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SUMMARY

Despite their lack of arigid structure, intrinsically disordered regions (IDRs) in proteins play important roles in
cellular functions, including mediating protein-protein interactions. Therefore, it is important to computation-
ally annotate IDRs with high accuracy. In this study, we present Disordered Region prediction using Bidirec-
tional Encoder Representations from Transformers (DR-BERT), a compact protein language model. Unlike
most popular tools, DR-BERT is pretrained on unannotated proteins and trained to predict IDRs without
relying on explicit evolutionary or biophysical data. Despite this, DR-BERT demonstrates significant improve-
ment over existing methods on the Critical Assessment of protein Intrinsic Disorder (CAID) evaluation
dataset and outperforms competitors on two out of four test cases in the CAID 2 dataset, while maintaining
competitiveness in the others. This performance is due to the information learned during pretraining and DR-

BERT’s ability to use contextual information.

INTRODUCTION

Over a century ago, the chemist Emil Fischer postulated the
lock-and-key model for enzymatic reactions, giving rise to the
theory that a protein’s function depends on its unique and rigid
three-dimensional structure.” Within this paradigm, two proteins
can interact if they have complementary structures. This idea has
contributed to several advances in the understanding of protein
function, and it is undeniable that the structure of a protein af-
fects its function. However, studies in the late 1990s and early
2000s recognized that a stable structure is often not necessary
for functional function.>® Segments that lack a rigid structure,
also known as intrinsically disordered regions (IDRs), have
been found in many proteins and shown to actively participate
in diverse functions.” In fact, these disordered regions are critical
for some proteins with central roles in cellular signaling and reg-
ulatory networks, allowing them to interact with different
proteins.*®

Given the functional importance of disordered regions,
computational methods for predicting disordered regions have
been studied for decades, and over a hundred methods, ranging
from biophysical to machine-learning-based models, have been
developed.® Recently, predictors that use deep learning have
gained traction.® This was particularly evident in the Critical
Assessment of protein Intrinsic Disorder (CAID) competitions,

where deep-learning-based models consistently delivered the
best performance.” Many existing deep learning methods to pre-
dict disordered regions utilize recurrent neural networks and
convolutional neural networks, sometimes paired with an atten-
tion mechanism.®'° This success of deep-learning-based
methods to predict disordered regions in proteins can be attrib-
uted to both the complex and non-linear nature of sequence-
structure maps as well as the steady increase of data
availability.

Protein language modeling has been a particularly fast-
growing area of deep learning research for computational
biology. Inspired by natural language processing, the core idea
of protein language modeling is that the amino acids (or some-
times small groups of amino acids) that make up a protein are
analogous to the words that make up a sentence.'® Like their
natural language counterparts, protein language models
leverage the large number of unannotated amino acid sequence
data to pretrain deep learning models before specializing them
on much smaller amounts of annotated data. Usually, this pre-
training step consists of training the model either to predict the
context surrounding a particular residue’ or to predict the iden-
tity of a hidden residue, given its surrounding context, i.e., the set
of its nearby amino acid residues.'® These models have then
been successfully used to perform various downstream tasks
including protein family labeling,'>'* prediction of protein
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interactions'? and subcellular localization, '® and the inference of
evolutionary trajectories and phylogenetic relationships of pro-
teins."®"” While most protein language models tend to be large
and graphics processing unit (GPU) intensive, there have been
studies proposing small and computationally inexpensive pro-
tein language models.'?

In this paper, we present Disordered Region prediction using
Bidirectional Encoder Representations from Transformers (DR-
BERT), a small protein language model that is first pretrained
on a large corpus of amino acid sequences and then fine-tuned
to predict disordered regions in proteins. We validate our model
on both CAID 1 and CAID 2 evaluation data and benchmark it
against some of the best-performing models. We then investi-
gate the impact of pretraining on the performance of DR-
BERT. Finally, we dive into one particular biological case study
involving RPB6, a subunit of RNA polymerase, to illustrate how
DR-BERT arrives at its predictions and learns to use contextual
information from the amino acid sequence.

RESULTS

While many models for disordered region prediction depend on
knowledge of biophysical properties of amino acids used as in-
puts, previous work has shown that pretraining a protein lan-
guage model may allow it to learn these biophysical and func-
tional properties in a self-supervised manner.'>'® Therefore,
we chose to build our DR-BERT model using only the amino
acid sequence of a protein as the input. This model is first
pretrained on the masked language modeling task as shown in
Figure 1 before it is fine-tuned to predict IDRs.

