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Abstract

Soil nitrous oxide (N,O) emissions exhibit high variability in intensively managed
cropping systems, which challenges our ability to understand their complex interac-
tions with controlling factors. We leveraged 17 years (2003—2019) of measurements
at the Kellogg Biological Station Long-Term Ecological Research (LTER)/Long-
Term Agroecosystem Research (LTAR) site to better understand the controls of N,O
emissions in four corn—soybean—winter wheat rotations employing conventional, no-
till, reduced input, and biologically based/organic inputs. We used a random forest
machine learning model to predict daily N,O fluxes, trained separately for each
system with 70% of observations, using variables such as crop species, daily air tem-
perature, cumulative 2-day precipitation, water-filled pore space, and soil nitrate and
ammonium concentrations. The model explained 29%—42% of daily N,O flux vari-
ability in the test data, with greater predictability for the corn phase in each system.
The long-term rotations showed different controlling factors and threshold conditions
influencing N,O emissions. In the conventional system, the model identified ammo-
nium (>15 kg N ha~') and daily air temperature (>23°C) as the most influential
variables; in the no-till system, climate variables such as precipitation and air temper-
ature were important variables. In low-input and organic systems, where red clover
(Trifolium repens L.; before corn) and cereal rye (Secale cereale L.; before soybean)
cover crops were integrated, nitrate was the predominant predictor of N,O emissions,
followed by precipitation and air temperature. In low-input and biologically based
systems, red clover residues increased soil nitrogen availability to influence N,O
emissions. Long-term data facilitated machine learning for predicting N,O emis-
sions in response to differential controls and threshold responses to management,

environmental, and biogeochemical drivers.

Abbreviations: CT, conventionally tilled; C—S—W, corn—soybean—winter wheat; GWC, gravimetric water content; NT, no-till; OOB, out-of-bag; PD, partial

dependence; RF, random forest; RMSE, root mean square error; UAN, urea ammonium nitrate; WFPS, water-filled pore space.
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1 | INTRODUCTION

Global terrestrial emissions of nitrous oxide (N,O), a potent
greenhouse gas, have increased from 6.3 Tg N,O-N year™!
in the preindustrial era to 10 Tg N,O-N year™! in the last
decade (2007-2016), which represents an increase in atmo-
spheric N,O load of ~60% (Tian et al., 2019). This increase
is largely governed by the increase in cropland soil emissions
from 0.3 to 3.3 Tg N,O-N year™! during the same period.
Increases in fertilizer nitrogen (N) application rates drive
N,O emissions from agricultural soils—the largest anthro-
pogenic source of atmospheric N,O that contributes nearly
10% of global anthropogenic radiative forcing (Butterbach-
Bahl et al., 2013; Shcherbak et al., 2014; Syakila & Kroeze,
2011; Zhang et al., 2020).

Nitrous oxide emissions from agricultural soils result
from biogeochemical processes primarily dominated by
microbial nitrification and denitrification (Dobbie & Smith,
2003; Robertson & Groffman, 2024). These processes are
highly sensitive to environmental conditions including soil
moisture/water-filled pore space (WFPS), temperature, pH,
and availability of organic carbon (C) and inorganic N (Baral
et al., 2022; Giltrap et al., 2010; Oertel et al., 2016)—further
influenced by management practices. Net N,O emissions
measured in situ are the outcomes of complex interactions
among the driving factors and their threshold conditions that
are often nonlinear and spatially discontinuous (Robertson,
2023). For this reason, the prediction of N, O emissions based
on simultaneously observed environmental factors and N
substrate concentrations shows very weak to no correlations
in most studies (e.g., Gelfand et al., 2016; Maharjan &
Venterea, 2013; Wanyama et al., 2018). This complexity is
often manifested in the highly dynamic and variable nature
of soil N,O emissions characterized as “hot spots” and
“hot moments” (Groffman et al., 2009; Saha et al., 2018;
Venterea et al., 2012). Only a fraction of this spatial and
temporal variability may be attributed to applied fertilizer N,
with much of the remainder attributed to the soil, climatic,
and management factors influencing total N,O emissions
(de Klein et al., 2020; Deng et al., 2022; Groffman et al.,
2009). Both direct observations and meta-analyses show a
non-linear relationship between N fertilization rate and N,O
emissions (e.g., Hoben et al., 2011; Kim et al., 2013; Millar
et al., 2018; Scheer et al., 2016; Shcherbak et al., 2014),
which further highlights the confounding impacts of multiple
driving factors on N,O emissions.

