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1 INTRODUCTION

Global terrestrial emissions of nitrous oxide (N2O), a potent

greenhouse gas, have increased from 6.3 Tg N2O-N year−1

in the preindustrial era to 10 Tg N2O-N year−1 in the last

decade (2007–2016), which represents an increase in atmo-

spheric N2O load of ∼60% (Tian et al., 2019). This increase

is largely governed by the increase in cropland soil emissions

from 0.3 to 3.3 Tg N2O-N year−1 during the same period.

Increases in fertilizer nitrogen (N) application rates drive

N2O emissions from agricultural soils—the largest anthro-

pogenic source of atmospheric N2O that contributes nearly

10% of global anthropogenic radiative forcing (Butterbach-

Bahl et al., 2013; Shcherbak et al., 2014; Syakila & Kroeze,

2011; Zhang et al., 2020).

Nitrous oxide emissions from agricultural soils result

from biogeochemical processes primarily dominated by

microbial nitrification and denitrification (Dobbie & Smith,

2003; Robertson & Groffman, 2024). These processes are

highly sensitive to environmental conditions including soil

moisture/water-filled pore space (WFPS), temperature, pH,

and availability of organic carbon (C) and inorganic N (Baral

et al., 2022; Giltrap et al., 2010; Oertel et al., 2016)—further

influenced by management practices. Net N2O emissions

measured in situ are the outcomes of complex interactions

among the driving factors and their threshold conditions that

are often nonlinear and spatially discontinuous (Robertson,

2023). For this reason, the prediction of N2O emissions based

on simultaneously observed environmental factors and N

substrate concentrations shows very weak to no correlations

in most studies (e.g., Gelfand et al., 2016; Maharjan &

Venterea, 2013; Wanyama et al., 2018). This complexity is

often manifested in the highly dynamic and variable nature

of soil N2O emissions characterized as “hot spots” and

“hot moments” (Groffman et al., 2009; Saha et al., 2018;

Venterea et al., 2012). Only a fraction of this spatial and

temporal variability may be attributed to applied fertilizer N,

with much of the remainder attributed to the soil, climatic,

and management factors influencing total N2O emissions

(de Klein et al., 2020; Deng et al., 2022; Groffman et al.,

2009). Both direct observations and meta-analyses show a

non-linear relationship between N fertilization rate and N2O

emissions (e.g., Hoben et al., 2011; Kim et al., 2013; Millar

et al., 2018; Scheer et al., 2016; Shcherbak et al., 2014),

which further highlights the confounding impacts of multiple

driving factors on N2O emissions.

Long-term management practices such as no-till (NT) and

cover cropping alter soil biophysical and biogeochemical con-

ditions to modify the shape and threshold response of N2O

emissions to environmental and biogeochemical drivers. For

example, long-term NT improves soil physical properties such

as soil aeration and moisture retention and reduces soil tem-

perature (Nouri et al., 2019). While lower soil temperature and

Core Ideas

∙ Long-term (2003−2019) data from an

LTAR/LTER site was used to understand dynamic
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sions.

improved aeration under macropore-dominated NT soils may

reduce N2O emissions (Ussiri et al., 2009; Van Kessel et al.,

2013), moist soils can promote N2O emissions from denitrifi-

cation and its rapid escape to the atmosphere due to greater

diffusivity (Wang & Zou, 2020). Therefore, N2O response

to soil moisture and temperature may differ between NT and

conventionally tilled (CT) soils, which makes it difficult to

predict management impacts on N2O emissions under inter-

annual weather variability. Literature inconsistently shows

that N2O emissions under NT either decrease (Grandy et al.,

2006; Six et al., 2004; Van Kessel et al., 2013) or increase

(Ball et al., 2008; Mei et al., 2018) compared to CT. Similarly,

the quantity and quality of cover crop biomass influence soil

N availability, which in turn affects N2O emissions and their

response to fertilizer N application (Finney et al., 2015; Pan-

day et al., 2022). Following cover crop termination, legume

residues can significantly increase N2O emissions due to fast

N release (Davis et al., 2019; Saha, Kaye, et al., 2021). Accel-

erated cover crop decomposition and heterotrophic respiration

rapidly consume soil oxygen (O2) to promote anoxia and

large N2O emissions from denitrification regardless of soil

moisture conditions (Lussich et al., 2024). These findings are

in contrast with the generalized conclusions about negligi-

ble impacts of cover crops on soil N2O emissions (Basche

et al., 2014; Kaye & Quemada, 2017). Such inconsistencies

further highlight our limited understanding of dynamic vari-

able controls on N2O emissions in response to environmental

and management differences.

