Mathematical Programming (2024) 206:497-514
https://doi.org/10.1007/s10107-023-02045-0

FULL LENGTH PAPER

Series B ")

Check for
updates

A competitive algorithm for throughput maximization on
identical machines

Benjamin Moseley’ . Kirk Pruhs? . Clifford Stein3 - Rudy Zhou'

Received: 27 July 2022 / Accepted: 4 December 2023 / Published online: 10 January 2024
© The Author(s) 2024

Abstract

This paper considers the basic problem of scheduling jobs online with preemption to
maximize the number of jobs completed by their deadline on m identical machines.
The main result is an O (1) competitive deterministic algorithm for any number of
machines m > 1.

Keywords Scheduling - Competitive analysis - Online algorithm

Mathematics Subject Classification 68W25 - 68W40

Previously appeared as an extended abstract in the conferece IPCO 2022 [12].

B. Moseley and R. Zhou were supported in part by NSF Grants CCF-1824303, CCF-1845146,
CCF-1733873 and CMMI-1938909. Benjamin Moseley was additionally supported in part by a Google
Research Award, an Infor Research Award, and a Carnegie Bosch Junior Faculty Chair. K. Pruhs was
supported in part by NSF Grants CCF-1907673, CCF-2036077 and an IBM Faculty Award. C. Stein was
partly supported by NSF Grants CCF-1714818 and CCF-1822809.

B Rudy Zhou
rbz@andrew.cmu.edu

Benjamin Moseley
moseleyb @andrew.cmu.edu

Kirk Pruhs
kirk @cs.pitt.edu

Clifford Stein

cliff@ieor.columbia.edu

Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, USA
Computer Science Department, University of Pittsburgh, Pittsburgh, PA, USA

Industrial Engineering and Operations Research, Columbia University, New York, NY, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-023-02045-0&domain=pdf
http://orcid.org/0000-0001-5037-4885

498 B. Moseley et al.

1 Introduction

We consider the basic problem of throughput maximization: the goal is to preemptively
schedule jobs that arrive online with sizes and deadlines on m identical machines to
maximize the number of jobs that complete by their deadline.

More precisely, let J be a collection of jobs such that each j € J has a release time
rj, a processing time (or size) x j, and a deadline d;. The jobs arrive online at their
release times, at which the scheduler becomes aware of job j and its x; and d;.

At each moment of time, the scheduler can specify up to m released jobs to run,
and the remaining processing time of the jobs that are run is decreased at a unit rate
(so we assume that the online scheduler is allowed to produce a migratory schedule.)
A job is completed if its remaining processing time drops to zero by the deadline of
that job. The objective is to maximize the number of completed jobs.

A key concept is the laxity of a job j, which is £; = (d; — r;) — x;, that is, the
maximum amount of time we can not run job j and still possibly complete it.

We measure the performance of our algorithm by the competitive ratio, which is
the maximum over all instances of the ratio of the objective value of our algorithm to
the objective value of the optimal offline schedule (Opt) that is aware of all jobs in
advance.

This problem is well understood for the m = 1 machine case. No O (1)-competitive
deterministic algorithm is possible [2], but there is a randomized algorithm that is
O (1)-competitive against an oblivious adversary [9], and there is a scalable (O (1 +¢€)-
speed O (1/€)-competitive) deterministic algorithm [7]. The scalability result in [7]
was extended to the case of m > 1 machines in [11].

Whether an O (1)-competitive algorithm exists for m > 1 machines has been open
for twenty years. Previous results for the multiple machines setting require resource
augmentation or assume that all jobs have high laxity [5, 11].

The main issue issue in removing these assumptions is determining which machine
to assign a job to. If an online algorithm could determine which machine each job
was assigned to in Opt, we could obtain an O (1)-competitive algorithm for m > 1
machines by a relatively straight-forward adaptation of the results from [9]. However,
if the online algorithm ends up assigning some jobs to different machines than Opt,
then comparing the number of completed jobs is challenging. Further, if jobs have
small laxity, then the algorithm can be severely penalized for small mistakes in this
assignment. One way to view the speed augmentation (or high laxity assumption)
analyses in [5, 11] is that the speed augmentation assumption allows one to avoid
having to address this issue in the analyses.

1.1 Ourresults

Our main result is an O (1)-competitive deterministic algorithm for Throughput Max-
imization on m > 1 machines.

Theorem 1 For all m > 1, there exists a deterministic O(1)-competitive algorithm
for Throughput Maximization on m machines.

@ Springer

A competitive algorithm for throughput maximization... 499

Table 1 Competitiveness results

Deterministic Randomized Speed augmentation

m=1 w(l) o(1) O (1 + €)-speed O(1/€)-competitive
[2] [91 [7]

m > 1 o(1) o(l) O (1 + €)-speed O(1/e)-competitive
[This paper] [This paper] [11]

We summarize our results and prior work in Table 1. Interestingly, on a single
machine there is no constant competitive deterministic algorithm, yet a randomized
algorithm exists with constant competitive ratio. Our work shows that once more than
one machine is considered, then determinism is sufficient to get a O (1)-competitive
online algorithm.

1.2 Scheduling policies

We give some basic definitions and notations about scheduling policies.

A job j is feasible at time ¢t (with respect to some schedule) if it can still be feasibly
completed, so x;(t) > Oand ¢ + x;(¢) < d;, where x(¢) is the remaining processing
time of job j at time r (with respect to the same schedule.)

A schedule S of jobs J is defined by a map from time/machine pairs (¢, i) to a job
Jj that is run on machine i at time ¢, with the constraint that no job can be run on two
different machines at the same time. We conflate S with the scheduling policy as well
as the set of jobs completed by the schedule. Thus, the objective value achieved by
this schedule is |S].

