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Abstract—Sea ice, crucial to the Arctic and Earth’s climate,
requires consistent monitoring and high-resolution mapping.
Manual sea ice mapping, however, is time-consuming and
subjective, prompting the need for automated deep learning-based
classification approaches. However, training these algorithms is
challenging because expert-generated ice charts, commonly used
as training data, do not map single ice types but instead map
polygons with multiple ice types. Moreover, the distribution of
various ice types in these charts is frequently imbalanced, resulting
in a performance bias towards the dominant class. In this paper,
we present a novel GeoAl approach to training sea ice
classification by formalizing it as a partial label learning task with
explicit confidence scores to address multiple labels and class
imbalance. We treat the polygon-level labels as candidate partial
labels, assign the corresponding ice concentrations as confidence
scores to each candidate label, and integrate them with focal loss
to train a Convolutional Neural Network (CNN). Our proposed
approach leads to enhanced performance for sea ice classification
in Sentinel-1 dual-polarized SAR images, improving classification
accuracy (from 87% to 92%) and weighted average F-1 score
(from 90% to 93%) compared to the conventional training
approach of using one-hot encoded labels and Categorical Cross-
Entropy loss. It also improves the F-1 score in 4 out of the 6 sea ice
classes.
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Machine Vision, Artificial Intelligence, Sea Ice.
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1. INTRODUCTION

Sea ice is a layer of frozen seawater that forms when the
temperature of the surface of the water reaches its freezing
point. Due to the low temperatures required for this process to
occur, it is usually found in polar and sub-polar oceans and seas,
though in winter it can extend equator-ward to 40—50° latitudes
[1]. Arctic sea ice plays a crucial role in regulating global
climate. It reflects solar radiation, helping maintain Earth's heat
balance. Changes in ice coverage contribute significantly to

global warming via the ice-albedo feedback loop. Furthermore,
sea ice acts as a barrier, modulating heat, moisture, and gas
exchanges between the ocean and the atmosphere. Therefore,
Arctic sea ice changes have profound implications for
ecosystems, atmospheric circulation, and global weather
patterns [2]. Monitoring sea ice conditions and mapping its
properties, such as type, extent, and concentration, are
important for climate monitoring as well as marine navigation
and near- or off-shore operations [1].

Ice packs with older Stages of Development (SoDs) are
thicker and pose a greater hazard risk for marine navigation
(based on the type of vessel) [3]. Thus, high-quality, high-
resolution, and timely sea ice type maps play a crucial role in
ensuring safe marine navigation and in reducing the
environmental footprint (and risk) of vessels [4]. Ideally,
navigators (vessels) require ice charts at high temporal and
spatial resolutions (300 m or higher) to navigate safely [5].

The need for high-resolution and scalable mapping has led
to several efforts to automate sea ice mapping. This, however,
is a challenging task due to (a) the dynamic nature of sea ice,
(b) ambiguous and similar signatures for different ice types
(particularly in Synthetic Aperture Radar (SAR) imagery), (¢)
the effects of wind and weather on remotely sensed products,
and (d) the effects of surface roughness and volume scattering
on ice emissivity [6]—[10]. Therefore, sea ice charting is still
primarily performed manually by sea ice analysts at national
organizations such as the United States National Ice Center
(USNIC), the Canadian Ice Service (CIS), and the Norwegian
Meteorological Institute (MET Norway) by visually analyzing
different data sources, including remotely-sensed optical,
passive microwave, and SAR images; climatological model
outputs; and in-situ measurements [6].

The increasing demand for sea ice products, the amount of
labor required to generate ice charts, and the impressive
performance of Deep Convolutional Neural Networks
(DCNNSs) in general-purpose image classification tasks [11],
[12], have led to growing interest in the GeoAl community for
developing automated sea ice classification algorithms from
remotely-sensed images [13]-[21].

In remote sensing imagery analysis, deep learning (DL)
significantly enhances both classification and segmentation
tasks through its efficient neural architectures. Leveraging
multi-layered neural networks, DL models are adept at
extracting patterns and features from satellite imagery and have
been instrumental in tasks such as land cover/land use
classification [22]-[24], object detection [25], and change
detection [26]. Models like Convolutional Neural Networks
(CNNs) [12] and Recurrent Neural Networks (RNNs) [27],
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including Long Short-Term Memory (LSTM) networks [28],
excel in extracting complex spatial and temporal patterns for
classification. For segmentation, architectures such as U-net
[29] and DeepLab [30] stand out by delineating precise object
boundaries within imagery, enabling detailed environmental
monitoring. By automating feature extraction and learning,
these DL approaches offer unparalleled accuracy in mapping
sea ice in satellite imagery [20], [31], [32].

Supervised deep learning classification algorithms rely on
high volumes of high-quality labeled training samples to
perform well, and their performance is limited by the quality of
the training data [33]. This presents a challenge in many real-
world GeoAl and remote sensing applications, including sea ice
classification, where the process of generating accurately
labeled training samples from satellite images requires expert
knowledge, and is therefore expensive and labor-intensive [12],
[13].

Remotely-sensed images (mostly SAR) have been used in
traditional machine learning algorithms, such as random forest
and Support Vector Machines (SVM), as well as supervised and
weakly-supervised deep learning algorithms in multiple
applications such as ice-water classification or ice-type
classification [8], [18]-[21], [36]-[38], concentration and/or
thickness estimation [14], [29], [39]-[41], and sea ice motion
prediction [42]. Conventional (non-deep learning) machine
learning algorithms, such as random forests and Support Vector
Machines (SVM), as well as supervised and weakly-supervised
Neural Network (NN)-based algorithms have been widely used
for sea ice classification in remote sensing imagery [6]. More
recently though, Convolutional Neural Network-based models
have been used more frequently due to their ability to capture
spatial context and the resulting high performance in general-
purpose image classification tasks. With respect to the number
of classes for sea ice classification, these studies can be grouped
into binary ice-water classification [20], [20], [31], [43], [44],
and multi-class ice-type classification [18], [19], [21], [36],
[441-{47].

To generate labels from operational sea ice charts, existing
sea ice classification studies approximate pixel- or patch-level
labels by encoding SoD as one-hot vectors, either based on the
oldest SoD, e.g., in [36], [46], or based on the SoD with the
highest partial concentration, e.g., in [47]. Label smoothing,
which transforms a one-hot encoded vector of “hard” targets to
a vector of soft targets using a uniform distribution [48], is an
alternative to one-hot encoding and is shown to improve sea ice
classification performance in a multi-class setting [49].

Regardless of the specific approach, one-hot encoding of the
labels leads to the loss of valuable information about other
SoDs that might be present in a polygon and could potentially
lead to incorrectly-labeled samples in the cases where the oldest
SoD does not necessarily have the highest partial concentration.
Furthermore, to the best of our knowledge, Convolutional
Neural Network (CNN)-based sea ice classification studies do
not incorporate partial concentration values for classifying sea
ice type.

To address the issues related to mixed ice-type polygons,
one approach is to only consider pure polygons, i.e., polygons

that contain only one ice type or only water [50]. However, even
pure polygons may suffer from uncertainties such as containing
unintended ice types, which would lead to representativeness
error. [51] proposed three different approaches for dealing with
uncertainties in the ice chart labels when predicting ice
concentrations, namely perturbing the concentration label,
augmenting it using SAR data, and using a mean-split loss
function. While this is an interesting approach especially for ice
concentration, applying it to a multi-class ice-type classification
problem is not straightforward. Furthermore, given the limited
number of pure polygons, this approach leads to a significant
loss of potentially useful training samples.

With regard to the loss function, all CNN-based sea ice
classification studies mentioned above use a variation of cross
entropy loss (binary or categorical, depending on the number of
classes) for optimizing the model. Focal loss, however, has
been shown to perform generally better than cross-entropy loss
in imbalanced classification settings [52]. While focal loss has
been used in sea ice research, it has largely been used in
applications other than classification. For instance, [53] used it
in a weakly-supervised sea ice segmentation model, [54] used
it for sea ice forecasting with probabilistic deep learning based
on a U-net architecture [55], and [56] used it for sea ice
concentration charting.

When manually classifying sea ice in remotely-sensed
imagery, analysts first identify polygons of seemingly
homogeneous ice based on the likelihood of the presence of
older SoDs (and therefore, thicker ice) within them. Next, they
assign up to three different ice types, along with the
corresponding partial concentration to each polygon. Partial ice
concentration, measured as a percentage, is defined as the
relative amount of area (within the polygon) covered by each
ice type and determines how much of a polygon is covered by
a certain ice type (SoD).

While being more time-efficient, this has some notable
drawbacks. Firstly, for practical reasons, such polygons are
often large (compared to the spatial resolution of the image) and
can contain thousands of pixels [13]. Secondly, an expert might
wish, or need to, assign more than one label to a polygon,
potentially because of semantic hierarchical categorizations of
classes in the domain, or the presence of more than one feature
type in the polygon. Finally, the assigned attributes do not
determine where exactly in the polygon each ice type resides.
The presence of different ice types with different partial
concentrations inside a polygon, and the fact that it is not
possible to pinpoint the location of individual ice types within
the polygon pose great challenges for training conventional
supervised sea ice classifiers.

