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In brief

Nambiar et al. present DR-BERT, a

lightweight protein language model that

outperforms many existing methods in

predicting intrinsically disordered protein

regions. Leveraging contextual

information, DR-BERT’s pretraining-

based approach offers a computationally

efficient and accurate means for IDR

annotation, allowing easier access to

computational annotation of IDR.
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SUMMARY
Despite their lack of a rigid structure, intrinsically disordered regions (IDRs) in proteins play important roles in
cellular functions, includingmediating protein-protein interactions. Therefore, it is important to computation-
ally annotate IDRs with high accuracy. In this study, we present Disordered Region prediction using Bidirec-
tional Encoder Representations from Transformers (DR-BERT), a compact protein language model. Unlike
most popular tools, DR-BERT is pretrained on unannotated proteins and trained to predict IDRs without
relying on explicit evolutionary or biophysical data. Despite this, DR-BERT demonstrates significant improve-
ment over existing methods on the Critical Assessment of protein Intrinsic Disorder (CAID) evaluation
dataset and outperforms competitors on two out of four test cases in the CAID 2 dataset, while maintaining
competitiveness in the others. This performance is due to the information learned during pretraining and DR-
BERT’s ability to use contextual information.
INTRODUCTION

Over a century ago, the chemist Emil Fischer postulated the

lock-and-key model for enzymatic reactions, giving rise to the

theory that a protein’s function depends on its unique and rigid

three-dimensional structure.1 Within this paradigm, two proteins

can interact if they have complementary structures. This idea has

contributed to several advances in the understanding of protein

function, and it is undeniable that the structure of a protein af-

fects its function. However, studies in the late 1990s and early

2000s recognized that a stable structure is often not necessary

for functional function.2,3 Segments that lack a rigid structure,

also known as intrinsically disordered regions (IDRs), have

been found in many proteins and shown to actively participate

in diverse functions.4 In fact, these disordered regions are critical

for some proteins with central roles in cellular signaling and reg-

ulatory networks, allowing them to interact with different

proteins.3,5

Given the functional importance of disordered regions,

computational methods for predicting disordered regions have

been studied for decades, and over a hundred methods, ranging

from biophysical to machine-learning-based models, have been

developed.6 Recently, predictors that use deep learning have

gained traction.6 This was particularly evident in the Critical

Assessment of protein Intrinsic Disorder (CAID) competitions,
Structure 32
where deep-learning-based models consistently delivered the

best performance.7Many existing deep learningmethods to pre-

dict disordered regions utilize recurrent neural networks and

convolutional neural networks, sometimes paired with an atten-

tion mechanism.8–10 This success of deep-learning-based

methods to predict disordered regions in proteins can be attrib-

uted to both the complex and non-linear nature of sequence-

structure maps as well as the steady increase of data

availability.11

Protein language modeling has been a particularly fast-

growing area of deep learning research for computational

biology. Inspired by natural language processing, the core idea

of protein language modeling is that the amino acids (or some-

times small groups of amino acids) that make up a protein are

analogous to the words that make up a sentence.12,13 Like their

natural language counterparts, protein language models

leverage the large number of unannotated amino acid sequence

data to pretrain deep learning models before specializing them

on much smaller amounts of annotated data. Usually, this pre-

training step consists of training the model either to predict the

context surrounding a particular residue14 or to predict the iden-

tity of a hidden residue, given its surrounding context, i.e., the set

of its nearby amino acid residues.13 These models have then

been successfully used to perform various downstream tasks

including protein family labeling,12,14 prediction of protein
, 1–9, August 8, 2024 ª 2024 Elsevier Inc. All rights reserved. 1
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Model AU-ROC F1 MCC

DR-BERT 0.82/83 0.55/55 0.43/0.43

flDPnn 0.81/0.82 0.44/0.51 0.35/0.39

RawMSA 0.79/0.80 0.49/0.51 0.35/0.38

SPOT 
Disorder 2 0.78/0.80 0.5/0.53 0.37/0.42
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C

Figure 1. The DR-BERT model is pretrained

on the masked language modeling task and

fine-tuned on predicting disordered regions

in proteins

(A) A schematic of the DR-BERT model and the

pretraining and fine-tuning procedures.

