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We compute the one-loop contributions to spin-averaged generalized parton distributions (GPDs) in the
proton from pseudoscalar mesons with intermediate octet and decuplet baryon states at nonzero skewness.
Our framework is based on nonlocal covariant chiral effective theory, with ultraviolet divergences
regularized by introducing a relativistic regulator derived consistently from the nonlocal Lagrangian. Using
the splitting functions calculated from the nonlocal Lagrangian, we find the nonzero skewness GPDs from
meson loops by convoluting with the phenomenological pion GPD and the generalized distribution
amplitude, and verify that these satisfy the correct polynomiality properties. We also compute the lowest
two moments of GPDs to quantify the meson loop effects on the Dirac, Pauli, and gravitational form factors

of the proton.
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I. INTRODUCTION

Generalized parton distributions (GPDs) contain unique
information about the three-dimensional structure of
hadrons, in terms of their fundamental quark and gluon
(or parton) constituents. They describe the distributions in
momentum and position space of partons carrying a specific
fraction x of the hadron’s light-front momentum and squared
four-momentum transfer #, and interpolate between collinear
parton distribution functions (PDFs) in the forward limit and
elastic form factors when integrated over x. The latter
include the Dirac and Pauli form factors, from the lowest
moments of the GPDs, and gravitational form factors from
the x-weighted GPD moments [1] (for reviews see, e.g.,
Refs. [2,3]). A further property of GPDs is that they obey
different evolution equations in different kinematic regions:
either the DGLAP (Dokshitzer—Gribov-Lipatov—Altarelli—
Parisi) region as for collinear PDFs, where both the struck
and returning partons carry positive momentum fractions of
the initial proton momentum [4—6], or the ERBL (Efremov—
Radyushkin—Brodsky-Lepage) region, which can be inter-
preted as describing a quark-antiquark pair emerging from
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the proton, as appropriate for distribution amplitudes
(DAs) [7-9].

On the experimental side, data from processes such as
deeply virtual Compton scattering (DVCS) [10] and hard
exclusive meson production (HEMP) [11-13], including
fromH1 [14—-16] and ZEUS [17,18] collaborations at HERA,
the HERMES fixed target experiment [19-21], COMPASS
Collaboration at CERN [22,23], and from CLAS [24-29]
and Hall A [30,31] collaborations at Jefferson Lab, have been
used to provide indirect information on GPDs through the
Compton form factors. The latter are given as convolutions of
GPDs with hard scattering kernels derived within QCD
factorization [13,32]. The extraction of GPDs and their
moments has also been a motivation for planned experi-
mental programs at future facilities such as the Electron-Ion
Collider [33,34].

The extraction of GPDs directly from experimental data is
of course the cornerstone of the quest to determine the three-
dimensional structure of the nucleon. Pioneering studies
have already been made by several groups worldwide on
this effort [35-39], although direct, model-independent
extractions remain a formidable challenge. Among some
early studies, Diehl er al. [35] used a simple empirical
parametrization of the x and ¢ dependence of GPDs at zero
skewness, with forward collinear PDFs as input. Kumericki
and Miiller [36] studied DVCS at small values of
the Bjorken-x variable, using conformal integral GPD
moments, performing a first model-dependent extraction
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of the unpolarized GPD H from HERA and Jefferson Lab
DVCS data. Goldstein et al. [37] carried out a global analysis
of DVCS observables, together with nucleon elastic form
factors and deep-inelastic scattering measurements, using a
flexible parametrization of GPDs inspired by a hybrid model
of the nucleon as a quark-diquark system with Regge
behavior. Most recently, Guo et al. [38,39] employed a
program to parametrize GPDs through universal moment
parametrization (GUMP), motivated by the complex con-
formal spin partial wave expansion method of Miiller and
Schifer [40], to perform a global analysis of GPDs from
DVCS data, constrained by input on PDFs and elastic form
factors, as well as recent lattice QCD calculations [41,42].
Mamo and Zahed proposed a string-based parametrization
using the Mellin—Barnes integral representations [43],
which allows construction of the quark and gluon GPDs
at any skewness.

Notwithstanding these important developments, in a
seminal paper Bertone er al. [44] recently pointed out,
within a next-to-leading order QCD analysis, that a critical
limitation of processes such as DVCS is their inability to
uniquely determine the x dependence of the GPDs due to
the presence of so-called “shadow GPDs.” The shadow
GPDs are a set of solutions to the inverse problem of
extracting GPDs from DVCS data, which renders the
extracted GPDs not unique. Moffat er al. [45] further
investigated the extent to which QCD evolution can provide
constraints on the shadow GPDs, observing that given
empirical data over a sufficiently wide range of skewness &
and scale Q?, the Q? evolution may in principle constrain
the shadow GPDs, but over a rather limited range of x
and &.

More recently, Qiu and Yu [46,47] explored a novel new
set of exclusive processes, including single diffractive hard
exclusive photoproduction, as a means of more directly
constraining the x dependence of GPDs. Such processes can
be factorized into process-independent GPDs and perturba-
tively calculable, infrared safe hard coefficients [46]. One can
extract GPDs from polarized photoproduction cross sections,
as well as asymmetries constructed from photon polarization
and hadron spin, which could in future be measured, for
example, at Jefferson Lab Hall D. Other related processes,
such as exclusive production of high transverse momentum
photons in zN scattering, can be factorized into GPDs and
pion DAs convoluted with short distance hard kernels [47], if
the photons’ transverse momentum g is > Agcp, with
corrections suppressed by powers of 1/g. The x depdend-
ence of GPDs can be also accessed through double
DVCS [48,49] by choosing different invariant masses of
the produced lepton pair. In addition, the photoproduction of
alarge mass diphoton yN — yy N has been proposed to probe
C-odd GPDs [50,51].