Another common challenge in developing GeoAl models
for sea ice classification, and more generally, environmental
remote sensing, is that training datasets are often imbalanced
meaning that the proportion of training samples in one or more
classes is considerably lower compared to other classes. This is
a reflection of the uneven distribution of the classes of interest
in the real world [57]-[61]. When the training dataset is
imbalanced, deep learning classifiers tend to perform well on
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the more frequent class(es) and underperform on the less
frequent—but potentially more important—class(es).

To address the aforementioned challenges, in this paper, we
present a novel approach for training sea ice classification
algorithms using remotely sensed images that are labeled with
polygons containing multiple ice types. We frame this task as a
Partial Label Learning (PLL) problem and allow each training
sample to have multiple candidate labels (i.e., ice types), only
one of which is the true label. We encode the partial
concentration of each ice type as a confidence score associated
with the corresponding candidate label. This confidence score
can also be understood as the probability of that ice type
occurring within the polygon. Finally, we integrate these
confidence scores within the focal loss function to handle both
partial labels and class imbalance!.

Using this approach, we train a CNN for sea ice
classification using dual-polarized Sentinel-1 SAR images in
Extra-Wide (EW) swath mode. We optimize and evaluate focal
loss hyperparameters for sea ice classification, and compare the
performance of our approach to a more conventional single-
label learning approach. By improving the accuracy of
automated sea ice classification, through the model we propose,
we hope to address some of the aforementioned concerns
regarding automated sea ice classification approaches. The
contributions of this work are as follows:

e A novel framework for training deep learning
algorithms on remotely-sensed images with patch-level
multi-candidate and imbalanced labels by incorporating
partial label learning with focal loss.

e A more efficient deep learning method for sea ice
classification based on Sentinel-1 SAR images that
improves the performance of the existing methods by
incorporating all ice types and partial concentrations
from training samples.

e  Sensitivity analysis and tuning of hyperparameters of
the focal loss function (a and )

The remainder of this paper is structured as follows: Section

2 reviews the related work in the context of PLL and presents
our proposed approach and its mathematical formulation as
well as the experimental evaluation setup. In Section 3, we
present our results and in Section 4 we discuss our findings.
Finally, Section 5 presents our conclusions and directions for
future work.

2. MATERIALS AND METHODS

2.1. Partial Label Learning (PLL)

In this section, we describe our proposed formulation for
defining sea ice classification as a partial label learning
problem. PLL is a learning paradigm in which each training
sample is associated with a set of candidate labels, among
which only one is assumed to be the true label [62]. PLL is also
known as ambiguous-label learning and superset-label learning
[63].

It is important to note that the word partial in PLL is not related to the
use of partial ice concentration.

The main goal of PLL is to train a model that identifies the
singular true label among a set of candidate labels for an input
sample. There are two groups of strategies for doing so: the
average-based strategy and the identification-based strategy. In
the average-based strategy, all candidate labels are treated
equally in the training phase and then the model outputs of all
the candidates (which are in the form of probabilities) are
averaged for the final prediction [64]. This strategy is simple
but has a drawback in that it cannot take the difference between
the candidate labels into account and treats them equally. This
could be suboptimal in sea ice classification as the candidate
labels (different ice types present in a polygon) have different
partial concentrations and thus, different likelihoods of being
the true label.

In the identification-based strategy, the true label is
considered a latent variable, and we assume a parametric model
based on which the true label can be identified. For example,
the label that achieves the highest probability in the final
prediction could be considered the ground-truth label [65], [66].
As such, this strategy covers the gap mentioned for the average-
based strategy and is the strategy that we build on in this work.

An important step in leveraging identification-based PLL is
to derive the confidence score for each candidate label. Multiple
methods have been proposed to estimate and update the
confidence scores, for instance, using the information extracted
from the feature space to update the label distribution [67], or
using norm regularization via self-training [68]. The common
characteristic in all of the existing work is that the confidence
score is not known a priori, and thus, has to be estimated and
updated.

PLL is a branch of Weakly Supervised Learning (WSL).
Even though WSL has been used extensively in remote sensing
applications, for instance for object detection [69]-[71] and
semantic segmentation [72], [73], our work is the first study
based on PLL in remote sensing applications to the best of our
knowledge.

We formalize sea ice classification as a single-label
classification problem and use the partial ice concentration
associated with each candidate label as an explicit measure of
confidence (or the probability of occurrence of the ice type
within the polygon). Partial ice concentrations represent the
estimated distribution of different ice types within a polygon (as
interpreted by the ice analyst). We use a similar approach as in
[74], but further, integrate our approach with focal loss and
show that it results in improved performance.

For each training sample, we first generate a binary
candidate label vector using the ice types present in the sample
(extracted from the containing polygon) and then multiply that
vector by a vector of confidence scores element-wise, derived
from the partial ice concentration of each type.

We denote X,,.,, as the sample (instance) matrix, where n is
the number of training samples and m is the number of features
in each sample (i.e., the number of channels in an image). The
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i-th  individual
[x1, 22, X ].
We then denote the label matrix as Y,,«; € {0,1}, such that
row Y; is the label vector corresponding to the i-th instance (X;)
where / is the number of classes. In a one-hot encoding labeling
scheme (widely used in sea ice classification), the ground-truth
label for instance i is represented by a 1 in column j and a zero
in all other columns (i.e., for instance i: Z;zlyij =1). Ina

training sample is, therefore, X; =

partial label learning scheme, however, this is relaxed slightly
to allow for multiple candidate labels, such that for instance
1< 25‘:1 ¥ij < L. Consequently, a partial label for instance i
has a 1 in all columns j that are candidate labels and a 0 in all
columns £ that are non-candidate labels.

The identification-based strategy in partial label learning
extends this to incorporate a confidence score associated with
each candidate label. That is, for instance i and candidate label
J» ¥ij € [0,1], where a value closer to 1 represents greater
confidence in that label being the true label.

We derive the confidence scores from the partial ice
concentration associated with each type of ice in operational sea
ice charts. Part of the novelty of our approach is that we assign
the partial concentration of an ice type to its probability of
being the ground-truth label in a PLL framework (and then
integrate it with the focal loss for sea ice classification). After
incorporating partial ice concentration as the confidence score,
our label matrix Y. € [0,1]™<! will be of the form:

Yii. YViz o Vi €11 €12 0 Cq
Yor =Y ®C = )?1 YZz ySZZ Q 0?1 C22 C:ZL
Ymi Ym2 = Ymi Cm1 Cmz2 ° Cm
chl
— chz (1)
PCm

where Y is the binary label matrix, C is the confidence matrix
(sea ice concentrations for each instance), and yy,, is the partial

label vector of length / for instance i (Y, € [0,1])2. This is

similar to the concept of a membership matrix used in [75], but
is different in that the values in our vectors represent confidence
scores rather than direct membership degrees.

We have demonstrated this in Fig. 1. In the highlighted
polygon, which is labeled with two ice types, the oldest ice type
or SoD (denoted by SA) is first-year ice which has a partial
concentration code 79, representing 70-90% ice (denoted by
CA), and the second oldest ice type is young ice (denoted by
SB) which has a partial concentration code 24, representing 20—
40% ice (denoted by CB). If we sort the ice types by their
numeric SA code so that the columns correspond to [NY, N, Y
I, FY I, OI, W], the label vector for this polygon that a one-hot
encoding would derive would be J, = [0, 0, 0, 1, 0, 0]. In this
vector, the value corresponding to the oldest ice type is 1 and
the values of all other ice types are zero. The label vector that a
binary (conventional) partial labeling would derive is ¥ = [0,

2 We use capital letters for denoting matrices and small letters to denote vectors
throughout the paper.

0, 1, 1, 0, 0], where the label is 1 for all ice types present in the
polygon and O otherwise. With our formulation, the derived
label vector would be Yp = [0, 0,0.3, 0.8, 0, 0], where the value
of each ice type (class) is the mean of the encoded partial
concentration range of that type in the ice charts, as estimated
by the expert ice analyst (Fig. 1).

In manually-generated ice charts, the sum of partial ice
concentrations for a given polygon may not add up to 100% or
even exceed 100% (as seen in this example). To generate
partially-encoded label vectors in the latter case, we subtract
half of the surplus (over 100) from the partial concentrations of
each of the two labels. So Yp in the example above will become
¥Ypc = [0, 0, 0.25, 0.75, 0, 0]. It is important to note that we
performed this process only during training and not testing
(inference). Also, the maximum possible sum of concentrations
in our dataset was %110 and only happened when two ice types
were present in a polygon.