The model itself is a neural network with a transformer encoder
block composed of six stacked transformer encoder layers
(see STAR Methods for details). The purpose of the encoder
block is to create contextual latent representations of each res-
idue. That is, each residue is represented by a vector that cap-
tures the context of the rest of the sequence. By stacking multi-
ple transformer encoder layers within the encoder block, the final
latent representations can capture more complex higher-level in-
formation and relationships from the amino acid sequence.
These vectors are then passed to a final linear layer that con-
structs a task-specific output.

In the pretraining task of masked language modeling, the neu-
ral network is asked to predict the identities of amino acids that
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have been masked in the input. In this study, we pretrained our
model on 6,564,742 proteins randomly sampled from the
UniRef90 dataset.'® Next, we fine-tuned DR-BERT by tasking it
to classify residues in proteins as disordered or ordered using
annotated data from the DisProt database. The performance of
DR-BERT on this fine-tuning task is shown in Figure 1C along-
side previous state-of-the-art methods.

Benchmarking DR-BERT’s performance
When fine-tuning DR-BERT on the disordered region classifica-
tion task, we split the DisProt data into train/validation/test sets
with the aim of enabling a systematic and unbiased comparison
against existing methods. In particular, proteins from the CAID
competitions were reserved as test data and were not available
to the model during training. In addition, any proteins that
shared more than 25% similarity to proteins from the test set
was excluded from the train set. We ran out our benchmarking
on both CAID 1 and CAID 2. This left us with 1,408 examples
in the train set, 156 sequences in validation, and 652 in the
test set for CAID 1 and 2,013 examples in the train set, 216
sequences in validation, and 348 in the test set for CAID 2. By
doing so, we were able to reproduce the results of some of
the top-performing models from CAID.” In particular, we
benchmarked DR-BERT against fIDPnn,'® RawMSA,?° SPOT-
Disorder2,® DisoMine,?' Espritz-D,?> AUCpreD,?* IUPred2A/
3,°* and Predisorder.?®

Of these methods, all but IUPred2A/3 are deep-learning-
based models based on feedforward, recurrent, and convolu-
tional neural network architectures. fIDPnn is a feedforward neu-
ral network that uses evolutionary and structural information in
addition to disordered region predictions from simpler models;
RawMSA uses convolutional neural networks (CNNs) on evolu-
tionary information (in the form of MSAs); SPOT-Disorder2
uses a combination of CNNs and recurrent neural networks
(RNNSs) on input with evolutionary information; DisoMine uses
RNNs on structural information; Espritz uses RNNs on evolu-
tionary information; AUCpreD uses CNNs on sequence informa-
tion (with optional evolutionary information); and Predisorder
uses RNNs with structural, biophysical, and evolutionary infor-
mation. A notable pattern here is that most of these methods
use pre-computed features. First, the performance of the model
is reliant on its upstream dependencies. For example, if a model
uses MSAs as input, one would expect its performance to
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Figure 2. Receiver operating characteristic (ROC) curves on the CAID datasets
The ROC curves of DR-BERT and other models on test sets from (A) CAID 1 and (B) CAID 2. The legends display the area under the curve (AUC) for each model.

The models are ordered based on the AUC in CAID 1.

deteriorate for proteins that do not have many known homologs.
In addition, the presence of multiple third-party techniques in a
prediction pipeline makes it more difficult to optimize computa-
tional efficiency. In contrast, DR-BERT is a fully self-contained
model that does not rely on any additional information besides
the amino acid sequence of a protein.

