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We give a randomized algorithm for online metric b-matching that is O (log2 k) competitive, where k
is the number of server locations, by giving a black box reduction from b-matching on a hierarchically 
separated tree to a uniform metric space.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

We consider the classic online metric matching problem, which 
we explain in the context of an application to the efficient parking 
of cars. The problem is set in a metric space G , with distance func-
tion d(·, ·), containing n parking spaces (servers). Let S = s1, . . . , sn
be the collection of parking space locations in G . Then a sequence 
of (up to) n cars (requests) arrive at various locations in G . Let 
ri denote the location that the ith arriving car arrived, and let 
R = r1, . . . , rn be the sequence of all such locations. When car i
arrives, the online algorithm must irrevocably assign/match car i
to an available parking space of its choice, which we will denote 
by sα(i) . A parking space is available if it has not been previously 
assigned/matched to a car. The objective is to minimize the total 
distance moved by the cars (which we will view as a cost), namely 
min

∑n
i=1 d(ri, sα(i)). We will evaluate online algorithms based on 

their competitiveness. In general the competitiveness achievable by 
an online algorithm depends on the metric space G , but our focus 
will be on general metric spaces. So the competitiveness c(|P |) of 
an online algorithm A as a function of some parameter P will be 
the maximum, over instances (G, R, S) where the value of param-
eter P is |P |, of the ratio of the cost that A incurs on request 
sequence R with parking spaces located at S in G to the cost of 
the minimum-cost perfect bipartite matching between R and S .

The classical competitiveness results for online metrical match-
ing on general metric spaces are parameterized by |P | = n. The 
natural greedy algorithm, which matches each car to the nearest 
available parking space, is 2n − 1 competitive, and a worst-case 
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metric where this competitiveness can be achieved is the line met-
ric [3]. The optimal deterministic competitive ratio for a general 
metric space is 2n − 1 [3,5], which is achieved by an algorithm 
called Permutation in [3]. The 2n − 1 lower bound is achieved 
for a star metric (where this is a unique vertex, called the cen-
ter, of distance one from all other vertices, and all other distances 
are two). The optimal deterministic competitive ratio for a uniform 
metric space (where all distances are one) is n. The expected com-
petitiveness of every randomized algorithm (against an oblivious 
adversary) is �(log n), and a matching upper bound is achieved on 
a uniform metric space. By embedding a metric space into a hi-
erarchically separated tree (HST) one can obtain competitiveness 
O (log2 n) for a general metric space [1,6].

In this paper, we consider the situation where the number k
of distinct locations for the parking spaces is much less than the 
number of total parking spaces, say for example because there are 
a small collection of parking garages that each contain many park-
ing spaces. The special case that each garage has the same number 
b of parking spaces, which one can assume with minimal loss of 
generality, is sometimes called b-matching in the literature. In [3]
it is observed that the competitiveness of the natural greedy al-
gorithm could be reparameterized using the smaller parameter k, 
namely that the competitiveness of the natural greedy algorithm is 
2k − 1 for a general metric space [3]. In contrast, [4] observed that 
the competitiveness of Permutation can not be bounded by any 
function of k. Still [4] conjectured that the standard competitive-
ness results could be reparameterized in terms of the parameter 
k, and more precisely that the optimal deterministic competitive 
ratio is 2k − 1.

Here we substantiate the conjecture from [4] for randomized al-
gorithms, that is, that current randomized results can be reparam-
eterized by k instead of n. We show that the O (log2 n) competitive 
algorithm from [1] can be adapted to obtain an O (log2 k) compet-
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itive algorithm. Our algorithm design and analysis differs from the 
algorithm design and analysis [1] in some reasonably substantial 
ways. [1] gave an algorithm for an HST, whose analysis was similar 
to the analysis for a uniform metric space. Instead we give a black 
box reduction from an HST to a uniform metric space, that is, we 
show that a c-competitive algorithm for metric b-matching on a 
uniform metric space can be converted into an O (c)-competitive 
algorithm for an O (1)-HST. So we believe that one ancillary ben-
efit of our analysis is to make more formal the intuition from [1]
that embedding into an HST is reducing the problem on a general 
metric space to the problem on a uniform metric space. We also 
show how to solve the problem on a uniform metric space, which 
has its own technical challenges.

2. Randomized algorithms

In subsection 2.1 we define an analyze a randomized parking 
process that we call the tourist parking process. The tourist park-
ing process actually allows cars to move once they are parked. In 
subsection 2.2 we explain how an online algorithm can emulate 
this tourist parking process, without actually moving any already 
parked cars, to obtain an O (log k)-competitive algorithm for online 
metric matching in a uniform metric space. Finally in subsection 
2.3 we give a reduction from a c-competitive algorithm for the uni-
form metric space to an O (c)-competitive algorithm for a 2-HST. 
Combining this with the now standard technique of embedding an 
arbitrary metric space into an HST, as in [1,6], we can obtain an 
O (log2 k) randomized algorithm for online metric matching in a 
general metric space.