Additionally, long-term N2O emissions are greatly influ-

enced by inter-annual variability in weather conditions (Baral

et al., 2022; Burchill et al., 2014), and in particular variabil-

ity in rainfall distributions (Rowlings et al., 2015). However,
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DHALIWAL ET AL. 3

many studies investigating spatial and temporal N2O emission

controls are based on short-term measurements spanning from

one to two growing seasons and capturing only a snapshot

within a growing season (Dorich et al., 2020). The time-

consuming and resource-intensive nature of chamber-based

N2O flux measurements is a key limitation for individual

research projects in implementing spatially and temporally

extensive flux monitoring. Coordinated efforts by long-term

research network sites can be useful in overcoming such

limitations by providing multi-year data capturing weather

variability and management legacies (e.g., crop rotation, NT,

and cover cropping), which often take time to emerge (Cusser

et al., 2020; Six et al., 2004).

Several quantitative tools have been traditionally employed

to understand the complexity of soil, climate, and crop man-

agement practices influencing N2O emissions with varying

degrees of success. For example, parametric regression mod-

els, by design, do not represent nonlinear variable interactions

influencing N2O emissions (Kim et al., 2013). Similarly,

the emission factor (EF) approach by the Intergovernmental

Panel on Climate Change (IPCC) is insensitive to dynamic

interactions between the environmental factors and manage-

ment conditions. These models often fail to predict how N2O

emissions may change at a finer temporal and spatial scale

(Ramírez-Melgarejo et al., 2020; Richards et al., 2016). Fur-

thermore, these approaches are limited to provide insights

on critical values of predictor variables differentially influ-

encing N2O under different management practices, such as

crop diversification, NT, cover crop, and so forth. Unlike

the empirical models, process-based biogeochemical models

can simulate feedback and interactions that can be difficult

to distinguish in the field (Giltrap et al., 2010). Process-

based models, such as the DayCent (Del Grosso et al., 2000;

Parton et al., 2001) and DeNitrification-DeComposition (Li,

2000, 2007), have considered important regulating factors

to support the prediction of N2O emissions and thus have

been recognized as useful tools to evaluate the effects of

management practices on N2O emissions from agricultural

soils (Deng et al., 2018; Jarecki et al., 2008). However,

heavy parametrization and site-specific calibration need of the

process-based models often limit their extensive use (Ehrhardt

et al., 2018; Fuchs et al., 2020; Gaillard et al., 2018; Gilhespy

et al., 2014).

Machine learning models such as decision trees and ran-

dom forest (RF) treat the output variable (e.g., N2O) as an

implicit function of input features (e.g., soil, environment,

and management), and can capture complex nonlinear rela-

tionships as learned from the data and not by predefined

process-based relationships as in the case of biogeochemical

models (Breiman, 2001; Huang et al., 2010). The RF appears

to be a more promising technique than classical regression-

based methods and other machine learning algorithms due

to its ability to rank predictors using internal measures of

variable importance and to provide valuable insights through

partial dependence (PD) plots (Djiemon et al., 2019; Saha

et al., 2017).

Machine learning has been increasingly used to predict

N2O emissions in recent years (Glenn et al., 2021; Joshi et al.,

2024; Liao et al., 2023; Philibert et al., 2013; Saha, Basso,

& Robertson, 2021; Yin et al., 2022). However, predictive

ability of machine learning models is correlational as learned

from the data, hence has limited power in representing a novel

scenario, which is a key pursuit of process-based models.

Nonetheless, machine learning models can be resource effi-

cient in scaling our existing knowledge and provide insights

on key variable interactions controlling N2O emissions to

optimize process-based models. The availability of long-term

data creates novel opportunities for using machine learning

models to understand differential controls of N2O emissions

under diverse management practices.

By leveraging 17 years of long-term observations, we

used RF and decision tree models to infer the controls and

drivers of soil N2O emissions from four corn (Zea mays

L.)–soybean (Glycine max L.)–wheat (Triticum aestivum L.)

rotations employing diverse tillage, fertilization, and cover

cropping practices in the US upper Midwest. Our objectives

are to identify critical management, environmental, and bio-

geochemical drivers of N2O emissions and their differential

relationships and threshold conditions for emissions under

diverse long-term cropping rotations.