Long-term management practices such as no-till (NT) and
cover cropping alter soil biophysical and biogeochemical con-
ditions to modify the shape and threshold response of N,O
emissions to environmental and biogeochemical drivers. For
example, long-term NT improves soil physical properties such
as soil aeration and moisture retention and reduces soil tem-
perature (Nouri et al., 2019). While lower soil temperature and
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legume cover crops strongly influenced N, O emis-
sions.

improved aeration under macropore-dominated NT soils may
reduce N,O emissions (Ussiri et al., 2009; Van Kessel et al.,
2013), moist soils can promote N, O emissions from denitrifi-
cation and its rapid escape to the atmosphere due to greater
diffusivity (Wang & Zou, 2020). Therefore, N,O response
to soil moisture and temperature may differ between NT and
conventionally tilled (CT) soils, which makes it difficult to
predict management impacts on N,O emissions under inter-
annual weather variability. Literature inconsistently shows
that N,O emissions under NT either decrease (Grandy et al.,
2006; Six et al., 2004; Van Kessel et al., 2013) or increase
(Ball et al., 2008; Mei et al., 2018) compared to CT. Similarly,
the quantity and quality of cover crop biomass influence soil
N availability, which in turn affects N,O emissions and their
response to fertilizer N application (Finney et al., 2015; Pan-
day et al., 2022). Following cover crop termination, legume
residues can significantly increase N,O emissions due to fast
N release (Davis et al., 2019; Saha, Kaye, et al., 2021). Accel-
erated cover crop decomposition and heterotrophic respiration
rapidly consume soil oxygen (O,) to promote anoxia and
large N,O emissions from denitrification regardless of soil
moisture conditions (Lussich et al., 2024). These findings are
in contrast with the generalized conclusions about negligi-
ble impacts of cover crops on soil N,O emissions (Basche
et al., 2014; Kaye & Quemada, 2017). Such inconsistencies
further highlight our limited understanding of dynamic vari-
able controls on N,O emissions in response to environmental
and management differences.

Additionally, long-term N,O emissions are greatly influ-
enced by inter-annual variability in weather conditions (Baral
et al., 2022; Burchill et al., 2014), and in particular variabil-
ity in rainfall distributions (Rowlings et al., 2015). However,
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many studies investigating spatial and temporal N,O emission
controls are based on short-term measurements spanning from
one to two growing seasons and capturing only a snapshot
within a growing season (Dorich et al., 2020). The time-
consuming and resource-intensive nature of chamber-based
N,O flux measurements is a key limitation for individual
research projects in implementing spatially and temporally
extensive flux monitoring. Coordinated efforts by long-term
research network sites can be useful in overcoming such
limitations by providing multi-year data capturing weather
variability and management legacies (e.g., crop rotation, NT,
and cover cropping), which often take time to emerge (Cusser
et al., 2020; Six et al., 2004).

Several quantitative tools have been traditionally employed
to understand the complexity of soil, climate, and crop man-
agement practices influencing N,O emissions with varying
degrees of success. For example, parametric regression mod-
els, by design, do not represent nonlinear variable interactions
influencing N,O emissions (Kim et al., 2013). Similarly,
the emission factor (EF) approach by the Intergovernmental
Panel on Climate Change (IPCC) is insensitive to dynamic
interactions between the environmental factors and manage-
ment conditions. These models often fail to predict how N,O
emissions may change at a finer temporal and spatial scale
(Ramirez-Melgarejo et al., 2020; Richards et al., 2016). Fur-
thermore, these approaches are limited to provide insights
on critical values of predictor variables differentially influ-
encing N,O under different management practices, such as
crop diversification, NT, cover crop, and so forth. Unlike
the empirical models, process-based biogeochemical models
can simulate feedback and interactions that can be difficult
to distinguish in the field (Giltrap et al., 2010). Process-
based models, such as the DayCent (Del Grosso et al., 2000;
Parton et al., 2001) and DeNitrification-DeComposition (Li,
2000, 2007), have considered important regulating factors
to support the prediction of N,O emissions and thus have
been recognized as useful tools to evaluate the effects of
management practices on N,O emissions from agricultural
soils (Deng et al., 2018; Jarecki et al., 2008). However,
heavy parametrization and site-specific calibration need of the
process-based models often limit their extensive use (Ehrhardt
et al., 2018; Fuchs et al., 2020; Gaillard et al., 2018; Gilhespy
etal., 2014).

Machine learning models such as decision trees and ran-
dom forest (RF) treat the output variable (e.g., N,O) as an
implicit function of input features (e.g., soil, environment,
and management), and can capture complex nonlinear rela-
tionships as learned from the data and not by predefined
process-based relationships as in the case of biogeochemical
models (Breiman, 2001; Huang et al., 2010). The RF appears
to be a more promising technique than classical regression-
based methods and other machine learning algorithms due
to its ability to rank predictors using internal measures of

variable importance and to provide valuable insights through
partial dependence (PD) plots (Djiemon et al., 2019; Saha
etal., 2017).

Machine learning has been increasingly used to predict
N, O emissions in recent years (Glenn et al., 2021; Joshi et al.,
2024; Liao et al., 2023; Philibert et al., 2013; Saha, Basso,
& Robertson, 2021; Yin et al., 2022). However, predictive
ability of machine learning models is correlational as learned
from the data, hence has limited power in representing a novel
scenario, which is a key pursuit of process-based models.
Nonetheless, machine learning models can be resource effi-
cient in scaling our existing knowledge and provide insights
on key variable interactions controlling N,O emissions to
optimize process-based models. The availability of long-term
data creates novel opportunities for using machine learning
models to understand differential controls of N,O emissions
under diverse management practices.