2.1. Tourist parking process

In the tourist parking process, n cars arrive over time in a 
uniform metric space on k + 1 garages. Let b j be the number of 
parking spaces in garage g j , j ∈ [k]. We call garage gk+1 the center
and set bk+1 = 0.

Let c j(i) be the total number of cars that have initially arrived 
at garage g j in the first i requests. We set e j(i) = max(c j(i) −b j, 0)

and call this the excess at garage g j after car i has be parked. We 
finally let e(i) = ∑k+1

j=1 e j(i) be the aggregate excess. Let E be an 
integer such that e(n) ≤ E ≤ 2e(n). We assume for now that the 
arriving cars know E , and remove that assumption in Section 2.2.

We assume that the parking spaces in garage g j are numbered 
1 to b j . Parking spaces 1 through max(b j − E, 0) are called early 
bird parking spaces, and the remaining parking spaces are called 
regular parking spaces.

All cars are classified as early birds, regulars, or tourists when 
they arrive. The cars that arrive at a garage g j are classified in the 
following manner:

• The first max(0, b j − E) cars to arrive are classified as early 
birds.

• The next b j − max(0, b j − E) cars to arrive are classified as 
regulars.

• All subsequent cars to arrive are classified as tourists.

When an early bird arrives, it picks the reserved parking spot 
in the parking garage. After early bird arrivals, let m be the total 
number of regulars and tourists, namely m = ∑k

j=1 min(E, b j).

If a regular arrives at garage g j , and this car is the hth arriv-
ing car at g j among regular cars, then this car parks in parking 
space max(0, b j − E) + h in g j . If a tourist was previously parked 
in parking space h, which could be the case if the new car is a 
regular, then the tourist randomly picks a new parking space using 
the tourist selection method.
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When a tourist arrives, it picks a parking space using what we 
call the tourist selection method. If the tourist is the i + 1st in to-
tal of m requests among regulars and tourists, the tourist picks a 
garage g j with probability proportional to the current number of 
available parking spaces for tourists and regulars in g j . The tourist 
then picks an available regular parking space to park in g j uni-
formly at random.

There are e(n) tourist cars in total, and m − e(n) regular cars. 
The following lemma states the probability distribution for where 
the tourists are parked.

Lemma 1. Assume that at some point in the tourist parking process 
r regulars have arrived and e tourists have arrived. Then tourists are 
equally likely to be parked at each of the 

(m−r
e

)
possible collections of 

e of the m − r available regular parking spaces. Thus the probability that 
a particular available regular parking space contains a tourist is e

m−r .

Lemma 2. The expected number of times that the tourist selection 
method is invoked is O (e(n) logk).

Proof. There are e(n) invocations of the tourist selection method 
when the e(n) tourists arrive. Thus we need only bound the num-
ber of invocations when regulars arrive. Let xi be an indicator 
random variable that is 1 if the ith arrival of a regular caused a 
tourist to move, and 0 others. Summing over the arrivals of regu-
lars, and letting H(x) denote the xth harmonic number, we get that 
the expected number of tourist cars that have to move due to the 
arrival of a regular is:

m−e(n)∑

i=1

E[xi] =
m−e(n)∑

i=1

P [xi = 1]

=
m−e(n)∑

i=1

e(i)

(m − (i − 1))

≤
m−e(n)∑

i=1

e(n)

(m − (i − 1))

= e(n)

m−e(n)∑

i=1

1

(m − (i − 1))

= e(n)

m∑

i=e(n)+1

1

i

= e(n)(H(m) − H(e(n)))

= e(n)(H(

k∑

j=1

min(E,b j)) − H(e(n)))

≤ e(n)(H(kE) − H(e(n)))

≤ e(n)(H(2e(n)k) − H(e(n)))

≤ e(n)(1 + ln(2e(n)k) − ln e(n))

≤ e(n)(ln e(n) + ln k + ln 2 − ln e(n))

= O (e(n) ln k) .

The second equality follows from Lemma 1. The third to last in-
equality follows the assumption that E ≤ 2e(n), and the last in-
equality follows from the fact that ln x < H(x) ≤ 1 + ln(x). �
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2.2. Uniform metric space

We now turn to the original parking problem in a uniform met-
ric space. All the points in the metric space not containing a garage 
are collapsed to a single point, which is designated as the center 
and indexed by k + 1. Unfortunately E is not known at the begin-
ning but will be known at the end. We will use standard doubling 
trick to guess E .