(B) The statistics of data used in this study and

(C) the CAID 1 and CAID 2 results of DR-BERT

compared to some of the best-performing models

from the CAID competitions.7 Cells are colored

based on the performance of each model for a

particular metric for CAID 1.

ll
Resource

Please cite this article in press as: Nambiar et al., DR-BERT: A protein language model to annotate disordered regions, Structure (2024), https://
doi.org/10.1016/j.str.2024.04.010
interactions12 and subcellular localization,15 and the inference of

evolutionary trajectories and phylogenetic relationships of pro-

teins.16,17 While most protein language models tend to be large

and graphics processing unit (GPU) intensive, there have been

studies proposing small and computationally inexpensive pro-

tein language models.12

In this paper, we present Disordered Region prediction using

Bidirectional Encoder Representations from Transformers (DR-

BERT), a small protein language model that is first pretrained

on a large corpus of amino acid sequences and then fine-tuned

to predict disordered regions in proteins. We validate our model

on both CAID 1 and CAID 2 evaluation data and benchmark it

against some of the best-performing models. We then investi-

gate the impact of pretraining on the performance of DR-

BERT. Finally, we dive into one particular biological case study

involving RPB6, a subunit of RNA polymerase, to illustrate how

DR-BERT arrives at its predictions and learns to use contextual

information from the amino acid sequence.

RESULTS

While many models for disordered region prediction depend on

knowledge of biophysical properties of amino acids used as in-

puts, previous work has shown that pretraining a protein lan-

guage model may allow it to learn these biophysical and func-

tional properties in a self-supervised manner.12,13 Therefore,

we chose to build our DR-BERT model using only the amino

acid sequence of a protein as the input. This model is first

pretrained on the masked language modeling task as shown in

Figure 1 before it is fine-tuned to predict IDRs.

Themodel itself is a neural network with a transformer encoder

block composed of six stacked transformer encoder layers

(see STAR Methods for details). The purpose of the encoder

block is to create contextual latent representations of each res-

idue. That is, each residue is represented by a vector that cap-

tures the context of the rest of the sequence. By stacking multi-

ple transformer encoder layers within the encoder block, the final

latent representations can capturemore complex higher-level in-

formation and relationships from the amino acid sequence.

These vectors are then passed to a final linear layer that con-

structs a task-specific output.

In the pretraining task of masked language modeling, the neu-

ral network is asked to predict the identities of amino acids that
2 Structure 32, 1–9, August 8, 2024
have been masked in the input. In this study, we pretrained our

model on 6,564,742 proteins randomly sampled from the

UniRef90 dataset.18 Next, we fine-tuned DR-BERT by tasking it

to classify residues in proteins as disordered or ordered using

annotated data from the DisProt database. The performance of

DR-BERT on this fine-tuning task is shown in Figure 1C along-

side previous state-of-the-art methods.

Benchmarking DR-BERT’s performance
When fine-tuning DR-BERT on the disordered region classifica-

tion task, we split the DisProt data into train/validation/test sets

with the aim of enabling a systematic and unbiased comparison

against existing methods. In particular, proteins from the CAID

competitions were reserved as test data and were not available

to the model during training. In addition, any proteins that

shared more than 25% similarity to proteins from the test set

was excluded from the train set. We ran out our benchmarking

on both CAID 1 and CAID 2. This left us with 1,408 examples

in the train set, 156 sequences in validation, and 652 in the

test set for CAID 1 and 2,013 examples in the train set, 216

sequences in validation, and 348 in the test set for CAID 2. By

doing so, we were able to reproduce the results of some of

the top-performing models from CAID.7 In particular, we

benchmarked DR-BERT against flDPnn,19 RawMSA,20 SPOT-

Disorder2,8 DisoMine,21 Espritz-D,22 AUCpreD,23 IUPred2A/

3,24 and Predisorder.25

Of these methods, all but IUPred2A/3 are deep-learning-

based models based on feedforward, recurrent, and convolu-

tional neural network architectures. flDPnn is a feedforward neu-

ral network that uses evolutionary and structural information in

addition to disordered region predictions from simpler models;

