this two-step reasoning
but also exploits divide and conquer, since it is extremely hard for
GNNs to reach high prediction accuracy with a single-task multi-label
node classification. The employment of MTL enables knowledge
sharing across sub-tasks and improves sample efficiency during
training, which guarantees high reasoning performance. Specifically,
the two-step reasoning is decoupled into three simpler classification
tasks using generated node embeddings: Task 1 classifies the roots
and leaves of adders; Task 2 and Task 3 detect XOR and MAJ nodes,
respectively. We use hard parameter sharing for MTL and the overall
loss function L is shown below:

L = ε · ϑ(ŷ1, y1) + ϖ · ϑ(ŷ2, y2) + ϱ · ϑ(ŷ3, y3), (2)

in which ϑ is the negative log-likelihood between predictions (i.e., ŷ1,
ŷ2, and ŷ3) and the ground truth (i.e., y1, y2, and y3), and ε, ϖ, and
ϱ are hyper-parameters to adjust the importance of each task. In our
implementation, ε = 0.8 and ϖ = ϱ = 1.

3) Adder Tree Extraction from Multi-Labeled Graphs: After
performing the multi-task node classification, we can recognize XOR,
MAJ, and root nodes of adders. The XOR and MAJ pairs with
identical inputs are matched to construct adders. The conversion from
Figure 3(c) to 3(d) depicts the adder tree extraction. In Figure 3(c),
the AIG has a set of XOR nodes X = {12, 17, 20, 24, 29, 33, 36,
41, 44} and a set of MAJ nodes M = {10, 22, 25, 27, 37, 45}. After
removing the nodes that are not marked as adder roots, X = {12, 20,
24, 29, 36, 44}. Given X and M, node 12 is XOR3(8, 9, 0) and node
10 is MAJ3(8, 9, 0), a three-input XOR/MAJ function with node 8,
node 9, and the constant zero as the inputs; node 20 is XOR3(10, 13,
14) and node 15 is MAJ3(10, 13, 14); this matching process continues
until all six pairs of XOR and MAJ are generated, which are three
FAs and three HAs, as shown in Figure 3(d).

Notably, GAMORA adopts graph learning to mimic the exact
reasoning. In Figure 3(e), one HA cannot be automatically extracted
due to the misprediction of node 10. Our evaluation indicates only
several nodes near the least significant bit are always mispredicted due
to their shallow neighborhood structure, which has a subtle impact
on the efficiency of algebraic rewriting. By fusing structural and
functional information into node embeddings and using MTL to
approach the reasoning nature, GAMORA is expected to reach as close
as possible to the exact reasoning precision.

IV. EXPERIMENT

A. Experiment Setup

The AIG-based CSA and Booth multipliers are generated by the
logic synthesis tool ABC [4], with the ground truth provided by the
adder tree extraction command [26]. We consider two technology
libraries: (1) the reduced standard-cell library mcnc.genlib (with gate
input size <=3) from SIS distribution [19], and (2) ASAP 7nm
technologies [24]. The GNN-based framework is implemented in
Pytorch Geometric [8]. Two GraphSAGE models are developed for
simple and complex design netlists: (1) a shallow 4-layer model with
the hidden channel of 32 (for CSA multipliers w/ and w/o simple
technology mapping), and (2) a deep 8-layer model with the hidden
channel of 80 (for Booth multipliers and after complex technology
mapping). The generated node embeddings are passed to a shared
linear layer with size of 32 and the ReLU activation function, followed
by another linear transformation with softmax for each sub-task to
perform node classification. Experiments are performed on a Linux
host with AMD EPYC 7742 64-core CPUs and one NVIDIA A100
SXM 40GB GPU. In general, GAMORA is trained on small bitwidth
multipliers (typically less than 32-bit) and evaluated on large bitwidth
multipliers (up to 2048-bit).
B. Evaluation on Reasoning Performance

We evaluate the reasoning performance from three aspects: (1) how
functional and structural information influence the reasoning precision;
(2) how design complexity affects model selection and training; (3)
how technology mapping complicates the reasoning process and what
domain insights can be derived to facilitate more accurate symbolic
reasoning on complex BNs.

1) Reasoning Precision Analysis: Figure 4 illustrates how the
reasoning performance on CSA multipliers is affected by different
bitwidth multipliers for training, single/multi-task setting, and the
employment of functional information. First, the larger bitwidth
multiplier is adopted for training, the higher reasoning precision
can be achieved, which typically converges after training with 8-bit
multipliers. The main reason is for CSA multipliers, an 8-bit multiplier
is able to provide a sufficient variety of structural properties, which
can be learned and well generalized to larger multipliers by GAMORA.
Second, the multi-task setting conspicuously outperforms the single-
task counterpart, indicating that the knowledge sharing across multiple
tasks greatly benefits the prediction accuracy of every single task.
Third, there is always a boost of accuracy when employing functional
information for prediction, since identifying the role of each node relies
on not only the surrounding structure but also the function of itself
and its neighbors. The synergy of structural and functional information
in GAMORA is analogous to the combination of structural hashing
and functional propagation in conventional symbolic reasoning.