Along with the empirical determinations of GPDs from
data, developments in lattice QCD have allowed access to
nucleon structures from first principles calculations,

providing complementary information that is often difficult
to obtain from experiments [41,52-54]. In particular,
considerable effort has been devoted to directly computing
the x dependence of distributions, using either the quasi-
parton distribution [55], pseudodistribution [56], or lattice
good cross sections [57,58] approaches.

While the lattice continues to make progress with
improved control over systematic uncertainties in the
simulations, it is also useful to explore possible insights
from model calculations, many of which have been
performed over the past 25 years [2,59-73]. Even though
their direct connection to QCD is not always transparent,
they can nevertheless provide glimpses into some of the
qualitative features and characteristics of GPDs.

In between the phenomenological models and lattice QCD
simulations, constraints from chiral effective field theory
(EFT) have been used to make predictions for various sea
quark flavor asymmetries in the nucleon [74—78]. These are
based on the observation that the long-range structure of the
nucleon has contributions from the pseudoscalar meson
cloud, associated with the model-independent leading non-
analytic behavior of observables expanded in a series of m,,.
Operationally, the sea quark distributions can be obtained
through the convolution of a probability of the nucleon to
split into a virtual meson and recoil baryon (“splitting
function”), with the valence quark distribution of the meson.
The splitting function can be calculated from EFT, in which
its moments are expanded as a series in the pseudoscalar
meson mass O(mg,/A,) or small external momentum
O(q/A,), where A, ~ 1 GeV is the scale associated with
the chiral EFT. Traditional EFT calculations based on
dimensional regularization have found it challenging to
describe lattice results in the large-Q? region, or with pion
mass 400 MeV [79,80], since the short distance effect arising
from the loop integral leads to a poor convergence of the
chiral expansion [80,81]. To improve the convergence, finite
range regularization has been proposed and applied for
the extrapolation of various quantities calculated by lattice
QCD, including the vector meson mass, magnetic moments,
magnetic and strange form factors, charge radii, and
moments of PDFs and GPDs, from large pion masses to
the physical mass [79,80,82—88]. Here the three-dimensional
regulator is included in the loop integral and can be regarded
as partially resumming the contribution from the higher order
interaction. In a similar vein, a nonlocal chiral effective
Lagrangian has also been proposed [89-91], in which
the covariant regulator is automatically generated from the
Lagrangian. One can obtain reasonable descriptions of the
nucleon electromagnetic and strange form factors at large Q>
using this method, which has also been applied to calculate
the strange-antistrange PDF asymmetry s — 5 [92,93], the sea
quark transverse momentum dependent (TMD) Sivers
function [94], and zero-skewness GPDs [95]. More details
on the nonlocal chiral effective theory can be found in
Ref. [96]. Recently, Copeland and Mehen [97] also discussed
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a framework for matching TMD PDFs onto chiral effective
theory operators in terms of TMD hadronic distribution
functions calculated in chiral perturbation theory.

In this paper, we extend our previous analysis [95] of
zero-skewness GPDs in the proton within the nonlocal
chiral effective theory to the nonzero skewness case. In
Sec. II we present the basic theoretical framework used in
our analysis, including the definition of unpolarized GPDs
(Sec. IT A) and the nonlocal meson-baryon interaction that
underlies our calculation (Sec. IIB). The one-loop
nucleon splitting into meson plus octet and decuplet
baryon splitting functions are given in Sec. IIC from
the set of rainbow and bubble diagrams that contribute to
the antiquark GPDs in the nucleon. The convolution
formalism is derived in Sec. III, where we outline the
differences with the zero-skewness GPD case. In particu-
lar, we separate the contribution to DGLAP and ERBL
region, and prove that such a convolution formula can
generate the skewness-independent form factors after
integrating over x. Numerical results for the two and
three dimensions splitting functions and light antiquark
GPDs using the convolution formulas are presented in
Sec. IV. Finally, Sec. V summarizes our results and
anticipates future extensions of this analysis. In
Appendix A, we also demonstrate the GPDs’ nth moments
obtained with convolution formula satisfy the general
polynomial property. In Appendix B, we summarize the
explicit expressions for the splitting functions and the
coupling constants presented in this study.

II. THEORETICAL FRAMEWORK

In this section we summarize the theoretical framework
on which our analysis is based. We begin with a summary
of the definitions of the spin-averaged GPDs that are the
focus of this analysis, followed by a discussion of the
contributions to the GPDs from pseudoscalar meson loops,
formulated within chiral effective theory. We summarize
the pertinent aspects of the chiral Lagrangian describing the
meson-nucleon interaction, and present results for the
nucleon to baryon + meson splitting functions at nonzero
skewness.

A. Unpolarized GPDs

The spin-averaged GPDs for a quark of flavor ¢ in a
nucleon are defined in terms of the Fourier transform of the
nonforward matrix elements of quark bilocal field oper-
ators, taken between nucleon states with initial momentum
p and final momentum p’ [10],

~ d4 —ixA [ 7 1 1
/_002_7[6 <P |l//q (517’1)’4/1//11( E’In)|p>

OB g Oup). (1)

= () et (x. & 1) +

where the light-cone vector n, projects the “plus™ compo-
nent of momentum, 4 is a dimensionless parameter, and M
is the nucleon mass. Invariance under Lorentz transforma-
tions requires the Dirac (H,) and Pauli (E,) GPDs to be
functions of the light-cone momentum fraction x of the
nucleon carried by the initial quark with momentum k,,

k=
=, @

X

and the skewness parameter ¢,

where

1
P=_(p+p), A=p —p (4)

2
are the average and difference of the initial and final
nucleon momenta, respectively. We define the light-cone
components of a four-vector k* by k* = % (k° 4+ k?), and
for convenience choose a symmetric frame of reference for
the initial and final nucleon momenta,

At A~ A,
" — R - ——
p (P 3 P ) ), (5a)
A+ A A
P = <P++—2 P ,—;)- (5b)

In addition to being functions of x and &, the GPDs also
depend on the hadronic four-momentum transfer squared,
t = A?, as well as on the scale Q?, which is typically taken to
be the virtuality of the photon which couples to the hard
scattering. The momentum transfer should satisfy the kin-
ematic constraint —A? > 4£2M?/(1 — &%) in order to guar-
antee positive transferred momentum squared, Ai > 0.

