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We compute the one-loop contributions to spin-averaged generalized parton distributions (GPDs) in the

proton from pseudoscalar mesons with intermediate octet and decuplet baryon states at nonzero skewness.

Our framework is based on nonlocal covariant chiral effective theory, with ultraviolet divergences

regularized by introducing a relativistic regulator derived consistently from the nonlocal Lagrangian. Using

the splitting functions calculated from the nonlocal Lagrangian, we find the nonzero skewness GPDs from

meson loops by convoluting with the phenomenological pion GPD and the generalized distribution

amplitude, and verify that these satisfy the correct polynomiality properties. We also compute the lowest

two moments of GPDs to quantify the meson loop effects on the Dirac, Pauli, and gravitational form factors

of the proton.
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I. INTRODUCTION

Generalized parton distributions (GPDs) contain unique

information about the three-dimensional structure of

hadrons, in terms of their fundamental quark and gluon

(or parton) constituents. They describe the distributions in

momentum and position space of partons carrying a specific

fraction x of the hadron’s light-frontmomentumand squared

four-momentum transfer t, and interpolate between collinear
parton distribution functions (PDFs) in the forward limit and

elastic form factors when integrated over x. The latter

include the Dirac and Pauli form factors, from the lowest

moments of the GPDs, and gravitational form factors from

the x-weighted GPD moments [1] (for reviews see, e.g.,

Refs. [2,3]). A further property of GPDs is that they obey

different evolution equations in different kinematic regions:

either the DGLAP (Dokshitzer–Gribov–Lipatov–Altarelli–

Parisi) region as for collinear PDFs, where both the struck

and returning partons carry positive momentum fractions of

the initial proton momentum [4–6], or the ERBL (Efremov–

Radyushkin–Brodsky–Lepage) region, which can be inter-

preted as describing a quark-antiquark pair emerging from

the proton, as appropriate for distribution amplitudes

(DAs) [7–9].

On the experimental side, data from processes such as

deeply virtual Compton scattering (DVCS) [10] and hard

exclusive meson production (HEMP) [11–13], including

fromH1 [14–16] andZEUS [17,18] collaborations atHERA,

the HERMES fixed target experiment [19–21], COMPASS

Collaboration at CERN [22,23], and from CLAS [24–29]

andHallA [30,31] collaborations at JeffersonLab, have been

used to provide indirect information on GPDs through the

Compton form factors. The latter are given as convolutions of

GPDs with hard scattering kernels derived within QCD

factorization [13,32]. The extraction of GPDs and their

moments has also been a motivation for planned experi-

mental programs at future facilities such as the Electron-Ion

Collider [33,34].

The extraction ofGPDs directly from experimental data is

of course the cornerstone of the quest to determine the three-

dimensional structure of the nucleon. Pioneering studies

have already been made by several groups worldwide on

this effort [35–39], although direct, model-independent

extractions remain a formidable challenge. Among some

early studies, Diehl et al. [35] used a simple empirical

parametrization of the x and t dependence of GPDs at zero
skewness, with forward collinear PDFs as input. Kumerički

and Müller [36] studied DVCS at small values of

the Bjorken-x variable, using conformal integral GPD

moments, performing a first model-dependent extraction
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of the unpolarized GPD H from HERA and Jefferson Lab

DVCSdata.Goldstein et al. [37] carried out a global analysis

of DVCS observables, together with nucleon elastic form

factors and deep-inelastic scattering measurements, using a

flexible parametrization ofGPDs inspired by a hybridmodel

of the nucleon as a quark-diquark system with Regge

behavior. Most recently, Guo et al. [38,39] employed a

program to parametrize GPDs through universal moment

parametrization (GUMP), motivated by the complex con-

formal spin partial wave expansion method of Müller and

Schäfer [40], to perform a global analysis of GPDs from

DVCS data, constrained by input on PDFs and elastic form

factors, as well as recent lattice QCD calculations [41,42].

Mamo and Zahed proposed a string-based parametrization

using the Mellin–Barnes integral representations [43],

which allows construction of the quark and gluon GPDs

at any skewness.

Notwithstanding these important developments, in a

seminal paper Bertone et al. [44] recently pointed out,

within a next-to-leading order QCD analysis, that a critical

limitation of processes such as DVCS is their inability to

uniquely determine the x dependence of the GPDs due to

the presence of so-called “shadow GPDs.” The shadow

GPDs are a set of solutions to the inverse problem of

extracting GPDs from DVCS data, which renders the

extracted GPDs not unique. Moffat et al. [45] further

investigated the extent to which QCD evolution can provide

constraints on the shadow GPDs, observing that given

empirical data over a sufficiently wide range of skewness ξ

and scale Q2, the Q2 evolution may in principle constrain

the shadow GPDs, but over a rather limited range of x
and ξ.

More recently, Qiu and Yu [46,47] explored a novel new

set of exclusive processes, including single diffractive hard

exclusive photoproduction, as a means of more directly

constraining the x dependence of GPDs. Such processes can
be factorized into process-independent GPDs and perturba-

tively calculable, infrared safe hard coefficients [46].One can

extractGPDs frompolarized photoproduction cross sections,

as well as asymmetries constructed from photon polarization

and hadron spin, which could in future be measured, for

example, at Jefferson Lab Hall D. Other related processes,

such as exclusive production of high transverse momentum

photons in πN scattering, can be factorized into GPDs and

pionDAs convolutedwith short distance hard kernels [47], if

the photons’ transverse momentum q is ≫ ΛQCD, with

corrections suppressed by powers of 1=q. The x depdend-

ence of GPDs can be also accessed through double

DVCS [48,49] by choosing different invariant masses of

the produced lepton pair. In addition, the photoproduction of

a largemass diphoton γN → γγN has been proposed to probe

C-odd GPDs [50,51].

Along with the empirical determinations of GPDs from

data, developments in lattice QCD have allowed access to

nucleon structures from first principles calculations,

providing complementary information that is often difficult

to obtain from experiments [41,52–54]. In particular,

considerable effort has been devoted to directly computing

the x dependence of distributions, using either the quasi-

parton distribution [55], pseudodistribution [56], or lattice

good cross sections [57,58] approaches.

While the lattice continues to make progress with

improved control over systematic uncertainties in the

simulations, it is also useful to explore possible insights

from model calculations, many of which have been

performed over the past 25 years [2,59–73]. Even though

their direct connection to QCD is not always transparent,

they can nevertheless provide glimpses into some of the

qualitative features and characteristics of GPDs.

In between the phenomenologicalmodels and latticeQCD

simulations, constraints from chiral effective field theory

(EFT) have been used to make predictions for various sea

quark flavor asymmetries in the nucleon [74–78]. These are

based on the observation that the long-range structure of the

nucleon has contributions from the pseudoscalar meson

cloud, associated with the model-independent leading non-

analytic behavior of observables expanded in a series ofmπ .

Operationally, the sea quark distributions can be obtained

through the convolution of a probability of the nucleon to

split into a virtual meson and recoil baryon (“splitting

function”), with the valence quark distribution of the meson.

The splitting function can be calculated from EFT, in which

its moments are expanded as a series in the pseudoscalar

meson mass Oðmϕ=ΛχÞ or small external momentum

Oðq=ΛχÞ, where Λχ ∼ 1 GeV is the scale associated with

the chiral EFT. Traditional EFT calculations based on

dimensional regularization have found it challenging to

describe lattice results in the large-Q2 region, or with pion

mass 400MeV [79,80], since the short distance effect arising

from the loop integral leads to a poor convergence of the

chiral expansion [80,81]. To improve the convergence, finite

range regularization has been proposed and applied for

the extrapolation of various quantities calculated by lattice

QCD, including the vector meson mass, magnetic moments,

magnetic and strange form factors, charge radii, and

moments of PDFs and GPDs, from large pion masses to

the physicalmass [79,80,82–88]. Here the three-dimensional

regulator is included in the loop integral and can be regarded

as partially resumming the contribution from the higher order

interaction. In a similar vein, a nonlocal chiral effective

Lagrangian has also been proposed [89–91], in which

the covariant regulator is automatically generated from the

Lagrangian. One can obtain reasonable descriptions of the

nucleon electromagnetic and strange form factors at largeQ2

using this method, which has also been applied to calculate

the strange-antistrange PDFasymmetry s − s̄ [92,93], the sea
quark transverse momentum dependent (TMD) Sivers

function [94], and zero-skewness GPDs [95]. More details

on the nonlocal chiral effective theory can be found in

Ref. [96]. Recently, Copeland andMehen [97] also discussed
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a framework for matching TMD PDFs onto chiral effective

theory operators in terms of TMD hadronic distribution

functions calculated in chiral perturbation theory.

In this paper, we extend our previous analysis [95] of

zero-skewness GPDs in the proton within the nonlocal

chiral effective theory to the nonzero skewness case. In

Sec. II we present the basic theoretical framework used in

our analysis, including the definition of unpolarized GPDs

(Sec. II A) and the nonlocal meson-baryon interaction that

underlies our calculation (Sec. II B). The one-loop

nucleon splitting into meson plus octet and decuplet

baryon splitting functions are given in Sec. II C from

the set of rainbow and bubble diagrams that contribute to

the antiquark GPDs in the nucleon. The convolution

formalism is derived in Sec. III, where we outline the

differences with the zero-skewness GPD case. In particu-

lar, we separate the contribution to DGLAP and ERBL

region, and prove that such a convolution formula can

generate the skewness-independent form factors after

integrating over x. Numerical results for the two and

three dimensions splitting functions and light antiquark

GPDs using the convolution formulas are presented in

Sec. IV. Finally, Sec. V summarizes our results and

anticipates future extensions of this analysis. In

Appendix A, we also demonstrate the GPDs’ nth moments

obtained with convolution formula satisfy the general

polynomial property. In Appendix B, we summarize the

explicit expressions for the splitting functions and the

coupling constants presented in this study.