2 MATERIALS AND METHODS

2.1 Site description

Our study tracks a 17-year (2003–2019) long-term data

stream from the Main Cropping System Experiment (MCSE)

of the Kellogg Biological Station (KBS) Long-Term Eco-

logical Research (LTER) site, which is also one of 18

Long-Term Agroecosystem Research sites across the United

States. Historical data on yearly N2O emissions, soil prop-

erties, agricultural management practices, and weather were

obtained from the KBS LTER data catalog (https://lter.kbs.

msu.edu/datatables). The KBS LTER site is located in the

northeast portion of the US corn belt in southwest Michigan

(42˚24′ N, 85˚24′ W, and 288 masl) and was originally estab-

lished in 1987 to examine the ecology of intensively managed

field crops and the landscape in which they reside (Robertson

& Hamilton, 2015). Soils at the site are well-drained Typic

Hapludalfs of the Kalamazoo (fine-loamy, mixed, mesic) and

Oshtemo (coarse-loamy, mixed, mesic) series, formed from

glacial till and outwash with some intermixed loess (Crum &

Collins, 1995; Luehmann et al., 2016). Surface soils exhibit

an average of 43% sand and 17% clay contents (Robertson &

Hamilton, 2015), with an average organic C of 11.9 g kg−1,
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T A B L E 1 Agronomic management practices under the four annual cropping systems studied (2003–2019).

Cropping system Crop phase (N fertilizer, kg N ha−1)

Conventional Corn (137 ± 20) Soybean Wheat (77 ± 17)

No-till Corn (137 ± 20) Soybean Wheat (77 ± 17)

Reduced input Corn (30 ± 3) Cereal rye Soybean Wheat (40 ± 13) Red clover

Biologically

based/organic

Corn Cereal rye Soybean Wheat Red clover

total N of 1.2 g kg−1, and pH of 6.5. The local weather is

humid continental with hot and wet summers. Annual air tem-

perature (30-year average) at KBS is 9.9˚C, and precipitation

averages 1027 mm year−1 evenly distributed seasonally with a

snowfall of about 1.4 m and an average snow depth of 148 mm

for days when snow is present (Robertson & Hamilton, 2015).

Details about weather conditions during the crop-growing

season period are given in Figure S1.

2.2 Cropping systems and management

The MCSE includes seven treatments arranged in a random-

ized complete block design with six replications; we used four

annual crop treatments (Table 1), including: (1) a conventional

system with chisel tillage and standard chemical inputs, (2) an

NT system with standard chemical inputs, (3) a reduced input

system with chisel tillage, low fertilizer inputs, and cover

crops, and (4) a biologically based/organic system managed

organically using chisel tillage, cover crops, and no synthetic

chemical inputs. The NT system was identical to the conven-

tional system except for the lack of tillage. Chisel tillage in

conventional, reduced input, and biologically based/organic

systems was conducted to a depth of 15–18 cm, followed by

secondary tillage operations such as disking. Since 1993, all

of the systems have been maintained as corn–soybean–winter

wheat (C–S–W) rotations according to best management prac-

tices (Robertson, 2015; Robertson & Hamilton, 2015). Corn

and soybean were planted in late April or May and winter

wheat was planted in late September or early October. The

conventional and NT systems received recommended rates of

N fertilizer at 137 ± 20 kg N ha−1 year−1 during the corn

phase and 77± 17 kg N ha−1 year−1 during the wheat phase of

each rotation (Gelfand et al., 2016). Corn was managed with

split fertilizer application ∼30 kg N ha−1 at planting, with

the remainder side-dressed at the V6 stage around June 28

(±9 days), while wheat was fertilized on April 19 (±7 days).

The reduced input system received N fertilizer at an average

rate of 30 ± 3 kg N ha−1 year−1 on May 13 (±7 days) dur-

ing the corn phase and 40 ± 13 kg N ha−1 year−1 in April

during the wheat phase of the rotation. No N fertilizer was

applied to the soybean phase, but it received minor N fer-

tilizer inputs as part of phosphorus (P), potassium (K), and

herbicide applications, which were applied as needed in some

years according to the Michigan State University recommen-

dations (Warncke et al., 2009). The biologically based/organic

system is a USDA-certified organic treatment. No manure,

compost, or insecticide was applied in any of the cropping

systems. Nitrogen fertilizer was added as urea ammonium

nitrate (UAN) injected at 10-cm depth between crop rows at

planting and as side-dressing. Soybean and corn were har-

vested in October and November, respectively, and winter

wheat was harvested in July. In the low-input and biologi-

cally based/organic systems, the winter cover crop cereal rye

(Secale cereale L.) was planted in October following corn and

before soybean, and red clover (Trifolium pratense L.) was

frost-seeded into winter wheat in March and terminated just

before planting corn the following spring.