Integrating the GPDs H, and E, over the quark light-
cone momentum fraction x, the Dirac and Pauli form
factors for a quark flavor ¢ can be expressed as

/_ 1 deH (x.£.1) = FI(0). (6a)

/_ i WE, (x.&1) = F(1). (6b)

Note that the £ dependence vanishes in the integrals of the
GPDs over x. Furthermore, the gravitational form factors
A4, B9, and C? can be obtained from the first moments of
the H, and E, GPDs as
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/_ i dxH, (x, € 1) = A9(1) + (26°C9(1),  (Ta)

/_ i exE, (x. &, 1) = B(r) — (2£)2C1(1),  (7b)

where now explicit dependence on the skewness & now
appears on the right-hand side.

B. Chiral loop contributions to GPDs

In our analysis we consider the contributions to the sea
quark and antiquark GPDs in the proton arising from the
virtual pseudoscalar meson cloud dressing of the bare
baryon, as a first step towards a complete calculation to
one-loop order. Typically, in calculations of meson loop
contributions to sea quark and antiquark asymmetries,
assuming that the undressed proton has a flavor symmetric
sea [77], the meson coupling diagrams in Fig. 1 are the
dominant source of differences between sea quark and
antiquark PDFs and GPDs.

In our previous analysis [95] we considered the non-
forward nucleon to virtual meson and recoil baryon
splitting functions at zero skewness. Generalizing to non-
zero &, the splitting functions can be written as

+v

a(p') [ﬁf(y, &1) + T

oty ulr)
_ / d4kf+(k)5<y +e- 1’2—1) =T, (8)

where f(y, &, t) and g(y, &, 1) are the corresponding Dirac-
and Pauli-like splitting functions, and y is the light-front
momentum fraction of the nucleon carried by the inter-
mediate state hadron. The operator [*(k) is related to the
matrix elements of the hadronic current J#,

ic" A,
M

(N(P)I*IN(p)) = u(p') [Y"F’lv(t) + FY(2) |u(p)

= / d*kl(k), 9)

where J# is given in terms of its individual quark flavor
contributions as in Ref. [95]. One can also verify that the
Dirac and Pauli form factors can be obtained by integrating
the splitting functions over y.

To compute the hadronic splitting functions f and g, we
use the standard chiral SU(2), x SU(2); effective
Lagrangian, the details of which can be found, for example,
in Refs. [98-100]. In the one-loop approximation used in

- ®- PN
/7 AN
/ \ ( )
I I N
(a) (b)
AN - ®-~
{ ) // \\
\D 1 |

© (d)

FIG. 1. One-loop diagrams for the proton to pseudoscalar
meson (dashed lines) and octet baryon (solid lines) or decuplet
baryon (double solid lines) splitting functions. The crossed
circles represent the interaction with the external vector field
from the minimal substitution, and the gray square denotes the
last interaction term in Eq. (10).

our analysis, the chiral Lagrangian can be expanded to
reveal the interaction terms, given by

gn - ]
Lin = =~ (py'yspd,a’ + V2py'ysnd,at)

2fs
+ \/%f” (—2p@* A 9,7° — V2O AY9, 7+
+V6pO* A TI,17)
+ 4—}72[ prip(ato,n~ —a0,nt)
42i(b1(};_ o) pot’pd,nto,n~ + Hee., (10)

where H.c. refers to the Hermitian conjugate, and f, =
92.4 MeV is the pion decay constant. The axial vector
coupling constant for the octet baryon is set to the standard
value g4 = 1.26, and the octet-decuplet transition coupling
C is chosen to be — g g4 from SU(6) spin-flavor symmetry.
The octet-decuplet transition operator " is defined
as [101]

O = gV — yhy”. (11)

The coefficients b, and b,; in Eq. (10) for the nucleon-
pion contact interaction have previously been determined to
be by = 1.24 GeV~', and b;; = 0.46 GeV~! [102]. In our
previous work [95] we discussed in detail the construction
of the nonlocal chiral Lagrangian; here we simply present

the final nonlocal interaction £""°

. we used in this
calculation,
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£3m00) = p(o) (24 prrsp(o) - -0t () [ daF(@o, o+ 0

ffﬂ

) (}Tf}yﬂm( 0 - O Al >) [ #ar@o i+ a)

Vo6fs

+- S pmemart(x) / d*aF(a)d,n~(x + a) + He.

V2f,

+#1’J(x)y"p(X)/d4a/d4bF<“)F(b)[

2l(blo +byy)

— 7 p(x)o* p(x) /d4 /d4bF

The function F(a) here describes the strength of the
correlation between the baryon and the meson, and will
become the regulator function in the momentum space. In
the limit when F(a) — &(a), one can show that Eq. (12)
reduces to the local version of the Lagrangian given in
Eq. (10).