By leveraging 17 years of long-term observations, we
used RF and decision tree models to infer the controls and
drivers of soil N,O emissions from four corn (Zea mays
L.)-soybean (Glycine max L.)-wheat (Triticum aestivum L.)
rotations employing diverse tillage, fertilization, and cover
cropping practices in the US upper Midwest. Our objectives
are to identify critical management, environmental, and bio-
geochemical drivers of N,O emissions and their differential
relationships and threshold conditions for emissions under
diverse long-term cropping rotations.

2 | MATERIALS AND METHODS

2.1 | Site description

Our study tracks a 17-year (2003-2019) long-term data
stream from the Main Cropping System Experiment (MCSE)
of the Kellogg Biological Station (KBS) Long-Term Eco-
logical Research (LTER) site, which is also one of 18
Long-Term Agroecosystem Research sites across the United
States. Historical data on yearly N,O emissions, soil prop-
erties, agricultural management practices, and weather were
obtained from the KBS LTER data catalog (https://lter.kbs.
msu.edu/datatables). The KBS LTER site is located in the
northeast portion of the US corn belt in southwest Michigan
(4224’ N, 85°24’ W, and 288 masl) and was originally estab-
lished in 1987 to examine the ecology of intensively managed
field crops and the landscape in which they reside (Robertson
& Hamilton, 2015). Soils at the site are well-drained Typic
Hapludalfs of the Kalamazoo (fine-loamy, mixed, mesic) and
Oshtemo (coarse-loamy, mixed, mesic) series, formed from
glacial till and outwash with some intermixed loess (Crum &
Collins, 1995; Luehmann et al., 2016). Surface soils exhibit
an average of 43% sand and 17% clay contents (Robertson &
Hamilton, 2015), with an average organic C of 11.9 g kg™ !,
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TABLE 1
Cropping system Crop phase (N fertilizer, kg N ha~!)
Conventional Corn (137 + 20)
No-till Corn (137 + 20)
Reduced input Corn (30 + 3) Cereal rye
Biologically Corn Cereal rye

based/organic

total N of 1.2 g kg™!, and pH of 6.5. The local weather is
humid continental with hot and wet summers. Annual air tem-
perature (30-year average) at KBS is 9.9°C, and precipitation
averages 1027 mm year~! evenly distributed seasonally with a
snowfall of about 1.4 m and an average snow depth of 148 mm
for days when snow is present (Robertson & Hamilton, 2015).
Details about weather conditions during the crop-growing
season period are given in Figure S1.

2.2 | Cropping systems and management

The MCSE includes seven treatments arranged in a random-
ized complete block design with six replications; we used four
annual crop treatments (Table 1), including: (1) a conventional
system with chisel tillage and standard chemical inputs, (2) an
NT system with standard chemical inputs, (3) a reduced input
system with chisel tillage, low fertilizer inputs, and cover
crops, and (4) a biologically based/organic system managed
organically using chisel tillage, cover crops, and no synthetic
chemical inputs. The NT system was identical to the conven-
tional system except for the lack of tillage. Chisel tillage in
conventional, reduced input, and biologically based/organic
systems was conducted to a depth of 15-18 cm, followed by
secondary tillage operations such as disking. Since 1993, all
of the systems have been maintained as corn—soybean—winter
wheat (C—S—W) rotations according to best management prac-
tices (Robertson, 2015; Robertson & Hamilton, 2015). Corn
and soybean were planted in late April or May and winter
wheat was planted in late September or early October. The
conventional and NT systems received recommended rates of
N fertilizer at 137 + 20 kg N ha~! year™! during the corn
phase and 77 + 17 kg N ha~! year~! during the wheat phase of
each rotation (Gelfand et al., 2016). Corn was managed with
split fertilizer application ~30 kg N ha~! at planting, with
the remainder side-dressed at the V6 stage around June 28
(9 days), while wheat was fertilized on April 19 (7 days).
The reduced input system received N fertilizer at an average
rate of 30 + 3 kg N ha™! year™! on May 13 (+7 days) dur-
ing the corn phase and 40 + 13 kg N ha~! year™! in April
during the wheat phase of the rotation. No N fertilizer was
applied to the soybean phase, but it received minor N fer-
tilizer inputs as part of phosphorus (P), potassium (K), and

Agronomic management practices under the four annual cropping systems studied (2003-2019).

Soybean Wheat (77 + 17)
Soybean Wheat (77 + 17)
Soybean Wheat (40 + 13) Red clover
Soybean Wheat Red clover

herbicide applications, which were applied as needed in some
years according to the Michigan State University recommen-
dations (Warncke et al., 2009). The biologically based/organic
system is a USDA-certified organic treatment. No manure,
compost, or insecticide was applied in any of the cropping
systems. Nitrogen fertilizer was added as urea ammonium
nitrate (UAN) injected at 10-cm depth between crop rows at
planting and as side-dressing. Soybean and corn were har-
vested in October and November, respectively, and winter
wheat was harvested in July. In the low-input and biologi-
cally based/organic systems, the winter cover crop cereal rye
(Secale cereale L.) was planted in October following corn and
before soybean, and red clover (Trifolium pratense L.) was
frost-seeded into winter wheat in March and terminated just
before planting corn the following spring.

