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Nonresonant central exclusive production of charged-hadron pairs
in proton-proton collisions at /s =13 TeV
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The central exclusive production of charged-hadron pairs in pp collisions at a center-of-mass
energy of 13 TeV is examined, based on data collected in a special high-* run of the LHC. The
nonresonant continuum processes are studied with the invariant mass of the centrally produced two-
pion system in the resonance-free region, m,:,- < 0.7 or m,+,- > 1.8 GeV. Differential cross sections
as functions of the azimuthal angle between the surviving protons, squared exchanged four-momenta,
and m_+,- are measured in a wide region of scattered proton transverse momenta, between 0.2 and
0.8 GeV, and for pion rapidities |y| < 2. A rich structure of interactions related to double-pomeron
exchange is observed. A parabolic minimum in the distribution of the two-proton azimuthal angle is
observed for the first time. It can be interpreted as an effect of additional pomeron exchanges between
the protons from the interference between the bare and the rescattered amplitudes. After model tuning,
various physical quantities are determined that are related to the pomeron cross section, proton-
pomeron and meson-pomeron form factors, pomeron trajectory and intercept, and coefficients of

diffractive eigenstates of the proton.
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I. INTRODUCTION

The cross sections of proton-proton (pp) and proton-
antiproton (pp) interactions steadily rise with the
center-of-mass energy and approach each other at high
energies [1]. This observation was initially explained
assuming the exchange of a family of particles [2] with
the vacuum quantum numbers of the pomeron [3]. This
pomeron is now interpreted in terms of the sum of
ladder-type diagrams (multiperipheral model [4]) com-
posed of gluons. Pomeron physics, its nonperturbative
characteristics, and its relations with the theory of the
strong interaction (quantum chromodynamics, QCD) are
a topic of ongoing research both experimentally and
theoretically [3,5,6].

In pp collisions, the central exclusive production
of a few particles (Fig. 1) offers a clean laboratory for
the study of various phenomena [7,8] and is often seen
as a discovery channel for new physics coupled to quarks
and gluons. At energies above 20 GeV, the exchange of
hadrons is suppressed [9] and, for proton transfer
momenta above 0.2 GeV, these central exclusive processes
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are dominated by double-pomeron exchange. They pro-
vide a gluon-rich environment, which may lead to the
creation of hadrons free of valence quarks, collectively
called glueballs [10], whose existence is yet to be
experimentally demonstrated.

Double-pomeron exchange processes in pp collisions
were intensively studied at CERN in the 1990s [11,12] at
Vs =127, 23.8, and 29 GeV, with the most significant
results published by the WA102 Collaboration [13-16],
which concluded that the pomeron has a vectorlike behav-
ior. With the advent of high-energy collider experiments,
there is a renewed interest in the study of central exclusive
production, especially in double-pomeron exchange proc-
esses. Measurements in pp collisions at /s = 0.9 and
1.96 TeV were performed by the CDF Collaboration [17]
at the Fermilab Tevatron and in pp collisions by the STAR
Collaboration [18] at /s = 0.2 TeV at the BNL RHIC.
Recent measurements in pp collisions at /s = 7 TeV were
reported by the ATLAS Collaboration [19] at the LHC.

The CMS Collaboration at the LHC has recently
published a study of central exclusive ztz~ production
at /s = 5.02 and 13 TeV [20] exploiting the presence of
rapidity (y) gaps between the 7"z~ system and the out-
going (untagged) protons. The present study at /s =
13 TeV is based on data with an integrated luminosity,
4.7 pb~!, that is more than 4 orders of magnitude higher,
where the kinematic variables of both the forward-scattered
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Born-level Feynman diagrams for central exclusive production of hadron pairs via double-pomeron exchange, depicting

resonant (left) and nonresonant continuum (center, #-channel; right, #-channel) contributions.

protons and the centrally produced charged-hadron pair are
measured with high precision.

Central exclusive production of hadron pairs is an active
area of theoretical study, and several groups are investigat-
ing the scalar, vector, or tensor nature of the pomeron
[9,21], producing detailed predictions for z*z~ [22,23],
KTK~ [24], and pp production [25,26], and studying
various absorptive effects and properties of diffractive
eigenstates [27-29]. Monte Carlo (MC) event generators [30]
that describe these processes are available with empirical
parametrizations [31,32].

In this paper, after a theoretical introduction, details of
the CMS and TOTEM detectors and the outline of the
analysis are presented in Sec. I. The conditions of data
taking are discussed in Sec. II, with the reconstruction
and corrections of scattered protons in the Roman pots
(Sec. III) and those of produced particles in the central
region (Sec. IV). Event classification is described in Sec. V.
Results, model tuning, and data-model comparisons are
shown next (Sec. VI), and the paper ends with a summary
in Sec. VIL

A. Theoretical background

Proton-proton collisions can be either elastic or inelastic.
The latter include double-pomeron exchange, single- and
double-diffractive, as well as nondiffractive and photon
fusion processes. The elastic scattering of protons is essen-
tially understood through the exchange of pomerons and also
odderons [33]. Born-level Feynman diagrams of processes
playing a role in central exclusive production of charged-
hadron pairs via double-pomeron exchange are shown in
Fig. 1. We distinguish two main processes. The two
pomerons may fuse through a short-lived resonance (X),
which in turn decays into a pair of oppositely charged
hadrons. Alternatively, the two pomerons may interact via
the exchange of a virtual hadron (h), leading to the production
of a pair of oppositely charged hadrons in a nonresonant
process, the topic of the present study. Both #-channel and
u-channel graphs must be included. The variables of the
outgoing protons are labeled with subscripts 1 and 2, and the
produced hadron ones with subscripts 3 and 4.

Such a simple picture becomes more complicated when
the effects of suppression, absorption, and other corrections
are properly included. Here we follow the notations of
Ref. [9]. The matrix element for the nonresonant continuum
process is

Fr(1)
M = Mi5(ty, 513) P Moy(ts, 524)
F2 (i1
+M14(11»314)ﬁi(mlMB(fz,SB)y (1)

where p, and p,, are the momenta of the incoming protons,
t1 = (p1 = pa)? t = (P> — py)?, M denotes the “inter-
action” between one of the scattered protons and one of
the created hadrons, sy = (p; + pu)* = (p3—q1)* =
(Ps—q2)* and &t = (ps — q1)* = (p3 = ¢2)*. The meson-
pomeron form factor F,,(7) is included twice, once for each
vertex connected to the meson. The propagator (7 — m?)~!
of the virtual hadron is also present, where m is the mass of
the exchanged meson. At high meson-proton center-of-
mass energies (,/s; > 20 GeV) the double-pomeron
exchange contribution dominates,