Despite not requiring any additional information, the receiver
operating characteristic (ROC) curves (Figure 2) on both the
CAID 1 and CAID 2 test sets demonstrate that DR-BERT out-
performs all of the other methods in predicting disordered re-
gions. For CAID 1, DR-BERT ranks first in terms of area under
the ROC curves (AU-ROC) with a value of 0.82. The scores
then incrementally decrease with fIDPnn, RawMSA, and
SPOT-Disorder2. For CAID 2, DR-BERT is again the highest
ranking method followed by fIDPnn and a three-way tie be-
tween rawMSA, SPOT-Disorder2, and DisoMine. The ROC
curves also show that DR-BERT offers particularly evident im-
provements in the lower range of false positive rates. However,
as the disordered region dataset is imbalanced with more or-
dered residues than disordered ones, the ROC curves may
show an overly optimistic view of the classifiers.?® Therefore,
we also calculate F1 and Matthews correlation coefficients
(MCCs) for each model. These scores, along with the AU-
ROC scores are shown in Figure 3A for CAID 1 and Figure 3B
for CAID 2. Again, DR-BERT scores the highest on both met-
rics with an F1 of 0.55 and MCC of 0.43 for CAID 1 and an
F1 of 0.56 and MCC of 0.43 for CAID 2. The precision-recall
plots in Figure S1 also show that DR-BERT performs better
than the other methods in balancing the trade-off between
precision and recall.

To determine the statistical significance of DR-BERT’s
improvement over the existing methods, we performed a resam-
pling analysis similar to that of Hu et al.’® and Necci et al.” Spe-
cifically, we resampled 25% of the test set 20 times. For each
resample, we calculated the AU-ROC, F1, and MCC scores for

DR-BERT and the other methods. Finally, we performed Wil-
coxon tests comparing the scores obtained by DR-BERT to
those of each of the other methods, with the alternative hypoth-
esis being that DR-BERT’s score is greater than the other
method. The p values from these hypothesis tests, shown in Fig-
ure S2, confirm that DR-BERT performs significantly better than
existing methods across the different scoring metrics for both
CAID 1 and CAID 2.

This supremacy of DR-BERT over methods that use evolu-
tionary and structural features suggests that these features
can be successfully learned by the model either during pretrain-
ing or fine-tuning. In fact, it has been previously shown that pre-
trained protein language models are able to extract structural in-
formation from amino acid sequences.27'28 However, these
results alone do not elucidate the contribution of pretraining to
the success of DR-BERT.

Pretraining and fine-tuning

To better understand the role that pretraining plays in extracting
the information relevant to disordered region prediction, we
interrogated DR-BERT models at two stages: (a) after only pre-
training and (b) after pretraining and fine-tuning. At both of these
stages, we extracted the embeddings from the encoder block for
eachresidue in the test set. Using t-SNE, we projected these em-
beddings down to two dimensions.?® Then, we calculated kernel
density estimates (KDEs) separately for ordered and disordered
residues. These KDEs are shown in Figure 4A for the pretrained
model and in Figure 4B for the model that was pretrained and
fine-tuned. The plot for the pretrained model shows about 20
different clusters of ordered residues and 15 distinct clusters
of disordered residues. Upon further investigation, we see that
each cluster corresponds to an individual amino acid. There
are a few exceptions to this for disordered residues. For
instance, there is no clear disordered cluster for the amino acid
tryptophan (W). This is because tryptophan is one of the most
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Figure 3. Comparing the results of DR-BERT with other top-performing methods on the CAID datasets
(A) The MCC, F1, and AU-ROC scores of DR-BERT and the top-performing methods from CAID 1, evaluated on the test split.
(B) The MCC, F1, and AU-ROC scores for corresponding methods evaluated on the CAID 2 test data.

order-promoting amino acids and is rarely encountered inside
IDRs.° However, the clear overall pattern in Figure 4A is that
most ordered clusters are accompanied by an adjacent disor-
dered cluster for the same amino acid. This is in contrast to the
null model where the disorder/order residue labels are shuffled,
shown in Figure S4. On the other hand, the plot for the fine-tuned
embeddings depicts a different story. While the embeddings are
not clustered by amino acid, the disordered residues are all clus-
tered together and are well separated from the ordered residues.
The difference between the pretrained and fine-tuned embed-

A
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EEl Ordered residues
BN Disordered residues
100

50

=50

-100

-100 -50 0 50 100

dings highlights that pretraining a protein language model is suf-
ficient to extract some information regarding disordered regions
in proteins. Fine-tuning the model allows it to then home in on the
differences between disordered and ordered residues to more
efficiently separate them. This result gives credence to an obser-
vation we made in the study by Nambiar et al.'? where we noted
that pretraining a protein language model allows it to learn gen-
eral but biologically relevant information from amino acid se-
quences, whereas fine-tuning gives the model more information
about one characteristic but at the expense of generality.