II. THEORETICAL FRAMEWORK

In this section we summarize the theoretical framework

on which our analysis is based. We begin with a summary

of the definitions of the spin-averaged GPDs that are the

focus of this analysis, followed by a discussion of the

contributions to the GPDs from pseudoscalar meson loops,

formulated within chiral effective theory. We summarize

the pertinent aspects of the chiral Lagrangian describing the

meson-nucleon interaction, and present results for the

nucleon to baryon þ meson splitting functions at nonzero

skewness.

A. Unpolarized GPDs

The spin-averaged GPDs for a quark of flavor q in a

nucleon are defined in terms of the Fourier transform of the

nonforward matrix elements of quark bilocal field oper-

ators, taken between nucleon states with initial momentum

p and final momentum p0 [10],

Z

∞

−∞

dλ

2π
e−ixλhp0jψ̄q

�

1

2
λn

�

nψq

�

−
1

2
λn

�

jpi

¼ ūðp0Þ½nHqðx; ξ; tÞ þ
iσμνnμΔν

2M
Eqðx; ξ; tÞ�uðpÞ; ð1Þ

where the light-cone vector nμ projects the “plus” compo-

nent of momentum, λ is a dimensionless parameter, and M
is the nucleon mass. Invariance under Lorentz transforma-

tions requires the Dirac (Hq) and Pauli (Eq) GPDs to be

functions of the light-cone momentum fraction x of the

nucleon carried by the initial quark with momentum kq,

x≡
kþq
Pþ ; ð2Þ

and the skewness parameter ξ,

ξ≡ −
Δ

þ

2Pþ ; ð3Þ

where

P ¼ 1

2
ðpþ p0Þ; Δ ¼ p0 − p ð4Þ

are the average and difference of the initial and final

nucleon momenta, respectively. We define the light-cone

components of a four-vector kμ by k� ¼ 1
ffiffi

2
p ðk0 � k3Þ, and

for convenience choose a symmetric frame of reference for

the initial and final nucleon momenta,

pμ ¼
�

Pþ −
Δ

þ

2
; P− −

Δ
−

2
;−

Δ⊥

2

�

; ð5aÞ

p0μ ¼
�

Pþ þ Δ
þ

2
; P− þ Δ

−

2
;
Δ⊥

2

�

: ð5bÞ

In addition to being functions of x and ξ, the GPDs also

depend on the hadronic four-momentum transfer squared,

t≡ Δ
2, as well as on the scaleQ2, which is typically taken to

be the virtuality of the photon which couples to the hard

scattering. The momentum transfer should satisfy the kin-

ematic constraint −Δ2 > 4ξ2M2=ð1 − ξ2Þ in order to guar-

antee positive transferred momentum squared, Δ2

⊥ > 0.

Integrating the GPDs Hq and Eq over the quark light-

cone momentum fraction x, the Dirac and Pauli form

factors for a quark flavor q can be expressed as

Z

1

−1

dxHqðx; ξ; tÞ ¼ F
q
1
ðtÞ; ð6aÞ

Z

1

−1

dxEqðx; ξ; tÞ ¼ F
q
2
ðtÞ: ð6bÞ

Note that the ξ dependence vanishes in the integrals of the

GPDs over x. Furthermore, the gravitational form factors

Aq, Bq, and Cq can be obtained from the first moments of

the Hq and Eq GPDs as
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Z

1

−1

dxxHqðx; ξ; tÞ ¼ AqðtÞ þ ð2ξÞ2CqðtÞ; ð7aÞ

Z

1

−1

dxxEqðx; ξ; tÞ ¼ BqðtÞ − ð2ξÞ2CqðtÞ; ð7bÞ

where now explicit dependence on the skewness ξ now

appears on the right-hand side.

B. Chiral loop contributions to GPDs

In our analysis we consider the contributions to the sea

quark and antiquark GPDs in the proton arising from the

virtual pseudoscalar meson cloud dressing of the bare

baryon, as a first step towards a complete calculation to

one-loop order. Typically, in calculations of meson loop

contributions to sea quark and antiquark asymmetries,

assuming that the undressed proton has a flavor symmetric

sea [77], the meson coupling diagrams in Fig. 1 are the

dominant source of differences between sea quark and

antiquark PDFs and GPDs.

In our previous analysis [95] we considered the non-

forward nucleon to virtual meson and recoil baryon

splitting functions at zero skewness. Generalizing to non-

zero ξ, the splitting functions can be written as

ūðp0Þ
�

γþfðy; ξ; tÞ þ iσþν
Δν

2M
gðy; ξ; tÞ

�

uðpÞ

¼
Z

d4kΓ̃þðkÞδ
�

yþ ξ −
kþ

Pþ

�

≡ Γ
þ; ð8Þ

where fðy; ξ; tÞ and gðy; ξ; tÞ are the corresponding Dirac-

and Pauli-like splitting functions, and y is the light-front

momentum fraction of the nucleon carried by the inter-

mediate state hadron. The operator Γ̃μðkÞ is related to the

matrix elements of the hadronic current Jμ,

hNðp0ÞjJμjNðpÞi ¼ ūðp0Þ
�

γμFN
1
ðtÞ þ iσμνΔν

2M
FN
2
ðtÞ

�

uðpÞ

≡

Z

d4kΓ̃μðkÞ; ð9Þ

where Jμ is given in terms of its individual quark flavor

contributions as in Ref. [95]. One can also verify that the

Dirac and Pauli form factors can be obtained by integrating

the splitting functions over y.
To compute the hadronic splitting functions f and g, we

use the standard chiral SUð2ÞL × SUð2ÞR effective

Lagrangian, the details of which can be found, for example,

in Refs. [98–100]. In the one-loop approximation used in

our analysis, the chiral Lagrangian can be expanded to

reveal the interaction terms, given by

Lint ¼
gA

2fπ
ðp̄γμγ5p∂μπ0 þ

ffiffiffi

2

p
p̄γμγ5n∂μπ

þÞ

þ C
ffiffiffiffiffi

12
p

fπ
ð−2p̄Θνμ

Δ
þ
μ ∂νπ

0 −
ffiffiffi

2

p
p̄Θνμ

Δ
0
μ∂νπ

þ

þ
ffiffiffi

6

p
p̄Θνμ

Δ
þþ
μ ∂νπ

−Þ

þ i

4f2π
p̄γμpðπþ∂μπ− − π−∂μπ

þÞ

þ 2iðb10 þ b11Þ
f2π

p̄σμνp∂μπ
þ
∂νπ

− þ H:c:; ð10Þ

where H.c. refers to the Hermitian conjugate, and fπ ¼
92.4 MeV is the pion decay constant. The axial vector

coupling constant for the octet baryon is set to the standard

value gA ¼ 1.26, and the octet-decuplet transition coupling

C is chosen to be − 6

5
gA from SU(6) spin-flavor symmetry.

The octet-decuplet transition operator Θ
μν is defined

as [101]

Θ
μν ¼ gμν − γμγν: ð11Þ

The coefficients b10 and b11 in Eq. (10) for the nucleon-

pion contact interaction have previously been determined to

be b10 ¼ 1.24 GeV−1, and b11 ¼ 0.46 GeV−1 [102]. In our

previous work [95] we discussed in detail the construction

of the nonlocal chiral Lagrangian; here we simply present

the final nonlocal interaction L
ðnonlocÞ
int we used in this

calculation,

(a)

(d)

(b)

(c)

FIG. 1. One-loop diagrams for the proton to pseudoscalar

meson (dashed lines) and octet baryon (solid lines) or decuplet

baryon (double solid lines) splitting functions. The crossed

circles represent the interaction with the external vector field

from the minimal substitution, and the gray square denotes the

last interaction term in Eq. (10).
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L
ðnonlocÞ
int ðxÞ ¼ p̄ðxÞ

�

gA

2fπ
γμγ5pðxÞ −

C
ffiffiffi

3
p

fπ
Θ

μν
Δ

þ
ν ðxÞ

�
Z

d4aFðaÞ∂μπ0ðxþ aÞ

þ p̄ðxÞ
�

gA
ffiffiffi

2
p

fπ
γμγ5nðxÞ −

C
ffiffiffi

6
p

fπ
Θ

μν
Δ

0
νðxÞ

�
Z

d4aFðaÞ∂μπþðxþ aÞ

þ C
ffiffiffi

2
p

fπ
p̄ðxÞΘμν

Δ
þþ
ν ðxÞ

Z

d4aFðaÞ∂μπ−ðxþ aÞ þ H:c:

þ i

4f2π
p̄ðxÞγμpðxÞ

Z

d4a

Z

d4bFðaÞFðbÞ½πþðxþ aÞ∂μπ−ðxþ bÞ − ∂μπ
þðxþ aÞπ−ðxþ bÞ�

þ 2iðb10 þ b11Þ
f2π

p̄ðxÞσμνpðxÞ
Z

d4a

Z

d4bFðaÞFðbÞ∂μπþðxþ aÞ∂νπ−ðxþ bÞ: ð12Þ

The function FðaÞ here describes the strength of the

correlation between the baryon and the meson, and will

become the regulator function in the momentum space. In

the limit when FðaÞ → δðaÞ, one can show that Eq. (12)

reduces to the local version of the Lagrangian given in

Eq. (10).