RawMSA uses convolutional neural networks (CNNs) on evolu-

tionary information (in the form of MSAs); SPOT-Disorder2

uses a combination of CNNs and recurrent neural networks

(RNNs) on input with evolutionary information; DisoMine uses

RNNs on structural information; Espritz uses RNNs on evolu-

tionary information; AUCpreD uses CNNs on sequence informa-

tion (with optional evolutionary information); and Predisorder

uses RNNs with structural, biophysical, and evolutionary infor-

mation. A notable pattern here is that most of these methods

use pre-computed features. First, the performance of the model

is reliant on its upstream dependencies. For example, if a model

uses MSAs as input, one would expect its performance to
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Figure 2. Receiver operating characteristic (ROC) curves on the CAID datasets

The ROC curves of DR-BERT and other models on test sets from (A) CAID 1 and (B) CAID 2. The legends display the area under the curve (AUC) for each model.

The models are ordered based on the AUC in CAID 1.
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deteriorate for proteins that do not have many known homologs.

In addition, the presence of multiple third-party techniques in a

prediction pipeline makes it more difficult to optimize computa-

tional efficiency. In contrast, DR-BERT is a fully self-contained

model that does not rely on any additional information besides

the amino acid sequence of a protein.

Despite not requiring any additional information, the receiver

operating characteristic (ROC) curves (Figure 2) on both the

CAID 1 and CAID 2 test sets demonstrate that DR-BERT out-

performs all of the other methods in predicting disordered re-

gions. For CAID 1, DR-BERT ranks first in terms of area under

the ROC curves (AU-ROC) with a value of 0.82. The scores

then incrementally decrease with flDPnn, RawMSA, and

SPOT-Disorder2. For CAID 2, DR-BERT is again the highest

ranking method followed by flDPnn and a three-way tie be-

tween rawMSA, SPOT-Disorder2, and DisoMine. The ROC

curves also show that DR-BERT offers particularly evident im-

provements in the lower range of false positive rates. However,

as the disordered region dataset is imbalanced with more or-

dered residues than disordered ones, the ROC curves may

show an overly optimistic view of the classifiers.26 Therefore,

we also calculate F1 and Matthews correlation coefficients

(MCCs) for each model. These scores, along with the AU-

ROC scores are shown in Figure 3A for CAID 1 and Figure 3B

for CAID 2. Again, DR-BERT scores the highest on both met-

rics with an F1 of 0.55 and MCC of 0.43 for CAID 1 and an

F1 of 0.56 and MCC of 0.43 for CAID 2. The precision-recall

plots in Figure S1 also show that DR-BERT performs better

than the other methods in balancing the trade-off between

precision and recall.

To determine the statistical significance of DR-BERT’s

improvement over the existing methods, we performed a resam-

pling analysis similar to that of Hu et al.19 and Necci et al.7 Spe-

cifically, we resampled 25% of the test set 20 times. For each

resample, we calculated the AU-ROC, F1, and MCC scores for
DR-BERT and the other methods. Finally, we performed Wil-

coxon tests comparing the scores obtained by DR-BERT to

those of each of the other methods, with the alternative hypoth-

esis being that DR-BERT’s score is greater than the other

method. The p values from these hypothesis tests, shown in Fig-

ure S2, confirm that DR-BERT performs significantly better than

existing methods across the different scoring metrics for both

CAID 1 and CAID 2.