Plots in conventional, reduced input, and biologically
based/organic were chisel plowed, while those in NT were not
tilled. Cereal rye was sown following corn before soybean and
red cover was frost-seeded into winter wheat in reduced input
and biologically based/organic cropping systems.

2.3 | Data collection

Nitrous oxide flux measurements were made in four out of
the six replicates in each treatment using static chambers at
weekly to monthly intervals when the soils were not frozen.
The manual open-bottom chambers, equipped with rubber
septa and measuring 29 cm X 29 cm X 14 cm, were made from
opaque polycarbonate sheeting and placed on semipermanent
aluminum bases (28 cm X 28 cm X 10 cm), which were
removed only during agronomic activities. Each chamber had
a volume of approximately 12 L. Gas samples were collected
using a headspace-flushed syringe every 15 min over a 1-h
chamber closure period. The samples were stored in 5.9-mL
Exetainer vials (Labco Limited) and analyzed using gas chro-
matography. The gas flux was calculated using the equation:

axMxP=xV

F =
Ax RxT

where F is gas flux (g N cm™2 h™!), a is the average rate
of change of gas concentration (ppm h~!), M is molecular
weight of N in N,O (28 pg N pmol N,O™!), P is assumed
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atmospheric pressure (1 atm), R is universal gas constant
(0.0821 L-atm mol-K~!), T is field temperature (‘'K = °C
+ 273), V is volume of gas in chamber (cm?), and A is soil
surface area covered by chamber (cm?).

More details on N,O flux measurements can be found in
Gelfand et al. (2016) and at https://Iter.kbs.msu.edu/protocols/
113. Long-term gas sampling frequency was designed to cap-
ture treatment differences. During each gas sampling event,
soil cores from the 0- to 25-cm depth were extracted from
near the chamber for determination of gravimetric water con-
tent (GWC). WFPS was determined using the GWC and a
consistent bulk density of 1.44 g cm™ across all treatments.
Soil samples (0- to 25-cm depth) from five random locations
in each plot were collected biweekly each year for inorganic
N (NH;r and NOS_) concentrations. Soils were extracted with
2 M KClI and analyzed for NH;r and NOj concentrations in
a continuous flow analyzer (Alpkem 3550; O.I. Analytical).
Soil NHI, NO3, and WEPS values were linearly interpolated
between two sampling dates to match the N,O sampling dates
when soil samples were not collected on the gas sampling
days due to management and weather reasons. Cumulative
gas fluxes were calculated by linear interpolation between the
successive sampling dates. The 17-year database includes five
full W—C-S rotations under each treatment.

2.4 | Statistical methods

RF and regression tree analyses were performed using the
packages “randomForest” and “rpart,” respectively, in R sta-
tistical software v. 4.2.3 (R Core Team, 2023) to examine
dynamic controls of N,O emissions and threshold response to
critical drivers across diverse cropping systems (Figure 1). RF
is an ensemble learning algorithm that combines numerous
decision trees (n..) and bagging (Breiman, 2001), wherein
each tree is constructed using a bootstrap sample (called “in-
bag”) of dataset, and a random subset of total predictors (mtry)
is considered for node splits. The final RF prediction is the
mean fitted response from all tree predictions. In each tree,
about one-third of data are left out and these are called out-
of-bag (OOB) data, which are used to estimate percentage
variation explained—a measure that indicates the goodness
of OOB predictions explaining the target variance in the train-
ing dataset. More details on the RF algorithms can be found
in Hoffman et al. (2018) and Saha, Basso, and Robinson
(2021). The optimal number of predictor variables was deter-
mined using Pearson correlation analysis to remove the highly
correlated variables (r > 0.75) to avoid overfitting (Figure
S2). The final model includes daily N,O fluxes (log trans-
formed values) as the response variable and average daily
air temperature (7, ), cumulative precipitation in last 2 days
(prtm), WEFPS, NH, NO3_ , and crop as predictor variables
(Table 2).

Total 70% of the observations from the total observations (n
= 3374) from each cropping system were randomly selected
to construct the training set (n = 2362), and the remaining
30% were used for testing (n = 1012). The crop variable
was used as a categorical variable with three levels in the
data and encoded to dummy numbers to enhance the effi-
ciency of the model algorithms. A 10-fold cross-validation
scheme was applied to the training data to optimize the hyper-
parameters at my, = 2 and ny., = 500 using seed = 123 to
get reproducible results. The model performance was evalu-
ated by coefficient of determination (+2), root mean square
error (RMSE), and mean absolute error (MAE) between the
observed and predicted daily N,O fluxes.