A schedule is non-migratory if for every job j there exists a machine i such that if
Jj is run at time ¢ then j is run on machine i. Otherwise the schedule is migratory.

If S is a scheduling algorithm, then S(J, m) denotes the schedule that results from
running S on instance J on m machines. Similarly, Opt(J, m) denotes the optimal
schedule on instance J on m machines. We will sometimes omit the J and/or the m
if they are clear from context. Sometimes we will abuse notation and let Opt denote a
nearly-optimal schedule that additionally has some desirable structural property.

1.3 Algorithms and technical overview

A simple consequence of the results in [8] and [9] is an O (1)-competitive randomized
algorithm in the case that m = O (1). Thus we concentrate on the case that m is large.
We also observe that since there is an O (1)-approximate non-migratory schedule [8],
changing the number of machines by an O(1) factor does not change the optimal
objective value by more than an O(1) factor. This is because we can always take an
optimal non-migratory schedule on m machines and create a new schedule on m/c
machines whose objective value decreases by at most a factor of ¢, by keeping the
m/c machines that complete the most jobs.

@ Springer

500 B. Moseley et al.

Fig.1 Summary of FINALALG. FINALALG
A job will be given to LMNY if a
its laxity is sufficiently high. n
Otherwise, it will be migrated LMNY . %
between SRPT and MLAX .
[
m
Job j SRPT : 3
! c
|
|
|
|
|
: u
v o
m
MLAXx 3

These observations about the structure of near-optimal schedules allow us to
design a O(1)-competitive algorithm that is a combination of various determinis-
tic algorithms. In particular, on an instance J, our algorithm, FINALALG, will run a
deterministic algorithm, LMNY, on m /3 machines on the subinstance J,; = {j € J |
£; > x;} of high laxity jobs, a deterministic algorithm SRPT on m /3 machines on the
subinstance J;, = {j € J | £; < x;} of low laxity jobs, and a deterministic algorithm
MLAX on m /3 machines on the subinstance Jj, of low laxity jobs. Note that we run
SRPT and MLAX on the same jobs. To achieve this, if both algorithms decide to run
the same job j, then the algorithm in which j has shorter remaining processing time
actually runs job j, and the other simulates running j. See Fig. 1.

We will eventually show that for all instances, at least one of these three algorithms
is O(1)-competitive, from which our main result will follow. Roughly, each of the
three algorithms is responsible for a different part of Opt.

Our main theorem about FINALALG is the following:

Theorem 2 Foranym > 48, FINALALG is a O (1)-competitive deterministic algorithm
for Throughput Maximization on m machines.

We now discuss these three component algorithms of FINALALG.

1.3.1 LMNY

The algorithm LMNY is the algorithm from [11] with the following guarantee.

Lemma 3 [11] For any number of machines m, and any job instance J, LMNY is an
O (1)-competitive deterministic algorithm on the instance Jp;.

1.3.2 SRPT

The algorithm SRPT is the standard shortest remaining processing time algorithm,
modified to only run jobs that are feasible.

@ Springer

A competitive algorithm for throughput maximization... 501

Definition 1 (SRPT) At each time, run the m feasible jobs with shortest remaining
processing time. If there are less than m feasible jobs, then all feasible jobs are run.

We will show that SRPT is competitive with the low laxity jobs completed in Opt
that are not preempted in Opt.

1.3.3 MLAX

The final, most challenging, component algorithm of FINALALG is MLAX, which
intuitively we want to be competitive on low-laxity jobs in Opt that are preempted.

To better understand the challenge of achieving this goal, consider m = 1 and an
instance of disagreeable jobs. A set of jobs is disagreeable if, for any two jobs j and
k, if j has an earlier release date than k, it also has a later deadline than k. Further,
suppose all but one job in Opt is preempted and completed at a later time.

To be competitive, MLAX must preempt almost all the jobs that it completes, but
cannot afford to abandon too many jobs that it preempts. Because the jobs have low
laxity, this can be challenging as it can only preempt each job for a small amount of
time, and its hard to know which of the many options is the “right” job to preempt
for. This issue was resolved in [9] for the case of m = 1 machine, but the issue gets
more challenging when m > 1, because we also have to choose the “right” machine
for each job.

We now describe the algorithm MLAX. Let « be a sufficiently large constant (chosen
later.) MLAX maintains m stacks (last-in-first-out data structures) of jobs (one per
machine), Hy, ..., Hy,. The stacks are initially empty. At all times, MLAX runs the
top job of stack H; on machine i. We define the frontier F to be the set consisting of
the top job of each stack (i.e. all currently running jobs.) It remains to describe how
the H;’s are updated.

There are two types of events that cause MLAX to update the H;’s: reaching a job’s
pseudo-release time (defined below) or completing a job.

Definition 2 (Viable jobs and pseudo-release time) The pseudo-release time (if it
exists) 7/; of job j is the earliest time in [rj,r; + %] such that there are at least

%m jobs j” on the frontier satisfying axj» > £, where « > 0 is a fixed constant.
We say a job j is viable if 7; exists and non-viable otherwise.

Atjob j’s pseudo-release time (note 7*; can be determined online by MLAX), MLAX
does the following:

(a) If there exists a stack whose top job j’ satisfies ax; < £/, then push j onto any
such stack.

(b) Else if there exist at least %m stacks whose second-top job ;" satisfies ax; < £ n
and further some such stack has top job j’ satisfying £; > £/, then on such a stack
with minimum € 1, replace its top job j" by j.

While the replacement operation in step b can be implemented as a pop and then push,

we view it as a separate operation for analysis purposes. To handle corner cases in

these descriptions, one can assume that there is a job with infinite size/laxity on the

bottom of each H;.

When MLAX completes a job j that was on stack H;, MLAX does the following:

@ Springer

502 B. Moseley et al.

(c) Pop j off of stack H;.
(d) Keep popping H; until the top job of H; is feasible.