C. Nonzero skewness splitting functions

In this work we will be particularly concerned with the

contributions to proton GPDs from the pseudoscalar meson

coupling diagrams in Fig. 1, as a first step towards a

complete one-loop calculation of the GPDs at nonzero

skewness. Contributions to GPDs from additional cou-

plings to the octet and decuplet baryons, including baryon

rainbow and Kroll–Ruderman diagrams [95], will be

investigated in future work.

The contribution to the nonzero skewness splitting

functions from the rainbow diagram in Fig. 1(a) with the

pseudoscalar meson and octet baryon is given by

ūðp0ÞΓþ
ðaÞuðpÞ ¼ ūðp0Þ

C2

Bϕ

f2

Z

d4k

ð2πÞ4 ðkþ ΔÞγ5F̃ðkþ ΔÞ i

Dϕðkþ ΔÞ ð2k
þ þ Δ

þÞ

×
i

DϕðkÞ
ið=p − kþMBÞ
DBðp − kÞ γ5kF̃ðkÞδ

�

yþ ξ −
kþ

Pþ

�

uðpÞ

≡ ūðp0Þ
�

γþfðrbwÞϕB ðy; ξ; tÞ þ iσþν
Δν

2M
g
ðrbwÞ
ϕB ðy; ξ; tÞ

�

uðpÞ; ð13Þ

where the propagator factors DϕðkÞ and DBðpÞ are de-

fined as

DϕðkÞ ¼ k2 −m2

ϕ þ iϵ; DBðpÞ ¼ p2 −M2
B þ iϵ; ð14Þ

and mϕ and MB represent the pseudoscalar meson and

baryon masses, respectively. The function F̃ is a regulator

function, obtained by performing a Fourier transformation

on the factor FðaÞ in Eq. (12), and is used to regularize the

ultraviolet divergence in the loop integration. For simplicity

we choose this to be a function of the meson momentum

only (see Sec. IV below). The explicit expressions for the

splitting functions f
ðrbwÞ
ϕB and g

ðrbwÞ
ϕB and the couplings C2

Bϕ

are given in Appendix B.

The bubble diagrams are illustrated in Figs. 1(b)

and 1(c). For the regular bubble diagram in Fig. 1(b),

the corresponding splitting function is given by

ūðp0ÞΓþ
ðbÞuðpÞ ¼ −ūðp0ÞCϕϕ

2f2

Z

d4k

ð2πÞ4 ið2kþ ΔÞF̃ðkþ ΔÞF̃ðkÞ i

Dϕðkþ ΔÞ ð2k
þ þ Δ

þÞ i

DϕðkÞ
δ

�

yþ ξ −
kþ

Pþ

�

uðpÞ;

≡ ūðp0ÞγþuðpÞfðbubÞϕ ðy; ξ; tÞ: ð15Þ

The additional bubble diagram in Fig. 1(c) is derived from the last interaction term in Eq. (10), and its contribution to the

matrix element can be written as
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ūðp0ÞΓþ
ðcÞuðpÞ ¼ −ūðp0Þ

C0
ϕϕ

f2

Z

d4k

ð2πÞ4 σ
λν
ΔλkνF̃ðkþ ΔÞF̃ðkÞ i

Dϕðkþ ΔÞ ð2k
þ þ Δ

þÞ i

DϕðkÞ
δ

�

yþ ξ −
kþ

Pþ

�

uðpÞ;

≡ ūðp0ÞγþuðpÞ g0ðbubÞϕ ðy; ξ; tÞ; ð16Þ

following the convention of Ref. [95].

Finally, for the decuplet baryon rainbow diagram in Fig. 1(d), the contribution to Γþ is given by a form similar to that for

the octet baryon diagram in Fig. 1(a),

ūðp0ÞΓþ
ðdÞuðpÞ ¼ −ūðp0Þ

C2

Tϕ

f2

Z

d4k

ð2πÞ4 ðkþ ΔÞλΘλαF̃ðkþ ΔÞ i

Dϕðkþ ΔÞ ð2k
þ þ Δ

þÞ

×
i

DϕðkÞ
i

=p − k −MT

Sαβðp − kÞΘβρkρF̃ðkÞδ
�

yþ ξ −
kþ

Pþ

�

uðpÞ

≡ ūðp0Þ
�

γþfðrbwÞϕT ðy; ξ; tÞ þ iσþν
Δν

2M
g
ðrbwÞ
ϕT ðy; ξ; tÞ

�

uðpÞ; ð17Þ

where MT is the mass of baryon decuplet. Again, the

expressions for the integrals of the splitting functions f
ðrbwÞ
ϕT

and g
ðrbwÞ
ϕT , along with the coefficients C2

Tϕ, as well as the

corresponding bubble distributions f
ðbubÞ
ϕ and g

0ðbubÞ
ϕ , are

given in Appendix B.

III. GPDS FROM PSEUDOSCALAR

MESON LOOPS

The recent analysis in Ref. [95] derived formulas for

quark and antiquark GPDs at zero skewness in terms of

convolutions of the nucleon to pseudoscalar meson plus

baryon splitting functions, and GPDs associated with the

mesons and baryons in the intermediate state. In this

section, we discuss the extension of this formalism to

the case of nonzero skewness. This exercise requires paying

careful attention to the different regions of parton momen-

tum fraction x, meson momentum fraction y, and skewness
parameter ξ.

For the rainbow diagrams in Figs. 1(a) and 1(d), the

relevant splitting functions are nonzero when y is in the

region −ξ ≤ y ≤ 1, for positive ξ values. The splitting

function in this region can be convoluted with the pion

GPD to obtain the quark GPD in the nucleon. Figure 2

illustrates the decomposition of the convolution formula for

the rainbow diagram in Fig. 1(a) into different subprocesses.

The splitting functions for Figs. 2(a), 2(b), and 2(d) are all

located in the y > ξ region, while the quark GPD in the pion

belongs to the quarkDGLAP, ERBL, and antiquarkDGLAP

regions, respectively. After convoluting with the hadronic

splitting function, these contribute to the quark GPD of the

proton in the quark DGLAP, ERBL, and antiquark DGLAP

regions, respectively. For the subprocess in Fig. 2(c) the

splitting function is located at y∈ ½−ξ; ξ�, and can be

considered as the meson-meson pair annihilation process,

analogous to the DA-like dynamics at the quark level.

By combining these various processes, the contribution to

the skewness nonzero GPDs from the diagram in Fig. 1(a)

can be expressed in the convolution form as

(a) (b) (c) (d)

FIG. 2. Representation of the convolution formula in Eqs. (18a), (18b), (18c), and (18d), respectively, with the {dashed, thick solid,

thin solid} lines representing the {pseudoscalar meson, proton, quark}. The processes in diagrams (a) and (d) represent the DGLAP

region for the quark and antiquark, respectively, while the processes in (b) and (c) contribute to the ERBL region.
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H
ðrbwÞ
q ðx;ξ;tÞ¼

Z

1

x

dy

y
f
ðrbwÞ
ϕB ðy;ξ;tÞHq=ϕ

�x

y
;
ξ

y
;t
�

; ½ξ<x<y� ð18aÞ

H
ðrbwÞ
q ðx; ξ; tÞ ¼

Z

1

ξ

dy

y
f
ðrbwÞ
ϕB ðy; ξ; tÞHq=ϕ

�x

y
;
ξ

y
; t
�

; ½x < ξ < y� ð18bÞ

H
ðrbwÞ
q ðx; ξ; tÞ ¼

Z

ξ

−ξ

dy

2y
f
ðrbwÞ
ϕB ðy; ξ; tÞ 1

π

Z

∞

s0

ds
ImΦq=ϕð12 ð1þ x

ξ
Þ; 1

2
ð1þ y

ξ
Þ; sÞ

s − tþ iε
; ½jxj; jyj < ξ� ð18cÞ

H
ðrbwÞ
q ðx; ξ; tÞ ¼

Z

1

−x

dy

y
f
ðrbwÞ
ϕB ðy; ξ; tÞHq=ϕ

�x

y
;
ξ

y
; t
�

; ½ξ < −x < y < 1� ð18dÞ

where Hq=ϕ and Φq=ϕ represent the valence GPD and generalized distribution amplitude (GDA), respectively, in the

intermediate pseudoscalar meson. These can be expressed, respectively, as [103]

Hq=ϕðx; ξ; tÞ ¼
Z

∞

−∞

dλ

4π
e−ixλhϕðp0Þjψ̄q

�

1

2
λn

�

nψq

�

−
1

2
λn

�

jϕðpÞi; ð19aÞ

Φq=ϕðη; z; tÞ ¼
Z

∞

−∞

dλ

2π
e−ið2η−1Þλh0jψ̄q

�

1

2
λn

�

nψq

�

−
1

2
λn

�

jϕðp0ÞϕðpÞi; ð19bÞ

where z ¼ p0þ=ðpþ þ p0þÞ and f
ðrbwÞ
ϕB is the rainbow

splitting function defined in Eq. (13). The corresponding

convolution formula for the quark magnetic GPD

Eqðx; ξ; tÞ can be obtained by replacing f
ðrbwÞ
ϕB ðy; ξ; tÞ with

the Pauli splitting function g
ðrbwÞ
ϕB ðy; ξ; tÞ. Similarly, the

contribution from the pseudoscalar meson-decuplet dia-

gram in Fig. 1(d) can be obtained by replacing the octet

splitting functions ff; ggðrbwÞϕB ðy; ξ; tÞ with the correspond-

ing decuplet functions ff; ggðrbwÞϕT ðy; ξ; tÞ.
The splitting functions appearing in Eqs. (18a), (18b),

and (18d) are located in the region ξ < y, and represent the
contribution to the quark GPD in the DGLAP region, the

quark GPD in the ERBL region, and the antiquark GPD in

the DGLAP region, respectively. The convolution in

Eq. (18c) also contributes to the GPD in the ERBL region

from the splitting function at y < jξj, with the splitting

function convoluted with the GDA of the meson, defined in

the timelike region. The results in the spacelike region can

be obtained by analytically continuing the intergral over s
in Eq. (18c), where s0 ∼ 2mϕ is the threshold for the meson

pair production. The total contribution of the rainbow

diagrams in Figs. 1(a) and 1(d) to the GPDs are then

obtained by summing the four subprocesses in Fig. 2.