Plots in conventional, reduced input, and biologically

based/organic were chisel plowed, while those in NT were not

tilled. Cereal rye was sown following corn before soybean and

red cover was frost-seeded into winter wheat in reduced input

and biologically based/organic cropping systems.

2.3 Data collection

Nitrous oxide flux measurements were made in four out of

the six replicates in each treatment using static chambers at

weekly to monthly intervals when the soils were not frozen.

The manual open-bottom chambers, equipped with rubber

septa and measuring 29 cm × 29 cm × 14 cm, were made from

opaque polycarbonate sheeting and placed on semipermanent

aluminum bases (28 cm × 28 cm × 10 cm), which were

removed only during agronomic activities. Each chamber had

a volume of approximately 12 L. Gas samples were collected

using a headspace-flushed syringe every 15 min over a 1-h

chamber closure period. The samples were stored in 5.9-mL

Exetainer vials (Labco Limited) and analyzed using gas chro-

matography. The gas flux was calculated using the equation:

� =
� ∗ � ∗ � ∗ �

� ∗ � ∗ 	

where F is gas flux (g N cm−2 h−1), a is the average rate

of change of gas concentration (ppm h−1), M is molecular

weight of N in N2O (28 μg N μmol N2O−1), P is assumed
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atmospheric pressure (1 atm), R is universal gas constant

(0.0821 L-atm mol-K−1), T is field temperature (˚K = ˚C

+ 273), V is volume of gas in chamber (cm3), and A is soil

surface area covered by chamber (cm2).

More details on N2O flux measurements can be found in

Gelfand et al. (2016) and at https://lter.kbs.msu.edu/protocols/

113. Long-term gas sampling frequency was designed to cap-

ture treatment differences. During each gas sampling event,

soil cores from the 0- to 25-cm depth were extracted from

near the chamber for determination of gravimetric water con-

tent (GWC). WFPS was determined using the GWC and a

consistent bulk density of 1.44 g cm−3 across all treatments.

Soil samples (0- to 25-cm depth) from five random locations

in each plot were collected biweekly each year for inorganic

N (NH+

4
and NO

−

3
) concentrations. Soils were extracted with

2 M KCl and analyzed for NH+

4
and NO

−

3
concentrations in

a continuous flow analyzer (Alpkem 3550; O.I. Analytical).

Soil NH+

4
, NO−

3
, and WFPS values were linearly interpolated

between two sampling dates to match the N2O sampling dates

when soil samples were not collected on the gas sampling

days due to management and weather reasons. Cumulative

gas fluxes were calculated by linear interpolation between the

successive sampling dates. The 17-year database includes five

full W–C–S rotations under each treatment.

2.4 Statistical methods

RF and regression tree analyses were performed using the

packages “randomForest” and “rpart,” respectively, in R sta-

tistical software v. 4.2.3 (R Core Team, 2023) to examine

dynamic controls of N2O emissions and threshold response to

critical drivers across diverse cropping systems (Figure 1). RF

is an ensemble learning algorithm that combines numerous

decision trees (ntree) and bagging (Breiman, 2001), wherein

each tree is constructed using a bootstrap sample (called “in-

bag”) of dataset, and a random subset of total predictors (mtry)

is considered for node splits. The final RF prediction is the

mean fitted response from all tree predictions. In each tree,

about one-third of data are left out and these are called out-

of-bag (OOB) data, which are used to estimate percentage

variation explained—a measure that indicates the goodness

of OOB predictions explaining the target variance in the train-

ing dataset. More details on the RF algorithms can be found

in Hoffman et al. (2018) and Saha, Basso, and Robinson

(2021). The optimal number of predictor variables was deter-

mined using Pearson correlation analysis to remove the highly

correlated variables (r > 0.75) to avoid overfitting (Figure

S2). The final model includes daily N2O fluxes (log trans-

formed values) as the response variable and average daily

air temperature (Tavg), cumulative precipitation in last 2 days

(∑ppt2d), WFPS, NH+

4
,NO

−

3
, and crop as predictor variables

(Table 2).

Total 70% of the observations from the total observations (n

= 3374) from each cropping system were randomly selected

to construct the training set (n = 2362), and the remaining

30% were used for testing (n = 1012). The crop variable

was used as a categorical variable with three levels in the

data and encoded to dummy numbers to enhance the effi-

ciency of the model algorithms. A 10-fold cross-validation

scheme was applied to the training data to optimize the hyper-

parameters at mtry = 2 and ntree = 500 using seed = 123 to

get reproducible results. The model performance was evalu-

ated by coefficient of determination (r2), root mean square

error (RMSE), and mean absolute error (MAE) between the

observed and predicted daily N2O fluxes.