B
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Figure 4. Plotting the embeddings of ordered and disordered residues

(A) At-SNE projection of the pretrained embeddings of residues in the CAID 1 test set. The plot shows the kernel density estimates of ordered residues in blue and
disordered residues in red. The labeled points indicate the mean position of each amino acid. This plot should be compared to the null model shown in Figure S4.
(B) A similar plot but with embeddings from a model fine-tuned to predict disordered regions. For both plots, the two-sample Z-test is performed after reducing

the dimensionality of the embedding to 1D.
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Figure 5. Comparison of the results of DR-BERT with its version without pretraining
(A) The ROC plots of DR-BERT and the non-pretrained model, evaluated on the CAID 1 test set. The AUC is presented in the legend.
(B) The MCC, F1, and AU-ROC scores of DR-BERT and the version without pretraining.

In addition, we wanted to quantify the advantage of pretraining
for predicting disordered regions. To do this, we trained a model
with an identical architecture to DR-BERT to predict disordered
regions without any pretraining. The results of this non-pre-
trained model evaluated on CAID 1, shown in Figure 5, show
that pretraining DR-BERT gives it a considerable advantage. In
fact, in the absence of pretraining, our model lags behind the
models from the CAID competition, shown in Figure 3 and S3.
This showcases the advantage of pretraining for transformer
neural networks, especially for low data regimes.

A case study: The disordered region in RPB6 protein

Evaluating DR-BERT on a large annotated dataset gave us con-
fidence in DR-BERT’s ability to make accurate predictions
regarding disordered regions. However, it is also useful to illus-
trate a potential use-case by focusing on the predictions of the
model for an IDR within a single protein. Doing so gives us the
opportunity to gain insight into how the context of a particular
sequence is used by the attention heads of the model (see
STAR Methods) to make predictions for different residues in
the same protein. We decided to illustrate this using RPB6 pro-
tein as an example. RPB6 is a subunit of an RNA polymerase in
fission yeast. It is known to bind to the general transcription fac-
tor, TFIIS.®' This example allows us to test our disordered re-
gion prediction for a protein that is known to perform an impor-
tant function. Figure 6B shows that DR-BERT predicts with high
confidence that the N-terminal tail of RPB6 is in fact disordered.
Indeed, NMR spectroscopy shows that not only does RPB6
have a flexible N-terminal tail, but this tail is also used to bind
to the p62 subunit of the TFIIH transcription factor.®” Figure 6A
shows DR-BERT’s predictions overlaid on the NMR-deter-
mined structure of the complex between RPB6 and the TFIIH
p62 PH domain (PDB: 7DTI). To analyze how DR-BERT uses
sequence context to make its predictions, we extracted the
self-attention heads for each of the six layers in DR-BERT’s
encoder as it processed the 130 amino acid long RPB6
sequence. Each attention map is represented as a 130x 130
matrix M where Mj; gives a numerical score as to how much

that particular attention head focuses on amino acid j when
determining the context relevant for amino acid i. A sample of
these attention maps for each layer in DR-BERT is displayed
in Figure 6C (a complete table is shown on Figure S5). We
observed that the features learned by the attention maps of
the initial layer do not have any clear high-level patterns. How-
ever, attention maps from layers two to four display some
distinct patterns. For example, in layer 4, the attention map re-
veals that the relevant context for each residue includes a large
window of surrounding residues in addition to several smaller
windows at intervals on either side of the residue in question.
By layer 5, at least one attention map divides the residues
into two distinct groups: one group consists of residues 1 to
50, and the other group comprises residues 50 to 130. Each
group only considers residues within its respective group as
relevant context, while ignoring residues in the other group.
Comparing this attention map to the disorder scores by
sequence position, we can see that the division between the
two groups occurs at the transition between the ordered and
disordered regions of the protein. This observation is similar
to demonstrations in computer vision, where deep neural net-
works learn features hierarchically, with the initial layers detect-
ing simpler, disjoint features, and layers toward the end of the
neural network detecting high-level features directly related to
the model’s training task.

DISCUSSION

In this study, we introduce DR-BERT, a protein language model
for predicting disordered regions in proteins. DR-BERT is first
pretrained on the masked language modeling task before it is
fine-tuned to predict disordered regions.