Uniform Algorithm Description: The algorithm mimics the tourist 
parking process, initially with E = 1. A car arriving at garage g j is 
parked in garage gh with the probability that the tourist parking 
process moves a car from garage g j to garage gh in response to the 
arrival of this car. So the cars are never parked at the same garage 
twice, and it is easy to see the equivalence, we just move the later 
car to arrive to the spot where the uniform parking process sent 
the earlier car.

The standard doubling method is used in the case that arrival 
of a car i causes the number of tourists to become equal to E . 
That is, the parameter E is doubled, say from x to 2x. Let C ′

f (i)
be the number of cars that would be parked in garage g f if the 
tourist parking process with E = 2x had been run on the cars 
1, . . . , h − 1. Let C f (h) be the number of cars that are actually 
parked in garage g f after car h − 1 is parked. The uniform al-
gorithm then continues simulating the tourist parking process for 
request i onwards using E = 2x and assuming configuration C ′

i−1. 
If the tourist parking process tries to park a car i in a garage g f , 
where C ′

i( f ) ≥ Ci( f ) then car i actually parks a car in garage g f . 
Otherwise if the tourist parking process tries to park a car i in a 
garage g f , where C ′

i( f ) < Ci( f ) then car i actually parks a car in 
an arbitrary garage ga where C ′

i( f ) > Ci( f ). Such a garage ga al-
ways exists since the number of cars parked in each configuration 
is the same. So intuitively this causes the actual configuration to 
drift toward the desired configuration C ′

i .

Lemma 3. The uniform algorithm is O (logk)-competitive for matching 
in a uniform metric space.

Proof. If E were fixed then the cost of the uniform algorithm 
would be exactly the cost of the tourist parking process, which 
by Lemma 2 is O (E log k). We assume E1 = 1 and the last dou-
bling leads to E = E� = 2�−1. When the estimate E doubles, from 
say Ei = x to Ei+1 = 2x, the number of cars parked in different 
spaces in C and C ′ is at most 2x. Thus the cost to the uniform al-
gorithm due to being in configuration C instead of configuration 
C ′ is at most 2x. And thus the cost to the uniform algorithm is

O (

�∑

i=1

(Ei ln k + Ei)) = O (E� log k) ,

where here E� is the final value of E . As E is at most twice the 
optimal cost the result follows. �
2.3. Hierarchically separated trees

We now turn to the general metric and give a reduction from 
the uniform metric to the case of Hierarchically Separated Trees, 
HST for short. Given a parameter α ≥ 1, an α-Hierarchically Sepa-
rated Tree (α-HST) is a rooted tree T = (V , E) along with a length 
function d on the edges which satisfies the following properties:

• For each node v , all the children of v are at the same distance 
from v .

• For any node v , if p(v) is the parent of v and c(v) is any child 
of v , then d(p(v), v) = α · d(v, c(v)).
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• Each leaf has the same distance to its parent, for convenience, 
we assume that the distance between each leaf and its parent 
is 1.

We view an α-HST as a leveled tree, where all the leaves are at 
the same level, and the edge-lengths increase geometrically by a 
factor of α as we go up the tree from the leaves to the root. We 
set α = 2.

HST Algorithm Description: The root node of the tree is different 
from every other node. Each nonleaf node v of T , with children 
w1, . . . , wh , runs a copy U v of a uniform algorithm on an h + 1
node uniform metric space where the number of parking spaces 
in g j , j ∈ [h], is the number of parking spaces in the leaves of 
the subtree T w j rooted at w j in T , and v is the center. When a 
car first arrives, it is given to the copy of the uniform algorithm 
running at the root of T which has x children and it runs a x node 
uniform algorithm.

We now explain how the algorithm works for an arbitrary non-
leaf node v in T .

• Assume a car arrives at a garage in T w j . If in response to this 
arrival U v parks this car in g j then this car’s arrival is passed 
to U w j .• Otherwise if in response to this arrival U v moves a car from 
g j to a garage g f , f �= j then a request w f is passed to the 
copy of the uniform algorithm U w f running at w f .

Any car arrival that is passed to a leaf in T is parked in the 
garage associated with that leaf.

Lemma 4. If the uniform algorithm is c-competitive for online metric 
matching on a uniform metric space, then the HST algorithm is O (c)
competitive for metric matching on a 2-HST.

Proof. A lower bound to the optimal cost is the sum over the 
nodes v in T of the number of tourists that U v sees times 2h(v)−1, 
where h(v) is the height of v in T in terms of hops. By design the 
cost of the HST algorithm is O (c) times this amount since each 
time HST incurs O (c) in cost. �
Theorem 1. There is an O (log2 k)-competitive algorithm for online met-
ric matching in an arbitrary metric space.

Proof. Such an algorithm can be obtained by combining the uni-
form algorithm in the previous subsection, the HST algorithm 
above, and the now standard techniques for embedding an gen-
eral metric space into an HST with distortion O (log k) [1,2,6]. �
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