. Sik ap(t;)-1
M (. six) = 860 S F, (1), (2)

which is the product of the proton-hadron cross section
term s°? and the exponential proton-pomeron form factor
F,(t) = exp(Bp/2t). From a fit to the energy dependence
of the measured cross sections [34], the strength parameter
i8 ¢~ 13.63 mb (z" 7z~ production) or 11.82 mb (K*K~
production), s, = 1 GeV? is a dimensional constant, Bp
is related to the proton-pomeron vertex (usually Bp =
5.5-6.0 GeV? is assumed), and the soft-pomeron trajectory
is ap(t) = 1.0808 + 0.25 GeV~—21 = ap(0) + ap(0)z. The
cross section is proportional to |M]|?/s?. The strength
parameter (referred to as o in the following), the intercept
ap(0), and the slope ajp(0) of the pomeron trajectory are
usually taken from the Donnachie-Landshoff model [34],
based on a fit to the /s dependence of the total cross
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sections. A more complete analysis was performed by the
COMPETE Collaboration [35].

The meson-pomeron form factor takes into account that
the virtual meson is off shell. There are several para-
metrizations [9,30] available for F,,(7),

exXP (bexp (1 — m?))
exp (bore [aore —ak.—(1- mz)D (Orear),
1/(1 — bpow(f — m2))

(exponential),

(power law).
(3)

The Orear-type parametrization is given in Ref. [36]. They
are equal to unity if the hadron is on shell, F,,(m?) = 1.
The parameters by, Dpows Gore, and by, are determined
from measurement. To account for the low-mass diffractive
dissociation of the proton, a multichannel framework is
needed, where the incoming proton is a coherent super-
position of diffractive eigenstates with amplitudes a; and
coupling factors y;. A two-channel model is considered
here, including a ground state p and its first excitation N*.
The coupling of the pomeron to the diffractive eigenstates
is parametrized as in Ref. [30],

Fi(t) = exp [_(bi(ci —0)% + (bici)d'}’ 4)

where b;, c¢;, and d; are parameters. This factor is unity at
t = 0 with F;(0) = 1 and is a more complex version of the
simple F,(t) = exp(Bp/2t) form displayed in Eq. (2).
Additional pomeron exchanges between the incoming
(and outgoing) protons cause interference between the bare
M [Eq. (1)] and the rescattered M., amplitudes (Fig. 2).
The resulting quantity is often referred to as the eikonal
survival factor. The interference is expected to lead to dips
in the angular distributions [30]. The rescattered amplitude

is obtained through a loop integral over k} as

p(pa) p(p1)

p(ps) p(p2)

FIG. 2. Feynman diagram for the nonresonant continuum of
central exclusive production of hadron pairs via double-pomeron
exchange, including the rescattering correction.

Mg = /dzk_';‘M (ﬁl - k_;‘s [;2 + k—:l‘)

x> rilaiPFi(n)rilaiPF (1) Syke), (5)

ij

where ¢, and £, implicitly depend on k}. The screening
amplitude S can come either from a calculation or from
an empirical parametrization of a direct measurement
of the elastic differential pp cross section. In the calcu-
lation of the cross section, the bare amplitude M is
replaced by the sum of the bare and rescattered ampli-
tudes, M + M.

B. The CMS and TOTEM detectors

The central feature of the CMS apparatus is a super-
conducting solenoid of 6 m internal diameter, providing a
magnetic field of 3.8 T. Within the magnetic volume are a
silicon pixel and strip tracker, a lead tungstate crystal
electromagnetic calorimeter, and a brass and scintillator
hadron calorimeter, each composed of a barrel and two end
cap sections. Forward calorimeters extend the coverage
provided by the barrel and end cap detectors. Muons are
detected in gas-ionization chambers embedded in the steel
flux-return yoke outside the solenoid. The silicon tracker
measures charged particles within the pseudorapidity range
[n| < 2.5. During the LHC running period when these
measurements were performed, the silicon tracker con-
sisted of 1856 silicon pixel and 15 148 silicon strip detector
modules. For nonisolated particles with transverse momen-
tum 1 < pr < 10 GeV, the track resolutions are typically
1.5% in pr and 20-75 pm in the transverse impact
parameter [37]. A more detailed description of the CMS
detector is reported in Ref. [38].

The proton spectrometer of the TOTEM experiment
consists of two telescope arms, referred to as “arm 17
and “arm 2” for positive and negative 7, respectively. The
spectrometer is used to detect protons scattered at very
small angles. In each arm, there are two detector “stations”
located at about =213 and 4220 m relative to the nominal
interaction point. Each station consists of two units. Each
unit has two vertical Roman pots (RPs), one located above
and one below the LHC beam. An RP contains ten layers of
silicon strip detectors, placed alternately in two orthogonal
orientations (¢ and v). They approach the beam to a
distance of a few millimeters without affecting the LHC
operation (they are retracted for injection). The RPs are
used to detect protons deflected by only a few microradians
relative to the beam, through reconstruction of their short
track segments (“tracklets”). The kinematic variables of the
scattered protons are reconstructed by modeling the trans-
port of the protons from the interaction point to the RP
location, through the inhomogeneous magnetic fields of
several quadrupole and dipole magnets. The TOTEM
detector is described in Refs. [39,40].
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We use a right-handed coordinate system, with the
origin at the nominal collision point, the x axis pointing
to the center of the LHC ring, the y axis pointing up
(perpendicular to the LHC plane), and the z axis along the
anticlockwise beam direction.

C. Analysis outline

As discussed above, the RPs measure the direction of the
scattered proton. The transverse momentum is inferred
under the assumption that the total momentum of the proton
has not changed in the collision. The longitudinal momen-
tum is computed from the conservation of energy and
momentum, taking into account all produced particles. The
acceptance of the stations is not azimuthally uniform [39]
and the coverage in the y component of the scattered proton
momentum is 0.175 < [p;,,| < 0.670 GeV. The accep-
tance maps of the two arms are correlated since signals
from both arms are used for triggering. In addition, their
efficiency depends on the individual silicon strip detector
efficiencies, which in some cases change significantly
over time.

The coverage of the silicon tracker translates into
acceptance for centrally produced hadrons for rapidities
|| < Ymax> Where y .. 2 2.0 in the case of ztz~ and ~1.6
for K™K~ and pp. Tracking is efficient for pr > 0.1 GeV,
but the particle identification capabilities are substantially
reduced at momenta above 1.2 GeV.

The data are analyzed as functions of the four-momentum
transfers squared (7,1,), or equivalently (p;r,p,r), and
the azimuthal angle ¢) between the momentum vectors of the
two scattered protons in the transverse plane.