1.3.4 Analysis Sketch

There are three main steps in proving Theorem 2 to show FINALALG is O(1)-
competitive:

— In Sect. 2, we show how to modify the optimal schedule to obtain certain structural
properties that facilitate the comparison with SRPT and MLAX.

— In Sect. 3, we show that SRPT is competitive with the low-laxity, non-viable jobs.
Intuitively, the jobs that MLAX is running that prevent a job j from becoming
viable are so much smaller than job j, and they provide a witness that SRPT must
also be working on jobs much smaller than ;.

— In Sect. 4, we show that SRPT and MLAX together are competitive with the low-
laxity, viable jobs. First, we show that SRPT is competitive with the number of
non-preempted jobs in Opt. We then essentially show that MLAX is competitive
with the number of preempted jobs in Opt. The key component in the design of
MLAX is the condition that a job j won’t replace a job on the frontier unless at
there are at least %m stacks whose second-top job ;" satisfies ax; < £;». This
condition most differentiates MLAX from m copies of the LAX algorithm in [9].
This condition also allows us to surmount the issue of potentially assigning a job
to a “wrong” processor, as jobs that satisfy this condition are highly flexible about
where they can go on the frontier.

We combine these results in Sect. 5 to complete the analysis of FINALALG.

1.4 Related work

There is a line of papers that consider a dual version of the problem, where there is
a constraint that all jobs must be completed by their deadline, and the objective is to
minimize the number of machines used [1, 4, 6, 13]. The current best known bound
on the competitive ratio for this version is O (loglogm) from [6].

The speed augmentation results in [7, 11] for throughput can be generalized to
weighted throughput, where there a profit for each job, and the objective is to max-
imize the aggregate profit of jobs completed by their deadline. But without speed
augmentation, O (1)-approximation is not possible for weighted throughput for any
m, even allowing randomization [10].

There is also a line of papers that consider variations on online throughput schedul-
ing in which the online scheduler has to commit to completing jobs at some point
in time, with there being different variations of when commitment is required [3, 5,
11]. For example, [5] showed that there is a scalable algorithm for online throughput
maximization that commits to finishing every job that it begins executing.

@ Springer

A competitive algorithm for throughput maximization... 503

2 Structure of optimal schedule

The goal of this section is to introduce the key properties of (near-)optimal scheduling
policies that we will use in our analysis.

By losing a constant factor in the competitive ratio, we can use a constant factor
fewer machines than Opt, which justifies FINALALG running each of three algorithms
on % machines. The proof is an extension of results in [8].

Lemma4 For any collection of jobs J, number of machines m, and ¢ > 1, we have
|Opt(J,)| = 2(£|Opt(J, m))).

Proof 1t is shown in [8] that for any schedule on m machines, there exists a non-
migratory schedule on at most 6m machines that completes the same jobs. Applied
to Opt(J, m), we obtain a non-migratory schedule S on 6m machines with |S| =
|Opt(J, m)|. Keeping the - machines that complete the most jobs in S gives a non-

. . 1 .
migratory schedule on % machines that completes at least ¢ |S| jobs. O

A non-migratory schedule on m machines can be expressed as m schedules, each
on a single machine and on a separate set of jobs. To characterize these single machine
schedules, we introduce the concept of forest schedules. Let S be any schedule. For
any job j, we let f;(S) and c;(S) denote the first and last times that S runs the job j,
respectively. Note that S does not necessarily complete j at time ¢;(S).

Definition 3 (Forest Schedule) We say a single-machine schedule S is a forest schedule
if for all jobs j, j" such that f;(S) < f;/(S), S does not run j during the time
interval (f;/(S), ¢;/(S5)) (sothe (f;(S5), ¢;(S))-intervals form a laminar family.) Then
S naturally defines a forest (in the graph-theoretic sense), where the nodes are jobs
run by S and the descendants of a job j are the the jobs that are first run in the time
interval (f;(S5), ¢;(S5)).

A non-migratory m-machine schedule is a forest schedule if all of its single-machine
schedules are forest schedules.

With these definitions, we are ready to construct the near-optimal policies to which
we will compare SRPT and MLAX. The proof relies on modifications to Opt introduced
in [9].

Lemma5 Let J be a set of jobs satisfying £; < x; for all j € J. Then for any times

~ £ . .
7j € [rj,rj + 51 and constant a > 1, there exist non-migratory forest schedules S
and S8’ on the jobs J such that:

1. Both S and S’ complete every job they run.

2. propspsefficient Let J; be the set of jobs that S runs on machine i. For every
machine i and time, if there exists a feasible job in J;, then S runs such a job.

3. For all jobs j € S, we have f;(S) = 7.

4. Ifjob j" is a descendant of job j in S, then axj < {;

5. |{leaves of S’}| + |S| = £2(|Opt(J))).

Proof We modify the optimal schedule Opt(J) to obtain the desired properties. First,
we may assume that Opt(J) is non-migratory by losing a constant factor (Lemma 4.)

@ Springer

504 B. Moseley et al.

Thus, it suffices to prove the lemma for a single machine schedule, because we can
apply the lemma to each of the single-machine schedules in the non-migratory schedule
Opt(J). The proof for the single-machine case follows from the modifications given
in Lemmas 22 and 23 of [9]. We note that [9] only show how to ensure f;(S) = ¢; for

. ¢ . . .
a particular ¢; € [rj, r; + +], but it is straightforward to verify that the same proof

holds for any ¢; € [rj, r; + %7] O

Intuitively, the schedule S captures the jobs in Opt that are preempted and S’
captures the jobs in Opt that are not preempted (i.e. the leaves in the forest schedule.)

To summarize, we may assume by losing a constant factor that Opt is a non-
migratory forest schedule. Looking ahead, we will apply Lemma 5 to the non-viable
and viable jobs separately. In each case, we will use a combination of SRPT and MLAX
to handle jobs in S and SRPT for those in S’.