2.2. Focal Loss for Class Imbalance

Similar to many other remote sensing applications of
machine learning, sea ice classification is an imbalanced
classification task, regardless of the area or the period of study.
Class imbalance occurs when one or more classes have much
lower proportion of training samples compared to other classes.
In the case of sea ice, this can be attributed to the physics of sea
ice formation. Younger, thinner ice typically covers relatively
small areas and exists for only a short period (a few days) before
it either grows into thicker (older) categories or melts away.

To address this issue, we integrate partial labels within the
focal loss (FL) function to train our model. Focal loss, first
introduced by Lin et al. [52], is a generalization of the Cross-
Entropy (CE) loss that is designed to deal with highly
imbalanced datasets. CE loss simply calculates the logarithm of
the model’s estimated probability for each class (often
calculated using the Softmax function) and is defined as:

!

CE(,y) == ) log(p) .y @)

i=1

where p; €[0, 1] is the model’s estimated probability for class
i, ¥; € {0,1} is the label for that class, and / is the number of
classes. Focal loss adds a scaling (modulating) factor and a
focusing parameter to the CE loss. In tandem, these two
decrease the loss value for samples from majority class(es),
which are often well-classified, and shift the focus to samples

from minority class(es), often called hard samples. Focal loss is
defined as [52]:

!
FL(,Y) == ) @ (1= p)Y log(p) ©)

i=1
where (1 — p;) is the modulating factor, y > 0 is the focusing

parameter, and a €[0, 1] is the weighting factor. If y = 0 and
a = 1, focal loss is equivalent to CE loss.
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Ice Type
] New Ice

B Nilas

I Young Ice
[] First-Year Ice
I old Ice

Bl water

FID 59

id 60

CA 79 Partial concentration of the oldest ice type
SA 86 SoD of the oldest ice type

FA 4 Form (floe) of the oldest ice type

B 24 Partial concentration of the youngest ice type
5B 83 SoD of the youngest ice type

FB 3 Form (floe) of the youngest ice type

cT 92 Total concentration (CA+CB)

poly type |
area 931.449609

Encoding

[NLN,YLFYLOLW]
Yo=1[0,0,0,1,0,0]
Yp=1[0,0,1,1,0,0]

Yrc = [0, 0,0.25, 0.75, 0, 0]

One-hot encoding:
Partial encoding:
Our approach:

Fig. 1. The ice chart generated for the January 16, 2018 image (listed in Supplementary Table I) in the ExtremeEarth dataset
with one of its polygons highlighted. Three different encodings of the ice types present in this polygon are demonstrated. Ice
type abbreviations: NI: New Ice, N: Nilas, YI: Young Ice, FYI: First-Year Ice, OI: Old Ice, W: Water.

As can be seen in (3), the modulating factor is defined such
that it decreases to zero as the probability of the correct class
increases, and consequently, reduces the contribution of easy
samples to the training loss. The focusing parameter adjusts the
rate at which easy samples are down-weighted. Therefore,
increasing y would exponentially increase the rate at which such
samples are down-weighted and make the model focus on hard
samples [75]. The a parameter is used to balance the loss
function by adjusting the weight assigned to the rare class(es).
It is an optional parameter, but it is shown to improve the
performance of the models trained with the focal loss [75]. Both
v and a adjust the effect of the rare class, therefore they interact
with each other and have to be optimized for a domain
application together.

Another approach in dealing with imbalanced datasets in
classification problems is to incorporate class weights in the
loss function directly. Class weight is calculated as [79]:

n
]_an]-

C)

where W; is the weight for class j, n is the total number of
samples, / is the number of classes, and #; is the number of
samples in class j. In this formulation, the weight of each class
is inversely proportional to its frequency. Thus, by
incorporating (4) in the loss function, minority (less frequent)
classes will be weighed higher and therefore the model will be
penalized more for misclassifying samples from those classes.
Class weights can be incorporated in both focal loss and
cross-entropy loss. The class weights are often multiplied by the

individual loss values corresponding to each sample in the
training batch. By doing so, the loss function gives more
importance to the minority class samples, effectively
addressing the imbalance issue and helping the model learn
from the rare classes. Therefore, in addition to evaluating
different label encoding methods, we also incorporate class
weights into both loss functions and evaluate the performance
of the models with and without those weights for sea ice
classification.

2.3. Model Architecture

In our preliminary research, we compared the performance
of four CNN-based image classification architectures for the
task of sea ice classification and identified the pre-trained
version of ResNet-50 as the best-performing architecture [80].
The superiority of ResNet can likely be attributed to its use of
skip connections and residual blocks. These features enable it
to deliver enhanced performance with a lower number of
trainable parameters (approximately 25.6 million in ResNet-50)
compared to models like VGG-16, which has approximately
138 million trainable parameters. In our context, where we deal
a relatively small dataset, having fewer trainable parameters is
advantageous. Therefore, in this work, we use the same
architecture as the backbone of the model and freeze the
pretrained weights of the convolutional layers (pre-trained on
the ImageNet dataset [81]). Employing a carefully-selected
pretrained neural network can partly alleviate the challenge of
having a small number of training samples, which is the case in
our experiments. To fine-tune the model for sea ice
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classification, we add two fully connected layers of 64 neurons,
each followed by a batch-normalization layer [82], ReLU
activation function, and dropout [83]. Dropout regularizes the
model and reduces its generalization error, and thus, helps
prevent overfitting the model to the training samples. We
experimented with different dropout rates and found 0.25 to
yield the best performance (more detail in Section 2.4). We
finally added an output layer with 6 neurons (equal to the
number of classes) and Softmax activation. Fig. 2 presents the
architecture of our model.

Many pre-trained image classification models, including the
ResNet, take three-channel RGB images (such as those
provided in the ImageNet dataset) as input. Sentinel-1 SAR
records backscatter in HH and HV polarization, and therefore,
the resulting images have two channels by default (one per
polarization). To create a third channel, others have used
different linear combinations of HH and HV channels. For
instance, [33] used HV, HH-HV, and HH/HV as the three
channels to create pseudo-RGB images. However, this
approach may not introduce new information, given the existing
presence of the two channels in the input. In this work, we use
local incidence angle measurements as the third channel, since
incidence angle is shown to affect backscatter intensity
differently depending on ice type [44], and thus, can provide
additional information to the classifier. To facilitate
reproducibility and reuse in the remote sensing research
community, an open-source implementation of our approach is

.
4

Max pool, /2

Image »

7x7 conv, 64
1x1 conv,
3x3 conv, 128
1x1 conv, 512

1x1 conv, 128 ’

1x1 conv, 256

/
--;

available on GitHub at https://github.com/geohai/PLL-sea-ice-
classification.

2.4.

Experimental Evaluation

In this section, we introduce the dataset and then describe the
experiments, the parameters used in each, and the results.

24.1.

We use the “ExtremeEarth Polar Use Case Training Dataset
Version 2.0.0” for our experiments. This dataset covers the
Danmarkshavn region east of Greenland and contains sea ice
charts for 12 Sentinel-1 SAR images, each acquired
approximately one month apart in 2018 [76]. It was generated
as part of the multi-institutional ExtremeEarth project [4] and is
designed to serve as a training or validation dataset for
automated satellite image processing algorithms. As a result, it
provides high-resolution ice charts that would not be publicly
available otherwise. To the best of our knowledge, this dataset
has not been used for sea ice classification research before.

The ice analysts from the Norwegian MET have interpreted
the imagery in the dataset to draw ice charts. The generated ice
charts include 6 different ice types: new ice, nilas, young ice,
first-year ice, old ice, and ice-free (or water). New ice describes
ice that has been recently formed and has a thickness below 10
cm. Nilas is a thin sheet of smooth ice that has a similar
thickness to new ice but visually looks darker (especially when
thin).

Dataset

= 5
s £
=) 2]
g 2 o
< @
ol [ o | I B I < d =
]S B B |8 S| = z =
Bl s LBl & E =2
S B g -lal: L —| [ —>
Sl |8 o |8 |8 O
ml (= | ||| = =
2w I
Ml | B e - |

< 3x blocks > 4x blocks < 6x blocks > < 3x blocks >

Fig. 2. Model architecture based on ResNet-50 model with added fully connected layers. The ResNet-50 architecture includes an
initial 7x7 convolutional layer, max pooling, and multiple residual blocks with 1x1 and 3x3 convolutions. Batch normalization
(BN) is applied after each convolution, and ReLU activation functions introduce non-linearity. Skip connections bypass layers to
improve training, followed by global average pooling and a fully connected (FC) layer. In a pretrained model, all the layers up to
“FC, 1000” use the weights pretrained on the ImageNet dataset. We added 3 fully connected layers with batch normalization
(BN) and dropout for fine tuning. The final layer outputs 6 classes.