C. Nonzero skewness splitting functions

In this work we will be particularly concerned with the
contributions to proton GPDs from the pseudoscalar meson

|
d*k
<”)f2/< 27)*

N1
—~
AS
—

!
Oha
<
—
S
~—
I
N

i i(p—k+Mp)

7 (k+ K)ysF(k+ A)

“D (k) Dy(p—k)

— i(p )[ +FU (£ 1)

where the propagator factors D,(k) and Dg(p) are de-
fined as
D,/,(k):kz—mé—l—ie, = p?— M3 + e,

Dg(p) (14)

and my and My represent the pseudoscalar meson and

baryon masses, respectively. The function F is a regulator
function, obtained by performing a Fourier transformation
on the factor F(a) in Eq. (12), and is used to regularize the

|
L Cyy [k
”2f2/< 27)°

= a(p)r ulp)f™ (v, &.0).

a(p' )T yu(p) =

i(2k + K)F(k + A)F(k)

at(x +a)d,n~(x + b) — d,n* (x + a)n™ (x + b)]

b)o,x* (x4 a)o,n~ (x + b). (12)

coupling diagrams in Fig. 1, as a first step towards a
complete one-loop calculation of the GPDs at nonzero
skewness. Contributions to GPDs from additional cou-
plings to the octet and decuplet baryons, including baryon
rainbow and Kroll-Ruderman diagrams [95], will be
investigated in future work.

The contribution to the nonzero skewness splitting
functions from the rainbow diagram in Fig. 1(a) with the
pseudoscalar meson and octet baryon is given by

1
S —) S
D¢(k+A)( )

PSKE()5 <y+ é—ﬁ)u@)

iI6YA,  (bw
4 (. &, r)} u(p).

|
ultraviolet divergence in the loop integration. For simplicity
we choose this to be a function of the meson momentum

only (see Sec. IV below) The explicit expressions for the

splitting functions f{(/,rz and gggw)
are given in Appendix B.

The bubble diagrams are illustrated in Figs. 1(b)
and I(c). For the regular bubble diagram in Fig. 1(b),

the corresponding splitting function is given by

and the couplings C%,,

(2kT + A™) 6<y+§—£—i>u(p),

i i
D,(k+ A) D, (k)

(15)

The additional bubble diagram in Fig. 1(c) is derived from the last interaction term in Eq. (10), and its contribution to the

matrix element can be written as
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C 4
i(p")T o u(p) = —ﬁ(p’)ﬂ/ o

2] @)
= a(p')rtu(p) gy (y.£.1).

following the convention of Ref. [95].

o Ak, F(k + A)E(k) m

@+ &) 5 (v + 6= 5 o)

(16)

Finally, for the decuplet baryon rainbow diagram in Fig. 1(d), the contribution to I'" is given by a form similar to that for

the octet baryon diagram in Fig. 1(a),

d*k
(27)*

C2
) Mlyutr) = =) =2 |
y i i
D, (k) p—k— My

where My is the mass of baryon decuplet. Again, the
expressions for the integrals of the splitting functions f {()r?m

and gf;?W), along with the coefficients C%(p, as well as the
corresponding bubble distributions f((/)bub> and g:/Ebub), are

given in Appendix B.

III. GPDS FROM PSEUDOSCALAR
MESON LOOPS

The recent analysis in Ref. [95] derived formulas for
quark and antiquark GPDs at zero skewness in terms of
convolutions of the nucleon to pseudoscalar meson plus
baryon splitting functions, and GPDs associated with the
mesons and baryons in the intermediate state. In this
section, we discuss the extension of this formalism to
the case of nonzero skewness. This exercise requires paying
careful attention to the different regions of parton momen-
tum fraction x, meson momentum fraction y, and skewness
parameter &.

(k+ A),0F(k+ A)

ic" A, (rbw)

a(p) [wff,f?”” (0.60) +

l
————(2kT + A"
D,(k+A) (2k" + A7)

Saﬁ(p - k)®ﬁpk/lﬁ(k)5<y +&- E) u(p)

Pt

4y, . r)]u@), (17)

2M

For the rainbow diagrams in Figs. 1(a) and 1(d), the
relevant splitting functions are nonzero when y is in the
region —& <y <1, for positive £ values. The splitting
function in this region can be convoluted with the pion
GPD to obtain the quark GPD in the nucleon. Figure 2
illustrates the decomposition of the convolution formula for
the rainbow diagram in Fig. 1(a) into different subprocesses.
The splitting functions for Figs. 2(a), 2(b), and 2(d) are all
located in the y > £ region, while the quark GPD in the pion
belongs to the quark DGLAP, ERBL, and antiquark DGLAP
regions, respectively. After convoluting with the hadronic
splitting function, these contribute to the quark GPD of the
proton in the quark DGLAP, ERBL, and antiquark DGLAP
regions, respectively. For the subprocess in Fig. 2(c) the
splitting function is located at y€[—¢,¢], and can be
considered as the meson-meson pair annihilation process,
analogous to the DA-like dynamics at the quark level.

By combining these various processes, the contribution to
the skewness nonzero GPDs from the diagram in Fig. 1(a)
can be expressed in the convolution form as

FIG. 2. Representation of the convolution formula in Egs. (18a), (18b), (18c), and (18d), respectively, with the {dashed, thick solid,
thin solid} lines representing the {pseudoscalar meson, proton, quark}. The processes in diagrams (a) and (d) represent the DGLAP
region for the quark and antiquark, respectively, while the processes in (b) and (c) contribute to the ERBL region.
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H{™ (x,6.1) = lc;—yf%w)(y@t)Hq/as(Jy‘c’g’t)’ f<x<] s
HY™ (x.6.0) = %f%m(y,é,t)Hq/(/)(gé”)’ br<g<y) (18b)
HM e = [*2 e, [O“aslmq’m’(%il_ﬁ’i“+§)’s), bi<g (89
HE™ (x ét)—/ T ,é,t>Hq/¢(§§,r), f<—x<y<l] (18d)

where H,,, and @/, represent the valence GPD and generalized distribution amplitude (GDA), respectively, in the
intermediate pseudoscalar meson. These can be expressed, respectively, as [103]

e dA
Hq/¢<x7§7 t) = [ E

®yon.20) = [~ S0l an i (~ 110 ) 60

where z = p*/(p* + p'") and fgzw) is the rainbow
splitting function defined in Eq. (13). The corresponding
convolution formula for the quark magnetic GPD

E,(x,&,t) can be obtained by replacing f((/,rgw) (v, &, 1) with

the Pauli splitting function 94;3 (y &, 1). Similarly, the
contribution from the pseudoscalar meson-decuplet dia-
gram in Fig. 1(d) can be obtained by replacing the octet

splitting functions {f, g} (W) (1, €, 1) with the correspond-

ing decuplet functions {f, g} M) (3, €, 7).