3 SRPT is competitive with non-viable jobs

The main result of this section is that SRPT is competitive with the number of non-
viable, low-laxity jobs of the optimal schedule (Theorem 6.) We recall that a job j is

non-viable if for every time in [r;, r; + %], there are at least %m jobs j” on the frontier
of MLAX satisfying ax ;s < £;.

Theorem 6 Let J be a set of jobs satisfying £; < x; for all j € J. Then for a =
O(1) sufficiently large and number of machines m > 16, we have |SRPT(J)|
2(|0pt(Jup)l), where Jyy is the set of non-viable jobs with respect to MLAX(J).

Proof The main idea of the proof is that for any non-viable job j, MLAX is running
many jobs that are much smaller than j (by at least an «-factor.) These jobs give a
witness that SRPT must be working on these jobs or even smaller ones.

We first pass from the optimal schedule to structured near-optimal schedules. Let
S, &' be the schedules guaranteed by Lemma 5 on the set of jobs J,,,, with 7 j =rj for
all j € Jy,,. We re-state the properties of these schedules for convenience:

1. Both § and &’ complete every job they run.

2. Let J; be the set of jobs that S runs on machine i. For every machine i and time,
if there exists a feasible job in J;, then S runs such a job.

3. Forall jobs j € S, we have f;(S) =r;.

4. If job j’ is a descendant of job j in S, then axj < {;

5. |{leaves of 8’}| + |S| = £2(|Opt(J,)]).

In particular, Property 5 implies that it suffices to show that |[SRPT(J)| =
£2(|{leaves of S8’}|) and |SRPT(J)| = £2(|S)).

For the former, we use the following technical lemma stating that SRPT is compet-
itive with the leaves of any forest schedule. Intuitively this follows because whenever
some schedule is running a feasible job, then SRPT either runs the same job or a
job with shorter remaining processing time. We will use this lemma to handle the
non-viable jobs that are not preempted (the leaves of the schedule).

@ Springer

A competitive algorithm for throughput maximization... 505

Lemma7 Let J be any set of jobs and S be any forest schedule on m machines
and jobs J' C J that only runs feasible jobs. Let L be the set of leaves of S. Then
ISRPT(J)| = 3|L.

Applying Lemma 7 to the schedule S’ gives |[SRPT(J)| = £2(|{leaves of S’}|), as
required.

For the latter, we use the non-viability condition to handle the jobs that are pre-
empted. Recall that S consists only of non-viable jobs. Intuitively, for a large portion
of non-viable job j’s lifetime, a constant-fraction of jobs on the frontier of MLAX are
working on jobs that are much shorter than j, so we can show that SRPT will complete
many shorter jobs.

Lemma8 For « = O(1) sufficiently large and any number of machines m > 16,
ISRPT(J)| = £2(IS)

Combining the above two lemmas completes the proof of Theorem 6. In the remain-
der of this section, we prove Lemmas 7 and 8. O

3.1 Proof of Lemma 7

It suffices to show that | LASRPT(J)| < |[SRPT(J)|. The main property of SRPT gives:

Proposition 9 Consider any leaf ¢ € L\ SRPT(J). Suppose S starts running € at time
t. Then SRPT completes m jobs in the time interval [f¢(S), fe(S) + x¢].

Proof At time f;(S) in SRPT (J), job ¢ has remaining processing time at most xg
and is feasible by assumption. Because £ ¢ SRPT(J), there must exist a first time
t" € [fe(S), fe(S) + x¢] where £ is not run by SRPT(J). At this time, SRPT(J)
must be running m jobs with remaining processing time at most x; — (' — f¢(S)). In
particular, SRPT(J) must complete m jobs by time f;(S) + x;. O

Using the proposition, we give a charging scheme: Eachjob ¢ € L\SRPT(J) begins
with 1 credit. By the proposition, we can find m jobs that SRPT(J) completes in the
time interval [f¢(S), f¢(S) + x¢]. Then £ transfers % credits each to m such jobs in
SRPT.

It remains to show that each j € SRPT(J) gets at most 1 credit. Note that j can
only get credits from leaves £ such that ¢; (SRPT) € [f¢(S), fe(S) + x¢]. There are
at most m such intervals (at most one per machine), because we only consider leaves,
whose intervals are disjoint if there are on the same machine.

3.2 Proof of Lemma 8
We first show that for the majority of jobs j in S’s forest, we run j itself on some
machine for at least a constant fraction of the time interval [r;, r; + %].

Proposition 10 For at least half of the nodes j in S’s forest, there exists a closed

. L £ . .
interval Ij C [rj,rj + +]of length at least - such that S runs j on some machine
during I;.

@ Springer

506 B. Moseley et al.

Proof We say a node j is a non-progenitor if j has less than 2¢ descendants at depth
z from j for all z > 1. Because S satisfies (1), at least half of the nodes in S’s forest
are non-progenitors. This follows from Lemma 7 in [9].

Now consider any non-progenitor node j. Because S is a forest, S is only running

J or its descendants on some machine in times [rj,r; + %]. Further, because j
is a non-progenitor and S satisfies (1) and (4), we can partition [r;, r; + %] =
[rj,alVU (a,b) U[b,r; + %] such that [r;, a] and [b, r; + %] are times where S
is running j, and (a, b) are times where S is running descendants of j. By taking «
sufficiently large, we have |(a, b)| < Q . This follows from Lemma 6 in [9]. It follows,

at least one of [rj, a] or [b, 7; + 4] has length at least . This gives the desired /;. 0

LetS” C S be the collection of jobs guaranteed by the proposition, so |S”| > % |S].
It suffices to show that |SRPT(J)| = §2(|S”|). Thus, we argue about MLAX(J) in the
interval ; (guaranteed by Proposition 10) for some j € S”.