This supremacy of DR-BERT over methods that use evolu-

tionary and structural features suggests that these features

can be successfully learned by the model either during pretrain-

ing or fine-tuning. In fact, it has been previously shown that pre-

trained protein language models are able to extract structural in-

formation from amino acid sequences.27,28 However, these

results alone do not elucidate the contribution of pretraining to

the success of DR-BERT.

Pretraining and fine-tuning
To better understand the role that pretraining plays in extracting

the information relevant to disordered region prediction, we

interrogated DR-BERT models at two stages: (a) after only pre-

training and (b) after pretraining and fine-tuning. At both of these

stages, we extracted the embeddings from the encoder block for

each residue in the test set. Using t-SNE, we projected these em-

beddings down to two dimensions.29 Then, we calculated kernel

density estimates (KDEs) separately for ordered and disordered

residues. These KDEs are shown in Figure 4A for the pretrained

model and in Figure 4B for the model that was pretrained and

fine-tuned. The plot for the pretrained model shows about 20

different clusters of ordered residues and 15 distinct clusters

of disordered residues. Upon further investigation, we see that

each cluster corresponds to an individual amino acid. There

are a few exceptions to this for disordered residues. For

instance, there is no clear disordered cluster for the amino acid

tryptophan (W). This is because tryptophan is one of the most
Structure 32, 1–9, August 8, 2024 3
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Figure 3. Comparing the results of DR-BERT with other top-performing methods on the CAID datasets

(A) The MCC, F1, and AU-ROC scores of DR-BERT and the top-performing methods from CAID 1, evaluated on the test split.

(B) The MCC, F1, and AU-ROC scores for corresponding methods evaluated on the CAID 2 test data.
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order-promoting amino acids and is rarely encountered inside

IDRs.30 However, the clear overall pattern in Figure 4A is that

most ordered clusters are accompanied by an adjacent disor-

dered cluster for the same amino acid. This is in contrast to the

null model where the disorder/order residue labels are shuffled,

shown in Figure S4. On the other hand, the plot for the fine-tuned

embeddings depicts a different story. While the embeddings are

not clustered by amino acid, the disordered residues are all clus-

tered together and are well separated from the ordered residues.

The difference between the pretrained and fine-tuned embed-
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Figure 4. Plotting the embeddings of ordered and disordered residues

(A) A t-SNE projection of the pretrained embeddings of residues in the CAID 1 test

disordered residues in red. The labeled points indicate the mean position of each a

(B) A similar plot but with embeddings from a model fine-tuned to predict disorde

the dimensionality of the embedding to 1D.
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dings highlights that pretraining a protein language model is suf-

ficient to extract some information regarding disordered regions

in proteins. Fine-tuning themodel allows it to then home in on the

differences between disordered and ordered residues to more

efficiently separate them. This result gives credence to an obser-

vation we made in the study by Nambiar et al.12 where we noted

that pretraining a protein language model allows it to learn gen-

eral but biologically relevant information from amino acid se-

quences, whereas fine-tuning gives the model more information

about one characteristic but at the expense of generality.
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Figure 5. Comparison of the results of DR-BERT with its version without pretraining

(A) The ROC plots of DR-BERT and the non-pretrained model, evaluated on the CAID 1 test set. The AUC is presented in the legend.

(B) The MCC, F1, and AU-ROC scores of DR-BERT and the version without pretraining.

ll
Resource

Please cite this article in press as: Nambiar et al., DR-BERT: A protein language model to annotate disordered regions, Structure (2024), https://
doi.org/10.1016/j.str.2024.04.010
In addition, wewanted to quantify the advantage of pretraining

for predicting disordered regions. To do this, we trained a model

with an identical architecture to DR-BERT to predict disordered

regions without any pretraining. The results of this non-pre-

trained model evaluated on CAID 1, shown in Figure 5, show

that pretraining DR-BERT gives it a considerable advantage. In

fact, in the absence of pretraining, our model lags behind the

models from the CAID competition, shown in Figure 3 and S3.

This showcases the advantage of pretraining for transformer

neural networks, especially for low data regimes.