With the multi-task setting and simultaneously fusing structural
and functional attributes, GAMORA achieves almost 100% prediction
accuracy in symbolic reasoning for CSA multipliers. It is noted
that several nodes near the least significant bit (LSB) are always
mispredicted due to their shallow neighborhood structure, as shown
in Figure 3(e). This means the HA at LSB cannot be automatically
extracted, but can be easily corrected during post-processing.

2) The Impact of Design Complexity: We analyze the impact from
design complexity by evaluating the reasoning performance on radix-4
Booth-encoded multipliers, as shown in Figure 6. From the model
selection aspect, as Booth multipliers generally have more complex
structures, deeper models are necessary to characterize neighborhood
structures and provide informative node embeddings, thus guaranteeing
high prediction accuracy. From the training aspect, larger multipliers

Fig. 4: Sensitivity analysis on CSA multipliers with respect to (1) the bitwidth of multipliers for training (ranging from 2-bit to 10-bit), (2)
single/multi-task, and (3) whether employing functional information.

Fig. 5: Evaluation on CSA and Booth multipliers, with simple and complex technology mapping.

Fig. 6: Evaluation on Booth multipliers with shallow and deep models.

(i.e., up to 24-bit Booth multiplier) are required for training such that
adequate variety and representativeness of structural and functional
characteristics are exposed to and well captured by GAMORA.

3) The Impact of Technology Mapping: It is a known challenge
that technology mapping can increase the complexity of formal
reasoning on BNs [15], [20], [25]. Thus, we evaluate the performance
of GAMORA with respect to different technology mapping options.
The multipliers are mapped using the ABC standard-cell mapper
(command map). Figure 5 depicts the reasoning performance on
CSA and Booth multipliers after simple technology mapping [19]
and ASAP 7nm technology mapping [24]. Specifically, the ASAP
7nm library contains 161 standard-cell gates, including multi-output
cells such as the full adder cell, which significantly increases the
complexity and irregularity of post-mapping netlists.

In the simple technology mapping case, the models trained before
technology mapping demonstrate good generalization capability, still
reaching over 99% and 92% prediction accuracy for CSA and
Booth multipliers, respectively; with retraining, comparable reasoning
performance to those on original multipliers is achieved with similar
sizes of training multipliers. The scenario is fairly different in the
case of ASAP 7nm technology mapping, which employs a relatively
complex technology library: first, the generalization capability is
limited before and after technology mapping; second, the prediction
accuracy slightly drops even with retraining; third, it is necessary to
use large training multipliers to guarantee performance.

These observations imply several takeaways. First, the more
complex technology library is applied, the more difficult it is for
learning-based symbolic reasoning, since more complexity is involved
both in AIG structures and the functionality of each node. This
also implicates attributes related to the technology library should be
included in node and edge features. Second, the capability to cope with
intricate AIG netlists comes at the expense of more comprehensive
training data. One underlying assumption of many supervised ML tasks
is the training and testing data should be independent and identically
distributed, which is governed by a fundamental principle called
empirical risk minimization that provides theoretical performance
bounds [22]. Thus, increasing the size of training data can envelop
more knowledge of interested statistical properties, ensuring better
generalization to testing data.

C. Runtime and Scalability Analysis

In addition to the high reasoning performance, we demonstrate the
superiority of GAMORA by analyzing its runtime and scalability.

Fig. 7: Runtime comparison between GAMORA and ABC. Note that
the number of nodes |V | and the number of edges |E| are annotated
for scalability analysis.

Fig. 8: Average runtime and GPU memory consumption with batched
reasoning, where the batch size is denoted as bs. We currently focus
on single-GPU implementation.

Runtime complexity analysis. Basically, the runtime only relates to
the scale of AIGs, i.e., the number of nodes |V | and the number of
edges |E|. Figure 7 compares the runtime of GAMORA against ABC on
CSA multipliers: for large designs such as a 2048-bit CSA multiplier
with around 34 million nodes and 67 million edges, GAMORA attains
a speedup of up to six orders of magnitude. This shows not only the
great efficiency in symbolic reasoning enabled by graph learning but
also the scalability to extremely large designs.
Batched reasoning with single GPU. Figure 8 shows further
acceleration allowed by batched reasoning. Currently, we focus on
single GPU implementation, which limits the batch size by the GPU
memory, and leave multi-GPU implementation as our future work
to support larger batch processing. Even with a single GPU, there
already reveal promising results and positive trends benefiting from
parallel execution and GPU acceleration.