The splitting functions appearing in Eqgs. (18a), (18b),
and (18d) are located in the region ¢ < y, and represent the
contribution to the quark GPD in the DGLAP region, the
quark GPD in the ERBL region, and the antiquark GPD in

bub ( 5 [)

where the splitting function for the bubble diagram, f ; (bub) ,

is given in Eq. (15). The analogous expression for the
magnetic GPD E, (bub) ;
the bubble splitting function f P

function ngbUb) introduced in Eq. (16).

is obtained from Eq. (20) by replacing
by the corresponding

a2 e,m) nyr, (— %ﬂn> ().

£dy _(bub) 1 /""
-~ R r)— d
2yf¢ 0. ¢ >n' . §

(19a)

! (19b)

I
the DGLAP region, respectively. The convolution in
Eq. (18c) also contributes to the GPD in the ERBL region
from the splitting function at y < |£], with the splitting
function convoluted with the GDA of the meson, defined in
the timelike region. The results in the spacelike region can
be obtained by analytically continuing the intergral over s
in Eq. (18c), where sy ~ 2my, is the threshold for the meson
pair production. The total contribution of the rainbow
diagrams in Figs. 1(a) and 1(d) to the GPDs are then
obtained by summing the four subprocesses in Fig. 2.
For the bubble diagrams in Figs. 1(b) and 1(c), the splitting
function is nonzero only when the meson momentum
fraction y is in the range y € [—¢,¢], so that these only
contribute to GPDs in the ERBL region. Their contributions
to the quark electric GPD in the proton can be written as

@3 (149).3(1+3).9)

20
s—t+ie (20)

Integrating the GPDs over x from —1 to 1, we can write

the lowest moment of H'™" in terms of the pseudoscalar

meson elastic form factor. Adding the contributions from
Egs. (18a), (18b), and (18d), integrated over the intervals
[E,1], [=&, &, and [—1, —£], respectively, we have

1 ; 1 —&/y &y
/ dvfys” (v 1) U dZHq/tﬁ(Z’é’[) +/ dZHq/¢<z,§,t> +/ dqu/¢<z,§,t>]
3 &y y -1 y —&/y y

1
- /g Ay £ (v, &, 1) F (1),
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where we have used the relation between the lowest moment of the quark GPD in the pseudoscalar meson and the meson
form factor. For the ERBL region in Eq. (18c), the contribution to the integral of the GPD can be written as

4 rbw ¢ bw 1d 0o Im® 1 142 71
/deHSIb )(x7§7 t) :/ dyf;g )(y’é:’ t)é/ _Z/ dS q/¢(2( ) 2

/df;EW( 1) 5/

row A ImF{ (s)
/ dy /i (v.&, t)—/ ds —
—£ T Js,

5 Trow
- / G0, DF )

where we have used the relation fol dn<I>q/¢(11,K, §) =
(2k — 1)F4(s). Combining Egs. (21) and (22), one then
obtains the lowest moment of the GPD,

/ dxH rbw

which corresponds to the Dirac form factor according to
Egs. (8) and (9).

In the numerical calculations in this analysis, we con-
sider specifically the case of the pion, ¢ = z. For the pion
GPDs we use the Radyushkin’s double distribution para-
metrization from Refs. [104,105], which was also utilized
by Amrath et al. [106],

1
£r) = / L0800, (23)

Hq/,,(x f l
]
/ a / T b (x— = Ea)y (B a)H (5.0, 1)
1+
é W( r)e<§—|x|>, (24)

where the function £, is defined by

rb+2) [(1-1p)?-a]”

hy(B.a) = 22612 (b 1) (1 —|p|)%o+!

(25)

We take the parameter b =2, and the GPD in the
zero skewness case is defined according to the ansatz,
H,/,($.0.1) = H,/,($.0,0)F,(t). The second term in
Eq. (24) represents the contribution to the D term of the
gravitational form factor of the pion, which is related to the
pressure distribution of partons in the hadron. To obtain the
correct first moment, this term must be an odd function of
x, and in the present analysis we use the simple form,

Dyn(z. 1) = lz;jz(l = 22)Dy/4(1), (26)

s —t+ie

Im [/ dn®,,, ;1,—(1 +%),s)
s—t+ie

s—1+1¢e

(22)

|

where D,/,(t) is the gravitational form factor of the
pion, for which we choose a monopole form, D, .(1) =
D,/,(0)/(1 — t/A2), with normalization D, (0) =—0.157
and cutoff parameter A, = 1.44 GeV from the recent
lattice QCD calculation by Hackett et al. [107].

In the forward limit the quark GPD in the pion can be
related to the quark PDF, H,/,(x,0,0) = g,(x) for x > 0,
and H,/,(x,0,0) = —g,(—x) for x < 0 by crossing sym-
metry. Since we only consider the lowest Fock state of
the pion, composed of a valence quark and antiquark,
we set ¢, (x) = ¢%(x), the valence quark PDF in the pion,
and g,(x) =0 for the sea quarks in the pion. Recent
analyses of pion PDFs have been performed by several
groups [108-111]; for simplicity we use the older para-
metrization from Ref. [112], which is given at the scale
u=0.63 GeV.