A case study: The disordered region in RPB6 protein
Evaluating DR-BERT on a large annotated dataset gave us con-

fidence in DR-BERT’s ability to make accurate predictions

regarding disordered regions. However, it is also useful to illus-

trate a potential use-case by focusing on the predictions of the

model for an IDR within a single protein. Doing so gives us the

opportunity to gain insight into how the context of a particular

sequence is used by the attention heads of the model (see

STAR Methods) to make predictions for different residues in

the same protein. We decided to illustrate this using RPB6 pro-

tein as an example. RPB6 is a subunit of an RNA polymerase in

fission yeast. It is known to bind to the general transcription fac-

tor, TFIIS.31 This example allows us to test our disordered re-

gion prediction for a protein that is known to perform an impor-

tant function. Figure 6B shows that DR-BERT predicts with high

confidence that the N-terminal tail of RPB6 is in fact disordered.

Indeed, NMR spectroscopy shows that not only does RPB6

have a flexible N-terminal tail, but this tail is also used to bind

to the p62 subunit of the TFIIH transcription factor.32 Figure 6A

shows DR-BERT’s predictions overlaid on the NMR-deter-

mined structure of the complex between RPB6 and the TFIIH

p62 PH domain (PDB: 7DTI). To analyze how DR-BERT uses

sequence context to make its predictions, we extracted the

self-attention heads for each of the six layers in DR-BERT’s

encoder as it processed the 130 amino acid long RPB6

sequence. Each attention map is represented as a 1303 130

matrix M where Mij gives a numerical score as to how much
that particular attention head focuses on amino acid j when

determining the context relevant for amino acid i. A sample of

these attention maps for each layer in DR-BERT is displayed

in Figure 6C (a complete table is shown on Figure S5). We

observed that the features learned by the attention maps of

the initial layer do not have any clear high-level patterns. How-

ever, attention maps from layers two to four display some

distinct patterns. For example, in layer 4, the attention map re-

veals that the relevant context for each residue includes a large

window of surrounding residues in addition to several smaller

windows at intervals on either side of the residue in question.

By layer 5, at least one attention map divides the residues

into two distinct groups: one group consists of residues 1 to

50, and the other group comprises residues 50 to 130. Each

group only considers residues within its respective group as

relevant context, while ignoring residues in the other group.

Comparing this attention map to the disorder scores by

sequence position, we can see that the division between the

two groups occurs at the transition between the ordered and

disordered regions of the protein. This observation is similar

to demonstrations in computer vision, where deep neural net-

works learn features hierarchically, with the initial layers detect-

ing simpler, disjoint features, and layers toward the end of the

neural network detecting high-level features directly related to

the model’s training task.

DISCUSSION

In this study, we introduce DR-BERT, a protein language model

for predicting disordered regions in proteins. DR-BERT is first

pretrained on the masked language modeling task before it is

fine-tuned to predict disordered regions.

This fine-tuned model is benchmarked using the CAID evalu-

ation data and significantly surpasses the other models. This

improvement over models that use biophysical and structural in-

formation supports the hypothesis that pretraining protein lan-

guage models enables them to learn biologically relevant infor-

mation in a self-supervised manner without any provided
Structure 32, 1–9, August 8, 2024 5
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Figure 6. Application of DR-BERT to RPB6, a subunit of RNA polymerase

(A) The three-dimensional structure of RPB6 as it binds to the TFIIH p62 PH domain (PDB:7DTI). The protein is colored by the DR-BERT score, which represents

the probability that a given residue is disordered.

(B) A plot of the DR-BERT scores for RPB6 shown for each position along the amino acid sequence.

(C) A sample of DR-BERT’s self-attention maps for each of the 6 layers in the model as it processes the RPB6 sequence.
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annotations. This learned information should include both evolu-

tionary and biophysical information.