This fine-tuned model is benchmarked using the CAID evalu-
ation data and significantly surpasses the other models. This
improvement over models that use biophysical and structural in-
formation supports the hypothesis that pretraining protein lan-
guage models enables them to learn biologically relevant infor-
mation in a self-supervised manner without any provided
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Figure 6. Application of DR-BERT to RPB6, a subunit of RNA polymerase
(A) The three-dimensional structure of RPB6 as it binds to the TFIIH p62 PH domain (PDB:7DTI). The protein is colored by the DR-BERT score, which represents

the probability that a given residue is disordered.

(B) A plot of the DR-BERT scores for RPB6 shown for each position along the amino acid sequence.
(C) A sample of DR-BERT’s self-attention maps for each of the 6 layers in the model as it processes the RPB6 sequence.

annotations. This learned information should include both evolu-
tionary and biophysical information.

This hypothesis is further validated as we show that the em-
beddings of the pretrained model are able to differentiate be-
tween disordered and ordered residues without access to any
annotations during training. Furthermore, we showed that a
model with an identical architecture as DR-BERT suffers a large
loss in performance when the pretraining step is skipped.

Finally, we took a closer look at how DR-BERT makes predic-
tions for RPB6. Through this exercise, we saw that DR-BERT ex-
tracts patterns hierarchically, with higher-level features ex-
tracted by attention heads in deeper layers of the neural
network. This is similar to the behavior that had been observed
in computer vision.

To verify that DR-BERT was not overfitting on the training data,
we excluded from the training set proteins that were clustered
with proteins in the test set with 25% sequence similarity. The
clustering in this process was performed using CD-HIT.*®

Given the high performance of DR-BERT on the disordered re-
gion prediction task, we also investigated its ability to perform
related tasks from CAID 2. This included evaluating DR-BERT
on a disordered region dataset where X-ray annotations were
removed (disorder-noX) and a dataset where PDB residues
were incorporated (disorder-PDB). The results shown in Figure 7
show that DR-BERT performs well on the disorder-noX test set,
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placing first on the AU-ROC and area under precision-recall plot
metrics and second to SPOT-Disorder2 on F1 score and MCC.
However, DR-BERT shows a weaker performance on the disor-
der-PDB set, being outperformed by tying for third place with
RawMSA on AU-ROC and area under precision recall plot and
placing fourth on F1 score and MCC. Given that DR-BERT was
trained on the vanilla disordered region dataset from DisProt, it
is not surprising that DR-BERT’s performance dropped on
some of these variants. In addition to variants of disordered re-
gion annotations, we also evaluated DR-BERT on predicting pro-
tein-binding regions. Protein-binding disordered regions are re-
gions in disordered proteins that bind to structured partners
and potentially allow the disordered protein to bind to multiple
partners.>* DR-BERT achieved an AU-ROC of 0.75, F1 score
of 0.45, and MCC of 0.32 beating other protein-binding predic-
tors from CAID 2.

To further validate our results, we also ran an additional eval-
uation where we modified the CAID 1 and CAID 2 disorder sets
so that no protein should have more than 25% identity to any
other protein (even within the set). These results, shown in Fig-
ure S7, show no significant changes to performance, confirming
the reliability of our results.

The success of DR-BERT, in addition to the insight into how
DR-BERT makes predictions, leads us to believe that protein
language models could play an important role in the next
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(A-C) Show the AU-ROC, F1 score, and MCC on the disorder-noX, disorder-PDB, and protein binding test sets.

(D-F) Show precision-recall plots that correspond to the same tasks.

generation of neural networks for predicting disordered regions.
In fact, after completing our study, we found that a similar model
to DR-BERT was presented in a recent preprint by Red| et al.*®
However, there are significant differences in our studies,
including our investigation of the effect of pretraining on the
success of the protein language model and the insight into the
features extracted by the attentional layers. In addition, DR-
BERT is significantly smaller than the model proposed by Redl|
et al.®® (with 15x fewer parameters), which may make DR-
BERT more accessible to users without access to high-perfor-
mance GPUs. An alternative approach to the one shown in
our study would be to extract embeddings from a pretrained
model and pass them to a downstream classifier without fine-
tuning the embeddings. This approach, which is used by the
SETH model, makes it more efficient to train models on down-
stream tasks using embeddings from a large pretrained lan-
guage model.*® However, as shown in Figure S6, DR-BERT is
able to surpass the performance of a larger language model
where the embeddings are not fine-tuned. Moreover, each pre-
diction would still involve a forward pass on the large model,
which would be slower than using a small protein language
model like DR-BERT.