Proposition 11 Consider any job j € S". For sufficiently large o = O (1), MLAX(J)

starts running at least {g jobs during Ij such that each such job J' satisfies

[fj(MLAX(J)), fjs(MLAX(J)) + xj/] C I;.

Proof We let I be the prefix of I; with length exactly il 1¢- Recall that j € S”

is non-viable. Thus, because I’ C Ij Clrj,rj+ 7’], MLAX(J) is always running at
least %m jobs j’ satisfying ax ;s < £; during I".

We define J to be the set of jobs that MLAX(J) runs during I’ satisfying aex j» < €.
We further partition J’ into size classes, J' = |J ¢y J7 such that J! consists of the
jobs in J" with size in (7 +, , 0“]

For each machine i, we let TZ’ be the times in I’ that MLAX(J) is running a job
from J/ on machine i. Note that each 7} is the union of finitely many intervals. Then
because MLAX(J) is always running at least %m jobs j’ satisfying ax ;s < £; during
I', we have:

ZZ|T’|>—|1|

zeNie[m

By averaging, there exists some z with » ;1 |T’ | > §2|1—+‘]

Fix such a z. It suffices to show that there ex1st at least 16 jobs in J/ that LAX starts
in I’. This is because every job j’ € J/ has size at most Land [[;\I'] > E Taking
a > 16 gives that f;/(LAX) + x; € I;.

Note that every job in J/ has size w1th1n a a-factor of each other, so there can be
at most one such job per stack at any time. This implies that there are at most m _]ObS

in J] that don’t start in I’ (i.e. the start before I’.) These jobs contribute at most m;
to) eim) |TZ" |. Choosing « large enough, we can ensure that the jobs in J/ that start

. . ¢ ; o
in I’ contribute at least {g ;£ to0 D _;(,,1|7; |. To conclude, we note that each job in J;

@ Springer

A competitive algorithm for throughput maximization... 507

. . 0; .
that starts in I’ contributes at most a—’ to the same sum, so there must exist at least %
such jobs. O

Using the above proposition, we define a charging scheme to show that [SRPT(J)| =
£2(|S"]). Eachjob j € 8" begins with 1 credit. By the proposition, we can find % jobs
j' such that [f;;(MLAX(J)), fj(MLAX(J)) + x] is contained in the time when S
runs j. There are two cases to consider. If all % jobs we find are contained in SRPT(J),
then we transfer % credits from j to each of the %-many jobs. Note that here we are
using m > 16. Otherwise, there exists some such j’ that is not in SRPT(J). Then
SRPT(J) will complete at least m jobs in [f;(MLAX(J)), f;(MLAX(J)) + x;/]. We
transfer % credits from j to each of the m-many jobs, so each j/ € SRPT(J) gets
0(%) credits from at most O (m) jobs in 8”. This completes the proof of Lemma 8

To summarize this section, we showed that SRPT is competitive with the low-laxity,
non-viable jobs in Opt. It remains to consider the low-laxity, viable jobs, which we
handle in the next section.

4 SRPT and MLAX are competitive with viable jobs

We have shown that SRPT is competitive with the non-viable, low-laxity jobs. Thus,
it remains to account for the viable, low-laxity jobs. We recall that a job j is viable if
there exists a time in [r;, r; + %] such that there are at least %m jobs j’ on the frontier
satisfying axj > £ ;. The first such time is the pseudo-release time, 7; of job j. For
these jobs, we show that SRPT and MLAX together are competitive with the viable,
low-laxity jobs of the optimal schedule.

Theorem 12 Let J be a set of jobs satisfying £; < x; forall j € J. Thenfora = O(1)
sufficiently large and number of machines m > 8, we have |SRPT(J)|+|MLAX(J)| =
£2(|Opt(Jy)]), where J, is the set of viable jobs with respect to MLAX(J).

Proof Let S, S’ be the schedules guaranteed by Lemma 5 on the set of jobs J, with
7j =7; forall j € J,. We re-state the properties of these schedules for convenience:

1. Both § and S’ complete every job they run.

2. Let J; be the set of jobs that S runs on machine i. For every machine i and time,
if there exists a feasible job in J;, then S runs such a job.

3. Forall jobs j € S, we have f;(S) =F;.

4. If job j’ is a descendant of job j in S, then arxjr < ¢;

5. |{leaves of S’}| + |S| = £2(|Opt(Jy)]).

By Lemma 7, we have [SRPT(J)| = §2(|{leaves of S’}|). Thus, it suffices to show that
ISRPT(J)| + IMLAX(J)| = £2(|S]). We do this with two lemmas, whose proofs we
defer until later. First, we show that MLAX pushes (not necessarily completes) many
jobs. In particular, we show:

Lemma 13 |[SRPT(J)| 4 #(pushesof MLAX(J)) = £2(|S|)
The main idea to prove Lemma 13 is to consider sequences of preemptions in Opt.

In particular, suppose Opt preempts job a for b and then b for c. Roughly, we use

@ Springer

508 B. Moseley et al.

viability to show that the only way MLAX doesn’t push any of these jobs is if in
between their pseudo-release times, MLAX pushes £2 (m) jobs.

Second, we show that the pushes of MLAX give a witness that SRPT and MLAX
together actually complete many jobs.

Lemma 14 |SRPT(J)| 4+ [MLAX(J)| = 2 (#(pushes of MLAX(J))).

The main idea to prove Lemma 14 is to upper-bound the number of jobs that MLAX
pops because they are infeasible (all other pushes lead to completed jobs.) The reason
MLAX pops a job j for being infeasible is because while j was on a stack, MLAX spent
at least %’ units of time running jobs higher than j on j’s stack. Either those jobs are
completed by MLAX, or MLAX must have have done many pushes or replacements
instead. We show that the replacements give a witness that SRPT must complete many
jobs.