The measurement is corrected bin-by-bin and no un-
folding is needed. The corrections are computed without
using Monte Carlo simulations, except for those describing
the low-energy phenomena (GEANT4 [41] v10.4.3) needed
for the determination of the tracking efficiency. The results
are corrected for the p, acceptance and the effect of the
RP trigger based on the collected events. This is done by
exploiting the expected azimuthal symmetry of the scat-
tered protons around the beam axis. The combined cor-
rection is given in bins of (p; 1, po1.¢). Corrections are
also applied for the proton tracklet reconstruction efficiency
in the RPs, based on the hit structure of each tracklet at the
strip level.

The measurement is also corrected for trigger, recon-
struction, and particle identification efficiencies of the
charged-hadron pair in the silicon tracker. The first two are
constructed using a realistic detector simulation of single-
track events combined with information on the pixel layer
occupancy in the barrel. This combined tracker correction
is applied in bins of (p; 1. po1), Where in each of them a
four-dimensional correction table [, my+y-, (cos 0, @) ] is
employed based on a kinematic simulation. Here GJ refers
to the Gottfried-Jackson frame [42] in the center of mass of
the centrally produced hadron pair, where the z axis is in the

direction of the hadron pair in the laboratory frame, the
y axis is perpendicular to both Z and the incoming proton
direction, * =9 x Z, and € and ¢ are the polar and
azimuthal angles of the positively charged hadron in
that frame.

The corrections are applied for each event separately in
the form of products of independent weight factors. This is
possible since there are no efficiency gaps (zero efficiency)
in the [¢, my+y-, (cos@, @) space of the two-hadron
system in the rapidity range.

II. DATA-TAKING CONDITIONS

The data were taken in a special f* = 90 m run of the
LHC, in the period 2-7 July, 2018 (f* is the value of the
amplitude function at the collision point [43]). With such a
high-f* setting, the beam divergence is reduced, and the
forward detectors are thus able to measure elastically
scattered protons at low angles and small transverse
momenta.

For this dataset, the level 1 (hardware) trigger requires
detected protons in each RP arm, in various configurations.
Only the data from double-pomeron exchange triggers are
used in the analysis, not those from the elastic trigger
(Secs. III A and 111 B). In the following, the term “parallel”
refers to cases where only RPs above or below the beam-
line have signals over predefined thresholds in the two
arms (top-top or TT, bottom-bottom or BB), whereas the
“diagonal” configuration refers to the other two cases (top-
bottom or TB, bottom-top or BT). The high-level trigger
(HLT) has multiple components [44]. The pixel activity
filters require at least five pixel clusters and at least three
layers with pixel clusters in the barrel pixel detector. The
pixel track filters require at least one track (having at least
three pixel clusters) in the entire pixel detector.

Part of the dataset was recorded with a proton bunch
spacing of 100 ns and part with 50 ns. To reduce the readout
rate, not all bunch crossings were read out in the case of
the diagonal trigger configuration. The reduction of the
selected bunches does not simply translate into the reduc-
tion of the recorded luminosity, since the bunch-by-bunch
luminosity can greatly vary. A detailed recalculation of the
integrated luminosity was performed at the level of bunch
crossings and data segments. A data segment is a fraction
of a run that contains 2'8 orbits, i.e., lasting about 23.3 sec.
This yields an integrated luminosity of 4.7 pb~! for the
present data.

In practice, sometimes more than one pp collision
happens in a bunch crossing (pileup) with the average in
the range 0.1-0.3. The detector-level signatures required
for the present study are two slightly scattered but intact
protons, two oppositely charged centrally produced
hadrons, and the sum of the proton and hadron momenta
close to zero (within the combined momentum resolution
of 50 MeV in x and 20 MeV in y). A p(h*h™)p event can
be correctly recorded if there is exactly one detectable
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p(hth™)p final state, no other double-pomeron exchange,
single-, double-diffractive, or nondiffractive collision in the
same bunch crossing (they would be visible in the tracker),
and no visible elastic collisions (no detectable scattered
protons in RPs). In the analysis, events with more than one
pp collision are rejected.

The average pileup of visible interactions is (uy;) =
Lini6vis/ (MpunchMorbic)» Where o, is the cross section for
visible collisions, L;, is the average integrated luminosity
in a given time period with nggy; orbits, and nyy,, 1S the
number of selected colliding bunches. The integrated
luminosity loss due to the selection of events with a single
collision per bunch crossing is quantified by the factor
exp(—fyis ). Most of the elastic p p collisions are rejected by
the elastic RP proton pair veto (Sec. III A), whereas a large
fraction of events with the p(h"h™)p final state is selected.
In this way the inelastic pp cross section is a good approxi-
mation for the visible cross section, o;; ~ ;.. There are
several measurements of the inelastic pp cross section at
/s = 13 TeV at the LHC [45-48], with an average value
of 79 £ 1 mb. For comparison, the recommended cross
section for inelastic events selected with a loose “minimum
bias” trigger by CMS is 69.2 mb. We use 6,;, = 79 = 5 mb.

The values of beam-related quantities (instantaneous
luminosity, bunch crossing selection) and of the detector-
related ones (acceptance, trigger efficiency) are checked by
comparing the numbers of observed and expected events,
in all RP trigger configurations (TB, BT, TT, and BB),
separately in each data segment. Overall a good agreement
is found.

III. SCATTERED PROTONS IN THE ROMAN POTS

Details of proton reconstruction, including specific
aspects relevant for the high-f* run (strip-level efficiencies,
local and global alignment, optics determination), are
reported in Ref. [49].

A. Proton-pair trigger acceptance (elastic veto)

The elastic pp cross section is much larger than that for
central exclusive production events and, in the absence of
an appropriate trigger algorithm, would saturate the avail-
able bandwidth of the data acquisition system. Therefore,
elastic events need to be rejected. Triggering is based on
“trigger roads,” each consisting of 32 adjacent silicon strips
with the aim of reducing the number of channels to handle.
Since there are 512 strips in a plane, there are 16 trigger
roads for each orientation («# and v). The trigger bit is set if
trigger roads at the same location have signals above a
predefined threshold in at least three planes. Suitable
combinations of these trigger bits from RPs in diagonal
configuration are used to reject elastic events. This algo-
rithm is referred to as “elastic veto.”

To determine the efficiency loss due to the elastic veto
algorithm, proton tracks from events with parallel trigger

configurations are used. A track from a TT event is
combined with one from a BB event, and the resulting
diagonal event is used as input to the veto algorithm. These
events are used to build an efficiency table as a function of
(P1y+ P2,y), which is used later for the calculation of the
RP-related corrections (Sec. III B). The fraction of elastic-
like events left after veto trigger is shown in Fig. 3 (left) as a
function of p, for arms 1 and 2. It compares well with the
measured (p . p,,) distribution of the events obtained
with the diagonal trigger configurations, as shown in Fig. 3
(middle).