For the contribution to the pion GPD from the ERBL
region, we need in addition information about the pion
GDA, @, [Eq. (18¢)]. For this we also use the double
parametrization of the form [103,113,114]

®,,(n.2.5) =2(2z-1) / dﬂ/:ﬁll das((2n—1)
—(2z=1)—a))hy(B,a)H (B, 0, s)
+2D,/,(2n—1,5). (27)

Such a parametrization can be shown to satisfy the
polynomial property in Eq. (A4).

As discussed above, in this calculation we only consider
contributions to the GPDs from direct couplings to the
virtual pion loop, as in Fig. 1. Using quark flavor
symmetry, the pion GPDs and pion GDAs for the different
possible charge states can be related according to

Hu/”+ = Ha/ﬂ+ = Hd/ﬂ’ = Hﬁ/”— =2H (288.)

q/7°

Dypt = B = Py = D/ = 20 (28b)

q/7°
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respectively, where g = u, it, d, or d for the quark flavors in
the neutral 7°. Combining the contributions from the
different diagrams in Fig. 1, including rainbow and bubble,
and the different isospin channels, the u-quark GPD in the
proton can be written as
:Hrbwnn( éft)—f—H(erﬂA( fl‘)

+ H(rbw 70 p( 3 l) + H(rbw 7 A+( £ t)

_ H(rbw)rr ( L&, l‘) H rbw)ﬂ AT (_x £ l‘)

(29)

H,(x,¢,1)

where we have explicitly written out the specific pion-
baryon charge contributions, and similarly for the u-quark
magnetic GPD E,. The results of d-quark GPDs can be
obtained using the isospin symmetry {H,E},(x, &, 1) =
—{H,E},(=x,&,1), since we only consider the pion loop
contribution in this work. Note that Eq. (29) includes
contributions from the quark DGLAP, ERBL, and anti-
quark DGLAP regions. As mentioned above, contributions
from the baryon coupling rainbow diagrams, as well as
Kroll-Ruderman diagrams [95], will be investigated in
future work [115].

IV. PHENOMENOLOGY OF MESON LOOP
CONTRIBUTIONS TO GPDS

In this section we will present the phenomenological
results for the generalized splitting functions derived in
the preceeding sections, along with the meson loop con-
tributions to the light quark GPDs obtained using the
convolution formula in Eq. (18). We also apply the
formalism to calculation of the Dirac, Pauli, and gravita-
tional form factors, obtained from the lowest two moments
of the GPDs. In the numerical calculations the loop
integrals are regularized using a covariant regulator of a

dipole form,
- A2 — m; 2
F(k) = (/\z——kz) ) (30)

with A a mass parameter. In practice, we use the value
A =1.0(1) GeV obtained from previous analyses of
meson loop contributions to PDFs and GPDs [90,91,95].

A. Splitting functions

The three-dimensional splitting functions yf;(y, &, t) for
the rainbow and bubble diagrams are shown in Fig. 3,
where for the purpose of comparison we focus on the case
of a charged z* loop. For illustration, we fix &£ = 0.1, and
display the splitting functions for y between —£ and 1, and
for —t < 1 GeV2. As expected, the absolute values of these

splitting functions decrease with increasing —¢. For the

octet baryon rainbow diagram, the splitting function y f](:f;f)
has a similar peak value within the regions y > £ and

ly| < £ However, the absolute value of the Pauli splitting

(tbw)

function g .~ in the ly| < 5 region is smaller than that in

the y > £ region. Both fﬂm and g,m‘:' are continuous at
the boundary y = £ The shapes of these are similar in the
y > & region; however, the Dirac splitting function’s shape
is sharper when y ranges from —¢ to &.

For the decuplet baryon rainbow diagram, the shape of
the splitting function y g(+zo is similar as that of y f +n>,
although their signs in the y > £ region are opposite. The

Dirac-like splitting function for the decuplet rainbow f IEZU
decreases rapidly near the endpoints y = £and y = —¢, and

is not continuous at the boundary y = & Such a disconti-
nuity arises from terms with higher powers of the meson
momentum in the loop integral for the splitting function, for
example, the (k- p)*k- p’ terms in Eq. (Blla). For the
bubble diagrams in Figs. 1(b) and 1(c), the relevant splitting
functions are nonzero only when y satisfies |y| < &, and

y f (bu0) and y g;(fub) are antisymmetric about the y = 0 axis.
/(bub)

The absolute value of the Pauli-like g .~ splitting function
is approximately an order of magnitude larger than that of

the Dirac-like function ffﬁum (v).
To more clearly illustrate the shapes of the splitting

functions, we show the two-dimensional projections of the
functions in Fig. 4 for —t =1 GeV? and & = 0.1. The

splitting function y ff:?:') is approximately antisymmetric

for —¢ < y < & Two sharp humps are seen when y is close

to the +& points. For the splitting function girf:/), two

humps are also seen when —¢ <y <&, although the
absolute values of the maxima of the humps are smaller
than those in the £ < y < 1 region.

For the decuplet baryon rainbow diagram, the two-
dimensional splitting function g(+ Ag has a similar shape

to that of f ™) The shape of f TZO is different from that of

the other functlons when —¢ < y < ¢, with values near the
y = —¢ and y = £ boundary decreasing rapidly, and the
shape is neither symmetric nor antisymmetric about the y =
0 axis. Such a behavior is in fact due to the effect from
specific terms, which behave as &(y)/y when & tends to

zero. The splitting functions for the bubble diagrams,

v and y g/

axis, so that by dividing by y the resulting functions fSTb)

and g;flfub) will be symmetric.