We used two inbuilt RF functions, variable importance met-

ric (package “vip”) and PD (package “pdp”), and a decision

tree (package “rpart”) to understand cropping system-specific

critical drivers, their interactions, and threshold conditions

controlling N2O emissions. The variable importance mea-

sures the increase in model error in the OOB data in response

to random permutation of input variables (Breiman, 2001).

Larger error before and after permutation means greater

importance of the variable and its contribution to the model’s

predictive accuracy. Top predictors were visualized using one-

and two-dimensional (2D) PD plots to identify the nature of

the relationship between the predictor and response variables.

Additionally, a single decision tree for each rotation was con-

structed using the rpart package in R to identify threshold

conditions beyond which large changes in N2O flux behavior

occur.

The linear mixed model using the package “lmerTest”

from R statistical software v. 4.2.3 (R Core Team, 2023)

was employed to analyze cumulative N2O emissions from

five cycles of each rotation phase and the total cumula-

tive emissions for the entire rotation (W–C–S) from 2004

to 2018. The N2O data were tested for normality using

the Shapiro–Wilk test and were transformed using Box-Cox

transformations when needed. The treatments, crop phase,

and their interactions were considered as fixed effects and

blocks were treated as random effects. When main and

interaction effects were significant at α = 0.05, pairwise

comparisons between treatments were performed with the

estimated marginal mean function and a post hoc Tukey test

using the package “emmeans.”

3 RESULTS

3.1 N2O emissions

Daily N2O fluxes from these annual cropping systems exhib-

ited wide variability, ranging from −0.7 to 55.4, −0.69 to

45.6, −0.17 to 118, and −0.31 to 144 g N ha−1 day−1 in con-

ventional, NT, reduced input, and biologically based/organic
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F I G U R E 1 Schematic overview of random forest modeling to identify critical drivers of N2O emissions, their differential relationships, and

threshold conditions for emissions under diverse long-term cropping rotations.

T A B L E 2 Predictor variables supplied to the random forest model.

Variable Variable category Description Unit

Tavg Climate Growing season average

temperature

˚C

∑ppt2d Climate Growing season cumulative

precipitation in last 2 days

mm

WFPS Soil Water-filled pore space %

NH
+

4
Soil Soil ammonium kg N ha−1

NO
−

3
Soil Soil nitrate kg N ha−1

Crop phase Management Growing main crop (corn,

soybean, and wheat)

-

systems, respectively (Figure 2). Across five cycles of W–

C–S rotations (2004–2018), total N2O emissions from 3-year

rotations were highest in biologically based (4.2 kg N ha−1),

followed by NT (3.5 kg N ha−1), conventional (3.1 kg N ha−1),

and reduced input systems (2.9 kg N ha−1), with no signifi-

cant differences observed (Figure 3). In conventional system,

soybean exhibited lower cumulative emissions compared to

corn (p < 0.05), while in NT, reduced input, and biologi-

cally based systems, no discernible differences in emissions

between corn and soybean were noted. Winter wheat emis-

sions were significantly lower than emissions in corn in the

reduced input system and lower than emissions in corn and

soybean in the biologically based/organic system. Regardless

of cropping system management, emissions from corn phase

were significantly higher than emissions from soybean and

wheat (1.58 vs. 1.03 vs. 0.83 kg N ha−1, respectively).
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F I G U R E 2 Daily N2O fluxes in annual systems over the period of 2003–2019. C, S, and W represent corn, soybean, and winter wheat phases,

respectively. Arrows indicate times of fertilizer application in conventional and no-till systems. Scales of the graph panels are different

F I G U R E 3 Average cumulative N2O emissions of five cycles of

each rotation phase within each annual system and the average

cumulative emissions for the entire rotation (W–C–S) from 2004 to

2018. Significant differences (p < 0.05) in crop phases within the same

annual system are represented by different lowercase letters. Uppercase

letters represent differences (p < 0.05) in annual systems within same

crop phase. C, S, and W represent corn, soybean, and winter wheat

phases, respectively.