We used two inbuilt RF functions, variable importance met-
ric (package “vip”) and PD (package “pdp”), and a decision
tree (package “rpart”) to understand cropping system-specific
critical drivers, their interactions, and threshold conditions
controlling N,O emissions. The variable importance mea-
sures the increase in model error in the OOB data in response
to random permutation of input variables (Breiman, 2001).
Larger error before and after permutation means greater
importance of the variable and its contribution to the model’s
predictive accuracy. Top predictors were visualized using one-
and two-dimensional (2D) PD plots to identify the nature of
the relationship between the predictor and response variables.
Additionally, a single decision tree for each rotation was con-
structed using the rpart package in R to identify threshold
conditions beyond which large changes in N, O flux behavior
occur.

The linear mixed model using the package “ImerTest’
from R statistical software v. 4.2.3 (R Core Team, 2023)
was employed to analyze cumulative N,O emissions from
five cycles of each rotation phase and the total cumula-
tive emissions for the entire rotation (W—C-S) from 2004
to 2018. The N,O data were tested for normality using
the Shapiro—Wilk test and were transformed using Box-Cox
transformations when needed. The treatments, crop phase,
and their interactions were considered as fixed effects and
blocks were treated as random effects. When main and
interaction effects were significant at @ = 0.05, pairwise
comparisons between treatments were performed with the
estimated marginal mean function and a post hoc Tukey test
using the package “emmeans.”

3 | RESULTS

3.1 | N,O emissions

Daily N, O fluxes from these annual cropping systems exhib-
ited wide variability, ranging from —0.7 to 55.4, —0.69 to
45.6, —0.17 to 118, and —0.31 to 144 g N ha~! day~! in con-
ventional, NT, reduced input, and biologically based/organic
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TABLE 2 Predictor variables supplied to the random forest model.
Variable Variable category
Ty Climate
> PPty Climate
WEPS Soil
NH; Soil
NOj Soil
Crop phase Management

systems, respectively (Figure 2). Across five cycles of W—
C-S rotations (2004-2018), total N,O emissions from 3-year
rotations were highest in biologically based (4.2 kg N ha™1),
followed by NT (3.5 kg N ha™!), conventional (3.1 kg N ha™1),
and reduced input systems (2.9 kg N ha™!), with no signifi-
cant differences observed (Figure 3). In conventional system,
soybean exhibited lower cumulative emissions compared to
corn (p < 0.05), while in NT, reduced input, and biologi-

Description Unit
Growing season average °C
temperature

Growing season cumulative mm
precipitation in last 2 days

Water-filled pore space %

Soil ammonium kg N ha™!
Soil nitrate kg N ha™!

Growing main crop (corn, -
soybean, and wheat)

cally based systems, no discernible differences in emissions
between corn and soybean were noted. Winter wheat emis-
sions were significantly lower than emissions in corn in the
reduced input system and lower than emissions in corn and
soybean in the biologically based/organic system. Regardless
of cropping system management, emissions from corn phase
were significantly higher than emissions from soybean and
wheat (1.58 vs. 1.03 vs. 0.83 kg N ha™!, respectively).
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annual system are represented by different lowercase letters. Uppercase
letters represent differences (p < 0.05) in annual systems within same
crop phase. C, S, and W represent corn, soybean, and winter wheat
phases, respectively.

3.2 | Model performance

For each annual cropping system, the RF model was trained
using Tavg, prtzd, WEPS, NHI, NO;, and crop phase as
model inputs (Table 2). For the entire C—S—W rotation, the
model accounted for 29%-42% of the variability between
observed and predicted N,O fluxes, utilizing 30% of the

observations for testing, which were not included in the
model training (Figure S3). The highest proportion of vari-
ability in N,O emissions was explained by the RF model
in the conventional system (42%), followed by the biologi-
cally based/organic systems (40%), the reduced input system
(37%), and the NT system (29%). The RF model underpre-
dicted N, O fluxes in the NT, reduced input, and biologically
based systems on some occasions, with an RMSE of 0.17 in
NT and biologically based systems, and 0.18 in reduced input
system. The model predicted greater variability in corn phases
than in soybean and wheat phases across all systems, with
the highest variability predicted in biologically based (60%),
followed by conventional (48%), reduced input (43%), and
NT (32%) systems (Table 3). The least amount of variabil-
ity was accounted for in the soybean phase in conventional
(16.7%) and NT (1.46%), whereas in wheat, this was evident
in reduced input (24%) and biologically based (6.1%) systems.

3.3 | Ciritical variables for N,O emissions

Variable importance measures identified NHI and T, as
the most influential variables in the conventional cropping
system, with each variable accounting for more than 25%
increase in mean square error of the OOB samples if randomly
permuted (Table 3). This trend was also evident in the corn
and wheat phases of the conventional system. As evident from
PD plots, the model predicted high N,O losses when NHI
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Importance of variables controlling N,O emissions as predicted by random forest for the entire rotation (C—S—W) of each annual system and different crop phases within each system

TABLE 3

Biologically based

C-S-w

Reduced input
C-S-W

No-till

Conventional
C-S-W

C

w

C

w

C

C-S-w

w

C

% increase in mean square error

Variable

14.6 15.0

29.4

22.3(2)

8.0
9.7

18.0

22.1(3) 19.4

6.4 10.7

8.1

6.1

21.6 (2) 1

1.6
52
59
1.9

1
17

14.2

232

28.3 (2)