Combining these two lemmas completes the proof of Theorem 12. O

Now we go back and prove Lemmas 13 and 14.

4.1 Proof of Lemma 13

Recall that S is a forest schedule. We say the first child of a job j is the child j of
J with the earliest starting time f;/(S). In other words, if j is not a leaf, then its first
child is the first job that pre-empts j. We first focus on a sequence of first children in

S.

Lemma15 Let a,b,c € S be jobs such that b is the first child of a and c is the first
child of b. Then MLAX(J) does at least one of the following during the time interval

[Fl/l ’ FL]
— Push at least % Jjobs,
Push job b,

— Push a job on top of b when b is on the frontier,
— Push c.

Proof Because S is a forest schedule, we have 7, < 7, < .. It suffices to show that if
during [, 7], MLAX(J) pushes strictly fewer than % jobs, MLAX(J) does not push
b, and if MLAX(J) does not push any job on top of b when b is on the frontier, then
MLAX(J) pushes c.

First, because MLAX(J) pushes strictly fewer than g jobs during [7,, 7], there
exists at least %m stacks that receive no push during this interval. We call such stacks
stable. The key property of stable stacks is that the laxities of their top- and second-
top jobs never decrease during this interval, because these stacks are only changed by
replacements and pops.

Now consider time 7,. By definition of pseudo-release time, at this time, there exist
at least %m stacks whose top job j’ satisfies ax ;s > €. Further, for any such stack,
let j” be its second-top job. Then because b is a descendant of a in S, we have:

axp <€y <axjy < L.

@ Springer

A competitive algorithm for throughput maximization... 509

It follows that there exist at least %m stable stacks whose second-top job j” satisfies
axp < L;» for the entirety of [, 'c]. We say such stacks are b-stable.

Now consider time 7. We may assume b is not pushed at this time. However, there
exist at least %m that are b-stable. Thus, if we do not replace the top of some stack
with b, it must be the case that the top job j’ of every b-stable stack satisfies é/j > L.
Because these stacks are stable, their laxities only increase by time 7., so MLAX(J)
will push ¢ on some stack at that time.

Otherwise, suppose we replace the top job of some stack with b. Then b is on the
frontier at 7. We may assume that no job is pushed directly on top of b. If b remains on
the frontier by time 7., then MLAX(J) will push ¢, because ax. < £;. The remaining
case is if b leaves the frontier in some time in [7p, 7]. We claim that it cannot be the
case that b is popped, because by (2), S could not complete b by time 7, 5o MLAX(J)
cannot as well. Thus, it must be the case that b is replaced by some job, say d at
time 7. At this time, there exist at least %m stacks whose second-top job j” satisfies
axg < £jn. It follows, there exist at least % b-stable stacks whose second-top job ;"
satisfies axy < € at time 74. Note that because m > 8, there exists at least one such
stack, say i, that is not b’s stack. In particular, because b’s stack has minimum laxity,
it must be the case that the top job ;' of stack i satisfies £;; > £;,. Finally, because
stack i is stable, at time 7. we will push c. O

Now using the above lemma, we give a charging scheme to prove Lemma 13. First
note that by Lemma 7, we have |[SRPT(J)| = 2 (#(leaves of S)). Thus, it suffices to
give a charging scheme such that each job a € S begins with 1 credit, and charges it
to leaves of S and pushes of MLAX(J) so that each job is charged O (1) credits. Each
job a € S distributes its 1 credit as follows:

— (Leaf Transfer) If a is a leaf or parent of a leaf of S, say ¢, then a charges ¢ for 1
credit.

Else let b be the first child of a and ¢ the first child of b in S

— (Push Transfer) If MLAX(J) pushes b or ¢, then a charges 1 unit to b or ¢, respec-
tively.

— (Interior Transfer) Else if job b is on the frontier, but another job, say d, is pushed
on top of b, then a charges 1 unit to d.

— (m-Push Transfer) Otherwise, by Lemma 15, MLAX(J) must push at least % jobs

during [, 7c]. In this case, a charges % units to each of these % such jobs.
This completes the description of the charging scheme. It remains to show that each
job is charged O (1) credits. Each job receives at most 2 credits due to Leaf Transfers
and at most 2 credits due to Push Transfers and Interior Transfers. As each job is
in at most 3m intervals of the form [7,, 7], each job is charged O(1) from m-Push
Transfers.

4.2 Proof of Lemma 14

Recall in MLAX, there are two types of pops: a job is popped if it is completed, and
then we continue popping until the top job of that stack is feasible. We call the former

@ Springer

510 B. Moseley et al.

completion pops and the latter infeasible pops. Note that it suffices to prove the next
lemma, which bounds the infeasible pops. This is because #(pushes of MLAX(J)) =
#(completion pops of MLAX(J)) + #(infeasible pops of MLAX(J)). To see this, note
that every stack is empty at the beginning and end of the algorithm, and the stack size
only changes due to pushes and pops.

Lemma 16 For o = O(1) sufficiently large, we have:

[SRPT(J)| + IMLAX(J)| 4 #(pushes of MLAX(J))
> 2 - #(infeasible pops of MLAX(J)).

Proof We define a charging scheme such that the completions of SRPT(J) and
MLAX(J) and the pushes executed by MLAX(J) pay for the infeasible pops. Each
completion of SRPT(J) is given 2 credits, each completion of MLAX(J) is given 1
credit, and each job that MLAX(J) pushes is given 1 credit. Thus each job begins
with at most 4 credits. Our goal is to show that — after our charging scheme — every
infeasible pop gets at least 4 credits. This would imply:

2 - |SRPT(J)| + IMLAX(J)| + #(pushes of MLAX(J))
> 4 . #(infeasible pops of MLAX(J)),

which is only stronger than the statement of the lemma.