Young ice refers to ice that has a thickness between 10 and
30 cm. First-year ice is ice that has formed since the onset of
freeze-up and has not survived a summer melt season. Its
thickness is greater than 30 cm and typically grows up to 2 m
(depending on air temperatures and time since formation). Sea
ice that has survived at least one melt season is called old ice
(also multi-year or perennial ice) and usually has a thickness
above 2 m. The corresponding code used for representing these
ice types in the ice charts is 81, 82, 83, 86, and 95 respectively.
Monitoring the ice type, and therefore its thickness is crucial for
marine navigation as thicker ice types may present hazards for
vessels depending on their ice-breaking grade.

During the melt season, melt ponds form on the surface of

the ice. Additionally, the snow on the surface of the ice melts
and creates a wet (moist) layer. The melt ponds and the wet
snow alter the radar backscatter and make automated
classification prone to error, especially when using C-band
SAR, as is the case with Sentinel-1 SAR acquisition. Therefore,
we focus on the freeze-up season in the Arctic for this study and
only use the 6 images acquired in January, February, March,
October, November, and December of 2018. The acquisition
times and the file names of these images are listed in
Supplementary Table I and their footprint is presented in Fig. 3.

The Sentinel-1 images in this dataset were all acquired in
the Extra-Wide (EW) swath mode with HH and HV co- and
cross-polarized channels. To process the raw images, we first
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apply radiometric and orbital corrections on each image,
replicating the processes that are described in the dataset
documentation [76]. To minimize the effect of thermal noise on
the images, we also apply the thermal noise removal algorithm
provided in the Sentinel Application Platform (SNAP)3. This
algorithm, however, does not sufficiently remove the noise in
the HV polarization (see Fig. 4b).

The residual noise can be misclassified as ice artifacts by
automated algorithms [36], thus, we manually mask patches
with high residual noise. Fig. 4 presents the HV cross-polarized
channel of the image acquired in January in addition to the denoised
version of this channel, as well as the resulting image after
masking noisy patches.

The spatial footprint of these images is approximately
400km x 400km. With a pixel spacing of 40mx40m, each
image contains approximately 10,000%10,000 pixels. To

Greenland

prepare samples and labels for a CNN model, we divide each
image into 50 x 50-pixel patches, each covering a 2km x 2km
area on the ground. We then align each image with its
corresponding ice chart (by projecting it into the same
projection system as the ice chart), overlay the patches with the
ice polygons, and store the information about the ice types
present in the patch once as one-hot encoded labels, and once
as partial label vectors with confidence (to be used in the
experiments outlined below). To perform a robust evaluation of
the models, we only consider samples where the concentration
of the oldest ice type is above 50%, or in other words, the
samples where the oldest ice type is also the most dominant. In
addition, to avoid the potential inaccuracies in labeling areas
close to ice polygon borders [36], we excluded the samples
where the distance from the center of the patch to any polygon
border was less than 2 km.

A

Svalbard

Acquisition Month

1 Jan
[ Feb
3 Mar.

oct
3 Now.
[ pec

Fig. 3. The footprint of the six Sentinel-1 images used in our experiments. Note that the January and December images have
identical footprints that are overlapped, thus there appears to be 5 footprints on the image. Map scale: 1:5,000,000.

(a) Raw (noisy) image

(b) Denoised using SNAP

(c) Masked image

Fig. 4. The HV cross-polarized channel of the January image (file name and acquisition time listed in Supplementary Table I). (a)
shows the raw backscatter values and (b) shows the denoised version (using SNAP). Note the amount of residual noise still present

3 https://earth.esa.int/eogateway/tools/snap
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in (b), especially along sub-swath edges. To remove the residual noise, we manually excluded pixels along the sub-swath
boundaries in all images. (c) shows the image after manual masking.

2.4.2.

We hypothesize that our proposed approach in encoding ice
charts as confidence-aware partial labels could outperform
traditional one-hot encoding alternatives in training sea ice
classification. This is because our approach capitalizes on all
the available information in samples when training the network.
Additionally, we posit that integrating confidence-aware partial
labels with the focal loss will effectively address the class
imbalance issue.

To investigate these hypotheses, we designed a set of
experiments to compare the performance of two types of
training label encoding: partial and one-hot encoding.
Concurrently, these experiments allow us to evaluate two
strategies for mitigating class imbalance: utilizing CCE loss
with class weights or applying focal loss (FL).

The experiments are divided into two groups based on the
loss function: the first group utilized the CCE loss, while the
second deployed the FL. Within each group, we independently
used partial encoded labels and one-hot-encoded labels to train

Experiment Design

separate models, enabling us to scrutinize the impact of label
encoding on model performance. In order to identify the most
effective method for handling class imbalance (outlined in
Section 2.2), we conducted each set of experiments in group 1
with and without class weights. Table I presents a summary of
these experiments.

Furthermore, we analyze the sensitivity of the focal loss to
the a and y hyperparameters for sea ice classification. As such,
we adopt {0.1, 0.25, 0.5, 0.75, 0.9} as potential a values, and
{1, 2, 5} as potential y values. For each set of experiments in
group 2 and for each unique combination of these values, we
train a separate model.

We performed a total of 34 experiments (Table I), each
corresponding to a CNN model, with different configurations
to reflect the setting of the experiment. We use the Adam
method [77] and a learning rate of 103 for optimizing the
models and train them for 200 epochs with a batch size of 512.
We developed the models using the PyTorch library [78] and
trained them on a system with dual Nvidia RTX A5000 GPUs,
which allowed for a training time of 20-25 seconds per epoch.

TABLE I
A SUMMARY OF EXPERIMENTS
Group Loss Function Training Labels Variable Values # of models
! Categorical Partial Class weights ~ With and w/o class weights 2
Cross Entropy ~ One-hot-encoded Class weights ~ With and w/o class weights 2
Alpha .1,0.25,0.5, 0. .
Partial p {0.1, 0.25, 0.5, 0.75, 0.9} 15
2 Focal Gamma {1.2.5}
Alpha {0.1, 0.25, 0.5, 0.75, 0.9}
One-hot-encoded 15
Gamma {1,2,5}
243  Evaluation As seen in (6)-(8), weighted average precision, recall, and

In line with the typical approach in deep learning evaluation,
we randomly divided our dataset of 127K samples into training,
validation, and testing subsets. The ratios for these subsets were
set at 81%, 9%, and 10% respectively. To evaluate the
performance of our models, we utilized the unseen test set and
computed the following metrics:

Accuracy = % (5)

Weighted Average Precision = ¥!_; (% X Tpffépi) (6)
Weighted Average Recall = Y/_, (% X TPin;Ni) 7)
Weighted Average F-1 score = ¥}, (% %) 8)

PrecisionjxRecall; 2TP;

Precision;+Recall; - 2TP;+FP;+FN; ( )

Per-class F-1 score = 2 X

where n is the total number of samples, / is the number of
classes (6 in our experiments), and n;, TP;, TN;, FP;, and FN; are
the number of samples, True Positive predictions, True
Negative predictions, False Positive predictions, and False
Negative predictions, respectively for a given class i.

F-1 score are weighted by the number of samples (or support)
in each class, and as such, are suitable for our imbalanced
classification task. F-1 score is the harmonic mean of precision
and recall which takes the number of prediction errors as well
as the type of such errors into account. Therefore, in an
imbalanced classification task, F-1 provides a more robust
measure of model performance compared to accuracy. Thus, we
use the weighted average F-1 score as the primary metric to
compare our models.

To reduce the stochasticity associated with neural network-
based models, we repeated each experiment twice and reported
the average values for each metric. Even though we did not
notice a large variation, we acknowledge that a higher number
of repetitions could result in more robust estimates. In addition
to these evaluation metrics, we compare the convergence speed
of the models.
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3. RESULTS

3.1.
Loss

Experiment Group One: Categorical Cross-Entropy

This experiment group consists of models trained with CCE
loss, one-hot or partial labels, and weighted or unweighted
samples. As seen in Table II, leveraging partial labels, instead
of one-hot encoded labels, leads to higher weighted average F-
1 scores, regardless of whether class weights are incorporated
in the loss function. It also leads to better or equal performance
across other aggregated metrics. Moreover, the scores are less
sensitive to the use of class weights when partial labels are used.
However, the results are not conclusive in terms of per-class F-
1 scores, as using partial labels leads to better F-1 scores in half
of the classes (three of the six in both experiments).

On the other hand, regardless of the method used for
encoding the labels, integrating class weights into the CCE loss
yields lower weighted average F-1 scores. Furthermore, it

results in lower per-class F-1 scores for all classes except young
ice, and lower performance across all other aggregated metrics.

Additionally, the label encoding method makes little
difference in convergence speed when class weights are not
used in minimizing CCE Loss (Fig. 5). This is corroborated by
the performance values in the second and fourth rows of Table
II. Therefore, even though using confidence-aware partial
labels in tandem with CCE loss leads to improvements in
classification performance, these improvements are marginal.