In Fig. 5, we show the results for the splitting functions
fi(:f:’), ff;fzg, ffﬁum, and g;(fub) when y is in the region
[—¢,¢], for & values between 0.001 and 0.1. To more
conveniently compare the results with different £, we scale

the horizontal axis by dividing y by & and the vertical axis

, are antisymmetric about the y =0
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FIG. 3. Three-dimensional splitting functions yf;(y, &, t) as a function of y and 7, with fixed & = 0.1, for the octet baryon rainbow
(upper panels), decuplet baryon rainbow (middle panels), and bubble and magnetic bubble (lower panels) diagrams.

by multiplying the splitting functions by & The scaled
results with different £ values are very similar and converge
as & becomes small, with the results for £ < 0.001 almost
indistinguishable from those at £ = 0.001. This behavior is
reminiscent of the behavior of a é-function, as has been
discussed in previous chiral loop calculations [77,92]. In
contrast, for the decuplet baryon splitting function one
observes convergence at small & after multiplying f,+ 0 by
&2, Since it is antisymmetric in y, this indicates that the
splitting function will approach §(y)/y rather than &(y) in
the zero-skewness limit.

B. Pion loop contributions to quark GPDs

Performing the convolutions of the splitting functions
with the corresponding quark GPDs of the virtual pions, we
show the contributions of the chiral loop to the H and E
GPDs for u quarks in Fig. 6 as a function of x and ¢ at a
fixed £ = 0.1. For the contributions from the couplings
to the virtual pion loops, as in Fig. 1, the results for
the d-quark GPDs can be obtained from the wu-quark
distributions using isospin symmetry, {H,E},(x, &, 1) =
—{H,E},(—x,&,t). The most striking structure is seen in
the region of low x, |x| < 0.2. For the case of the electric
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FIG. 4. Two-dimensional projections of the Dirac-like yf;(y, &, t) and Pauli-like yg,(y, &, £) splitting functions for the octet baryon
rainbow (top panels), decuplet baryon rainbow (middle panels), and bubble and magnetic bubble diagrams (lower panels), for £ = 0.1
and —¢ = 1 GeV?. The dashed vertical lines in the rainbow diagram plots correspond to the point y = £.

u-quark GPD, xH, is positive in the DGLAP region, and
has two valleys in the ERBL region. For the magnetic GPD,
xE, is negative in the x < 0 region and positive when
x > 0. The distributions fall rapidly as |x| — 1, and for
increasing values of the momentum transfer squared, —¢.

To more clearly illustrate the dependence of the GPDs on
the parton momentum fraction x, in Fig. 7 we plot the two-
dimensional projections of the GPDs xH, and xE,, for —t =
0.25 GeV? and —t = 1 GeV?. Although the splitting func-

tion ff:fzg is discontinuous at y = £, as evident from Fig. 4,

the quark GPDs remain continuous at x = +¢£. The reason
is that the convolution formulas in Egs. (18a), (18b), and
(18d) are only related to the splitting function in the y > &
region, and the results obtained using these should be
continuous at ¢ if the input pion GPD is continuous at
x = &, which guarantees the amplitudes for DVCS and
HEMP are finite [103]. However, there are no constraints
on the derivatives of GPDs at x = £, and the discontinuity
of the derivative can arise from the different integration
regions in the a—f plane for the DGLAP and ERBL regions
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FIG. 5. Scaled splitting functions f;(y, &, 1) as a function of y/& in the —£ < y < & region for £ = 0.001 (red lines) and £ = 0.1 (blue
lines), for —t = 1 GeV?2. All the functions are scaled by a factor of &, except for the decuplet function f (rbw) (v, &, 1), which is scaled by a
factor £2.
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FIG. 6. Total three-dimensional u-quark GPDs xH,, and xE,, from Eq. (29) as a function of x and ¢, for fixed £ = 0.1 and energy scale
u = 0.63 GeV. The corresponding d-quark distributions can be obtained from the u-quark GPDs using the isospin symmetery relation,
{H,E},(x,&,t) = —{H,E},(—x,¢&,1t), which holds for the contributions from virtual pion loops as in Fig. 1.

when using the double distribution parametrization in  Eq. (18c) vanishes x = & because of the endpoint property
Eq. (24) [103,105]. As the contribution of D term in of the distribution amplitude, <I>q/,,(1,1<,s) =0.

Eq. (24) only exists in the ERBL region, it also leads to a Comparing the results with different —¢, the absolute
discontinuity of the first derivative of the GPD at x = £. On values of the GPDs at —f = 0.25 GeV? are around 4-5

the other hand, the contribution to the quark GPD from  {jmeg larger than those at —t = 1 GeV?>. For the u-quark
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FIG. 7. Meson loop contributions to the GPDs H,, and E, for £ = 0.1 and —t = 1 GeV? at the energy scale u = 0.63 GeV. The
corresponding d-quark GPDs can be obtained from the relation {H, E},(x,&, 1) = —{H, E},(—x,&,1).

distribution, one finds that the quark GPD H, in the
DGLAP region for x > 0 has a larger magnitude than
H, at x <0 (which by crossing symmetry is equivalent
to the u distribution at x > 0). According to the above
isospin relation for the contributions from the pion cou-
pling diagrams, xH,(x > 0) is identical to xH,(x < 0),
the latter which is equivalent to the xd distribution at
x > 0. Therefore the contributions from the loop dia-
grams in Fig. 1 naturally give an enhancement of the d
distribution compared with the i, reminiscent of the
empirical result for the d and # PDF asymmetry in the
collinear region [77].

Moreover, the result in the 0 < x < £ region is positive
for —t = 0.25 GeVZ, but negative for —t = 1 GeVZ, which
can be understood from the fact that the pion GPD or GDA
includes the D/, (¢) form factor in the ERBL region that
has a different r dependence compared with the pion form
factor F,(t). The magnitude of the Pauli GPD E,, is larger
than that of the Dirac GPD H,, and the quark and
antiquark distributions in the DGLAP region have oppo-
site signs. This implies that the GPD for the # flavor has a
different sign to that of the Dirac GPD for d, and the
absolute value of the Pauli GPD E for d is larger than that
for u.