Tavg

7.0
3.1

20.8

18.7

21.6 3)

20.0

25.6 (2) 12.8

53

15.1

254(1)

8.9
10.3

13.4

145 (4)

PPty

12.8

207 (4) 25.4

4.5

11.1
18.9

9.6

21.5

9.4
28.9

13.6 (5)

2.0
3.6

10.4 2.7
17.7

8.9 (6)
9.9 (5)

143 (3)

9.2
133
29

13.4 (6)

WEPS
NO

333 14.5 6.5

24.1 (1)

26.2 (1)

3.7
1.6

11.2 143

13.0 (5)

3

6.2 53

13.8

12.6 (6)

8.1

9.5

20.2 (4)

13.9

31.7 (1) 4 37 5

an
4

NH

14.0 (5)

10.9 (6)

12.8 (4)

17.1 (3)

Crop

% variability explained by random forest

30.1 6.1

59.8

31.5 24.0 39.1

43.0

16.7 30.3 26.0 32 1.46 15.1 36.2

48.1

40.6

Note: The number in parentheses represents the ranking of variables in descending order for each annual system.

DHALIWAL ET AL.

Abbreviations: C, corn; NH, ammonium content; NO7J, soil nitrate content; S, soybean; Y ppt,q, cumulative 2-day precipitation; T,dng average air temperature; WFPS, water-filled pore space; W, winter wheat.

levels exceeded 15 kg N ha™!, concurrent with Ty, surpass-
ing 20 °C (Figures 4a, 4e, and 5), which was also highlighted
by the decision tree analysis (Figure S4). In the NT system,
which differs from conventional only in tillage, climate vari-
ables Y ppt,q and T, were ranked higher than other soil and
management variables (Table 3). These two variables were
repeatedly used for node splitting in the decision tree (Figure
S5), further highlighting their importance in controlling N,O
fluxes from the NT system. These climate factors explained
the high variability in corn phases, while NH‘:r along with
T, emerged as primary influencers in the winter wheat phase
(Table 3). The 2D plot showed high emissions when Y ppt,q
reached 55 mm and T, exceeded 20°C (Figure 5). In the
reduced input and biologically based/organic systems, where
red clover precedes corn and cereal rye precedes soybean in
the rotation, NO3 emerged as the predominant variable, with
climate variables and NH;r following in the reduced input
system, and climate variables and WFPS in the biologically
based/organic system (Table 3; Figures S6 and S7). The pre-
dictability of N,O emissions is higher in the corn phase, with
NOj serving as a key predictor (Table 3), supported by the
increased availability of NO3 resulting from the legume cover
crop’s being tilled into the soil before corn planting (Figure
S8b). The emissions increase with an increase in NOg, par-
ticularly evident at approximately 10 kg N ha~!, with a much
higher increase observed in the biologically based/organic
system compared to the reduced input system (Figure 4d).
A positive interaction between NO; and WFPS was illus-
trated by the 2D plot, indicating higher N,O losses when
WEPS exceeded ~40% and NOy levels exceeded ~17 kg ha~!
(Figure 5; Figure S7).

4 | DISCUSSION

Our findings highlight that, despite the lack of statistically
significant differences in cumulative rotational N,O emis-
sions for the five cycles of W—C-S rotations among annual
systems, different variables emerge as the most influential fac-
tors for N,O fluxes in each annual system. The RF model,
developed utilizing biweekly N, O flux manual chamber mea-
surements from the annual cropping systems of KBS-LTER
site from 2003 to 2019, explained 29%—42% of daily flux vari-
ance in the testing dataset of the four annual systems. The
climate (7,,, and 2.PPtyy) and soil variables (WFPS, NOJ,
and NHI) employed in model development are widely rec-
ognized as drivers of N,O emissions (Firestone & Davidson,
1989; Gelfand et al., 2016; Saha, Basso, & Robinson, 2021)
and serve as easily measurable proxies for soil biophysical
and biogeochemical processes. The RF model has been exten-
sively validated and demonstrated its reliability in predicting
N,O emissions in croplands, with 7> values ranging from 0.38
to 0.73 (Glenn et al., 2021; Joshi et al., 2024; Liao et al., 2023;
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FIGURE 4 One-dimensional partial dependence of predictor
variables (a) average air temperature (Tavg), (b) cumulative 2-day
precipitation (}.ppt,,), (¢) water-filled pore space (WEPS), (d) soil
nitrate content (NO53), and (e) soil ammonium content (NHI) on N,O
emissions as predicted by the random forest model under conventional,
no-till, reduced input, and biologically based/organic systems.

Philibert et al., 2013; Saha, Basso, & Robinson, 2021; Yin
et al., 2022).