In our initial experiments, the models in this group did not
seem to converge after 200 epochs. Therefore, to generate Fig.
5 we trained these models for 300 epochs so that they can
achieve a stable state. It is important to note though, that the
results in Table II are generated after 200 epochs of training in
order to keep the comparison between models of different
groups consistent.

TABLE II
PERFORMANCE RESULTS OF THE MODELS TRAINED WITH CCE LOSS. ALL METRICS, EXCEPT FOR TRAINING ACCURACY, ARE
MEASURED ON THE UNSEEN TEST SET.

Encodin Class  Training Test Accurac Weighted Average Per-class F-1 Score
®  Weights Accuracy Y B4 Precision Recall  INLN, YL FYL OL W]

Yes 63.77 64 59 58 64 [35,7, 51, 28, 84, 89]

One hot
No 88.85 87 90 93 87 [89, 13, 49, 63, 84, 91]
Yes 76.91 68 76 91 68 [83, 4, 44, 68, 86, 83]

Partial
No 89.68 89 91 93 89 [87, 15, 44, 66, 83, 96]

Loss Per Epoch Accuracy Per Epoch
1.50 —— Encoding : one-hot

—— Encoding : partial
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Fig. 5. Training loss and accuracy plots for the first group of experiments (trained with CCE loss).

3.2. Experiment Group Two: Focal Loss

Table III presents the performance of the 15 models trained
with confidence-aware partial labels integrated with focal loss,
with various values of hyperparameters. The model with a =
0.25 and y = 1 achieved the highest weighted average F-1 score
among all the 34 experiments we carried out across all groups,

confirming our hypothesis that integrating partial labels with
focal loss achieves the best performance for training sea ice
classification using ice charts as labels. The model with a = 0.25
and y = 1 also achieved the highest per-class F-1 score in 3 out
of the 6 classes (young ice, first-year ice, and water), as well as
the highest test accuracy and weighted average recall and
precision (with precision tied with 5 other models).
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Furthermore, this model achieved a better per-class recall in 4
of the 6 classes compared to the model trained with CCE loss
and partial labels, and thus, provides a more balanced
classification as all classes have a recall of at least 60% (Fig. 7).

Compared to the model trained with CCE loss and ‘Class
Weights=No’ (the second row in Table II), our best-performing
model achieves improvements in the following metrics: Test
accuracy: 5%, weighted average F-1: 3%, weighted average
recall: 5%, per-class F-1 score for the following classes: nilas:
6%, young ice: 4%, first-year ice: 5%, and water 7%.

However, not all models in this group achieve better
weighted average F-1 scores compared to the model trained
with CCE loss and confidence-aware partial labels (the last row
in Table II). This points to the importance of tuning the
hyperparameters of the focal loss for the specific task, in this
case, sea ice classification. When its hyperparameters are tuned,
using focal loss yields higher F-1 scores (weighted average and
per class) compared to the CEE loss.

Due to space limitations, Fig. 6 only presents the training
loss and accuracy for four of the models from Table III with o
€ {0.25,0.5} and y € {1, 5}. Comparing this figure with Fig. 5,
we can observe that the models trained with focal loss converge
to a stable condition faster than the models trained with CCE
loss.

Table III (and Fig. 6b) shows that when y = 1, different «
values yield similar training accuracies. Despite a similar
performance in training, the test metrics vary as the value of a
changes. This points to the better generalizability of some
models (for instance o =0.25) compared to others (for instance
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0. =0.75) and potentially less overfitting. This can be explained
by reviewing (3), where the value of the focal loss when y =1 is
determined by a and (7-p;), or the modulating factor, and the
interaction between these two terms.

Using the same o and y values as those used in Table III, we
trained additional models with one-hot encoded labels to
examine the effects of label encoding when integrated with
focal loss (Table IV). Comparing each model with its
counterpart in Table III, we can observe that using confidence-
aware partial labels leads to improvement in weighted average
F-1 score and test accuracy in 9 out of the 15 experiments. More
specifically, we can see that when a € {0.25, 0.5}, the models
perform generally better. Also, within the same range of values
for a, models trained with confidence-aware partial labels
outperform their one-hot encoded counterparts in 5 out of 6
experiments. This is further evidence of the importance of
optimizing the hyper-parameter of the focal loss function with
respect to the label encoding being used.

Fig. 7 presents the confusion matrices for both our highest-
performing model and the traditional model used for sea ice
classification, which uses one-hot encoded labels but does not
weigh the loss with class weights. Although the conventional
model is more adept at classifying new ice and young ice than
our model, it struggles to achieve over 50% recall when
identifying nilas and first-year ice. This result suggests that the
traditional CCE approach may lack consistency when training
sea ice classification models.

TABLE III
PERFORMANCE RESULTS OF THE MODELS TRAINED WITH CONFIDENCE-AWARE PARTIAL LABELS INTEGRATED WITH FOCAL LOSS. ALL
METRICS, EXCEPT FOR TRAINING ACCURACY, ARE MEASURED ON THE UNSEEN TEST SET. THE MODEL WITH THE BEST WEIGHTED

AVERAGE F-1 SCORE AMONG ALL GROUPS IS BOLDFACED.

Alph G Training Test Weighted Average Per-class F-1 Score
pha amma Accuracy  Accuracy F-1 Precision Recall INL, N, YL, FYI, OI, W]
1 98.79 72 77 88 72 [48, 8, 26, 52, 79, 84]
0.1 2 98.44 80 83 89 80 [73, 11, 29, 50, 80, 90]
5 91.05 68 75 89 68 [50, 3, 38, 39, 80, 82]
1 98.91 92 93 93 92 [89, 19, 53, 68, 82, 98]
0.25 2 98.04 85 88 92 85 [84, 10, 33, 65, 82, 93]
5 92.47 89 91 93 89 [87,18, 47,61, 81, 96]
1 98.98 89 90 92 89 [89, 24, 49, 58, 76, 96]
0.5 2 98.58 83 87 91 83 [81, 13, 33,61, 83, 92]
5 94.00 84 87 92 84 [82,7, 38, 61, 83, 93]
1 99.29 85 88 92 85 [86, 14, 35,61, 81, 93]
0.75 2 98.81 86 88 92 86 [87, 12,36, 62, 82, 94]
5 94.80 81 84 90 81 [72, 13, 36, 57, 83, 90]
1 99.44 89 91 93 89 [87, 12,45, 64, 81, 96]
0.9 2 99.08 89 90 92 89 [88, 12,39, 61, 82, 96]
5 93.87 73 79 89 73 [60, 6, 36, 55, 82, 84]
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(a) Loss

Fig. 6. Training loss and accuracy plots for four of the models trained with confidence-aware partial labels and focal loss (a €

{0.25,0.5} and y € {1, 5}).

It is important to note that while the best model in Table IV
(o =0.25, y =5) achieves a weighted F-1 score within 2% of the
best model in Table III, the performance of the models trained
with one-hot encoded labels and focal loss (Table 1V) as a

PERFORMANCE RESULTS OF THE MODELS TRAINED WITH ONE-HOT ENCODED LABELS INTEGRATED WITH FOCAL LOSS. ALL METRICS,

whole are less consistent compared to those trained with
confidence-aware partial labels. This suggests that leveraging
confidence-aware partial label encoding is advantageous in the

(b) Accuracy

context of robust sea ice classification.

TABLE IV

EXCEPT FOR TRAINING ACCURACY, ARE MEASURED ON THE UNSEEN TEST SET.

Alpha Gamma Training Test Weighted Average Per-class F-1 Score
P Accuracy Accuracy F-1 Precision Recall INL, N, YL, FYL, OI, W]
1 94.11 85 87 92 85 [83, 13, 33,59, 82, 94]
0.1 2 97.37 82 83 85 82 [83, 12, 36, 60, 79, 91]
5 93.22 84 86 80 84 [64, 18,47, 52, 80, 89]
1 99.07 84 86 90 84 [78, 10,37, 56, 81, 93]
0.25 2 98.88 84 87 92 84 [86, 8, 46, 60, 81, 94]
5 94.72 89 91 93 89 [90, 13, 50, 65, 82, 96]
1 99.41 86 88 91 86 [88, 12, 36, 59, 81, 94]
0.5 2 98.94 87 88 91 87 [64, 24,48, 62, 83, 95]
1 99.51 67 72 87 67 [39, 6, 36, 46, 82, 79]
0.75 2 99.47 88 89 91 88 [85, 17,39, 64,79, 95]
5 97.52 82 86 92 82 [83,7, 42,59, 83, 91]
1 99.34 88 89 92 88 [87, 15, 35,58,79, 96]
0.9 2 99.49 81 84 90 81 [77, 17, 30, 53, 82, 90]
5 98.34 84 87 91 84

[87, 20, 33, 53, 79, 93]
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(a) Our approach (confidence-aware partial labels with FL)

12

(b) the conventional approach (one-hot encoded labels, no
class weights, second row of Table II)

Fig. 7. Confusion Matrices. a) the model trained with confidence-aware partial labels and focal loss (a=0.25, y=1). b) the
conventional approach in which we used one-hot encoded labels but did not weigh the loss with class weights.