For any z > 0, we say job j’ is z-below j (at time 7) if j’ and j are on the same
stack in MLAX(J) and j' is z positions below j on that stack at time . We define
z-above analogously. A job j distributes these initial credits as follows:

— (SRPT-transfer) If SRPT(J) completes job j and MLAX also ran j at some point,
then j gives 2% credits to the job that is z-below j at time f;(MLAX(J)) for all
z>0.

— (m-SRPT-transfer) If SRPT(J) completes job j at time ¢, then j gives 2%
credits to the job that is z-below the top of each stack in MLAX(J) at time ¢ for all
z>0.

— (MLAX-transfer) If MLAX(J) completes a job j, then j gives 2% credits to the
job that is z-below j at the time j is completed for all z > 0.

— (Push-transfer) If MLAX(J) pushes a job j, then j gives # credits to the job
that is z-below j at the time j is pushed for all z > 0.

It remains to show that for « = O(1) sufficiently large, every infeasible pop gets at
least 4 credits. We consider any job j that is an infeasible pop of MLAX (/). At time
7; when j joins some stack in MLAX(J), say H, j’s remaining laxity was at least %’
However, as j later became an infeasible pop, it must be the case that while j was on
stack H, MLAX(J) was running jobs that are higher than j on stack H for at least %’
units of time.

Let 7 be the union of intervals of times that MLAX(J) runs a job higher than j on
stack H (so j is on the stack for the entirety of /.) Then we have |I| > %’ Further, we
partition / based on the height of the job on H that MLAX(J) is currently running. In

@ Springer

A competitive algorithm for throughput maximization... 511

particular, we partition I = ()., I, where I is the union of intervals of times that
MLAX(J) runs a job on H that is exactly z-above j.

By averaging, there exists a z > 1 such that |I;| > % Fix such a z. We can write
I, as the union of disjoint intervals, say I, = U;zl[au, b,]. Because during each
sub-interval, MLAX(J) is running jobs on H that are much smaller than j itself, these
jobs give a witness that SRPT(J) completes many jobs as long as these sub-intervals
are long enough.

Proposition 17 In each sub-interval [a,, b,] of length at least4 L job j earns at least

2# lz“ /”“ credits from SRPT-transfers and m-SRPT-transfers.

Proof Because [a,, b,] has length at least 42—{;, we can partition [a,, b,] into sub-

sub-intervals such that all but at most one sub-sub-interval has length exactly 25{—’ In

particular, we have at least 4 sub-sub intervals of length exactly 2

2 2(/a~
Now consider any such sub sub-interval. During this time, MLAX(J) only runs

jobs on H that are z-above j. Let J; be the set of z-above jobs that MLAX(J) runs
during I.. For every job j' € J,, we have xj; < fT] It follows that j' is on stack H for

atmost x;» < i—’ units of time. In particular, MLAX(J) must sfart a new z-above job,
say j', in the first half of the sub-sub-interval at some time, say 7.

Attime ¢, j’ is feasible. There are two cases to consider. If SRPT(J) also completes
J' at some time, then j get 2% credits from j’ in a SRPT-transfer. Otherwise if
SRPT(J) never completes j’, then because ;' is feasible at ¢, it must be the case that
SRPT(J) completes m jobs during the sub-sub-interval. Thus, j gets 5 +1 credits
from m separate m-SRPT-transfers durmg this sub-sub-interval. We conclude, job j

gets at least 5 +1 credits from at least 1 3 22’ /“‘i sub-sub-intervals. O

On the other hand, even if the sub-intervals are too short, the job j still gets credits
from MLAX-transfers and Push-transfers when the height of the stack changes.

Proposition 18 For every sub-interval [ay, b,], job j earns at least # credits from
MLAX-transfers and Push-transfers at time b,,.

Proof Up until time b,, MLAX(J) was running a z-above job on stack H. At time
b, the height of the stack H must change. If the height decreases then it must be
the case that MLAX(J) completes the z-above job, so j will get 5 +1 credits from a
MLAX(J)-transfer. Otherwise, the height increases, so MLAX(J) must push a job
that is (z + 1)-above j, which gives j # credits from a Push-transfer. O

Now we combine the above two propositions to complete the proof of Lemma 16.

We say a sub-interval [a,, b,] is long if it has length at least 4 L (i.e. we can apply
Proposition 17 to it) and short otherwise. First, suppose the aggregate length of all

long intervals it at least 4 - 233 ﬁ—’ Then by Proposition 17, job j gets at least 4 credits
from the long intervals. Otherwise, the aggregate length of all long intervals is less

than 4 - 2Z+3 .In th1s case, recall that the long and short intervals partition I, which

has length at least It follows, the aggregate length of the short intervals is at least

2+l

@ Springer

512 B. Moseley et al.

;ﬁ —4.0t43 2—’ For @ = O(1) large enough, we may assume the aggregate length

. . 4¢; .
of the short intervals is at least 4 - 21+2a—g. Because each short interval has length at

£; . . S
most 4%, there are at least 4 - 22%2 short intervals. Thus, by Proposition 18, job j
gets at least 4 credits from the short intervals. We conclude, in either case job j gets
at least 4 credits. O

5 Putting it all together

In this section, we prove our main result, Theorem 1, which follows from the next
meta-theorem:

Theorem 19 Let J be any set of jobs. Then for number of machines m > 16, we have
ILMNY (J3;)| + ISRPT(Jj0)| + IMLAX(J}5)| = £2(|Opt(J)|), where Jp; = {j € J |
Lj > xjyand Ji, ={j € J | £; < xj} partition J into high- and low-laxity jobs.