For the bubble diagrams in Figs. 1(b) and 1(c), the splitting

function is nonzero only when the meson momentum

fraction y is in the range y∈ ½−ξ; ξ�, so that these only

contribute to GPDs in the ERBL region. Their contributions

to the quark electric GPD in the proton can be written as

H
ðbubÞ
q ðx; ξ; tÞ ¼

Z

ξ

−ξ

dy

2y
f
ðbubÞ
ϕ ðy; ξ; tÞ 1

π

Z

∞

s0

ds
ImΦq=ϕð12 ð1þ x

ξ
Þ; 1

2
ð1þ y

ξ
Þ; sÞ

s − tþ iϵ
; ð20Þ

where the splitting function for the bubble diagram, f
ðbubÞ
ϕ ,

is given in Eq. (15). The analogous expression for the

magnetic GPD E
ðbubÞ
q is obtained from Eq. (20) by replacing

the bubble splitting function f
ðbubÞ
ϕ by the corresponding

function g
0ðbubÞ
ϕ introduced in Eq. (16).

Integrating the GPDs over x from −1 to 1, we can write

the lowest moment of H
ðrbwÞ
q in terms of the pseudoscalar

meson elastic form factor. Adding the contributions from

Eqs. (18a), (18b), and (18d), integrated over the intervals

½ξ; 1�, ½−ξ; ξ�, and ½−1;−ξ�, respectively, we have

Z

1

ξ

dyf
ðrbwÞ
ϕB ðy; ξ; tÞ

�
Z

1

ξ=y

dzHq=ϕ

�

z;
ξ

y
; t

�

þ
Z

−ξ=y

−1

dzHq=ϕ

�

z;
ξ

y
; t

�

þ
Z

ξ=y

−ξ=y

dzHq=ϕ

�

z;
ξ

y
; t

��

¼
Z

1

ξ

dyf
ðrbwÞ
ϕB ðy; ξ; tÞFϕðtÞ; ð21Þ
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where we have used the relation between the lowest moment of the quark GPD in the pseudoscalar meson and the meson

form factor. For the ERBL region in Eq. (18c), the contribution to the integral of the GPD can be written as

Z

ξ

−ξ

dxH
ðrbwÞ
q ðx; ξ; tÞ ¼

Z

ξ

−ξ

dyf
ðrbwÞ
ϕB ðy; ξ; tÞ ξ

πy

Z

1

−1

dz

2

Z

∞

s0

ds
ImΦq=ϕð12 ð1þ zÞ; 1

2
ð1þ y

ξ
Þ; sÞ

s − tþ iϵ

¼
Z

ξ

−ξ

dyf
ðrbwÞ
ϕB ðy; ξ; tÞ ξ

πy

Z

∞

s0

ds
Im

R

1

0
dηΦq=ϕðη; 12 ð1þ

y
ξ
Þ; sÞ

s − tþ iϵ

¼
Z

ξ

−ξ

dyf
ðrbwÞ
ϕB ðy; ξ; tÞ 1

π

Z

∞

s0

ds
ImFϕðsÞ
s − tþ iϵ

¼
Z

ξ

−ξ

dyf
ðrbwÞ
ϕB ðy; ξ; tÞFϕðtÞ; ð22Þ

where we have used the relation
R

1

0
dηΦq=ϕðη; κ; sÞ ¼

ð2κ − 1ÞFϕðsÞ. Combining Eqs. (21) and (22), one then

obtains the lowest moment of the GPD,

Z

1

−ξ

dxH
ðrbwÞ
q ðx; ξ; tÞ ¼

Z

1

−ξ

dyf
ðrbwÞ
ϕB ðy; ξ; tÞFϕðtÞ; ð23Þ

which corresponds to the Dirac form factor according to

Eqs. (8) and (9).

In the numerical calculations in this analysis, we con-

sider specifically the case of the pion, ϕ ¼ π. For the pion

GPDs we use the Radyushkin’s double distribution para-

metrization from Refs. [104,105], which was also utilized

by Amrath et al. [106],

Hq=πðx; ξ; tÞ

¼
Z

1

−1

dβ

Z

1−jβj

−1þjβj
dαδðx − β − ξαÞhbðβ; αÞHq=πðβ; 0; tÞ

þ ξ

jξjDq=π

�

x

ξ
; t

�

θðξ − jxjÞ; ð24Þ

where the function hb is defined by

hbðβ; αÞ ¼
Γð2bþ 2Þ

22bþ1
Γ
2ðbþ 1Þ

½ð1 − jβjÞ2 − α2�b
ð1 − jβjÞ2bþ1

: ð25Þ

We take the parameter b ¼ 2, and the GPD in the

zero skewness case is defined according to the ansatz,

Hq=πðβ; 0; tÞ ¼ Hq=πðβ; 0; 0ÞFπðtÞ. The second term in

Eq. (24) represents the contribution to the D term of the

gravitational form factor of the pion, which is related to the

pressure distribution of partons in the hadron. To obtain the

correct first moment, this term must be an odd function of

x, and in the present analysis we use the simple form,

Dq=πðz; tÞ ¼
15

4
zð1 − z2ÞDq=πðtÞ; ð26Þ

where Dq=πðtÞ is the gravitational form factor of the

pion, for which we choose a monopole form, Dq=πðtÞ ¼
Dq=πð0Þ=ð1 − t=Λ2

πÞ, with normalization Dq=πð0Þ¼−0.157

and cutoff parameter Λπ ¼ 1.44 GeV from the recent

lattice QCD calculation by Hackett et al. [107].

In the forward limit the quark GPD in the pion can be

related to the quark PDF, Hq=πðx; 0; 0Þ ¼ qπðxÞ for x > 0,

and Hq=πðx; 0; 0Þ ¼ −q̄πð−xÞ for x < 0 by crossing sym-

metry. Since we only consider the lowest Fock state of

the pion, composed of a valence quark and antiquark,

we set qπðxÞ ¼ qvπðxÞ, the valence quark PDF in the pion,

and q̄πðxÞ ¼ 0 for the sea quarks in the pion. Recent

analyses of pion PDFs have been performed by several

groups [108–111]; for simplicity we use the older para-

metrization from Ref. [112], which is given at the scale

μ ¼ 0.63 GeV.

For the contribution to the pion GPD from the ERBL

region, we need in addition information about the pion

GDA, Φq=ϕ [Eq. (18c)]. For this we also use the double

parametrization of the form [103,113,114]

Φq=πðη; z; sÞ ¼ 2ð2z − 1Þ
Z

1

−1

dβ

Z

1−jβj

−1þjβj
dαδðð2η − 1Þ

− ð2z − 1Þβ − αÞÞhbðβ; αÞHq=πðβ; 0; sÞ
þ 2Dq=πð2η − 1; sÞ: ð27Þ

Such a parametrization can be shown to satisfy the

polynomial property in Eq. (A4).

As discussed above, in this calculation we only consider

contributions to the GPDs from direct couplings to the

virtual pion loop, as in Fig. 1. Using quark flavor

symmetry, the pion GPDs and pion GDAs for the different

possible charge states can be related according to

Hu=πþ ¼ Hd̄=πþ ¼ Hd=π− ¼ Hū=π− ¼ 2Hq=π0 ; ð28aÞ

Φu=πþ ¼ Φd̄=πþ ¼ Φd=π− ¼ Φū=π− ¼ 2Φq=π0 ; ð28bÞ
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respectively, where q ¼ u; ū; d, or d̄ for the quark flavors in

the neutral π0. Combining the contributions from the

different diagrams in Fig. 1, including rainbow and bubble,

and the different isospin channels, the u-quark GPD in the

proton can be written as

Huðx; ξ; tÞ ¼ H
ðrbwÞπþn
u ðx; ξ; tÞ þH

ðrbwÞπþΔ0

u ðx; ξ; tÞ

þH
ðrbwÞπ0p
u ðx; ξ; tÞ þH

ðrbwÞπ0Δþ
u ðx; ξ; tÞ

þH
ðbubÞπþπ−
u ðx; ξ; tÞ −H

ðrbwÞπ0p
ū ð−x; ξ; tÞ

−H
ðrbwÞπ0Δþ

ū ð−x; ξ; tÞ −H
ðrbwÞπ−Δþþ

ū ð−x; ξ; tÞ;
ð29Þ

where we have explicitly written out the specific pion-

baryon charge contributions, and similarly for the u-quark
magnetic GPD Eu. The results of d-quark GPDs can be

obtained using the isospin symmetry fH;Egdðx; ξ; tÞ ¼
−fH;Eguð−x; ξ; tÞ, since we only consider the pion loop

contribution in this work. Note that Eq. (29) includes

contributions from the quark DGLAP, ERBL, and anti-

quark DGLAP regions. As mentioned above, contributions

from the baryon coupling rainbow diagrams, as well as

Kroll–Ruderman diagrams [95], will be investigated in

future work [115].