3.3. Focal Loss Sensitivity Analysis

As the results presented in Section 3.2 show, the a and y
hyperparameters of focal loss should be tuned to utilize its full
potential for sea ice classification using Sentinel-1 images. o
adjusts the weight assigned to the rare class(es) and vy
determines how much the loss should be down-weighted for
well-classified examples, therefore, their optimal values depend
on the training dataset and, in particular, on the degree of
imbalance and difficulty in classification among classes. For
instance, Supplementary Fig. 3 shows that nilas and young ice
classes have a higher sensitivity to y values. This could
primarily be explained by the lower frequency of samples from
these classes in our dataset, which is also inherent in sea ice
type classification in general. The sensitivity to y values,
however, is not necessarily a problem, and rather, shows the
importance of tuning the focal loss for hyperparameters for sea
ice classification to achieve optimal performance. The a and y
hyperparameters tune how much attention the model should pay
to the more difficult and less frequent classes (compared to the
easier, more frequent classes). The results of our sensitivity
analysis, presented in Supplementary Fig. 4, show thaty =1 or
2 work similarly well across all o values, but y =5 consistently
underperforms in comparison. Furthermore, the optimal range
of values for a seems to be € [0.25, 0.75], as values outside of
this range result in lower stability and lower performance,
especially on the test set. Table III further proves this point by
providing the performance of each combination of values on the
test set. Our findings show that the combination of o = 0.25 and
v = 1 yields the optimal results in sea ice classification.

3.4. Visual Inspection of Out-of-Distribution Samples

Considering the number of scenes available in the
ExtremeEarth dataset, leaving an entire scene out (from the
freeze-up season) for testing would lead to an approximate 20%
reduction in the already-limited number of training samples. It
would also mean that the model would not have seen any
samples from that specific freeze-up month during training.

Therefore, we decided to split the entire sample set into train,
evaluation, and unseen test sample subsets as mentioned before.
The results provided in Section 3.2 demonstrate that with a test
accuracy of 92% and a weighted F-1 score of 93%, our best-
performing model can generalize well to unseen test samples.
This can be interpreted as the generalization power of the model
when extrapolating spatially, as the test samples were randomly
chosen from one of the 6 scenes.

To further evaluate the generalizability of our model, we use
it to classify an entirely unseen image from the melt season and
compare its performance against a benchmark model. The
benchmark model is the model presented in the second row of
Table II, which has an identical architecture to our model, but
is trained with one-hot encoded labels and CCE loss which is
the conventional approach in training CNNs on ice charts.

It is important to note that since our model is only trained
for the freeze-up season, samples taken from the melt season
can be considered out-of-distribution samples. This is
exacerbated by the differences in sea ice dynamics and SAR
backscatter across different months and seasons, especially
between the freeze-up and melt seasons. Therefore, we do not
expect the models to achieve high accuracies when generating
predictions for images acquired during the melt season. Yet,
this experiment could provide visual insight into the
generalizability of our proposed approach compared to the
conventional approach with limited training data in the
benchmark dataset.

To perform this experiment, we chose the September scene
as the month immediately preceding the training period. Based
on the information provided in the ExtremeEarth dataset user
instructions [76], the surface air temperature had ranged
between -5° C and 5° C prior to the acquisition of the September
image, which in many areas of the image is above the typical -
1.8° C freezing temperature that sea ice formation begins.
Therefore, we can assume that it is acquired towards the end of
the melt season.
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Fig. 8 provides a visual comparison between the two models
when classifying the September scene. As can be seen in this
figure, neither model performs remarkably well in identifying
the primary ice types (Fig. 8 c,g). So, we also compared the
model predictions with both the primary and secondary ice
types (SA and SB) in the label ice charts. In this case, we
assume model predictions to be correct if they are equal to either
SA or SB classes provided in the ice charts. When model
predictions are compared to the primary ice type label
(predicted label=SA), the benchmark model achieves an

New Ice
Il Nilas (b)
I Young Ice

[ First-Year Ice

I Old Ice
I Water

= Undefined

(‘
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accuracy of 36% whereas our model achieves an accuracy of
57%. Alternatively, when model predictions are compared to
either the primary or the secondary ice type (predicted label=SA
or SB), the accuracies of the benchmark model and our
proposed approach are 42% and 62% respectively.

This shows that our approach in training a deep learning
model outperforms the conventional benchmark by achieving
19% and 20% improvements respectively. It is important to
note that these metrics are generated using all the samples from
the image (not just samples where CA>50%).

il i

Il Incorrect
I Correct

il i

Fig. 8. Model performances in predicting and entirely unseen Sentinel-1 image from ExtremeEarth dataset acquired in Sept. 2018.
(a) Sentinel-1 SAR image (R: HH channel, G: HV channel, B: local incidence angle. Subswath edges are manually masked out.
(b) sea ice types generated by our best-performing model (c) prediction errors in b against label SA values (d) prediction errors in
b against label SA and SB values. (e) ice chart label provided in the ExtremeEarth dataset color-coded using SA. (f) sea ice types
generated by the benchmark model (trained with one-hot encoded labels as CCE loss) (g) prediction errors in f against label SA
values (h) prediction errors in f against label SA and SB values. The results are highly affected by banding noise in the images.
The number of incorrectly predicted patches is reduced when using partial concentrations integrated with focal loss and further

reduced if either SA or SB are taken as correct labels.

3.5. Comparative Analysis

This section presents a comparative analysis of our results
with similar sea ice classification studies. Our selection criteria
for including these studies are as follows: 1) the study must
classify multiple sea ice types (as opposed to binary ice-water
classification or ice concentration classification), 2) it should
exclusively use Sentinel-1 images as input, and 3) it should
employ supervised classification. [36] considered four classes
in their study (ice free, young ice, first-year ice, and old ice) and
evaluated their model on two datasets. They achieve accuracies
of 90.5% on a dataset of 2018 images and 91.6% on a dataset
of 2020 images. However, to the best of our knowledge, these
accuracies are measured on a validation set as opposed to a test
set. Our model achieved a test accuracy of 92% which is higher
than both, but underperformed the model developed by [36] in
per-class accuracy of young ice (0.77 vs 0.63), first-year ice
(0.85 vs 0.68), old ice (0.98 vs 0.82), and water (0.98 vs 0.96).
This could be due to the higher number of classes in our model
which makes the classification task more challenging, as well

as the finer labels present in our dataset. We also replicated the
architecture used in [36] following the parts of code available
on GitHub and using the same hyperparameters as those listed
in the paper and tested it on our dataset. This model achieved a
test accuracy of 70.00%, an average F-1 score of 72.3%, and
per-class F-1 scores of 58.4% for new ice, 9.8% for Nilas,
42.5% for young ice, 38.6% for FYI, 73.4% for old ice, and
90.7% for water. These are lower compared to our best model
as well as the model trained with partial labels in group one
(with CCE loss). It should be noted that the model proposed by
[36] was trained only using HH and HV channels and has
approximately 72K trainable parameters (compared to 25M
parameters in our model).

Using the same 2018 dataset mentioned above, [44] trained
random forest classifiers using three different Feature
Configurations (FC), all of which included texture features
derived from Sentinel-1 images. In five-class classification
(open water, new ice, young ice, first-year ice, and old ice), their
model achieved an accuracy of 60% in winter, which is
considerably lower than our model. Their highest per-class
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accuracy (depending on the FC) in four of the five classes was
lower compared to our model (0.45 vs 0.93 for new ice, 0.626
vs 0.63 for young ice, 0.659 vs 0.68 for FYI, and 0.924 vs 0.96
for water), but their accuracy for old ice was higher than ours
(0.906 vs 0.82).

[79] developed a sea ice classifier based on the VGG-16
architecture and considered 5 classes (open water/leads with
water, brash/pancake ice, young ice (YI), level first-year ice
(FYI), and old/deformed ice). The authors have reported overall
validation accuracies higher than 99%, but have not reported
their test or per-class accuracy, and therefore, direct comparison
is not possible. We were not able to replicate the model used in
this study as the “modified VGG-16” architecture used in it was
not publicly available.

[80] used a Sea Ice Residual Convolutional Network (SI-
Resnet) which is based on the ResNet architecture to classify
ice into four classes of (open) water, young ice, first-year ice,
and old ice in Hudson Bay and the Western Arctic. Their best-
performing model trained on a patch size of 57 and optimized
with a multi-model average scoring strategy achieved a test
accuracy of 94.05% and per-class accuracies of 97.86%,
79.41%, 92.69%, and 100%. However, they only used samples
where partial concentration was above 80% and their training
dataset was designed to be balanced. Our overall test accuracy
is comparable with the one achieved in [80] (92% vs. 94.05%),
but our per-class accuracies are lower which can be attributed
to the higher number of classes in our study (6 vs 4) and the
imbalance present in our training dataset. Notably, the authors
in [80] state that “too fine distinction will cause much difficulty
for the classification of sea ice with SAR imagery”, meaning
that increasing the number of classes is expected to drop
performance metrics.