V. CONCLUSION

Reasoning high-level abstractions from bit-blasted BNs has bene-
fited functional verification, logic minimization, datapath synthesis,
malicious logic identification, etc. In this work, we propose a
novel symbolic reasoning framework, GAMORA, which exploits
GNNs to imitate structural hashing and functional aggregation in
conventional reasoning approaches. Evaluation shows that (1) with the
proposed multi-task GNN model, GAMORA offers high reasoning

performance that reaches almost 100% and over 97% accuracy for
CSA and Booth-encoded multipliers, which is still over 92% in finding
functional modules after complex technology mapping; (2) with GPU

acceleration on graph learning, GAMORA has strong scalability to
BNs with over 33 million nodes, with up to six orders of magnitude

speedups compared to the state-of-the-art implementation in the ABC
framework; (3) GAMORA also demonstrates great generalization

capability from simple to complex designs, such as from small to large
bitwidth multipliers, and from before to after technology mapping.
GAMORA reveals the great potential of applying GNNs and GPU
acceleration to speed up symbolic reasoning.

VI. ACKNOWLEDGE

This work is supported by National Science Foundation (NSF)
under NSF-2047176, NSF-2019336, NSF-2008144, and NSF-2229562
awards.

REFERENCES

[1] Abbas Acar et al. A survey on homomorphic encryption schemes: Theory
and implementation. CSUR, 2018.

[2] Lilas Alrahis et al. Gnn-re: Graph neural networks for reverse engineering
of gate-level netlists. IEEE TCAD, 2021.

[3] Ulbert J Botero et al. Hardware trust and assurance through reverse
engineering: A tutorial and outlook from image analysis and machine
learning perspectives. ACM JETC, 2021.

[4] Robert Brayton and Alan Mishchenko. Abc: An academic industrial-
strength verification tool. In Proc. CAV. Springer, 2010.

[5] Tim Bucher et al. Appgnn: Approximation-aware functional reverse
engineering using graph neural networks. arXiv:2208.10868, 2022.

[6] Burcin Cakir and Sharad Malik. Reverse engineering digital ics through
geometric embedding of circuit graphs. ACM TODAES, 2018.

[7] Maciej Ciesielski et al. Understanding algebraic rewriting for arithmetic
circuit verification: a bit-flow model. IEEE TCAD, 2019.

[8] Matthias Fey and Jan E. Lenssen. Fast graph representation learning
with PyTorch Geometric. In ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019.

[9] Harry Foster. The 2022 wilson research group functional verification
study, Accessed: 2022.

[10] Adria Gascón et al. Template-based circuit understanding. In Proc.
FMCAD, 2014.

[11] Will Hamilton et al. Inductive representation learning on large graphs.
In Proc. NeurIPS, 2017.

[12] Zhuolun He et al. Graph learning-based arithmetic block identification.
In Proc. ICCAD, 2021.

[13] Daniela Kaufmann et al. Verifying large multipliers by combining sat
and computer algebra. In Proc. FMCAD, 2019.

[14] Haocheng Li et al. Attacking split manufacturing from a deep learning
perspective. In Proc. DAC, 2019.

[15] Wenchao Li et al. Wordrev: Finding word-level structures in a sea of
bit-level gates. In Proc. HOST, 2013.

[16] Alireza Mahzoon et al. Revsca: Using reverse engineering to bring light
into backward rewriting for big and dirty multipliers. In Proc. DAC,
2019.

[17] Alireza Mahzoon et al. Formal verification of modular multipliers using
symbolic computer algebra and boolean satisfiability. In Proc. DAC,
2022.

[18] Alan Mishchenko et al. Dag-aware aig rewriting: A fresh look at
combinational logic synthesis. In Proc. DAC, 2006.

[19] Ellen M Sentovich et al. Sis: A system for sequential circuit synthesis.
1992.

[20] Pramod Subramanyan et al. Reverse engineering digital circuits using
structural and functional analyses. IEEE TETC, 2013.

[21] Mertcan Temel and Warren A Hunt. Sound and automated verification
of real-world rtl multipliers. In Proc. FMCAD, 2021.

[22] Vladimir Vapnik. Principles of risk minimization for learning theory.
Proc. NeurIPS, 1991.

[23] Nan Wu and Yuan Xie. A survey of machine learning for computer
architecture and systems. ACM Comput. Surveys, 2022.

[24] Xiaoqing Xu et al. Standard cell library design and optimization
methodology for asap7 pdk. In Proc. ICCAD, 2017.

[25] Cunxi Yu et al. Formal verification of arithmetic circuits by function
extraction. IEEE TCAD, 2016.

[26] Cunxi Yu et al. Fast algebraic rewriting based on and-inverter graphs.
IEEE TCAD, 2017.

[27] Guangwei Zhao and Kaveh Shamsi. Graph neural network based netlist
operator detection under circuit rewriting. In Proc. GLSVLSI, 2022.

	Introduction
	Preliminary and Motivation
	Boolean Networks and And-Inverter Graphs
	Word-Level Abstraction
	Graph Neural Network

	Proposed Approach
	Overview
	Multi-Task Learning for Boolean Reasoning
	Fusing Structural and Functional Information
	Multi-Task Classification
	Adder Tree Extraction from Multi-Labeled Graphs

	Experiment
	Experiment Setup
	Evaluation on Reasoning Performance
	Reasoning Precision Analysis
	The Impact of Design Complexity
	The Impact of Technology Mapping

	Runtime and Scalability Analysis

	Conclusion
	Acknowledge
	References