B. Coverage and trigger acceptance

The combined trigger and detection acceptance, as
well as the efficiency of the RP system are calculated in
bins of (py1,par.¢) using 400 x 10° simulated two-
proton events. These events are generated with uniform
and independent p;r and p,r distributions in the range
(0,1) GeV and uniform ¢ distribution in the range (0, x),
using the single-proton and proton-pair trigger acceptances
discussed above. The detection efficiencies for a pair of
scattered protons in selected bins of the pp azimuthal
angle ¢ are shown in Fig. 4, where the rightmost column
displays the joint efficiency using all configurations, i.e.,
the coverage of the measurement. In general, large regions
are populated by all four configurations. Some corners of
phase space are not covered: they are at high p, 1 and low
pa.r (and vice versa), if ¢ < 20° or ¢ > 160°; at low p; 1
and p, 7, if 70 < ¢ < 110°% and at high p, 1 and p,r, if
80 < ¢p < 100°. Regions where the proton detection effi-
ciency is below 2% are not used in the analysis.

IV. PARTICLES PRODUCED
IN THE CENTRAL REGION

The finding and fitting of the charged-particle trajecto-
ries in the silicon tracker are performed with well-tested
methods [50], which include the results of an optimization
for low-momentum particles. In the following, we discuss
some single- and two-track parameters using events with
exactly two oppositely charged reconstructed particles.
The distribution of the z coordinate of the reconstructed
charged particles at their closest approach to the beamline is
Gaussian with a fitted mean value of (z) = —0.37 cm and
standard deviation ¢, = 4.63 cm. The distribution of the
transverse impact parameter of the reconstructed charged
particles has a Cauchy distribution with I' = 0.046 cm. The
distribution of the difference z, — z3 of the reconstructed
charged-particle pair has again a Cauchy distribution with
I' =0.139 cm. Events are selected if the z values of both
tracks satisfy |z — (z)| < 4o, and their vertex is closer
to the beamline than 1 cm. The latter requirement elimi-
nates photon conversions in the beam pipe and pixel
tracker layers, while significantly reducing the contribution
of long-lived decays. Low pr particles looping in the
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Left: fraction of elasticlike events left after the veto trigger as functions of momentum components in the y direction in arms 1

and 2, shown here for the two diagonal trigger configurations: bottom pots in arm 2 with top pots in arm 1 (upper left) and top pots in
arm 2 with bottom pots in arm 1 (lower left). Center and right: joint distribution of detected proton momenta (p, ., p, ) in arms 1 and 2
for all four trigger configurations (center, TB and BT; right, TT and BB). Limits of single-proton acceptance are indicated with long

dashed lines.

solenoidal magnetic field might rarely (rate below 0.5%) be
reconstructed as two oppositely charged particles with
opposite momentum vectors. Their contribution is visible
in the distribution of |p3 + py|/m as peaks near zero.
In the analysis, events containing a looper are removed
by requiring |p3 + py|/m > 0.2, where m is the mass
of the identified hadron. The corresponding event loss is
negligible.

A. High-level trigger and tracking efficiency

The distributions of charged particles in the (, pr) plane
reveal “valleys” corresponding to inefficiencies at low pr.
These are present because the HLT contains pixel activity
filters and various pixel track filters (Sec. II). Having a
simple single-track tracking efficiency table is not suffi-
cient, and a combined “track-pair HLT and tracking”
efficiency is necessary. We have generated, simulated, and
reconstructed single pions, kaons, and protons of both elec-
tric charges uniformly in the kinematic range —3 < 5 < 3,
0 < pr <2 GeV (30 x 10° events for each species). These
events are used to determine the reconstruction efficiency
and to study the distribution of the hit patterns in the pixel
layers. The combination of these is then used to determine

the HLT and reconstruction efficiency of two-track events
(Sec. II). The extracted single-particle reconstruction
efficiencies show the acceptance edge near || ~ 2.5 and
the efficiency losses at low total momenta because of
multiple Coulomb scattering and energy loss. Fragments of
a charged-particle trajectory are rarely reconstructed as
separate tracks. These are concentrated at n ~ 0 for pions
(loopers) and around |;| ~ 2 for kaons (scatters or decays),
but their frequency is at or below the 1% level. The
combined reconstruction and HLT efficiencies for single
particles are shown in Fig. 5, projected onto the (1, pt)
plane. These plots show a significant decrease of efficiency
in the region of the barrel-end cap transition because of the
small number of clusters of pixel detector layers with hits.

B. Particle identification

Details on the determination of the silicon strip proper-
ties, detector gain calibration, model validation, and on the
estimation of the most probable energy loss rate € (or its
logarithm) and its variance o2, , based on control samples in
data are identical to those already discussed in Ref. [51].
The distributions of Ine as a function of momentum,
for reconstructed charged particles in selected two-track
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FIG. 4. Calculated detection efficiencies for the pair of scattered protons as functions of their transverse momenta (p; 1, po-p) in some
selected bins of the p p azimuthal angle ¢ (indicated on the right side of each row). The first four columns show the efficiencies for each
trigger configuration, the four rows show four different angular ranges, and the rightmost column displays the coverage of the
measurement with color codes (white, not covered; green, covered by at least one configuration; red, covered by all configurations).
Lines corresponding to 0.2 GeV are drawn in the rightmost plots.

events, are shown in Fig. 6, including identified "7z,
KTK~, and pp pairs (without track-RP momentum match-
ing), as well as signal and sideband distributions, which
correspond to events where momentum is not conserved in
the transverse plane (Sec. V). The curves show the expected
values according to Eq. (34.12) in Ref. [1]. While the
sideband region displays a reasonable amount of pions,
kaons, and protons, the signal region reveals only few
protons in the sample (Fig. 6, lower left). The exclusive
production of pp pairs is suppressed because of the limited
energy and phase space available for pair creation. For
two-track identification, the knowledge of o, is essential
and is extracted from data using identified pions,
kaons, and protons in narrow bins for the ranges —3 <
n <3 and pr <2 GeV.