Even though the accuracy of our best-performing model in
classifying FYT is higher than the conventional approach (0.68
vs 0.48), it is still low compared to other recent studies (for
instance, in [32]). We hypothesize that this could be attributed
to the low number of training samples for this class (~8% of the
entire training data) as well as the inclusion of new ice and nilas
classes.

Due to the small size of our public dataset, we only used 6
Sentinel-1 scenes for training our models, which is considerably
lower than similar studies. For example, [36] used 299 scenes,
[44] used 840 scenes, and [79] used 31 scenes. We acknowledge
that this might make the model trained here not as generalizable
compared to those mentioned above, but our study and results
show the efficiency of our approach in training with limited
samples, which can be applied to larger datasets.

Finally, it is important to note that achieving an exact, one-
to-one comparison by replicating methodologies from other
studies often proves challenging for multiple reasons. Firstly,
many existing studies on sea ice classification utilize pre-
processing and deep learning frameworks that are not open
source, making it challenging to replicate methods such as those
used in [79]. Secondly, the details necessary for training
competing methods, such as sampling strategies and
hyperparameters, often remain undisclosed in similar studies,
rendering the exact replication of these methods impractical
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without access to such critical information. As further evidence,
the authors in [29] mention that “it is difficult to compare the
presented models’ metric performance with other recent
publications, as different training and test sets are utilized.” The
authors in [30] also state that “we cannot directly compare our
results to other studies, which frequently use privately owned
imagery and labels for training. Furthermore, the number of ice
classes is different in most studies, and the polygons are drawn
with different objectives and at different sizes, which make
comparison difficult”. Therefore, the comparisons presented in
this Section should be considered with caution given these
limitations.
4. DISCUSSION

In Section 3.1, we presented the performance of a model that
uses CCE loss and one-hot encoded labels (the conventional
approach in sea ice classification). Even though this model
seemingly achieves a relatively high weighted average F-1 score
and other aggregated performance metrics (the second row in
Table II), the confusion matrix clearly shows that its
performance is not consistent across different ice types, and it has
a precision of below 50% in classifying both nilas and first-year
ice (Fig. 7b). Our approach resulted in a higher weighted
average F-1 score (and higher test accuracy and weighted
average recall while keeping weighted average precision at
least as high as other models), as well as a more consistent
performance across different classes (with a minimum per-class
precision of 60%).

There seems to be no noticeable overfitting in the models
presented in Table II and Table III (when class weights are not
used). The models presented in Table IV, however, generally
demonstrate overfitting as there is a noticeable difference
between the training and test accuracy in these models.
Furthermore, our best-performing model does not demonstrate
strong overfitting. Our initial experiments showed that
including batch normalization in tandem with dropout in the
fully connected part of the network (described in Section 2.3)
leads to an average of 8% improvement in the test accuracy of
the models.

We identified oo = 0.25 and y = 1 as the optimal values for
the hyperparameters of focal loss for sea ice classification. This
differs from the findings of the original focal loss paper [52], in
which the authors recommend a = 0.25 and y = 2 for general
vision tasks on the COCO benchmark. We acknowledge that
our findings are valid in our study design, and hyperparameters
should be tuned for any specific application.

As mentioned before, we repeated each experiment twice to
reduce the effect of stochasticity. Among all the experiments
we performed, the maximum and average difference between
testing accuracy is 4% and 2.2% respectively. For the weighted
average F-1 score, the maximum and average differences are
3% and 1.8%. Weighted average precision demonstrated the
lowest amount of variation with a maximum of 1% and an
average of 0.5%. Finally, weighted average recall demonstrated
a similar pattern to testing accuracy.

Regardless of the specific approach used for classification,
the current format of ice chart polygon labels (egg code)
presents a significant challenge for automated algorithms. We



JSTARS-2023-01298.R3

mentioned these challenges in Section 1. Our experiments,
especially those presented in Section 3.4, provide further
evidence for these challenges. Most importantly, the (usually)
large spatial extent of ice chart polygons and the presence of
different ice types within a polygon mean that one cannot
confidently assign the label of the polygon to its constituting
patches, and this would inevitably lead to label error (noise).

The models trained with partial labels and focal loss were
faster by an average of 5% in terms of training time compared
to models trained with CEE loss and one-hot encoded labels
(21.14 seconds vs 22.2 seconds per epoch on average). Using
class weights increased the training time, but not significantly
(an increase of 0.2 to 0.4 seconds on average) when other
variables were fixed. The choice of the loss function proved to
be the most important factor in determining the convergence
speed; models trained with focal loss converged anywhere from
50 to 100 epochs faster compared to those trained with CEE
loss. The label encoding method made little difference in the
convergence speed of the models trained with either CCE or
focal loss.

We chose the ExtremeEarth v2.0 dataset for its higher
spatial and thematic resolution labels, despite its fewer training
data compared to other datasets like the ASIP dataset [81] or
the AutoICE Challenge dataset [82].

The higher quality of the partial concentration labels in this
dataset was crucial within our framework as the partial labels
are generated based on partial concentration values.
Furthermore, by using this dataset, we have tried to minimize
the amount of inaccuracy caused by the process described
above. This, however, does not completely remove such a
source of wuncertainty. Our method and approach are
generalizable and can be applied to the datasets mentioned
earlier as well, as long as partial ice concentration information
is provided.

Moreover, while it is common in the literature to segment
Sentinel-1 images into smaller patches, such as 50x50 patches
in this study and [36], 45x45 in [40], and 32x32 in [79], this
approach may result in a loss of spatial context necessary for
distinguishing between wind roughening and sea ice. This
justifies a future research prospect in comparing pixel-level
semantic  segmentation frameworks with patch-based
classification frameworks in the context of sea ice mapping.

As mentioned in Section 1, different ice analysts (or the
same analyst at different times) may have different
interpretations of the same SAR image. This subjectivity
reduces the reliability of sea ice type labels, and could
potentially lead to inter-annotator disagreement, and in turn,
label uncertainty. We acknowledge that the benchmark dataset
used in this study does not provide inter-annotator agreement
metrics, and therefore, we have not accounted for this potential
source of uncertainty in our approach. Deep learning models,
less sensitive to random noise than systematic biases, minimally
affect results if inter-annotator disagreements are random. Ice
experts typically undergo rigorous training and coordination,
and typically, the work of one ice analyst is checked and
confirmed by at least another analyst before making ice charts
available for use.
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5. CONCLUSIONS

In this paper, we proposed confidence-aware partial label
learning as a novel approach for training deep learning
classifiers in remote sensing applications where ground-truth
labels are generated at the polygon level, with multiple
candidate labels, each with varying levels of confidence. We
tested our approach on sea ice type classification task using
Sentinel-1 SAR imagery, and by performing 34 experiments,
showed that: a) confidence-aware partial encoding of the labels
leads to better sea ice classification performance in terms of
weighted average F-1 score as well as all other aggregated
performance metrics regardless of the loss function (Tables II,
III, and IV), and b) integrating confidence-aware partial
encoding with focal loss, when the hyperparameters of focal
loss are tuned, yields better classification performance in terms
of weighted average F-1 score (3% improvement), overall
testing accuracy (5% improvement), and per-class F-1 score
(improvement in 4 out of 6 classes) compared to the
conventional approach of using one-hot encoded labels with
CCE loss (Table III and Fig. 7). By allowing the training labels
to be encoded as a set of candidate labels instead of one true
label, our approach can take advantage of all the information
embedded in labeled (annotated) polygons. By integrating
partial labels with focal loss, it can (better) deal with the class
imbalance which is a common issue in real-world remote
sensing applications. Finally, by incorporating the confidence
associated with each candidate label in encoding the partial
label vector, our approach can cope with scenarios where
training labels have varying levels of confidence. Our proposed
approach can be beneficial in other remote sensing applications,
such as land use and land cover mapping, vegetation mapping,
Or SNOw cover mapping.

Our best-performing model generates higher accuracies for
FYI, old ice, open water, and nilas classes. The first three
classes are usually of higher importance for operational
purposes, e.g., in marine navigation, and can potentially
contribute to making shipping in the Arctic safer.

The focus of this work is to show the potential of partial
label encoding combined with focal loss in a PLL framework
compared to the conventional one-hot encoding approach. Our
high-resolution benchmark dataset contained a significantly
lower amount of training data compared to similar sea ice
classification studies using Sentinel-1 SAR. To address the
issue with the low number of training samples, we used a
pretrained ResNet-50 network. We hope that the performance
gain presented in this work will encourage readers to consider
the proposed framework in similar applications with more
training data.