In the conventional cropping system, soil NH;r and T,
emerged as particularly significant predictors for N, O fluxes.
The model predicted a higher risk of N, O emissions following
N fertilization application (NH;r > 15 kg N ha~!) during peri-
ods of high air temperatures (T, > 20°C) (Figure 5; Figure
S4). Emissions typically peak following the side-dress appli-
cation of UAN during the corn and wheat phases, coinciding
with high air temperatures (Figure 2), also reported in many
other studies in temperate climates (Adviento-Borbe et al.,
2007; Gasche & Papen, 2002; Kitzler et al., 2006; Ma et al.,
2010). This observation might elucidate the relatively higher
predictability for fluxes modeled during the corn (48%) and
winter wheat (32%) phases compared to the soybean phase
(16.7%) (Table 3), with NH:‘r and Tav‘g emerging as the top-
most variables within the corn and wheat phases. Microbial
activities during nitrification and denitrification tend to be
more active under higher temperatures (Kitterer et al., 1998),
suggesting that air temperature plays an important role in reg-
ulating the rate of N,O emissions (Rashti et al., 2015). Our
findings, which highlight the primary influence of NH;r and
T, in conventional system, suggest that the emissions might
be linked to strong nitrification activity in this system. High
NHj‘r levels have elsewhere also been associated with elevated
N, O emissions (Breitenbeck et al., 1980; Peyrard et al., 2016).
However, Liang and Robertson (2021) conclude that nitrifica-
tion is a minor source of N,O emissions in this system based
on combining soil-specific kinetics of nitrification-derived
N, O with 25 years of N,O flux measurements. In that study,
the maximum potential contributions from nitrification to in
situ N, O fluxes were found to be 13%—17%, with actual con-
tributions likely only 1%-2%. Nitrification is rapid in these
soils (Millar & Robertson, 2015), such that high NH:‘r lev-
els can simultaneously indicate high NO7 availability despite
lower soil NO5 levels if NOj pools are rapidly depleted by
plant uptake, denitrification, or leaching (Gelfand et al., 2016;
Syswerda et al., 2012). Inorganic N availability might be bet-
ter (less ambiguously) assessed as a driver of N,O fluxes
by combining NH‘:r and NO5 into a single soil mineral N
predictor.

In the NT system, where all other management aspects
remain identical to the conventional system except for the
adoption of NT practices, the RF model had the least pre-
dictability (29%), reflecting the complexity of the underlying
processes and drivers of N,O production in NT systems.
Despite emissions’ rising similarly to those in the conven-
tional system after fertilizer application (Figure 2), climate
variables took precedence over the effects of soil mineral
N variability. Changing climate factors can regulate soil O,
dynamics, serve as proxies for soil biophysical processes,
and impact N,O emissions (Song et al., 2019). Precipita-
tion primarily changes soil O, concentrations by displacing

1PUOD) PUE SWHL, 341 39S “[$Z0Z/01/12] U0 ATeiqr duiuQ Ad[1A “ANSIAIUN 211 UESIYININ £q L€90Z'ZDA/Z001 01/10p/WO K1 Teaqiiaur[uo-ssasov/:sdiy woiy papeofumod ‘0 ‘LESTLEST

:sdny)

12}/Wod" K3[1M" ATRIqI[auTy

ASUIIT suowwo)) aaneal) aqearjdde ayy £q pauraroS are sa[onIe Y asn Jo sa[ni 10y A1eiqry duruQ £3[IA| UO (SUONIPUOI-PI



10 Journal of Environmental Quality DHALIWAL ET AL.
= 1 1 1 1
Biologically-based
1.05 ]
g
20 g
JE o %
&
- = 095 2
~ 10 =2 o c
g Ej £ wo g
& &
s o.- =1 0.90 Z
= 7. g
& . z H
.85 @
50 0.8 5
=
=
10 080 <~
20 40 60 80 100 120 10 2 30 40 S50 60 20 30 40 50 60 70
NH,'(kg ha') Y pptzg (mm) WEPS (%)
120 Reduced input . 70 Reduced input [
100 - 6
T » % 50 [
g %0 ]
- N3
s " )
a5 20
o .
10 20 30 40 50 60 -10 0 10 20 10 20 30 40 50 60

2 pptyg (mm)

20 150

NOy (kg ha')
g

S0
M
z
=

9 50 -

10 ’ ) ) . . -
10 20 30 40 50 60 020 30 40
Zpptza (mm) 2pptyy (mm)
sk " L
Biologically-based
20 150
‘Tﬂ
=

- 2
g = 100
g =}
= z
=
[~

0 50

10 ’ )
10 20 30 40 50 60 -10 0 10
2.pptzq (mm) Tavg (°C)
FIGURE 5

Tavg (°C)

under conventional, no-till, reduced input, and biologically based systems.

soil air with water and serves as a reliable indicator of soil
redox potential, affecting conditions that govern soil min-
eral N transformations and leading to N,O production (Linn
& Doran, 1984; Rochette et al., 2018). High TaWg (>~20°C)
coupled with high Y pptyy (~55 mm) (Figure 5) can simul-
taneously promote microbial O, consumption via enhanced
microbial activity and inhibited O, diffusion. Rochette et al.
(2018) in their study on soil N,O emissions and their controls
in temperate climates of Canada reported that precipitation
plays a primary role in determining N,O emissions, and
that environmental conditions can mask the impact of soil N
content under well-aerated conditions. Grandy et al. (2006)

Ypptyq (mm)

70

-‘ Reduced input
60

50

40

NH,'(kg ha')