3.2 Model performance

For each annual cropping system, the RF model was trained

using Tavg, ∑ppt2d, WFPS, NH+

4
, NO−

3
, and crop phase as

model inputs (Table 2). For the entire C–S–W rotation, the

model accounted for 29%–42% of the variability between

observed and predicted N2O fluxes, utilizing 30% of the

observations for testing, which were not included in the

model training (Figure S3). The highest proportion of vari-

ability in N2O emissions was explained by the RF model

in the conventional system (42%), followed by the biologi-

cally based/organic systems (40%), the reduced input system

(37%), and the NT system (29%). The RF model underpre-

dicted N2O fluxes in the NT, reduced input, and biologically

based systems on some occasions, with an RMSE of 0.17 in

NT and biologically based systems, and 0.18 in reduced input

system. The model predicted greater variability in corn phases

than in soybean and wheat phases across all systems, with

the highest variability predicted in biologically based (60%),

followed by conventional (48%), reduced input (43%), and

NT (32%) systems (Table 3). The least amount of variabil-

ity was accounted for in the soybean phase in conventional

(16.7%) and NT (1.46%), whereas in wheat, this was evident

in reduced input (24%) and biologically based (6.1%) systems.

3.3 Critical variables for N2O emissions

Variable importance measures identified NH
+

4
and Tavg as

the most influential variables in the conventional cropping

system, with each variable accounting for more than 25%

increase in mean square error of the OOB samples if randomly

permuted (Table 3). This trend was also evident in the corn

and wheat phases of the conventional system. As evident from

PD plots, the model predicted high N2O losses when NH
+

4
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levels exceeded 15 kg N ha−1, concurrent with Tavg surpass-

ing 20 ˚C (Figures 4a, 4e, and 5), which was also highlighted

by the decision tree analysis (Figure S4). In the NT system,

which differs from conventional only in tillage, climate vari-

ables ∑ppt2d and Tavg were ranked higher than other soil and

management variables (Table 3). These two variables were

repeatedly used for node splitting in the decision tree (Figure

S5), further highlighting their importance in controlling N2O

fluxes from the NT system. These climate factors explained

the high variability in corn phases, while NH
+

4
along with

Tavg emerged as primary influencers in the winter wheat phase

(Table 3). The 2D plot showed high emissions when ∑ppt2d

reached 55 mm and Tavg exceeded 20˚C (Figure 5). In the

reduced input and biologically based/organic systems, where

red clover precedes corn and cereal rye precedes soybean in

the rotation, NO−

3
emerged as the predominant variable, with

climate variables and NH
+

4
following in the reduced input

system, and climate variables and WFPS in the biologically

based/organic system (Table 3; Figures S6 and S7). The pre-

dictability of N2O emissions is higher in the corn phase, with

NO
−

3
serving as a key predictor (Table 3), supported by the

increased availability of NO−

3
resulting from the legume cover

crop’s being tilled into the soil before corn planting (Figure

S8b). The emissions increase with an increase in NO
−

3
, par-

ticularly evident at approximately 10 kg N ha−1, with a much

higher increase observed in the biologically based/organic

system compared to the reduced input system (Figure 4d).

A positive interaction between NO
−

3
and WFPS was illus-

trated by the 2D plot, indicating higher N2O losses when

WFPS exceeded ∼40% andNO−

3
levels exceeded ∼17 kg ha−1

(Figure 5; Figure S7).

4 DISCUSSION

Our findings highlight that, despite the lack of statistically

significant differences in cumulative rotational N2O emis-

sions for the five cycles of W–C–S rotations among annual

systems, different variables emerge as the most influential fac-

tors for N2O fluxes in each annual system. The RF model,

developed utilizing biweekly N2O flux manual chamber mea-

surements from the annual cropping systems of KBS-LTER

site from 2003 to 2019, explained 29%–42% of daily flux vari-

ance in the testing dataset of the four annual systems. The

climate (Tavg and ∑ppt2d) and soil variables (WFPS, NO−

3
,

and NH
+

4
) employed in model development are widely rec-

ognized as drivers of N2O emissions (Firestone & Davidson,

1989; Gelfand et al., 2016; Saha, Basso, & Robinson, 2021)

and serve as easily measurable proxies for soil biophysical

and biogeochemical processes. The RF model has been exten-

sively validated and demonstrated its reliability in predicting

N2O emissions in croplands, with r2 values ranging from 0.38

to 0.73 (Glenn et al., 2021; Joshi et al., 2024; Liao et al., 2023;
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F I G U R E 4 One-dimensional partial dependence of predictor

variables (a) average air temperature (Tavg), (b) cumulative 2-day

precipitation (∑ppt2d), (c) water-filled pore space (WFPS), (d) soil

nitrate content (NO−

3
), and (e) soil ammonium content (NH+

4
) on N2O

emissions as predicted by the random forest model under conventional,

no-till, reduced input, and biologically based/organic systems.