This hypothesis is further validated as we show that the em-

beddings of the pretrained model are able to differentiate be-

tween disordered and ordered residues without access to any

annotations during training. Furthermore, we showed that a

model with an identical architecture as DR-BERT suffers a large

loss in performance when the pretraining step is skipped.

Finally, we took a closer look at how DR-BERT makes predic-

tions for RPB6. Through this exercise, we saw that DR-BERT ex-

tracts patterns hierarchically, with higher-level features ex-

tracted by attention heads in deeper layers of the neural

network. This is similar to the behavior that had been observed

in computer vision.

To verify that DR-BERTwas not overfitting on the training data,

we excluded from the training set proteins that were clustered

with proteins in the test set with 25% sequence similarity. The

clustering in this process was performed using CD-HIT.33

Given the high performance of DR-BERT on the disordered re-

gion prediction task, we also investigated its ability to perform

related tasks from CAID 2. This included evaluating DR-BERT

on a disordered region dataset where X-ray annotations were

removed (disorder-noX) and a dataset where PDB residues

were incorporated (disorder-PDB). The results shown in Figure 7

show that DR-BERT performs well on the disorder-noX test set,
6 Structure 32, 1–9, August 8, 2024
placing first on the AU-ROC and area under precision-recall plot

metrics and second to SPOT-Disorder2 on F1 score and MCC.

However, DR-BERT shows a weaker performance on the disor-

der-PDB set, being outperformed by tying for third place with

RawMSA on AU-ROC and area under precision recall plot and

placing fourth on F1 score and MCC. Given that DR-BERT was

trained on the vanilla disordered region dataset from DisProt, it

is not surprising that DR-BERT’s performance dropped on

some of these variants. In addition to variants of disordered re-

gion annotations, we also evaluated DR-BERT on predicting pro-

tein-binding regions. Protein-binding disordered regions are re-

gions in disordered proteins that bind to structured partners

and potentially allow the disordered protein to bind to multiple

partners.34 DR-BERT achieved an AU-ROC of 0.75, F1 score

of 0.45, and MCC of 0.32 beating other protein-binding predic-

tors from CAID 2.

To further validate our results, we also ran an additional eval-

uation where we modified the CAID 1 and CAID 2 disorder sets

so that no protein should have more than 25% identity to any

other protein (even within the set). These results, shown in Fig-

ure S7, show no significant changes to performance, confirming

the reliability of our results.

The success of DR-BERT, in addition to the insight into how

DR-BERT makes predictions, leads us to believe that protein

language models could play an important role in the next
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Figure 7. The results on the additional test sets from CAID 2

(A‒C) Show the AU-ROC, F1 score, and MCC on the disorder-noX, disorder-PDB, and protein binding test sets.

(D‒F) Show precision-recall plots that correspond to the same tasks.

ll
Resource

Please cite this article in press as: Nambiar et al., DR-BERT: A protein language model to annotate disordered regions, Structure (2024), https://
doi.org/10.1016/j.str.2024.04.010
generation of neural networks for predicting disordered regions.

In fact, after completing our study, we found that a similar model

to DR-BERT was presented in a recent preprint by Redl et al.35

However, there are significant differences in our studies,

including our investigation of the effect of pretraining on the

success of the protein language model and the insight into the

features extracted by the attentional layers. In addition, DR-

BERT is significantly smaller than the model proposed by Redl

et al.35 (with 15x fewer parameters), which may make DR-

BERT more accessible to users without access to high-perfor-

mance GPUs. An alternative approach to the one shown in

our study would be to extract embeddings from a pretrained

model and pass them to a downstream classifier without fine-

tuning the embeddings. This approach, which is used by the

SETH model, makes it more efficient to train models on down-

stream tasks using embeddings from a large pretrained lan-

guage model.36 However, as shown in Figure S6, DR-BERT is

able to surpass the performance of a larger language model

where the embeddings are not fine-tuned. Moreover, each pre-

diction would still involve a forward pass on the large model,

which would be slower than using a small protein language

model like DR-BERT.