The probability density function P, for identifying a
charged particle with momentum p and estimated values

Ine and alzng as being of type k (e.g., a pion, kaon, or
proton) is a Gaussian function with mean (Ine),(p). A
particle pair is identified of type h™h™ if that choice is at
least 10 times more likely than the others, P;,P,; >
10Py 4P, ;, where k # h. If no type choice fulfils any of the
above conditions, the particle pair is left unidentified. To
verify the particle identification capabilities, a detailed
simulation was set up. Samples with oppositely charged
particles (z*z~, K*K~, and pp) were generated uniformly
in the range —3 < 7 < 3 and in total momentum (ps, p4)
up to 2 GeV; each sample has 100 000 events. The most
probable value of ¢ was taken from a model [1] using the
density correction according to Ref. [52]; its relative
standard deviation was sampled from the measured dis-
tribution of oy, ,. The identification efficiencies are close to
100% at low momenta and slowly decrease above approx-
imately 1 GeV (pions and kaons) or 2 GeV (protons).
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FIG. 5.

The combined reconstruction and HLT efficiency (reconstructed and passing the HLT selection) for positively charged pions,

kaons, and protons as functions of (5, pr). Curves indicate constant total momentum (p = 0.1 GeV for pions, 0.16 GeV for kaons,
0.25 GeV for protons). Plots for negatively charged particles are similar.
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FIG. 6. Distribution of In € as a function of total momentum, for reconstructed charged particles in selected two-track events (identified
atn~, KTK~, pp, signal, and sideband; Sec. V). The variable ¢ is the most probable energy loss rate at a reference path length
ly = 450 pm. The color scale is shown in arbitrary units and is linear. The curves show the expected In ¢ for electrons, pions, kaons, and

protons [Eq. (34.12) in Ref. [1]].

C. Combined corrections for the silicon tracker

The combined HLT, reconstruction, and identification
efficiencies are calculated in the four-dimensional space
of [¢, my+y-, (cos B, )] (Sec. IC), separately for each
(P11, P21) bin, using exclusive two-track events generated
with uniform distributions. The combined efficiency is
usually above 10% and can reach 90%. It is lower than 1%

only in small regions, specifically in the first 20 MeV wide
mass bin, at the threshold 2m,x,, near ¢ ~ z, and in the
case of kaons for m > 2.6 GeV because of the reduced
particle identification capabilities at higher momenta. In
summary, we have coverage in [¢, m, (cos 0, ¢)g,] through
most of the RP trigger configurations. The corrections
described so far are included in the analysis by weighting
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TABLE 1. Ranges (in parentheses) for bias and resolution of the
reconstructed transverse momentum and the two-hadron invariant
mass, shown for pions, kaons, and protons, in MeV units.

n K p

Single hadrons pr bias (0,45) (-10,45) (-15.+5)
pr resolution (5, 15) (10, 20) (15, 25)
m bias 0,4+4) (-2,0) (-2.0)

m resolution 15 at my+,- = 0.6 GeV

h™h~ pairs

events with the product of three factors,

< 1 > <H tracklet weights>
Lin rigger conf azimuthal accep / gp,

1
x (Cornblnedefﬁc> tracker ’

(6)

which refer to the actual RP trigger configuration of the
event, the Roman pot, and the tracker-related corrections,
respectively.

D. Momentum and mass resolutions

The bias and resolution of the reconstructed transverse
momentum and the two-hadron invariant mass are shown in
Table I for pions, kaons, and protons. The pt bias for kaons
and protons occurs because all particles are reconstructed
with the pion mass assumption, but the physical effects of
particle passage through matter are mass and momentum
dependent. The pt resolutions also show some phase space
dependence. The uncertainties seen in momentum sum
distributions below (Sec. V) mostly come from the proton
momentum reconstruction of the RP system. The bias of
the two-hadron invariant mass is proportional to the decay
momentum of the daughter in the center-of-mass frame.
In summary, the observed shifts are much smaller than the
bin width of 20 MeV, but become comparable with it at
higher masses. For uneven mass distributions (narrow
resonances), these effects should be properly unfolded,
but for smooth distributions (nonresonant continuum) an
unfolding is not needed.

V. EVENT CLASSIFICATION

The classification of events is largely based on momen-
tum conservation in the transverse plane. Once corrected
for the effects of the beam crossing angle (120 prad), the
system of the colliding protons has zero momentum.
Therefore, the sum of the momenta of the scattered protons
and the other particles created in the collision should also
be zero. Momentum conservation in the z direction is
already utilized for the calculation of longitudinal momenta
of the scattered protons, since the resolution from a direct
measurement would be poor.

The sum of scattered proton transverse momenta (> _, py
for these two particles) and the sum of scattered proton and
central hadron transverse momenta (3, pr for these four
particles) play an important role. The joint distributions of
their components (3, py VS > 5 P> D4 Py VS D o Py) are
shown for each trigger configuration for two-track events
in Fig. 7. The contributions of elastic pileup (two scattered
protons and two unrelated central charged hadrons, vertical
band) and central exclusive events (two scattered protons
and two central charged hadrons, horizontal band) are
visible. In addition, a slanted area of nonexclusive or in-
elastic background is present. In the case of TT and BB
trigger configurations, the vertical band is absent, since
such configurations (3, p, > 2 x 0.2 GeV) prevent the
recording of elastic events.

The classification variable is the Mahalanobis distance y,
which is a multidimensional generalization of the standard
deviation taking into account internal correlations [53].
It is based on the value and covariance of momentum
sums, defined in the multivariate normal case as y(5) =
(57TV-15)/2, where V(5) is the covariance matrix. For two-

dimensional vectors (s,,s,) it can be written as

)((5) _ (V},}‘S% - 2ny5x5y ;‘ VXXS§> 1/2. (7)
ViV = Vi

For each event, the classification variable y, is based
on s =, pr, whereas the value of y, is computed from
5 = >4 pr- They both follow the y distribution of 2 degrees
of freedom (d.o.f.) with a parameterless probability density
function yexp(—y?/2). Distributions and joint distribu-
tions of y, and y, are shown in Fig. 8 without any
preselection (integrated over the azimuthal angle between
the scattered protons ¢). The distributions are fitted with a
two-component model: a sum of a y distribution (signal)
and a phase space motivated term (background) as
Ayexp(—y?/2) + By exp(—ky). The functional form fits
the measured distribution well, with two relevant param-
eters only (B/A and k).

An event is used in the analysis if it is more likely a
central exclusive signal than an elastic 4 pileup back-
ground, y4 < y,. Signal events are defined by y, <
Xsign = 3.4, where the numerical choice for y,, translates
into a signal loss below 0.5%. Sideband events in the
region Jen < ¥4 < Xside are subtracted with weight of —1
to compensate for nonexclusive events in the signal
region. For this subtraction scheme to work, we must have
equal numbers of nonexclusive events in the signal and
sideband regions. We need a yg 4. value that satisfies

vy exp(—ky)dy = f{?;exexp(—k)()d)(. Although the
choice of signal cutoff is fixed, the value of the sideband
cutoff depends on the actual distribution of y,. The fitted
coefficient k and the value of y 4. for y4 as a function ¢ are
shown in Fig. 8 (lower right).
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(D 4 Px VS D 5 Pas D4 Py VS Do Py) shown for the diagonal trigger configurations (TB and BT, left) and the parallel ones (TT and BB,

right) in the case of two-track events.