Philibert et al., 2013; Saha, Basso, & Robinson, 2021; Yin

et al., 2022).

In the conventional cropping system, soil NH+

4
and Tavg

emerged as particularly significant predictors for N2O fluxes.

The model predicted a higher risk of N2O emissions following

N fertilization application (NH+

4
> 15 kg N ha−1) during peri-

ods of high air temperatures (Tavg > 20˚C) (Figure 5; Figure

S4). Emissions typically peak following the side-dress appli-

cation of UAN during the corn and wheat phases, coinciding

with high air temperatures (Figure 2), also reported in many

other studies in temperate climates (Adviento-Borbe et al.,

2007; Gasche & Papen, 2002; Kitzler et al., 2006; Ma et al.,

2010). This observation might elucidate the relatively higher

predictability for fluxes modeled during the corn (48%) and

winter wheat (32%) phases compared to the soybean phase

(16.7%) (Table 3), with NH
+

4
and Tavg emerging as the top-

most variables within the corn and wheat phases. Microbial

activities during nitrification and denitrification tend to be

more active under higher temperatures (Kätterer et al., 1998),

suggesting that air temperature plays an important role in reg-

ulating the rate of N2O emissions (Rashti et al., 2015). Our

findings, which highlight the primary influence of NH+

4
and

Tavg in conventional system, suggest that the emissions might

be linked to strong nitrification activity in this system. High

NH
+

4
levels have elsewhere also been associated with elevated

N2O emissions (Breitenbeck et al., 1980; Peyrard et al., 2016).

However, Liang and Robertson (2021) conclude that nitrifica-

tion is a minor source of N2O emissions in this system based

on combining soil-specific kinetics of nitrification-derived

N2O with 25 years of N2O flux measurements. In that study,

the maximum potential contributions from nitrification to in

situ N2O fluxes were found to be 13%–17%, with actual con-

tributions likely only 1%–2%. Nitrification is rapid in these

soils (Millar & Robertson, 2015), such that high NH
+

4
lev-

els can simultaneously indicate high NO
−

3
availability despite

lower soil NO−

3
levels if NO−

3
pools are rapidly depleted by

plant uptake, denitrification, or leaching (Gelfand et al., 2016;

Syswerda et al., 2012). Inorganic N availability might be bet-

ter (less ambiguously) assessed as a driver of N2O fluxes

by combining NH
+

4
and NO

−

3
into a single soil mineral N

predictor.

In the NT system, where all other management aspects

remain identical to the conventional system except for the

adoption of NT practices, the RF model had the least pre-

dictability (29%), reflecting the complexity of the underlying

processes and drivers of N2O production in NT systems.

Despite emissions’ rising similarly to those in the conven-

tional system after fertilizer application (Figure 2), climate

variables took precedence over the effects of soil mineral

N variability. Changing climate factors can regulate soil O2

dynamics, serve as proxies for soil biophysical processes,

and impact N2O emissions (Song et al., 2019). Precipita-

tion primarily changes soil O2 concentrations by displacing
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10 DHALIWAL ET AL.

F I G U R E 5 Two-dimensional partial dependence of selected predictor variables on N2O emissions as predicted by the random forest model

under conventional, no-till, reduced input, and biologically based systems.

soil air with water and serves as a reliable indicator of soil

redox potential, affecting conditions that govern soil min-

eral N transformations and leading to N2O production (Linn

& Doran, 1984; Rochette et al., 2018). High Tavg (>∼20˚C)

coupled with high ∑ppt2d (∼55 mm) (Figure 5) can simul-

taneously promote microbial O2 consumption via enhanced

microbial activity and inhibited O2 diffusion. Rochette et al.

(2018) in their study on soil N2O emissions and their controls

in temperate climates of Canada reported that precipitation

plays a primary role in determining N2O emissions, and

that environmental conditions can mask the impact of soil N

content under well-aerated conditions. Grandy et al. (2006)

documented increased aggregation and enhanced soil struc-

ture in the same NT system described here. Microsites or

pores within these stable aggregates under long-term NT

can lead to low and varying O2 levels across the aggregate

radius (Sexstone et al., 1985; Song et al., 2019), a dynamic

not captured by WFPS, which typically serves as a proxy

for soil O2 fluctuation influenced by soil moisture levels

(Dobbie & Smith, 2001, 2003). Likewise, differences in soil

pores in well-structured soils can lead to microsite differ-

ences in water and O2 levels that can drive differences in

N2O production (Kravchenko et al., 2017). Such heterogene-

ity in O2 under well-structured soils could strongly impact N
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transformations and N2O production. Thus, soil pore struc-