Future directions include improving melt season
classification, combining partial label learning with multi-label
learning in applications where each sample is associated with
multiple correct labels [74], exploring the potential of data
fusion, e.g. fusing C-band SAR images with other sources such
as L-band (or X-band) SAR images [83], [84], and transfer
learning across regions and datasets.
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SUPPLEMENTARY INFORMATION

A. Setinel-1 image information

As mentioned in Section 2.4.1, we used the 6 images
acquired during the freeze-up season from ExtremeEarth
dataset to generate our training, evaluation, and test sets. These
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images were acquired in the months of January, February,
March, October, November, and December of 2018.
Supplementary Table I provides the acquisition times and the
file names of these images. Supplementary Fig. 1 provides an
example of a Sentinel-1 SAR image acquired in Extra Wide
(EW) swath mode.

Supplementary Table I
THE LIST OF THE SENTINEL-1 IMAGES USED IN EXPERIMENTS AND THEIR ACQUISITION DATES AND TIMES
Month AcquIS}tlon Sentinel-1 Filename
date/time

January  2018-01-16 07:54:30 SIA_EW_GRDM_ISDH_20180116T075430 20180116T075530 020177 0226B9 9FE3
February ~ 2018-02-13 17:54:44  SIB_EW_GRDM_ISDH_20180213T175444 20180213T175544 009608 011511 8266

March 2018-03-13 18:12:25  S1IA_EW_GRDM_I1SDH_20180313T181225 20180313T181325_021000 _0240E1 8163

October 2018-10-16 07:29:58 S1A _EW_GRDM_ISDH 20181016T072958 20181016T073058 024158 02A460 DASF
November 2018-11-13 07:45:29 S1B_EW_GRDM _1SDH 20181113T074529 20181113T074629 013583 019254 D382
December ~ 2018-12-18 07:54:37 S1A_EW_GRDM_1SDH 20181218T075437 20181218T075537 025077 02C472_1DB2

(a) HH channel

(b) HV channel

=

Incidence Anale
Degree
a7

' 8s

(c) incidence angle

Supplementary Fig. 1. An example of a Sentinel-1 image acquired in EW swath mode on January 16, 2018. (a) shows the co-
polarized HH channel of the image, (b) shows the cross-polarized HV channel, and (c) shows the local incidence angle values at

each pixel.

B.  Sea Ice Classification with Sentinel-1 SAR

Sea ice classification using SAR is generally performed on
images acquired in C-band (3.75 < A < 7.5 cm), and in
particular, images acquired by Sentinel-1 [36], [43], [44], [79]
and RADARSAT-2 instruments [20], [85]. However, ice-type
separability for certain classes in this band is low, especially
during the melt season [86]. L-band (15 <A <30 c¢m) and X-
band frequencies (2.5 < A < 3.75 cm) have been shown to
provide useful information in those conditions, especially when
complemented with C-band images [83]. However, C-band
SAR remains the primary mode of acquisition in the high
latitudes of the Arctic for the foreseeable and immediate future.

Sentinel-1 SAR in the Extra Wide (EW) swath mode can
operate in dual-polarization mode, transmitting signals in one

polarization (either horizontal or vertical) and receiving them in
both the same polarization and the orthogonal polarization. This
results in combinations of polarizations in the received images,
such as Horizontal-Horizontal (HH) and Horizontal-Vertical
(HV), or Vertical-Vertical (VV) and Vertical-Horizontal (VH).

These images, however, suffer from substantial systematic
noise patterns, especially in cross-polarized images (e.g., HV
polarization) over areas with low signal-to-noise ratios such as
the open water or newly-formed sea ice [39], [87], [88]. Even
though the cross-polarized mode is crucial in detecting certain
types of ice [87], [89], the amount of noise limits the successful
use of these images in machine learning-based tasks such as sea
ice classification. Several approaches to denoise Sentinel-1
images have been proposed [87], [88] but, so far, these methods
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do not completely remove the noise and leave some residual
noise. The residual noise can be misclassified as ice artifacts by
automated algorithms [36]. As a result, in this work, we not only
denoise the HV channel but also remove areas with high
residual noise manually to minimize the effect of noise on our
results (more detail in Section 3.4.1).

Sentinel-1 SAR is a side-looking imaging radar, therefore
the radar waves emitted from the instruments meet the surface
at a non-zero angle. The angle between the vertical direction
and the radar beam direction at the surface is called the
incidence angle (IA). The IA range for Sentinel-1 EW mode is
18.9° - 47.0°. It is shown that backscatter intensity decreases as
IA increases, at a rate that is dependent on the type of ice [90].
Therefore, in addition to HH and HV channels, we also use
local TA measurements as a predictive feature in our sea ice
classification model.

Manual sea ice charting follows the “egg-code” scheme,
wherein operational ice charts codify ice concentration, form,
and Stage of Development (SoD) numerically into fields based
on the called Sea Ice Grid 3 (SIGRID-3) format [1]. In this
format, the first letter denotes the ice property (S for SoD, C for
concentration, and F for floe size) and the second letter denotes
the ice stage (A for primary and B for secondary). For instance,
'SA" and 'SB' represent the SoD of the oldest and second oldest
ice types, respectively, while 'CA' and 'CB' denote their

26°W 249W 229W 20°W 18°W 16°W 140W 12’°W10.°W 8oW GoW 4°FW 2°‘W

26°W

78N

24°W

76°N -]

22°W

—76°N

20°W

74N

(a)
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concentrations. The numeric codes for SA and SB represent a
unique ice type (category) whereas the numeric codes used for
CA and CB) represent a range of values in 10 or 20-percent
increments. When following the egg code, ice analysts classify
sea ice based on its SoD which is a proxy for ice thickness and
age. This codification method allows for a detailed
representation of ice conditions, accommodating multiple ice
types within a single polygon, thus presenting challenges and
opportunities for training more nuanced and accurate sea ice
classification algorithms.

Supplementary Fig. 2 shows a high-resolution ice chart
generated by the Norwegian MET specifically for training
automated algorithms [76]. In this case, the highlighted polygon
in Supplementary Fig. 2b contains two different types of ice,
first-year ice, and young ice, with partial concentrations ranging
between 70-90% and 20-40% respectively.

Labeling Sentinel-1 images at the pixel level can be
exponentially more expensive (potentially even prohibitively
s0). Each Sentinel-1 SAR image in Extra-Wide swath mode
contains approximately 10,000x10,000 pixels, with a resolution
0f 93x87 m along the range and azimuth directions (and a pixel
spacing of 40x40 m). As such, it would present a very
challenging and time-consuming endeavor to assign labels at
the pixel level, even for a trained expert.

id 60
CA 79
SA 86
FA 4
B 24
SB 83
FB 3
cr 92
poly_type

[ New Ice
I Nilas
I Young Ice
I First-Year Ice
[ Old Ice

Il Water

9 Undefined

(b) (c)

0 40 80 160 Miles
S T T T

Supplementary Fig. 2. (a) A false-color example of a Sentinel-1 SAR image acquired on January 16, 2018. R: HH co-polarized
channel, G: HV cross-polarized channel, B: local incidence angle (b, c¢) the corresponding ice chart from ExtremeEarth dataset
[11]. CA and CB represent partial sea ice concentration of the primary (oldest) and secondary (youngest) ice types respectively.
SA and SB represent the Stage of Development (SoD) of those two ice types, and FA and FB represent the form of ice (or floe
size). CT represents total concentration (CA+CB). In (b) polygons are color-coded based on the oldest SoD present in them and in
(c) based on the second oldest SoD. The numeric values represent a range in the case of concentrations and a type in the case of

SA/SB (please refer to Section 2.4.1 for more information).
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C. The Effect of FL hyperparameters on model performance
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®)a=0.25,y=5

(©)a=0.5y=1

(d)a=0.5y=5

Supplementary Fig. 3. Confusion Matrices for 4 of the models trained with confidence-aware partial labels and focal loss (a €

{0.25,0.5} and y € {1, 5}).

Fig. 7a presented the confusion matrix of our best-
performing model in the group of models trained with
confidence-aware partial labels and foal loss (the third row in
Table I). To examine the influence of focal loss
hyperparameters on the per-class performance of this group of
models, Supplementary Fig. 3 contrasts the confusion matrices
of this model with three other models from Table III that have
a € {0.25,0.5} and y € {1, 5} (the same models that are utilized
in Fig. 6). The observations indicate that modifying a or y may
enhance performance for specific classes; however, the
consistency of models in b-d is inferior to model a, emphasizing

the overall advantage of our selected configuration (o = 0.25, y
= 1). This further underscores the necessity of fine-tuning FL
hyperparameters based on the dataset, and when potentially
prioritizing a particular ice type over others.

D. Focal Loss Sensitivity Analysis

Section 3.3 presented the discussion on the sensitivity of FL
to a and y hyperparameters. Supplementary Fig. 4 presents the
training loss and accuracy plots for the set of hyperparameters
used in our experiment.
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