IV. PHENOMENOLOGY OF MESON LOOP

CONTRIBUTIONS TO GPDS

In this section we will present the phenomenological

results for the generalized splitting functions derived in

the preceeding sections, along with the meson loop con-

tributions to the light quark GPDs obtained using the

convolution formula in Eq. (18). We also apply the

formalism to calculation of the Dirac, Pauli, and gravita-

tional form factors, obtained from the lowest two moments

of the GPDs. In the numerical calculations the loop

integrals are regularized using a covariant regulator of a

dipole form,

F̃ðkÞ ¼
�

Λ
2 −m2

ϕ

Λ
2 − k2

�

2

; ð30Þ

with Λ a mass parameter. In practice, we use the value

Λ ¼ 1.0ð1Þ GeV obtained from previous analyses of

meson loop contributions to PDFs and GPDs [90,91,95].

A. Splitting functions

The three-dimensional splitting functions yfiðy; ξ; tÞ for
the rainbow and bubble diagrams are shown in Fig. 3,

where for the purpose of comparison we focus on the case

of a charged πþ loop. For illustration, we fix ξ ¼ 0.1, and

display the splitting functions for y between −ξ and 1, and

for −t < 1 GeV2. As expected, the absolute values of these

splitting functions decrease with increasing −t. For the

octet baryon rainbow diagram, the splitting function yf
ðrbwÞ
πþn

has a similar peak value within the regions y > ξ and

jyj < ξ. However, the absolute value of the Pauli splitting

function g
ðrbwÞ
πþn in the jyj < ξ region is smaller than that in

the y > ξ region. Both f
ðrbwÞ
πþn and g

ðrbwÞ
πþn are continuous at

the boundary y ¼ ξ. The shapes of these are similar in the

y > ξ region; however, the Dirac splitting function’s shape

is sharper when y ranges from −ξ to ξ.

For the decuplet baryon rainbow diagram, the shape of

the splitting function y g
ðrbwÞ
πþΔ0 is similar as that of y f

ðrbwÞ
πþn ,

although their signs in the y > ξ region are opposite. The

Dirac-like splitting function for the decuplet rainbow f
ðrbwÞ
πþΔ0

decreases rapidly near the endpoints y ¼ ξ and y ¼ −ξ, and

is not continuous at the boundary y ¼ ξ. Such a disconti-

nuity arises from terms with higher powers of the meson

momentum in the loop integral for the splitting function, for

example, the ðk · pÞ2k · p0 terms in Eq. (B11a). For the

bubble diagrams in Figs. 1(b) and 1(c), the relevant splitting

functions are nonzero only when y satisfies jyj < ξ, and

yf
ðbubÞ
πþ and y g

0ðbubÞ
πþ are antisymmetric about the y ¼ 0 axis.

The absolute value of the Pauli-like g
0ðbubÞ
πþ splitting function

is approximately an order of magnitude larger than that of

the Dirac-like function f
ðbubÞ
πþ ðyÞ.

To more clearly illustrate the shapes of the splitting

functions, we show the two-dimensional projections of the

functions in Fig. 4 for −t ¼ 1 GeV2 and ξ ¼ 0.1. The

splitting function y f
ðrbwÞ
πþn is approximately antisymmetric

for −ξ < y < ξ. Two sharp humps are seen when y is close

to the �ξ points. For the splitting function g
ðrbwÞ
πþn , two

humps are also seen when −ξ < y < ξ, although the

absolute values of the maxima of the humps are smaller

than those in the ξ < y < 1 region.

For the decuplet baryon rainbow diagram, the two-

dimensional splitting function g
ðrbwÞ
πþΔ0 has a similar shape

to that of f
ðrbwÞ
πþn . The shape of f

ðrbwÞ
πþΔ0 is different from that of

the other functions when −ξ < y < ξ, with values near the

y ¼ −ξ and y ¼ ξ boundary decreasing rapidly, and the

shape is neither symmetric nor antisymmetric about the y ¼
0 axis. Such a behavior is in fact due to the effect from

specific terms, which behave as δðyÞ=y when ξ tends to

zero. The splitting functions for the bubble diagrams,

yf
ðbubÞ
πþ and y g

0ðbubÞ
πþ , are antisymmetric about the y ¼ 0

axis, so that by dividing by y the resulting functions f
ðbubÞ
πþ

and g
0ðbubÞ
πþ will be symmetric.

In Fig. 5, we show the results for the splitting functions

f
ðrbwÞ
πþn , f

ðrbwÞ
πþΔ0 , f

ðbubÞ
πþ , and g

0ðbubÞ
πþ when y is in the region

½−ξ; ξ�, for ξ values between 0.001 and 0.1. To more

conveniently compare the results with different ξ, we scale

the horizontal axis by dividing y by ξ, and the vertical axis
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by multiplying the splitting functions by ξ. The scaled

results with different ξ values are very similar and converge

as ξ becomes small, with the results for ξ < 0.001 almost

indistinguishable from those at ξ ¼ 0.001. This behavior is

reminiscent of the behavior of a δ-function, as has been

discussed in previous chiral loop calculations [77,92]. In

contrast, for the decuplet baryon splitting function one

observes convergence at small ξ after multiplying fπþΔ0 by

ξ2. Since it is antisymmetric in y, this indicates that the

splitting function will approach δðyÞ=y rather than δðyÞ in
the zero-skewness limit.

B. Pion loop contributions to quark GPDs

Performing the convolutions of the splitting functions

with the corresponding quark GPDs of the virtual pions, we

show the contributions of the chiral loop to the H and E
GPDs for u quarks in Fig. 6 as a function of x and t at a
fixed ξ ¼ 0.1. For the contributions from the couplings

to the virtual pion loops, as in Fig. 1, the results for

the d-quark GPDs can be obtained from the u-quark
distributions using isospin symmetry, fH;Egdðx; ξ; tÞ ¼
−fH;Eguð−x; ξ; tÞ. The most striking structure is seen in

the region of low x, jxj≲ 0.2. For the case of the electric

FIG. 3. Three-dimensional splitting functions yfiðy; ξ; tÞ as a function of y and t, with fixed ξ ¼ 0.1, for the octet baryon rainbow

(upper panels), decuplet baryon rainbow (middle panels), and bubble and magnetic bubble (lower panels) diagrams.
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u-quark GPD, xHu is positive in the DGLAP region, and

has two valleys in the ERBL region. For the magnetic GPD,

xEu is negative in the x < 0 region and positive when

x > 0. The distributions fall rapidly as jxj → 1, and for

increasing values of the momentum transfer squared, −t.
To more clearly illustrate the dependence of the GPDs on

the parton momentum fraction x, in Fig. 7 we plot the two-

dimensional projections of the GPDs xHu and xEu for−t ¼
0.25 GeV2 and −t ¼ 1 GeV2. Although the splitting func-

tion f
ðrbwÞ
πþΔ0 is discontinuous at y ¼ ξ, as evident from Fig. 4,

the quark GPDs remain continuous at x ¼ �ξ. The reason

is that the convolution formulas in Eqs. (18a), (18b), and

(18d) are only related to the splitting function in the y > ξ

region, and the results obtained using these should be

continuous at ξ if the input pion GPD is continuous at

x ¼ ξ, which guarantees the amplitudes for DVCS and

HEMP are finite [103]. However, there are no constraints

on the derivatives of GPDs at x ¼ ξ, and the discontinuity

of the derivative can arise from the different integration

regions in the α–β plane for the DGLAP and ERBL regions
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FIG. 4. Two-dimensional projections of the Dirac-like yfiðy; ξ; tÞ and Pauli-like ygiðy; ξ; tÞ splitting functions for the octet baryon

rainbow (top panels), decuplet baryon rainbow (middle panels), and bubble and magnetic bubble diagrams (lower panels), for ξ ¼ 0.1

and −t ¼ 1 GeV2. The dashed vertical lines in the rainbow diagram plots correspond to the point y ¼ ξ.
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when using the double distribution parametrization in

Eq. (24) [103,105]. As the contribution of D term in

Eq. (24) only exists in the ERBL region, it also leads to a

discontinuity of the first derivative of the GPD at x ¼ ξ. On

the other hand, the contribution to the quark GPD from

Eq. (18c) vanishes x ¼ ξ because of the endpoint property

of the distribution amplitude, Φq=πð1; κ; sÞ ¼ 0.

Comparing the results with different −t, the absolute

values of the GPDs at −t ¼ 0.25 GeV2 are around 4–5

times larger than those at −t ¼ 1 GeV2. For the u-quark

FIG. 5. Scaled splitting functions fiðy; ξ; tÞ as a function of y=ξ in the −ξ < y < ξ region for ξ ¼ 0.001 (red lines) and ξ ¼ 0.1 (blue

lines), for −t ¼ 1 GeV2. All the functions are scaled by a factor of ξ, except for the decuplet function f
ðrbwÞ
πþΔ0ðy; ξ; tÞ, which is scaled by a

factor ξ2.

FIG. 6. Total three-dimensional u-quark GPDs xHu and xEu from Eq. (29) as a function of x and t, for fixed ξ ¼ 0.1 and energy scale

μ ¼ 0.63 GeV. The corresponding d-quark distributions can be obtained from the u-quark GPDs using the isospin symmetery relation,

fH;Egdðx; ξ; tÞ ¼ −fH;Eguð−x; ξ; tÞ, which holds for the contributions from virtual pion loops as in Fig. 1.
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distribution, one finds that the quark GPD Hu in the

DGLAP region for x > 0 has a larger magnitude than

Hu at x < 0 (which by crossing symmetry is equivalent

to the ū distribution at x > 0). According to the above

isospin relation for the contributions from the pion cou-

pling diagrams, xHuðx > 0Þ is identical to xHdðx < 0Þ,
the latter which is equivalent to the xd̄ distribution at

x > 0. Therefore the contributions from the loop dia-

grams in Fig. 1 naturally give an enhancement of the d̄
distribution compared with the ū, reminiscent of the

empirical result for the d̄ and ū PDF asymmetry in the

collinear region [77].