In order to maximize the accessibility of our model, we have
made a web-app (accessible at https://huggingface.co/
spaces/nambiar4/DR-BERT) where anyone can use DR-BERT
to make disordered region predictions.®” Due to the small size
of our model, we are currently able to run our server using only
2 CPU cores and 16 GB of RAM. In addition to the web-app,

users who want more control over their predictions can run the
pretraining, fine-tuning, and prediction scripts we have made
available at https://github.com/maslov-group/DR-BERT.

While we have shown that a protein language model with no
additional information is sufficient to make accurate predictions
of disordered regions in proteins, a direction worth exploring in
the future is whether combining the information learned by pro-
tein language models with biophysical properties and the out-
puts of other models might further improve performance. One
additional input that could be particularly interesting is the per-
residue confidence score provided by AlphaFold when making
sequence-to-structure predictions since it has been shown
that disordered regions are often assigned a low confidence
score by AlphaFold.*®
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STARXMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

UniRef90 Protein Dataset UniProt Knowledgebase https://www.uniprot.org/help/uniref
Suzek et al.’®

DisProt Disordered Region Dataset DisProt https://disprot.org/download
Quaglia et al.*°

CAID 1 and CAID 2 Test Set Critical Assessment of protein Intrinsic https://caid.idpcentral.org/challenge
Disorder prediction Experiment
Necci et al.”

Software and algorithms

Python 3.9 Python Software Foundation https://www.python.org
Van Rossum and Drake*’
Pytorch library PyTorch Foundation https://pytorch.org/
Paszke et al.*’
Transformers library Hugging Face, Inc https://huggingface.co/docs/transformers/index
Wolf et al.*”
Pandas library NumFOCUS https://pandas.pydata.org/
McKinney et al.*?
DR-BERT This paper https://github.com/maslov-group/DR-BERT

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Sergei Maslov (maslov@
illinois.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
® All original code has been deposited at https://github.com/maslov-group/DR-BERT and is publicly available as of the date of
publication.
o All data are generated from the dataset provided in the key resources table.
® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Data processing

From UniRef90, we sampled 6,564,742 proteins at random for the training dataset and 250,000 proteins for the validation dataset. Per
the construction of UniRef data, the validation set is designed to contain no examples with above 90% sequence similarity to any of
the examples in the training set.'® We used UniRef90 because we hope that down the road, we can use DR-BERT to predict the ef-
fects of mutations on disordered regions. It has been observed in “° that the redundancy provided by UniRef90 allows for better
variant effect prediction. Furthermore, as we show on Figure S8, a model pretrained on UniRef50 achieves the same performance
as the UniRef90 model used in Figure 3. So, it does not appear that the higher redundancy in UniRef90 impedes the model.

For the finetuning task, 2,419 sequences were taken from DisProt Version 9.2, June 2022, with replicate proteins removed to create
the 2,386 example dataset, and their disordered regions were recorded into boolean arrays as the ground truth labels.*® To construct
the train/validation/test splits for CAID 1, the Disprot and CAID 1 datasets were combined and clustered for 25% similarity using the
CD-HIT algorithm. Then, only clusters without any CAID 1 proteins were used for training and validation. This resulted in 1,569 pro-
teins in the train set and 156 sequences in the validation set. The 652 proteins from the CAID 1 competition dataset were used as the
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test set. To construct the train/validation/test splits for the CAID 2 experiment, we similarly combined the CAID 2, CAID 1 and Disprot
datasets, and clustered for 25% similarity. Then, only clusters without any CAID 2 proteins were used for training and validation. The
sizes for the train, validation, and test sets were 2013, 216, and 348 respectively.* The disorderd region data from CAID 2 comes
from two types of experimential experimental techniques: circular dichroism spectroscopy and x-ray. In addition to the standard dis-
order dataset combining data from both techniques, we also tested on a test set where X-ray annotations were removed (disorder-
noX). Furthermore, we also used a test set where in addition to using both techniques to annotate disordered regions, only regions
where a structure was observed in the Protein Data Bank were labelled as ordered (disorder-PDB). Finally, we also included a test set
for protein binding disordered regions.**