In order to maximize the accessibility of our model, we have

made a web-app (accessible at https://huggingface.co/

spaces/nambiar4/DR-BERT) where anyone can use DR-BERT

to make disordered region predictions.37 Due to the small size

of our model, we are currently able to run our server using only

2 CPU cores and 16 GB of RAM. In addition to the web-app,
users who want more control over their predictions can run the

pretraining, fine-tuning, and prediction scripts we have made

available at https://github.com/maslov-group/DR-BERT.

While we have shown that a protein language model with no

additional information is sufficient to make accurate predictions

of disordered regions in proteins, a direction worth exploring in

the future is whether combining the information learned by pro-

tein language models with biophysical properties and the out-

puts of other models might further improve performance. One

additional input that could be particularly interesting is the per-

residue confidence score provided by AlphaFold when making

sequence-to-structure predictions since it has been shown

that disordered regions are often assigned a low confidence

score by AlphaFold.38
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Wolf et al.37
https://huggingface.co/docs/transformers/index
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Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Sergei Maslov (maslov@

illinois.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d All original code has been deposited at https://github.com/maslov-group/DR-BERT and is publicly available as of the date of

publication.

d All data are generated from the dataset provided in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Data processing
FromUniRef90, we sampled 6,564,742 proteins at random for the training dataset and 250,000 proteins for the validation dataset. Per

the construction of UniRef data, the validation set is designed to contain no examples with above 90% sequence similarity to any of

the examples in the training set.18 We used UniRef90 because we hope that down the road, we can use DR-BERT to predict the ef-

fects of mutations on disordered regions. It has been observed in 43 that the redundancy provided by UniRef90 allows for better

variant effect prediction. Furthermore, as we show on Figure S8, a model pretrained on UniRef50 achieves the same performance

as the UniRef90 model used in Figure 3. So, it does not appear that the higher redundancy in UniRef90 impedes the model.

For the finetuning task, 2,419 sequences were taken fromDisProt Version 9.2, June 2022, with replicate proteins removed to create

the 2,386 example dataset, and their disordered regions were recorded into boolean arrays as the ground truth labels.39 To construct

the train/validation/test splits for CAID 1, the Disprot and CAID 1 datasets were combined and clustered for 25% similarity using the

CD-HIT algorithm. Then, only clusters without any CAID 1 proteins were used for training and validation. This resulted in 1,569 pro-

teins in the train set and 156 sequences in the validation set. The 652 proteins from the CAID 1 competition dataset were used as the
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test set. To construct the train/validation/test splits for the CAID 2 experiment, we similarly combined the CAID 2, CAID 1 and Disprot

datasets, and clustered for 25% similarity. Then, only clusters without any CAID 2 proteins were used for training and validation. The

sizes for the train, validation, and test sets were 2013, 216, and 348 respectively.44 The disorderd region data from CAID 2 comes

from two types of experimential experimental techniques: circular dichroism spectroscopy and x-ray. In addition to the standard dis-

order dataset combining data from both techniques, we also tested on a test set where X-ray annotations were removed (disorder-

noX). Furthermore, we also used a test set where in addition to using both techniques to annotate disordered regions, only regions

where a structure was observed in the Protein Data Bank were labelled as ordered (disorder-PDB). Finally, we also included a test set

for protein binding disordered regions.44

Model architecture
DR-BERT uses the Bidirectional Encoder Representations from Transformers (BERT) coupled with token classification heads trained

on disordered region labels45 and was trained using PyTorch and HuggingFace.37,40–42 Based on the Robustly Optimized BERT pre-

training Approach (RoBERTa), themodel consists of an embedding layer connected with a Encoder Block with 6 encoder layers. The

embedding layer consists of two main component layers: a word embedding layer and a positional embedding layer. The word

embedding layer takes the tokenized sequence of amino acids and maps each token to a 768 dimensional vector. In contrast, the

positional embedding layer captures the spatial information of the tokens to preserve the notion of context within the sequence.46

After a dropout layer is applied to decrease the potential for overfitting,47 the embedding, consisting of a 768 dimensional vector

for each amino acid token, is used by the Transformer encoder layers. The RoBERTa transformer layer consists of a self-attention

layer and a feed-forward network layer. The self-attention mechanism described in 46, captures the relationship between different

tokens in a sequence. Each attention layer consists of 12 heads, which can each capture different contextual information in parallel.