Moreover, the result in the 0 < x < ξ region is positive

for −t ¼ 0.25 GeV2, but negative for −t ¼ 1 GeV2, which

can be understood from the fact that the pion GPD or GDA

includes the Dq=πðtÞ form factor in the ERBL region that

has a different t dependence compared with the pion form

factor FπðtÞ. The magnitude of the Pauli GPD Eu is larger

than that of the Dirac GPD Hu, and the quark and

antiquark distributions in the DGLAP region have oppo-

site signs. This implies that the GPD for the ū flavor has a

different sign to that of the Dirac GPD for d̄, and the

absolute value of the Pauli GPD E for d̄ is larger than that

for ū.

C. Form factors

From the calculated Hq and Eq GPDs one can compute

the Dirac, Pauli, and gravitational form factors from the

lowest two moments of the GPDs. The Dirac and Pauli

form factors can be obtained from Eqs. (6a) and (6b),

respectively. For the gravitational form factors, the pion

loop contributions to Aq, Bq, and Cq can be written as

AqðtÞ ¼
X

i

A
2ð0Þ
q=π ðtÞA

2ð0Þ
i ðtÞ; ð31aÞ

BqðtÞ ¼
X

i

A
2ð0Þ
q=π ðtÞB

2ð0Þ
i ðtÞ; ð31bÞ

CqðtÞ ¼
X

i

½A2ð0Þ
q=π ðtÞC

ð2Þ
i ðtÞ þ C

ð2Þ
q=πðtÞC0iðtÞ�; ð31cÞ

where A
2ð0Þ
q=π and C

ð2Þ
q=π are the quark gravitational form

factors in the pion, obtained from the pion GPD in Eq. (24)

through

Z

1

−1

dxxHq=πðx; ξ; tÞ ¼ A
2ð0Þ
q=π ðtÞ þ ð2ξÞ2Cð2Þ

q=πðtÞ: ð32Þ

FIG. 7. Meson loop contributions to the GPDs Hu and Eu for ξ ¼ 0.1 and −t ¼ 1 GeV2 at the energy scale μ ¼ 0.63 GeV. The

corresponding d-quark GPDs can be obtained from the relation fH;Egdðx; ξ; tÞ ¼ −fH;Eguð−x; ξ; tÞ.
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Note that the C
ð2Þ
q=π form factor is proportional to the pion

gravitational form factor Dq=πðtÞ in Eq. (26), C
ð2Þ
q=πðtÞ ¼

1

4
Dq=πðtÞ. The sum over the index i in Eq. (31) includes the

various hadronic configurations in Fig. 1, and the corre-

sponding hadronic form factors A
2ð0Þ
i , B

2ð0Þ
i , and C

ð2Þ
i are

obtained from the first moments of splitting functions,

Z

1

−ξ

dy y fiðy; ξ; tÞ ¼ A
2ð0Þ
i ðtÞ þ ð2ξÞ2Cð2Þi ðtÞ; ð33aÞ

Z

1

−ξ

dy y giðy; ξ; tÞ ¼ B
2ð0Þ
i ðtÞ − ð2ξÞ2Cð2Þi ðtÞ; ð33bÞ

with the form factor C0iðtÞ for the rainbow diagrams in

Figs. 1(a) and 1(d) obtained from

C0iðtÞ ¼
Z

1

−ξ

dy

y
fiðy; ξ; tÞ ¼ −

Z

1

−ξ

dy

y
giðy; ξ; tÞ: ð34Þ

The C0iðtÞ form factor for Figs. 1(b) and 1(c) can also be

obtained from Eq. (34) by changing the integral region to

y∈ ½−ξ; ξ�. However, since for these diagrams the functions
1

y
f
ðbubÞ
πþ and 1

y
g
0ðbubÞ
πþ are antisymmetric with respect to y ¼ 0,

the integrals in Eq. (34), and hence C0iðtÞ, vanish. (Note that
the functions yf

ðbubÞ
πþ and yg

0ðbubÞ
πþ shown in Fig. 4 are also

antisymmetric with respect to y).
The numerical results for the gravitational Aq, Bq, and

Cq form factors are shown in Fig. 8 as a function of t.
Because of isospin symmetry the results for the u flavor are

identical to those for the d flavor. Despite the absolute value
of the GPD Eq being larger than that of the GPD Hq, the

first moment of Eq largely cancels between the positive-x

and negative-x regions, leading to similar values for the Aq

and Bq form factors. In contrast, the Cq form factor is

negative and has a smaller magnitude compared with the

other two form factors.

As pointed out in the preceeding discussions, in this

analysis we only consider contributions to GPDs arising

from the meson loop diagrams in Fig. 1. Generally,

comparison with experimental measurements or other

phenomenological calculations of the total quark gravita-

tional form factors will require inclusion of contributions

from coupling to intermediate state baryons in the loops or

Kroll–Ruderman type contributions, which will be consid-

ered in future analyses. On the other hand, in a valence

quark approximation the antiquark distributions arise

predominantly from couplings to the meson loop, which

allows their contributions to form factors and sea quark

flavor asymmetries to be studied directly in terms of the

diagrams in Fig. 1 alone.

In Fig. 9 we illustrate the d̄ − ū contributions to the Dirac

F
q
1
, Pauli F

q
2
, and gravitational Aq and Bq form factors. For

the pion loop coupling diagrams in Fig. 1, these are given in

terms of the moments of the Hu and Eu GPDs at zero

skewness by

Fd̄−ū
1

ðtÞ ¼
Z

1

0

dxðHuðx; 0; tÞ þHuð−x; 0; tÞÞ; ð35aÞ

Fd̄−ū
2

ðtÞ ¼
Z

1

0

dxðEuðx; 0; tÞ þ Euð−x; 0; tÞÞ; ð35bÞ

Ad̄−ūðtÞ ¼
Z

1

0

dx xðHuðx; 0; tÞ þHuð−x; 0; tÞÞ; ð35cÞ

Bd̄−ūðtÞ ¼
Z

1

0

dx xðEuðx; 0; tÞ þ Euð−x; 0; tÞÞ; ð35dÞ

where we have used the crossing symmetry and isospin

relations discussed in Sec. IV B to relate the GPDs for the u
and d flavors. From the calculated Hu GPD, we find the

d̄ − ū contribution to the Dirac form factor at t ¼ 0 is

Fd̄−ū
1

ð0Þ ¼ 0.11ð2Þ. Note that Fd̄−ū
1

ð0Þ corresponds to the

light antiquark PDF asymmetry,

Fd̄−ū
1

ð0Þ ¼
Z

1

0

dxðd̄ðxÞ − ūðxÞÞ; ð36Þ

which has been the subject of considerable interest in the

literature [77,116–118]. Our result is consistent with

phenomenological extractions from experimental Drell–

Yan lepton-pair production data in pp and pd collisions,
R

0.35
0.015 dxðd̄ − ūÞ ¼ 0.0803ð11Þ [117], as well as from

global QCD analyses of all high-energy scattering

data [119,120]. The Pauli form factor, on the other hand,

is an order of magnitude larger than the Dirac form factor,

Fd̄−ū
2

ð0Þ ¼ 1.15ð25Þ, which is consistent with previous

Aq

Bq

Cq

0.0 0.2 0.4 0.6 0.8 1.0

–0.02

–0.01

0.00

0.01

0.02

0.03

0.04

– t (GeV2)

FIG. 8. Gravitational form factors Aq (red band), Bq (blue

band), and Cq (green band) for quark flavor q ¼ u or d as a

function of t arising from the pseudoscalar meson loop diagrams

in Fig. 1. The results for the u and d flavors for these diagrams are

identical due to isospin symmetry.
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calculations of meson loop effects in chiral effective

theory [95]. Although challenging to obtain directly from

experimental measurements, this contribution may be

accessible in future lattice QCD calculations.

For the d̄ − ū contributions to the gravitational form

factors, we find in the forward limit Ad̄−ūð0Þ ¼ 0.01þ0.003
−0.002

and Bd̄−ūð0Þ ¼ 0.035ð7Þ, which is consistent with the

previous results from Ref. [95]. Note that the Ad̄−ū form

factor represents the d̄ − ū asymmetry for the light anti-

quark momentum fractions,

Ad̄−ūð0Þ ¼
Z

1

0

dxxðd̄ðxÞ − ūðxÞÞ: ð37Þ

Our calculated result can be compared with the trun-

cated moment obtained by the SeaQuest Collaboration

from pp and pd Drell–Yan data at Fermilab [121],
R

0.45
0.13 dx xðd̄ðxÞ − ūðxÞÞ ≈ 0.00318. The numerical value

for the form factor Bd̄−ūð0Þ is about three times larger

than the value of Ad̄−ūð0Þ, and is also consistent with the

prediction in the large-Nc limit [2].

V. SUMMARY

Within the framework of nonlocal chiral effective theory,

we have calculated the one-loop contributions to the spin-

averaged GPDs of the proton at nonzero skewness ξ from

coupling to pseudoscalar meson loops with intermediate

octet and decuplet baryon states. We derived the generali-

zation of convolution formulas for nonzero skewness,

which, unlike the zero skewness case, now involve both

the DGLAP and ERBL regions. We verified that the

moments of the generalized convolution formulas for the

GPDs satisfy the correct polynominal properties.