VI. RESULTS

The measured distributions are the following: distribu-
tion of the azimuthal angle ¢ between the scattered proton
momenta, d’c/ dp,rdp,rd¢; invariant mass of two
hadrons m, d°c/dp,tdp,rdm; squared four-momentum
max (7, it) of the virtual meson, d*c/dp, rdp, rd max(i, it),
in the range 0.2 < (py1, pa1) < 0.8 GeV. In the plots the
scattered protons are indexed such that p;t > por.
Tabulated results are provided in HEPData [54].

A. Systematic uncertainties

The relevant systematic uncertainties are listed in
Table II, where values propagated to the final differential
cross sections are given. The sources are the pileup correc-
tion (because of the uncertainty in the visible cross section),
the reduced RPs availability, the integrated luminosity,
the efficiency of the RPs, the removal of the nonexclusive
background, the fraction of signal events mistaken as back-
ground or lost because of the selection against looping
particles, and the efficiency of single-particle tracking.

The systematic uncertainty of the visible cross section
oy 1s estimated as half the difference between the value
used and the minimum bias value. This uncertainty is
propagated to the final differential cross sections through
the pileup correction factor, and its contribution to the
systematic uncertainty is 1.0%. A few short periods with
reduced data-taking efficiency are due to the loss of one
out of the four data streams. About 2%-3% of the data
segments are affected, leading to about 0.5% systematic
uncertainty. The systematic uncertainty in the integrated

luminosity (per data segment) is 2.5% [55]. The efficiency
of tracklet reconstruction in the RPs depends on the
knowledge of the individual strip efficiencies. These were
determined by a tag-and-probe method [56] using zero- and
two-track datasets. The effect on proton reconstruction
efficiency is about 3%. To estimate the systematics related
to the removal of nonexclusive background (y, distribu-
tion), the functional form of the background model was
varied (uncertainty below 0.5%). Signal events are lost
because of the sideband removal procedure. Their fraction
is estimated with the help of the signal and the background
components of the y, distributions, resulting in an uncer-
tainty of 0.16%, which is neglected. The fraction of events
lost because of the looper removal procedure is estimated
by fitting the |p3 + py|/m distribution with a signal and
a background component. The estimated value is below
0.5%, which is again neglected. The systematic uncertainty
in the single-particle tracking efficiency of centrally pro-
duced hadrons in the relevant low-momentum regions is
1.4%, according to a study based on control samples in
data [57]. To demonstrate the particle identification capa-
bilities for particle-antiparticle hadron pairs, a detailed
simulation was set up. The probability of misidentification
is low, and in the most populated low-momentum regions it
is below 1%.

The uncertainty of the RP and single-particle tracking
efficiencies are included for both arms and for both
centrally reconstructed charged hadrons. The estimated
total systematic uncertainty of the differential cross section
measurements is 5.4%, with the various contributions
treated as independent and added in quadrature.
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beam direction.

B. The ¢ distributions

We focus on # "z~ production because this system has a
wide invariant mass window (0.35 < m .- < 0.65 GeV)
without resonance contributions, contrary to the K+K~
case. The distributions of d*c/dp, tdp,rd¢ as functions
of ¢ in several (p;r, po7) bins are shown in Figs. 9-11.
The differential cross sections are given in units of
ub/GeV?2. Values based on data from each RP trigger
configuration (TB, BT, TT, and BB) are shown separately
with colored symbols, whereas the weighted average is
indicated with black symbols. The error bars show the
statistical uncertainties. Gaps (missing data points) in some
(p1.1) bins of Fig. 9 are due to the vanishing acceptance in
those bins.

The distributions from the different trigger configura-
tions are consistent. Except for the lowest pr bins, they
feature a minimum where the differential cross section gets
close to zero, while local maxima at ¢) = 0 and r are also
present. The distributions are asymmetric at low and high
transverse momenta, but there exists a symmetric region
around p; 1+ py1 ~0.8-0.9 GeV.

The data can be fitted with a simple functional form

BPo

dpy rdp, rde = [A(R — cos @)]*> + 2, ®)

where A, R, and ¢ are functions of (pir,p,r). The
x*/d.o.f. values corresponding to individual fits are mostly
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TABLE II. Systematic uncertainties of the differential cross

sections.

Source Value (%) Remark

Pileup correction 1.0 Through o;

Periods with reduced RP availability 0.5

Integrated luminosity (L) 2.5

HLT efficiency <0.1 Neglected

Total normalization type 2.7

Roman pot efficiency 3.0 Twice

Background removal <0.5 Neglected

Lost events during background 0.16 Neglected
removal

Lost events due to looper removal <0.5 Neglected

Single-particle tracking efficiency 1.4 Twice

Particle identification efficiency <1.0 Neglected

Total efficiency type 4.7

Total systematics 54
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in the range 1-10. The formula features a sum of squared
amplitudes (Sec. I A) and is inspired by previous theoretical
and experimental studies [13,15], where A(R — cos¢) is
connected to the quantum mechanical amplitude of the
process. If the total amplitude crosses zero at a given ¢, its
squared value will have a parabolic minimum. Such a dip at
¢ = arccos R can be understood as an effect of additional
pomeron exchanges between the incoming protons, result-
ing from the interference between the bare and the re-
scattered amplitudes [30]. The term containing c¢ is added
incoherently; it is small and is present to improve the
quality of the fit.

The dependences of the parameters A, R, and ¢ on (1, 1,)
are shown in Fig. 12. Although A and ¢ can be approxi-
mated with a simple #; + ¢, dependence, the results for
R do not all have the same dependence. The measured
points are fitted with model-motivated [13,15] functional
forms
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FIG. 9. Distributions of d*s/d p1.1dpadd as functions of ¢ in the 7z~ nonresonant region (0.35 < m,+,- < 0.65 GeV) in several
(P11 por) bins in the range 0.20 < p; 1 < 0.40 and 0.20 < p, < 0.40 GeV, in units of pb/GeV?. Values based on data from each RP
trigger configuration (TB, BT, TT, and TT) are shown separately with colored symbols, whereas the weighted average is indicated with
black symbols. Results of individual fits with the form [A(R — cos ¢)]* + ¢? [Eq. (8)] are plotted with the curves. The error bars indicate

the statistical uncertainties.
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Egs. (9). In the upper right plot, points with significantly different proton transverse momenta (|p; r — p,r| > 0.35 GeV) are colored
blue. The lower right plot shows the dependence of R on the two scattered proton transverse momenta.