ture and soil O2 parameters, which may serve as better proxies

than WFPS and reliable predictors of N2O emissions, could

enhance the predictive capability of the RF model in the NT

system. However, we acknowledge the challenges associated

with accurately capturing high-resolution soil O2 consump-

tion within pore spaces. Furthermore, the availability of data

on SOC may provide additional predictive capacity for the

model. This is particularly significant, as NT is proposed

as one of the main measures to reduce N2O emissions and

increase C sequestration (Van Kessel et al., 2013). A better

understanding of controls of N2O emissions in NT soils is

required.

In contrast to the conventional and NT systems, the cover-

cropped reduced input and biologically based/organic systems

revealed soil NO
−

3
as the primary variable explaining the

largest portion of the variation in N2O emissions (24%–

26%; Table 3). This is particularly evident after incorporating

red clover before corn planting, where there is a notable

increase in NO
−

3
availability (Figure S8b) and, concomitantly,

in emissions (Figure 2). The model’s high predictability of

N2O fluxes in the corn phase (43% in the reduced input and

60% in the biologically based/organic system), with NO
−

3
as

the top variable, further demonstrates this. Furthermore, the

lower predictive value observed for wheat in these systems,

along with the lower ranking of NO−

3
within the wheat sys-

tem, suggests that there is a limited carryover effect of the

decomposition of leguminous cover crop biomass into the

wheat phase. Increased N2O associated with legume crops

could be attributed to enhanced N release from decompos-

ing leguminous residues (Abalos et al., 2022; Rochette &

Janzen, 2005). In these systems, chisel tillage may enhance

N mineralization by incorporating legume cover crops into

the soil when temperatures are sufficiently warm to support

active decomposition. This is further supported by the pre-

diction of an increase in emissions with rising air temperature

(Figure 4a). The simultaneous availability of easily degraded

N and C from organic inputs increases the risk of high N2O

emissions by enhancing biological activity, leading to soil

O2 depletion through enhanced soil respiration and increased

denitrification (Hansen et al., 2019; Lussich et al., 2024).

The heightened risk of significant N2O emissions follow-

ing precipitation events when WFPS exceeds 53% and NO
−

3

availability surpasses 17 kg ha−1 (Figure 5) indicates N2O

likely originated from denitrification. This threshold value

for WFPS aligns with the findings of Peyrard et al. (2016),

although when denitrification is involved, the WFPS thresh-

old is often higher, ranging from 60% to 80% (Davidson,

1991). The wetness-independent anoxia created by decom-

posing legume residues might partly explain N2O production,

a phenomenon not captured by WFPS. Respiration-induced

anoxia caused by decomposing cover crop residues can pro-

mote N2O emissions, even under suboptimal WFPS (50%)

conditions for denitrification (Lussich et al., 2024). This could

also hold true for the reduced input system, where the predic-

tive value of WFPS is lower and no interaction of NO−

3
with

∑ppt2d was observed. Future advancements in our under-

standing and data availability regarding the response of N2O

to soil O2 consumption during the decomposition of cover

crop residues may enhance the predictive capacity of models

in cover crop-based cropping systems.

5 CONCLUSIONS

Results underscore the efficacy of a decision tree-based

nonlinear machine learning model for identifying key vari-

ables, their threshold conditions, and complex interactions

in influencing N2O emissions in intensively managed annual

cropping systems. Our findings leveraging long-term data

reveal that differential controls of N2O emissions are impor-

tant under different cropping system managements. In the

conventional system, soil ammonium and air temperature

emerged as the primary influencers of N2O emissions, while

in the NT system, climatic conditions—particularly pre-

cipitation and air temperature—exerted the greatest impact

on emissions. Nitrate availability from legume cover crops

drove N2O emissions in the reduced input and biologically

based/organic systems.

Although our RF model effectively predicted 29%–42%

of the daily variability in N2O fluxes from intensively man-

aged cropping systems, the model can be further improved

by incorporating long-term high-frequency observations from

automated flux chambers and by including soil organic car-

bon data, as NT and cover crop systems can influence N2O

emissions by enhancing soil carbon content. Considering the

challenge posed by the generalizability of the RF model, its

application to other regions and crops necessitates further

enhancements in model training based on diverse data sources

encompassing various soils, climates, crops, and management

conditions.
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