To regularize the ultraviolet divergences in the loop

integrations for the GPDs, we introduced a relativistic

regulator derived self-consistently from the nonlocal

Lagrangian. Using constraints for this regulator obtained

from previous analyses of meson loop contributions to

PDFs and GPDs [90,91,95], in addition to phenomeno-

logical input for the pion GPD [106] and distribution

amplitude [103,113,114], we studied the detailed depend-

ence of the Hq and Eq GPDs for the u and d quarks on

the parton momentum fraction x, skewness ξ, and four-

momentum transfer squared t. At the kinematics considered

F1
d
_

u
_

0.0 0.2 0.4 0.6 0.8 1.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

– t (GeV2)

F2
d
_

– u
_

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

– t (GeV2)

A d
_

– u
_

0.0 0.2 0.4 0.6 0.8 1.0

0.002

0.004

0.006

0.008

0.010

0.012

0.014

– t (GeV2)

B d
_

– u
_

0.0 0.2 0.4 0.6 0.8 1.0

0.01

0.02

0.03

0.04

– t (GeV2)

–

FIG. 9. Meson loop contributions to the Dirac F
q
1
and Pauli F

q
2
(upper panels) and gravitational form factors Aq and Bq (lower panel)

versus −t for q ¼ d̄ − ū.
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in this analysis, we generally find that the absolute values of

the Pauli GPD Eq are significantly larger than those of the

Dirac GPD Hq, with both suppressed for increasing −t.

For the d̄ − ū flavor combination, we computed the

contribution from pion loops to the Dirac and Pauli

electromagnetic and the gravitational form factors as a

function of t. At t ¼ 0 the normalization of the Fd̄−ū
1

form

factor is equivalent to the x-integrated value of the d̄ − ū

PDF asymmetry, and for the gravitational Ad̄−ūð0Þ form

factor the normalization corresponds to the x-weighted

moment of d̄ − ū. Our results are consistent with phenom-

enological extractions of both asymmetries from exper-

imental data [117,119], and with previous zero skewness

meson loop GPD calculations [95].

An obvious extension of the present work is the

inclusion of contributions from the coupling to intermediate

state baryons, similar to the zero skewness GPD analysis in

Ref. [95]. This will allow comparison with quark as well as

antiquark GPDs, as would be needed for studies of strange

quark contributions to proton GPDs, for instance [92,93],

or gravitational form factors. Such a strategy would also

allow the calculation of chiral loop contributions to spin-

dependent GPDs, and even generalized transverse momen-

tum distributions, which will provide further insights into

the three-dimensional structure of the proton.
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APPENDIX A: PROOF OF POLYNOMIALITY

OF GPDS

Polynomiality requires that the nth moments of GPDs

can be expanded as a series in ξ,

Z

1

−1

dxxn−1Hqðx; ξ; tÞ ¼
X

n−1

i¼0;even

ð2ξÞi AnðiÞ
q ðtÞ þ ð2ξÞnCðnÞ

q ðtÞjn even; ðA1Þ

and similarly for the Eq. In analogy with the proof for the form factor in Sec. III, the contributions from Eqs. (18a), (18b),

and (18d) can be written as

Z

1

−1

dxxn−1Hqðx; ξ; tÞ ¼
Z

1

ξ

dyyn−1fðy; ξ; tÞ
Z

1

−1

dz̃ z̃n−1 Hq=πðz̃; ξ=y; tÞ

¼
Z

1

ξ

dy yn−1fðy; ξ; tÞ
�

X

n−1

i¼0;even

�

2ξ

y

�

i

A
nðiÞ
q=πðtÞ þ

�

2ξ

y

�

n

C
ðnÞ
q=πðtÞjn even

�

: ðA2Þ

The nth moments of GPDs from Eq. (18c) can be expressed as

Z

ξ

−ξ

dxxn−1Hqðx; ξ; tÞ ¼
Z

ξ

−ξ

dy ξn−1fðy; ξ; tÞ 1
π

ξ

y

Z

∞

s0

ds
Im

R

1

0
dηð2η − 1Þn−1Φq=πðη;

y
ξ
þ1

2
; sÞ

s − tþ iϵ

¼
Z

ξ

−ξ

dyξn−1fðy; ξ; tÞ
�

X

n−1

i¼0;even

2i

�

y

ξ

�

n−i−1

A
nðiÞ
q=πðtÞ þ 2n

ξ

y
C
ðnÞ
q=πðtÞjn even

�

; ðA3Þ

where we have used the property of GDAs,
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Z

1

0

dηð2η − 1Þn−1Φq=πðη; z; sÞ ¼
2n−1

ðpþ þ p0þÞn h0jq̄γ
þði∂þ
↔

Þn−1qð0ÞjπðpÞπðp0Þi

¼ 2n−1

ðp0þ þ pþÞn hπð−p
0Þjq̄γþði∂þ

↔

Þnqð0ÞjπðpÞi

¼ 2n−1

ðp0þ þ pþÞn
�

X

n−1

i¼0;even

ðpþ − p0þÞðpþ þ p0þÞi
�

pþ − p0þ

2

�

n−1−i

A
nðiÞ
q=πðsÞ

þ 2ðpþ þ p0þÞnCðnÞ
q=πðsÞjn even

�

¼
X

n−1

i¼0;even

2i

�

p0þ − pþ

p0þ þ pþ

�

n−i

A
nðiÞ
q=πðsÞ þ 2nC

ðnÞ
q=πðsÞjn even

¼
X

n−1

i¼0;even

2ið2z − 1Þn−iAnðiÞ
q=πðsÞ þ 2nC

ðnÞ
q=πðsÞjn even: ðA4Þ

The parameter z here is defined as z ¼ p0þ=ðpþ þ p0þÞ in the GDA. Combining the results in Eqs. (A2) and (A3), the nth
moments of GPDs can be written

Z

1

−1

dxxn−1Hqðx; ξ; tÞ ¼
Z

1

−ξ

dyyn−1fðy; ξ; tÞ
�

X

n−1

i¼0;even

�

2ξ

y

�

i

A
nðiÞ
q=πðtÞ þ

�

2ξ

y

�

n

C
ðnÞ
q=πðtÞjn even

�

¼
X

n−1

i¼0;even

ð2ξÞiAnðiÞ
q=πðtÞ

Z

1

−ξ

dyyn−i−1fðy; ξ; tÞ þ ð2ξÞnCðnÞ
q=πðtÞ

Z

1

−ξ

dy
fðy; ξ; tÞ

y

¼
X

n−1

i¼0;even

ð2ξÞiAnðiÞ
q=πðtÞ

�

X

n−i−1

j¼0;even

ð2ξÞjAnðjÞðtÞ þ ð2ξÞn−iCðnÞðtÞjn even
�

þ ð2ξÞnCðnÞ
q=πðtÞC0ðtÞ; ðA5Þ

where AnðjÞ, CðnÞ, C0 are the moments of splitting function, which are defined as

Z

1

−ξ

dyyn−1fðy; ξ; tÞ ¼
X

n−1

j¼0;even

ð2ξÞjAnðjÞðtÞ þ ð2ξÞnCðnÞðtÞjn even; ðA6aÞ

Z

1

−ξ

dyy−1fðy; ξ; tÞ ¼ C0ðtÞ: ðA6bÞ

Equation (A5) can be rewritten as

Z

1

−1

dxxn−1Hqðx; ξ; tÞ ¼
X

n−1

i¼0;even

ð2ξÞi
X

n−1

j¼0;even

A
nðjÞ
q=π ðtÞAnði−jÞðtÞ þ ð2ξÞn

�

X

n−1

i¼0;even

A
nðiÞ
q=πðtÞCðnÞðtÞ þ C

ðnÞ
q=πðtÞC0ðtÞ

�

: ðA7Þ

Now we obtain the correct polynomiality of GPD Hq. The polynomiality of the magnetic GPD Eq can be obtained by

replacing splitting function f by g.

APPENDIX B: SPLITTING FUNCTION INTEGRALS

In this Appendix, we present the explicit expressions for the integrals of the splitting functions appearing in Sec. II C,

along with the meson-baryon couplings. For Fig. 1(a), the splitting functions f
ðrbwÞ
ϕB and g

ðrbwÞ
ϕB can be written as
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f
ðrbwÞ
ϕB ðy; ξ; tÞ ¼

C2

Bϕ

f2

Z

d4k

ð2πÞ4
−iF

ðrbwÞ
ϕB

DBðp − kÞDϕðkþ ΔÞDϕðkÞ
F̃ðkÞF̃ðkþ ΔÞδ

�

yþ ξ −
kþ

Pþ

�

; ðB1aÞ

g
ðrbwÞ
ϕB ðy; ξ; tÞ ¼

C2

Bϕ

f2

Z

d4k

ð2πÞ4
−iG

ðrbwÞ
ϕB

DBðp − kÞDϕðkþ ΔÞDϕðkÞ
F̃ðkÞF̃ðkþ ΔÞδ

�

yþ ξ −
kþ

Pþ

�

; ðB1bÞ

where the factors in the numerator of the integrand are given by

F
ðrbwÞ
ϕB ¼ Pþy

2ð4M2ξ2 − ξ2tþ tÞ f4ðk · pÞ
2½ðξ − 1Þt − 4M2ξ2� − 4k · pk · p0½4M2ξ2 þ ð1þ ξÞ�

þ 2k · p0ð2MMB þ k2Þð4M2ξ2 þ ξtþ tÞ − 2k · p½2MMBð4M2ξ2 − 2ξ2tþ ξtþ tÞ
þ k2ððξ − 1Þt − 4M2ξ2Þ þ 8M4ξ2 − 4M2ξ2tþ 2M2ξtþ 2M2tþ ξt2 þ t2y�g ðB2aÞ