Aty 1) = 4/1i AP (1H1),
1.2(\/=1; + \/=5) — 1.6/, — 0.8
Vit +0.1 ’

R(tl, tz) ~

C(tl, tz) = Coed(l]thZ).

©)

Although the parametrization overall gives a good
description of the data, there are some deviations at low
and high —(#; +,) values for A and ¢, respectively.
Both A and ¢ have very similar dependence on (¢, + ¢,)
since b = d.

The parametrization of the invariant triple-differential
cross section is

o

= 4/, A2 D[R (1, 1) — 2
di,dirdd 112A45¢€ [R(t1,1;) — cos ]
c2e2d(t+1)

1
— , 10
Fayin 1o

where Ay = 10.6 - 0.24/nb/GeV?, b = 3.9 + 0.1 GeV~2,
cp=2.1+0.1v/nb/GeV, and d = 3.8 £ 0.1 GeV~2.

C. Available MC event generators

The pIME [30] (v1.07) MC event generator for exclusive
meson pair production via double-pomeron exchange was
used in previous STAR [18] and CMS [20] analyses. It
generates central exclusive nonresonant 7z~ and KT K~
production events via the double-pomeron exchange
mechanism. This generator is based on previous work
on proton opacity [27] and the two-channel model [29]
(Good-Walker approach). It includes a fully differential
treatment of the eikonal survival factor. The SuperChic2
generator [58] can be regarded as an evolution of DIME,
but only provides events with hadron pair invariant masses
above 2 GeV. The GenEx code [59] follows an approach
quite similar to that of DIME, but does not include the
absorption corrections [18]. The model developers esti-
mated the corresponding suppression factor to be large,
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of the order of 2-5, and cross sections have to be scaled
down by such suppression factor at masses m < 1.2 GeV.
The GrRANITTI (v1.051) MC event generator [60] for
high-energy diffraction includes differential screening, an
extendable set of scattering amplitudes with adaptive MC
sampling and spin effects.

In the following we consider three models (empirical,
one channel, and two channel) and three parametrizations
[exponential, Orear-type, and power law, Eq. (3)] of the
proton-pomeron form factor. In the case of the empirical
model, the rescattering amplitude comes from a simple
parametrization of the elastic differential pp amplitude
[31,32], fitted to the measured cross sections [61,62].
The one-channel model assumes ground state protons
(one eigenstate), whereas the two-channel model works
with two diffractive proton eigenstates (Sec. I A). The one-
channel model is disfavored in describing the elastic
differential cross section data [63].

D. Model tuning

There exist loose estimates of the numerous parameters
of the theoretical model illustrated in Sec. I A, including
cross sections, slopes, proton-pomeron, and meson-pomeron
form factors. Our aim here is to determine the best values
and corresponding uncertainties in these quantities with the
present data. For the tuning of physics parameters, the tool
PROFESSOR [64] (v2.3.3) is employed. It quantifies the per-
bin generator response to parameter variations and numeri-
cally optimizes the behavior of the generator.

The measured distributions included in model tuning are
from events with 7z~ central final state in the resonance-
free region:

(i) that of azimuthal angle between the scattered

proton momenta, d>¢/dp, rdp, rde, if 0.35 < m <
0.65 GeV;
(ii) that of two-hadron invariant mass at low masses,
d*c/dp, rdpyrdm, if m < 0.7 GeV;
(iii) the distribution of the two-hadron invariant mass
at high masses, d°c/dp,rdp,rdm, if 1.8 <m <
2.2 GeV;
(iv) that of squared four-momentum of the virtual meson,
d*c/dp, rdp, rdmax (i, it), if 1.8 <m < 2.2 GeV;
all of them in the range 0.2 < (p; 1. po1) < 0.8 GeV. The
¢ distributions are sensitive to any resonant contribution;
for this reason their mass window is a bit more restricted
(0.35 < m < 0.65 GeV) than that of the invariant mass
distribution. Information about the exchanged virtual meson
is present in the distribution of max(7,&) and can be
exploited if one of t or 1 is close to zero, when the hadron
is nearly on shell. Such cases occur if the difference of g
and g, is large. In other words, the invariant mass of the two-
hadron system should be large, hence the choice of a
resonance-free window at higher mass values.

The parameter space has many dimensions, and there

are up to 13 parameters to tune. The ranges of the

parameters are chosen such that the variation of the model
output, i.e., its envelope, covers the measured distributions.
The sampling is random and uniform, and 512 pseudoex-
periments are performed for each form factor parametriza-
tion. Each pseudoexperiment contains 1 x 10° generated
events, whose average cross section per event is recorded.
The distributions from these MC pseudoexperiments are
interpolated with a first-order polynomial in the parameter
space. The tuning, i.e., the minimization of the global
goodness of fit, converges to unique minima for each model
and all three form factor options. The y?/d.o.f. values are in
the range 1.6-2.0 (empirical), 1.2-1.5 (one channel), and
1.0-1.3 (two channel). Good fits are achieved with the
one- or two-channel models using exponential or Orear-
type form factors, whereas the numerically best one is the
two-channel model with the exponential parametrization of
the proton-pomeron form factor. It is clear that the power-
law parametrization of the proton-pomeron form factor
is least favored by our results. The empirical model also
has a poor goodness-of-fit value, although with fairly few
parameters.

The values of the fitted parameters are listed in Table I1I
and shown in Fig. 13, with notations Alal?> = (|a;|> -
|a,?)/2 and Ay = (y, —y,)/2. In the case of the two-
channel model, parameter values of two models describing
the elastic differential pp cross section from Ref. [29] are
also indicated (DIME 1 and 2). Settings of DIME 1 agree well
with the best tuned values of the parameters, with the
exception of the Ala?|, Ay, and b factors. The extracted
values of o are stable, except for the one-channel expo-
nential case, and disagree with earlier estimates (Sec. [ A).
The matrix of correlation coefficients for the two-channel
model is displayed in Fig. 14 for several choices of the
proton-pomeron form factor.

E. Data-MC comparisons

The distributions of d®c/dp; tdp,rd¢ in the nonreso-
nant region (0.35 < m,+,- < 0.65 GeV) as a function of ¢
in several (p; 1, por) bins are shown in Figs. 15-17. The
measured values are shown together with the predictions
of the empirical and the two-channel models using the
tuned parameters for the exponential proton-pomeron form
factors. Curves corresponding to DIME (model 1) are also
plotted: this generator gives a poor description of the data
for ¢ > n/2. Although the various tuned models give a
better description, there are some regions with sizable
disagreements pointing to the need for further theoretical
developments, specially for low p; 1 and low p, r, as well
as high p; and high p, 1 combinations.