The final output from the encoder layers is 1026 vectors, each of length 768, where the first corresponds to a standard summary [CLS]

token and the last corresponds to a [SEP] separator token. Many of the hyperparameters used in this paper, including the hidden size

of 768 and 12 attention heads, are based on our previous work in ref.12

Pretraining
Pretraining of DR-BERT used masked language modeling (MLM): in each example, the model is tasked with identifying some hidden

tokens. Following RoBERTa, the masks are set independently during epochs, and 15% of tokens are replaced with a [MASK] token

for each example, with cross-entropy loss being applied for every batch of proteins.48 Pretraining lasted for approximately 11

epochs, allowing themodel to see 70million examples. The batch size was set to 10 examples per device, and themodel was trained

on 2 NVIDIA V100s.49

Disordered region prediction
To finetune DR-BERT, we applied a token classification training method. A classification layer is trained and applied to each posi-

tional embedding output Then, a softmax function is applied to transform the embedding into probability space, taking the rounded

result as the predicted label. Then, cross-entropy loss is applied between the predicted labels and the ground truths. The classifi-

cation training lasted 10 epochs, with the best-performing checkpoint on the validation dataset chosen as the final model. The

learning rate was empirically chosen to be 2e� 6 (against 2e� 5 and 2e� 7) using the cosine scheduler with hard restarts, as opposed

to a linear scheduler. To compare against similar models, DR-BERT was tested on the CAID dataset, which we ensured to be disjoint

from both the training and evaluation datasets. We also tested on the CAID 2 dataset, which was again ensured to be disjoint from the

training and evaluation datasets.

QUANTIFICATION AND STATISTICAL ANALYSIS

Evaluation metrics
The primary evaluationmetrics used for DR-BERT were Area Under the Receiver Operating Characteristic Curve (AU-ROC), F1 score

and theMatthews Correlation Coefficient (MCC). The receiver operating curve is given by observing the change in the true positive to

false positive ratio as the probability decision threshold is varied. Therefore, ROC-AUC for a perfect classifier would be 1.0 and a

random classifier would have an area of 0.5. F1 scores are computed as a flattened vector of all predicted disorder binary labels

against their ground truth, and is given by

F1 : =
2 � Precision � Recall
Precision+Recall

;Recall : =
TP

TP+FN
;Precision : =

TP

TP+FP

TheMCC score offers a metric that is stable in imbalanced datasets.50 Because of theMCC formula’s false-positive symmetry, the

MCCmetric is invariant on which class is considered to be negative or positive. As the DisProt dataset has approximately 3 times as

many ordered labels as disordered, the MCC metric is an appropriate metric to characterize the model’s performance. MCC is

defined as:

MCC : =
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP+FPÞ � ðTP+FNÞ � ðTN+FNÞ � ðTN+FNÞp
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For a fair comparison between methods, when these evaluation metrics were run, only test sequences that successfully ran on all

methods were used. In addition, we attempted to emulate the evaluation strategy of the CAID competitions. In particular, when re-

porting F1 and MCC, we use the binary labels reported by CAID whenever available for a method since CAID identifies the threshold

that maximizes F1 score for a particular method.7 In the case of methods where a binary label was not provided by CAID and for DR-

BERT, we identify the threshhold that maximizes F1 score ourselves. The threshhold for protein binding is calculated independently

from the threshold for disordered region prediction (including disorder, disorder-PDB and disorder-noX). However, the same variant

of DR-BERT was used for both disordered region and protein binding prediction.
e3 Structure 32, 1–9.e1–e3, August 8, 2024
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