G
ðrbwÞ
ϕB ¼ 2MPþy

ðξ2 − 1Þt − 4M2ξ2
f4Mð1 − ξÞξðk · pÞ2 − 4Mξðξþ 1Þk · pk · p0

þ 2Mξðξþ 1Þk · p0ð2MMB þ k2Þ þ 2k · p½ððξþ 1ÞMBððξ − 1Þt − 2M2ξÞÞ
þ k2Mðξ − 1Þξ − 2M3ðξþ 1Þξ −Mtð−ξ2 þ ξþ yþ 1Þ�
þ k2½MBð4M2ξ2 − ξ2tþ tÞ þ 4M3ξ2 þMtð−ξ2 þ ξþ yþ 1Þ� þ 2M2tMBðξþ yÞg ðB2bÞ

with MB ≡M þMB. The coefficients C2

Bϕ in Eqs. (B1) are given from the Lagrangian density in Eq. (10),

Cpπ0 ¼
g2A
4
; ðB3aÞ

Cnπþ ¼ g2A
2
: ðB3bÞ

For the bubble diagram in Fig. 1(b), the splitting function f
ðbubÞ
ϕ ðy; tÞ is given by

f
ðbubÞ
ϕ ðy; ξ; tÞ ¼ iCϕϕ

2f2

Z

d4k

ð2πÞ4
F
ðbubÞ
ϕ

Dϕðkþ ΔÞDϕðkÞ
F̃ðkþ ΔÞF̃ðkÞδ

�

yþ ξ −
kþ

Pþ

�

; ðB4Þ

with

F
ðbubÞ
ϕ ¼ yPþ½4k · Pð4M2ξ2 þ tÞ þ 2ξtk · Δþ t2ðξþ yÞ�

4M2ξ2 − ξ2tþ t
; ðB5Þ

where the coefficient for the pion loop is given by

Cππ ¼
1

2
: ðB6Þ

Similarly, for the additional bubble diagram in Fig. 1(c), the splitting function g
0ðbubÞ
ϕ ðy; ξ; tÞ can be expressed as

g
0ðbubÞ
ϕ ðy; ξ; tÞ ¼

iC0
ϕϕ

f2

Z

d4k

ð2πÞ4
G

ðbubÞ
ϕ

Dϕðkþ ΔÞDϕðkÞ
F̃ðkþ ΔÞF̃ðkÞδ

�

yþ ξ −
kþ

Pþ

�

; ðB7Þ

with

G
ðbubÞ
ϕ ¼ 2MPþy½2k · Pðξ2 − 1Þtþ 4k · ΔM2ξþ 2M2tðξþ yÞ�

ðξ2 − 1Þt − 4M2ξ2
; ðB8Þ
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and the coefficients C0
ϕϕ is given by

C0
ϕϕ ¼ 2ðb10 þ b11Þ: ðB9Þ

For Fig 1(d), the splitting functions f
ðrbwÞ
ϕT ðy; ξ; tÞ and g

ðrbwÞ
ϕT ðy; ξ; tÞ can be written as

f
ðrbwÞ
ϕT ðy; ξ; tÞ ¼

C2

Tϕ

f2

Z

d4k

ð2πÞ4
iF

ðrbwÞ
ϕT

DTðp − kÞDϕðkþ ΔÞDϕðkÞ
F̃ðkþ ΔÞF̃ðkÞδ

�

yþ ξ −
kþ

Pþ

�

; ðB10aÞ

g
ðrbwÞ
ϕT ðy; ξ; tÞ ¼

C2

Tϕ

f2

Z

d4k

ð2πÞ4
iG

ðrbwÞ
ϕT

DTðp − kÞDϕðkþ ΔÞDϕðkÞ
F̃ðkþ ΔÞF̃ðkÞδ

�

yþ ξ −
kþ

Pþ

�

; ðB10bÞ

where the factors in the numerator of the integrand are given by

F
ðrbwÞ
ϕT ¼ −

Pþy

12M2
Tð4M2ξ2 − ξ2tþ tÞ f8ðk · pÞ

2k · p0ð4M2ξ2 þ ð1 − ξÞtÞ

þ 8ðk · p0Þ2k · pð4M2ξ2 þ ð1 − ξÞtÞ − 4k · pk · p0½24M3MTξ
2 þ 16M4ξ2 þ 4M2ðξþ 1Þt

þ 2MMTð2ξ2 þ 6ξþ 3Þt − t2ð2ξþ yþ 1Þ� þ 4ðk · pÞ2½4M3MTξ
2 þ 8M4ξ2

þ 2M2ð−2ξ2 þ 3ξþ 1ÞtþMMTð−12ξ2 þ 11ξþ 1Þt − ðξ − 1Þt2�
− 4Mðk · p0Þ2ð2M −MTÞð4M2ξ2 þ ξtþ tÞ − 2k · p½2M2tðtð2ξ2 þ 2ξþ 3y − 1Þ − 6M2

TξÞ
þ 4k2Mð4M3ξ2 þMð−2ξ2 þ ξþ 1Þt − 3MTðξ − 1ÞξtÞ þ 32M5MTξ

2

þ 4M3MTð−9ξ2 þ 2ξþ 2Þtþ 32M6ξ2 þ 8M4ð−3ξ2 þ ξþ 1Þt
þMMTtð12M2

Tðξ − 1Þξþ tð4ξ2 þ 12ξþ 11y − 5ÞÞ − t3ðξþ yÞ
þ 3t2M2

Tðξ − 1Þ� þ 2k · p0½32M5MTξ
2 þ 4M3MTðξ2 þ 2ξþ 2Þtþ 32M6ξ2

− 4k2Mð4M3ξ2 −Mð2ξ2 þ ξ − 1Þt − 3MTξðξþ 1ÞtÞ − 2M2tð6M2
Tξþ tð2ξþ yþ 1ÞÞ

þ 8M4ð−ξ2 þ ξþ 1ÞtþMMTtðtð2ξþ yþ 1Þ − 12M2
Tξðξþ 1ÞÞ þ 3M2

Tðξþ 1Þt2�
þ 4k2M½16M4MTξ

2 þ 4M2MTð1 − 4ξ2Þtþ 16M5ξ2 þ 4M3ð1 − 3ξ2Þt
þMt2ð2ξ2 þ ξþ y − 2Þ þ 3MTt

2ðξ2 þ ξþ y − 1Þ�
þ t2MTðξþ yÞð8M3 − 2Mð6M2

T þ tÞ þ 3MTtÞg; ðB11aÞ

G
ðrbwÞ
ϕT ¼ MPþy

3M2
Tð4M2ξ2 − ξ2tþ tÞ f8Mðξ − 1Þξðk · pÞ2k · p0 þ 8Mξðξþ 1Þk · pðk · p0Þ2

− 4k · pk · p0½6M2MTðξþ 2Þξþ 4M3ðξþ 1Þξ −Mtð2ξþ yþ 1Þ þMTðξ2 − 1Þt�
þ 4ðk · pÞ2½M2MTðξþ 11Þξþ 2M3ðξþ 3Þξ −Mðξ2 þ ξ − 2Þt − 3MTðξ2 − 1Þt�
− 4ðk · p0Þ2M2ξðξþ 1Þð2M −MTÞ − 2k · p½2M3ðtð−3ξ2 þ 2ξþ 3yþ 2Þ − 6M2

TξÞ
þ k2ð12M2MTξþ 4M3ðξþ 1Þξ − 2Mðξ2 − 1Þt − 3MTðξ2 − 1ÞtÞ
þM2MTðtð−9ξ2 þ 12ξþ 11yþ 4Þ − 12M2

TξÞ þ 8M4MTðξþ 1Þξþ 8M5ðξþ 1Þξ
−Mtðtð−ξ2 þ ξþ yþ 1Þ − 3M2

Tðξ − 1ÞÞ þMTðξ2 − 1Þtð3M2
T þ tÞ�

þ 2k · p0½k2ð12M2MTξ − 4M3ðξ − 1Þξþ 2Mðξ2 − 1Þtþ 3MTðξ2 − 1ÞtÞ
− 2M3ð6M2

Tξþ tðξþ 2Þξþ ytÞ þM2MTðtðξþ 2Þξþ yt − 12M2
TξÞ

þ 8M4MTðξþ 1Þξþ 8M5ðξþ 1Þξþ 3MM2
Tðξþ 1Þt − 3M3

Tðξ2 − 1Þt�
þ k2½16M4MTξ

2 þ 4M2MTtð−4ξ2 þ 3ξþ 3yþ 1Þ þ 16M5ξ2

þ 4M3tð−3ξ2 þ ξþ yþ 1Þ þ 2Mðξ2 − 1Þt2 þ 3MTðξ2 − 1Þt2�
þMtMTðξþ yÞð8M3 − 2Mð6M2

T þ tÞ þ 3MTtÞg; ðB11bÞ
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with MT ≡M þMT the average of the nucleon and decuplet baryon masses. The decuplet baryon couplings for the pion

case are give by

C2

Δ
þπ0

¼ C2

3
; ðB12aÞ

C2

Δ
0πþ

¼ C2

6
; ðB12bÞ

C2

Δ
þþπ− ¼ C2

2
: ðB12cÞ
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