The plain exponential proton-pomeron form factor (from
the fit with the empirical model) and those of the two
diffractive proton eigenstates are shown in Fig. 18 (left).
One of the eigenstates is quite close to the exponential
form. Various options of the meson-pomeron form factor
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TABLEIII. Values and statistical uncertainties of the parameters tuned using the PROFESSOR tool, given for the empirical, one-channel,
and two-channel models along with the DIME soft models 1 and 2 with the exponential, power-law, and Orear-type parametrizations of

the proton-pomeron form factor. Goodness-of-fit (y?/d.o.f.) values are also listed.

Parameter Exponential Orear-type Power law DIME 1/2
Empirical model

Ao (GeV) e 0.735 £0.015 e

Bexp fore/pow (GEV 2T ) 1.084 £ 0.004 1.782 £0.014 1.356 £0.001

Bp(GeV~?) 3.757+£0.033 3.934 £ 0.027 4.159 £0.019

r*/d.o.f. 9470/5796 10059/5795 11409/5796

One-channel model

6o(mb) 34.99 £0.79 27.98 +0.40 26.87 £0.30

ap—1 0.129 £ 0.002 0.127 £ 0.001 0.134 £ 0.001

ah(GeV2) 0.084 £ 0.005 0.034 +0.002 0.037 £ 0.002

Aore (GeV) e 0.578 £0.022 e

Bexp jore/pow (GEV 2T ) 0.820 £ 0.011 1.385 £ 0.015 1.222 + 0.004

Bp(GeV~?) 2.745 £ 0.046 4271 £0.021 4.072 £0.017

7*/d.o.f. 7356/5793 7448/5792 8339/5793

Two-channel model

o, (mb) 2097 £0.48 22.89 £0.17 23.02+£0.23 23/33
ap—1 0.136 £ 0.001 0.129 £ 0.001 0.131 £0.001 0.13/0.115
a(GeV~2) 0.078 £ 0.001 0.075 £ 0.001 0.071 £0.001 0.08/0.11
Ao (GeV) e 0.718 £0.012 e

Bexp ore/pow (GEV 2T ) 0.917 £ 0.007 1.517 £ 0.008 0.931 £0.002 0.45
Alal? 0.070 £0.026 —0.058 £ 0.009 0.042 £0.011 —-0.04/ —0.25
Ay 0.052 £0.042 0.131 £0.018 0.273 £0.023 0.55/0.4
b;(GeV?) 8.438 = 0.108 8.951 +0.041 8.877 £ 0.040 8.5/8.0
c1(GeV?) 0.298 £0.012 0.278 £ 0.004 0.266 £ 0.006 0.18/0.18
d; 0.472 £+ 0.007 0.465 + 0.002 0.465 £ 0.003 0.45/0.63
b,(GeV?) 4.982 £0.133 4.222 £0.052 4.780 £ 0.060 4.5/6.0
c,(GeV?) 0.542 £0.015 0.522 £ 0.006 0.615 £ 0.006 0.58/0.58
d, 0.453 £+ 0.009 0.452 £ 0.003 0.431 £ 0.004 0.45/0.47
7%/d.o.f. 5741/5786 6415/5785 7879/5786

in the two-channel model, for the exponential, power-
law, and the Orear-type parametrizations are shown in
Fig. 18 (right).

The distributions of d*c/ dp,1dp,rdm as a function
of m in several (p;1,p,r) bins are shown for z*z~ in
Figs. 19-21. Measured values are shown together with the
predictions of models using the tuned parameters for the
exponential proton-pomeron form factors. The tuned mod-
els do not satisfactorily describe the regions with high p; t
and high p, r combinations, whereas the empirical model is
not able to describe data well at low transverse momenta.

The distributions of the squared momentum transfer
of the virtual pion at invariant masses 1.8 < m,+,- <
2.2 GeV in several (p;t, pp) bins are shown for ztz~
in Figs. 22-23. Measured values are shown together with
the predictions of the empirical and the two-channel models
using the tuned parameters for the exponential proton-
pomeron form factors. Curves corresponding to DIME

(model 1, “Dime 1) and its modification [labeled “Dime 1
(mod)”] with b, = 0.9 GeV~2 are also plotted.

VII. SUMMARY

We examined the central exclusive production of
charged-hadron pairs in proton-proton collisions at a
center-of-mass energy of 13 TeV. Events are selected by
requiring both scattered protons to be detected in the
TOTEM Roman pots and exactly two oppositely charged
identified pions in the CMS silicon tracker. The process is
studied in the resonance-free region, for invariant masses
of the centrally produced two-pion system m_+,- < 0.7 or
my+ - > 1.8 GeV. Differential cross sections are measured
as a function of the azimuthal angle between the surviving
protons in a wide region of scattered proton transverse
momenta, between 0.2 and 0.8 GeV, and for pion rapidities
ly] < 2. A rich structure of nonperturbative interactions
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FIG. 13. Values of best parameters for the empirical (upper left), one-channel (upper right), and two-channel (lower) models with
several choices of the proton-pomeron form factor (exponential, Orear-type, power law). In the case of the two-channel model,
parameter values of models describing the elastic differential pp cross section from Ref. [29] are also indicated (DIME 1 and 2).
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FIG. 14. Correlation coefficients among values of best parameters for the two-channel model, in the case of the exponential (left),
Orear-type (center), and power-law (right) parametrizations of the proton-pomeron form factor.
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FIG. 15. Distribution of d3a/dp1,po2,Td¢ as a function of ¢ in several (p;1,p,r) bins in the range 0.20 < p; 1 < 0.40 and
0.20 < p,1 < 0.60 GeV, in units of pb/GeV?, for the mass range 0.35 < m,+,- < 0.65 GeV. Measured values (black symbols) are
shown together with the predictions of the empirical and the two-channel models (colored curves) using the tuned parameters for the
exponential proton-pomeron form factors (see text for details). Curves corresponding to DIME (model 1) are also plotted. Results of
individual fits with the form [A(R —cos¢)]> + ¢*> [Eq. (8)] are plotted with the curves. The error bars indicate the statistical
uncertainties.
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related to double-pomeron exchange emerges and is mea-
sured with good precision. The parabolic minimum in the
distribution of the two-proton azimuthal angle is observed
for the first time. It can be understood as an effect of
additional pomeron exchanges between the incoming pro-
tons, resulting from the interference of the bare and the
rescattered amplitudes. With model tuning, various physi-
cal quantities related to the pomeron cross section, proton-
pomeron, and meson-pomeron form factors, pomeron
trajectory and intercept, as well as coefficients of diffractive
eigenstates of the proton are determined.
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