Model architecture

DR-BERT uses the Bidirectional Encoder Representations from Transformers (BERT) coupled with token classification heads trained
on disordered region labels*® and was trained using PyTorch and HuggingFace.®”**°~*? Based on the Robustly Optimized BERT pre-
training Approach (RoBERTa), the model consists of an embedding layer connected with a Encoder Block with 6 encoder layers. The
embedding layer consists of two main component layers: a word embedding layer and a positional embedding layer. The word
embedding layer takes the tokenized sequence of amino acids and maps each token to a 768 dimensional vector. In contrast, the
positional embedding layer captures the spatial information of the tokens to preserve the notion of context within the sequence.*®
After a dropout layer is applied to decrease the potential for overfitting,*” the embedding, consisting of a 768 dimensional vector
for each amino acid token, is used by the Transformer encoder layers. The RoBERTa transformer layer consists of a self-attention
layer and a feed-forward network layer. The self-attention mechanism described in “°, captures the relationship between different
tokens in a sequence. Each attention layer consists of 12 heads, which can each capture different contextual information in parallel.
The final output from the encoder layers is 1026 vectors, each of length 768, where the first corresponds to a standard summary [CLS]
token and the last corresponds to a [SEP] separator token. Many of the hyperparameters used in this paper, including the hidden size
of 768 and 12 attention heads, are based on our previous work in ref.'?

Pretraining

Pretraining of DR-BERT used masked language modeling (MLM): in each example, the model is tasked with identifying some hidden
tokens. Following RoBERTa, the masks are set independently during epochs, and 15% of tokens are replaced with a [MASK] token
for each example, with cross-entropy loss being applied for every batch of proteins.*® Pretraining lasted for approximately 11
epochs, allowing the model to see 70 million examples. The batch size was set to 10 examples per device, and the model was trained
on 2 NVIDIA V100s.*

Disordered region prediction

To finetune DR-BERT, we applied a token classification training method. A classification layer is trained and applied to each posi-
tional embedding output Then, a softmax function is applied to transform the embedding into probability space, taking the rounded
result as the predicted label. Then, cross-entropy loss is applied between the predicted labels and the ground truths. The classifi-
cation training lasted 10 epochs, with the best-performing checkpoint on the validation dataset chosen as the final model. The
learning rate was empirically chosen to be 2e~® (against 2e~® and 2e~7) using the cosine scheduler with hard restarts, as opposed
to alinear scheduler. To compare against similar models, DR-BERT was tested on the CAID dataset, which we ensured to be disjoint
from both the training and evaluation datasets. We also tested on the CAID 2 dataset, which was again ensured to be disjoint from the
training and evaluation datasets.

QUANTIFICATION AND STATISTICAL ANALYSIS

Evaluation metrics

The primary evaluation metrics used for DR-BERT were Area Under the Receiver Operating Characteristic Curve (AU-ROC), F1 score
and the Matthews Correlation Coefficient (MCC). The receiver operating curve is given by observing the change in the true positive to
false positive ratio as the probability decision threshold is varied. Therefore, ROC-AUC for a perfect classifier would be 1.0 and a
random classifier would have an area of 0.5. F1 scores are computed as a flattened vector of all predicted disorder binary labels
against their ground truth, and is given by

F1. - 2 % Precision « Recall Recall - - TP Precision : — P
" 7 Precision+Recall ’ C T TP+FN " T TP+FP
The MCC score offers a metric that is stable in imbalanced datasets.*® Because of the MCC formula’s false-positive symmetry, the
MCC metric is invariant on which class is considered to be negative or positive. As the DisProt dataset has approximately 3 times as
many ordered labels as disordered, the MCC metric is an appropriate metric to characterize the model’s performance. MCC is
defined as:

TP+ TN — FPxFN

MCC : =
/(TP+FP)  (TP+FN) + (TN+FN)  (TN+FN)
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For a fair comparison between methods, when these evaluation metrics were run, only test sequences that successfully ran on all
methods were used. In addition, we attempted to emulate the evaluation strategy of the CAID competitions. In particular, when re-
porting F1 and MCC, we use the binary labels reported by CAID whenever available for a method since CAID identifies the threshold
that maximizes F1 score for a particular method.” In the case of methods where a binary label was not provided by CAID and for DR-
BERT, we identify the threshhold that maximizes F1 score ourselves. The threshhold for protein binding is calculated independently
from the threshold for disordered region prediction (including disorder, disorder-PDB and disorder-noX). However, the same variant
of DR-BERT was used for both disordered region and protein binding prediction.
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