30
20

Tavg (°C)

Two-dimensional partial dependence of selected predictor variables on N,O emissions as predicted by the random forest model

documented increased aggregation and enhanced soil struc-
ture in the same NT system described here. Microsites or
pores within these stable aggregates under long-term NT
can lead to low and varying O, levels across the aggregate
radius (Sexstone et al., 1985; Song et al., 2019), a dynamic
not captured by WFPS, which typically serves as a proxy
for soil O, fluctuation influenced by soil moisture levels
(Dobbie & Smith, 2001, 2003). Likewise, differences in soil
pores in well-structured soils can lead to microsite differ-
ences in water and O, levels that can drive differences in
N, O production (Kravchenko et al., 2017). Such heterogene-
ity in O, under well-structured soils could strongly impact N
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transformations and N,O production. Thus, soil pore struc-
ture and soil O, parameters, which may serve as better proxies
than WFPS and reliable predictors of N,O emissions, could
enhance the predictive capability of the RF model in the NT
system. However, we acknowledge the challenges associated
with accurately capturing high-resolution soil O, consump-
tion within pore spaces. Furthermore, the availability of data
on SOC may provide additional predictive capacity for the
model. This is particularly significant, as NT is proposed
as one of the main measures to reduce N,O emissions and
increase C sequestration (Van Kessel et al., 2013). A better
understanding of controls of N,O emissions in NT soils is
required.

In contrast to the conventional and NT systems, the cover-
cropped reduced input and biologically based/organic systems
revealed soil NOjJ as the primary variable explaining the
largest portion of the variation in N,O emissions (24%—
26%; Table 3). This is particularly evident after incorporating
red clover before corn planting, where there is a notable
increase in NO3 availability (Figure S8b) and, concomitantly,
in emissions (Figure 2). The model’s high predictability of
N, O fluxes in the corn phase (43% in the reduced input and
60% in the biologically based/organic system), with NO3 as
the top variable, further demonstrates this. Furthermore, the
lower predictive value observed for wheat in these systems,
along with the lower ranking of NO; within the wheat sys-
tem, suggests that there is a limited carryover effect of the
decomposition of leguminous cover crop biomass into the
wheat phase. Increased N,O associated with legume crops
could be attributed to enhanced N release from decompos-
ing leguminous residues (Abalos et al., 2022; Rochette &
Janzen, 2005). In these systems, chisel tillage may enhance
N mineralization by incorporating legume cover crops into
the soil when temperatures are sufficiently warm to support
active decomposition. This is further supported by the pre-
diction of an increase in emissions with rising air temperature
(Figure 4a). The simultaneous availability of easily degraded
N and C from organic inputs increases the risk of high N,O
emissions by enhancing biological activity, leading to soil
O, depletion through enhanced soil respiration and increased
denitrification (Hansen et al., 2019; Lussich et al., 2024).

The heightened risk of significant N,O emissions follow-
ing precipitation events when WFPS exceeds 53% and NOJ
availability surpasses 17 kg ha™!' (Figure 5) indicates N,O
likely originated from denitrification. This threshold value
for WFPS aligns with the findings of Peyrard et al. (2016),
although when denitrification is involved, the WFPS thresh-
old is often higher, ranging from 60% to 80% (Davidson,
1991). The wetness-independent anoxia created by decom-
posing legume residues might partly explain N, O production,
a phenomenon not captured by WFPS. Respiration-induced
anoxia caused by decomposing cover crop residues can pro-

mote N,O emissions, even under suboptimal WFPS (50%)
conditions for denitrification (Lussich et al., 2024). This could
also hold true for the reduced input system, where the predic-
tive value of WFPS is lower and no interaction of NO3 with
Y pptyg was observed. Future advancements in our under-
standing and data availability regarding the response of N,O
to soil O, consumption during the decomposition of cover
crop residues may enhance the predictive capacity of models
in cover crop-based cropping systems.

S | CONCLUSIONS

Results underscore the efficacy of a decision tree-based
nonlinear machine learning model for identifying key vari-
ables, their threshold conditions, and complex interactions
in influencing N, O emissions in intensively managed annual
cropping systems. Our findings leveraging long-term data
reveal that differential controls of N,O emissions are impor-
tant under different cropping system managements. In the
conventional system, soil ammonium and air temperature
emerged as the primary influencers of N,O emissions, while
in the NT system, climatic conditions—particularly pre-
cipitation and air temperature—exerted the greatest impact
on emissions. Nitrate availability from legume cover crops
drove N,O emissions in the reduced input and biologically
based/organic systems.

Although our RF model effectively predicted 29%—42%
of the daily variability in N,O fluxes from intensively man-
aged cropping systems, the model can be further improved
by incorporating long-term high-frequency observations from
automated flux chambers and by including soil organic car-
bon data, as NT and cover crop systems can influence N,O
emissions by enhancing soil carbon content. Considering the
challenge posed by the generalizability of the RF model, its
application to other regions and crops necessitates further
enhancements in model training based on diverse data sources
encompassing various soils, climates, crops, and management
conditions.
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