Proof We have |LMNY (J5;)| = £2(|Opt(Jp;)| by Lemma 3. Also, we further partition
Jio = Jy U Jyy into the viable and non-viable jobs with respect to MLAX(Jj,). Then
Theorems 6 and 12 together give [SRPT(Jj,)| + IMLAX(J;,)| = £2(|Opt(Jy)| +
|Opt(Jp)|). To complete the proof, we observe that J = Jy; U J,, U Jy,, partitions J,
50 [Opt(J3i)| + [Opt(Jy)] + [Opt(Jy)| = 2(|0pt()]). o

The proof of Theorem 2, which gives our performance guarantee for FINALALG is
immediate:

Proof of Theorem 2 By combining Theorem 19 and Lemma 4, the objective value
achieved by FINALALG is:
2 (s o 5] 5100 (3 2 s (3 2)) = 2 (fom (5))
= 2(|Opt(J, m)|).

O

Finally, we obtain our O(1)-competitive deterministic algorithm for all m > 1
(recall FINALALG is O(1)-competitive only when m > 48) by using a two-machine
algorithm when m is too small:

Proof of Theorem 1 Our algorithm is the following: If 1 < m < 48, then we run the
deterministic two-machine algorithm from [9] which is O(1)-competitive with the
optimal single-machine schedule. Thus by Lemma 4, this algorithm is also O (m) =
O (1)-competitive for all m < 48. Otherwise, m > 48, so we run FINALALG. O

6 Conclusion

We considered throughput maximization on multiple machines without any high-laxity
or speed augmentation assumption. Our final competitive ratio is a large unspecified

@ Springer

A competitive algorithm for throughput maximization... 513

constant (obtained by choosing « = O (1) sufficiently large.) Many interesting open
questions remain. What is the right competitive ratio for throughput maximization?
Can we give an improved upper bound, or any lower bound? The only known lower
bounds rule out constant-competitive deterministic algorithms for m = 1. Further, is
migration necessary to achieve constant-competitiveness? Note that two out of three
of our component algorithms (LMNY and LAX) are non-migratory. Naively, SRPT
is migratory, and we also use migration because LAX and SRPT share the low-laxity
jobs. We leave it as an open question to develop a non-migratory constant-competitive
algorithm for throughput maximization on multiple machines.

Funding Open Access funding provided by Carnegie Mellon University

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Azar, Y., Cohen, S.: An improved algorithm for online machine minimization. Oper. Res. Lett. 46(1),
128-133 (2018)

2. Baruah, S.K., Koren, G., Mao, D., Mishra, B., Raghunathan, A., Rosier, L.E., Shasha, D.E., Wang, F.:
On the competitiveness of on-line real-time task scheduling. Real Time Syst. 4(2), 125-144 (1992)

3. Chen, L., Eberle, F., Megow, N., Schewior, K., Stein, C.: A general framework for handling commitment
in online throughput maximization. Math. Program. 183(1), 215-247 (2020)

4. Chen, L., Megow, N., Schewior, K.: An o(log m)-competitive algorithm for online machine minimiza-
tion. SIAM J. Comput. 47(6), 2057-2077 (2018)

5. Eberle, F., Megow, N., Schewior, K.: Optimally handling commitment issues in online throughput
maximization. In: F. Grandoni, G. Herman, P. Sanders (eds.) European Symposium on Algorithms),
LIPIcs, vol. 173, pp. 41:1-41:15. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2020)

6. Im, S., Moseley, B., Pruhs, K., Stein, C.: An o(log log m)-competitive algorithm for online machine
minimization. In: 2017 IEEE Real-Time Systems Symposium, pp. 343-350. IEEE Computer Society
(2017)

7. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J. ACM 47(4), 617-643 (2000).
(Also 1995 Symposium on Foundations of Computer Science)

8. Kalyanasundaram, B., Pruhs, K.: Eliminating migration in multi-processor scheduling. J. Algorithms
38(1), 2-24 (2001)

9. Kalyanasundaram, B., Pruhs, K.: Maximizing job completions online. J. Algorithms 49(1), 63-85
(2003). (Also 1998 European Symposium on Algorithms)

10. Koren, G., Shasha, D.E.: MOCA: A multiprocessor on-line competitive algorithm for real-time system
scheduling. Theoret. Comput. Sci. 128(1&2), 75-97 (1994)

11. Lucier, B., Menache, 1., Naor, J., Yaniv, J.: Efficient online scheduling for deadline-sensitive jobs. In:
G.E. Blelloch, B. Vocking (eds.) ACM Symposium on Parallelism in Algorithms and Architectures,
pp. 305-314. ACM (2013)

12. Moseley, B., Pruhs, K., Stein, C., Zhou, R.: A competitive algorithm for throughput maximization
on identical machines. In: Integer Programming and Combinatorial Optimization - 23rd International
Conference, IPCO 2022, Lecture Notes in Computer Science, vol. 13265, pp. 402—414. Springer (2022)

13. Phillips, C.A., Stein, C., Torng, E., Wein, J.: Optimal time-critical scheduling via resource augmenta-
tion. Algorithmica 32(2), 163-200 (2002)

@ Springer

http://creativecommons.org/licenses/by/4.0/

514 B. Moseley et al.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

	A competitive algorithm for throughput maximization on identical machines
	Abstract
	1 Introduction
	1.1 Our results
	1.2 Scheduling policies
	1.3 Algorithms and technical overview
	1.3.1 LMNY
	1.3.2 SRPT
	1.3.3 MLax
	1.3.4 Analysis Sketch

	1.4 Related work

	2 Structure of optimal schedule
	3 SRPT is competitive with non-viable jobs
	3.1 Proof of Lemma 7
	3.2 Proof of Lemma 8

	4 SRPT and MLax are competitive with viable jobs
	4.1 Proof of Lemma 13
	4.2 Proof of Lemma 14

	5 Putting it all together
	6 Conclusion
	References