C. Form factors

From the calculated H, and E, GPDs one can compute
the Dirac, Pauli, and gravitational form factors from the
lowest two moments of the GPDs. The Dirac and Pauli
form factors can be obtained from Eqs. (6a) and (6b),
respectively. For the gravitational form factors, the pion
loop contributions to A9, B9, and CY can be written as

A1(r) = Y AL (A7 (1), (31a)
BY(1) = DAy (05,7 (1), (31b)
Ci(r) =Y AN (¢ (1) + € (0Ci(0)], (3le)

1

where Az(/?r) and C(qz/)ﬂ are the quark gravitational form

factors in the pion, obtained from the pion GPD in Eq. (24)
through

[ dwrtty et .0) = 200+ 2700 (32
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Note that the C((Iz/)”

gravitational form factor D,/,(t) in Eq. (26), C;z/)ﬂ(t) =

1D ,/z(1). The sum over the index i in Eq. (31) includes the
various hadronic configurations in Fig. 1, and the corre-
sponding hadronic form factors A?(O), Biz(()), and Cl(-z) are
obtained from the first moments of splitting functions,

form factor is proportional to the pion

/ vy iy et = 200 + 22220, (33a)

/ ‘dyy gy &1) = BO() - 267¢P (1), (33b)

¢

with the form factor C(r) for the rainbow diagrams in
Figs. 1(a) and 1(d) obtained from

cr) = / ;d%fi(y,é, H=- / ;dy—ygl«y,a 0. (34)

The C}(z) form factor for Figs. 1(b) and 1(c) can also be
obtained from Eq. (34) by changing the integral region to
y € [-¢, £]. However, since for these diagrams the functions

%f f,tl“b) and % g;(ljub) are antisymmetric with respectto y = 0,

the integrals in Eq. (34), and hence C;(t), vanish. (Note that

the functions y ffrbfb) and yg;(EUb) shown in Fig. 4 are also
antisymmetric with respect to y).

The numerical results for the gravitational A4, B4, and
C? form factors are shown in Fig. 8 as a function of .
Because of isospin symmetry the results for the u flavor are
identical to those for the d flavor. Despite the absolute value
of the GPD E, being larger than that of the GPD H, the

first moment of E, largely cancels between the positive-x

-0.01
-0.02
0.0 0.2 0.4 0.6 0.8 1.0
~t (GeV?)
FIG. 8. Gravitational form factors A9 (red band), B? (blue

band), and C? (green band) for quark flavor ¢ = u or d as a
function of ¢ arising from the pseudoscalar meson loop diagrams
in Fig. 1. The results for the u and d flavors for these diagrams are
identical due to isospin symmetry.

and negative-x regions, leading to similar values for the A?
and B? form factors. In contrast, the C? form factor is
negative and has a smaller magnitude compared with the
other two form factors.

As pointed out in the preceeding discussions, in this
analysis we only consider contributions to GPDs arising
from the meson loop diagrams in Fig. 1. Generally,
comparison with experimental measurements or other
phenomenological calculations of the total quark gravita-
tional form factors will require inclusion of contributions
from coupling to intermediate state baryons in the loops or
Kroll-Ruderman type contributions, which will be consid-
ered in future analyses. On the other hand, in a valence
quark approximation the antiquark distributions arise
predominantly from couplings to the meson loop, which
allows their contributions to form factors and sea quark
flavor asymmetries to be studied directly in terms of the
diagrams in Fig. 1 alone.

In Fig. 9 we illustrate the d — & contributions to the Dirac
F{, Pauli F, and gravitational A7 and B¢ form factors. For
the pion loop coupling diagrams in Fig. 1, these are given in
terms of the moments of the H, and E, GPDs at zero
skewness by

Fi-i(r) / " Au(H, (r.0.0) + Hy(—x.0.0)),  (35a)
0

Fi-u(y) = A LAx(E,(x,0,0) + E,(—x,0,1)),  (35b)
AT (g) — / v x(H, (x,0, 1) + H,(=x,0,1)), (35¢)
0

Bi7i(1) = Al dxx(E,(x,0,t) + E,(—x,0,1)),  (35d)

where we have used the crossing symmetry and isospin
relations discussed in Sec. IV B to relate the GPDs for the u
and d flavors. From the calculated H* GPD, we find the
d — i contribution to the Dirac form factor at r =0 is
F{=%(0) = 0.11(2). Note that F¢="(0) corresponds to the
light antiquark PDF asymmetry,

Fi-(0) = / ' de(@(x) - a(x)). (36)

which has been the subject of considerable interest in the
literature [77,116-118]. Our result is consistent with
phenomenological extractions from experimental Drell-
Yan lepton-pair production data in pp and pd collisions,

O35 dx(d — ) = 0.0803(11) [117], as well as from
global QCD analyses of all high-energy scattering
data [119,120]. The Pauli form factor, on the other hand,
is an order of magnitude larger than the Dirac form factor,

Fé"f‘(O) = 1.15(25), which is consistent with previous
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FIG. 9. Meson loop contributions to the Dirac F{ and Pauli F5 (upper panels) and gravitational form factors A? and B? (lower panel)

versus —t for ¢ = d — i.

calculations of meson loop effects in chiral effective
theory [95]. Although challenging to obtain directly from
experimental measurements, this contribution may be
accessible in future lattice QCD calculations.

For the d — @ contributions to the gravitational form
factors, we find in the forward limit A%#(0) = 0.0170 605
and B?(0) = 0.035(7), which is consistent with the
previous results from Ref. [95]. Note that the A%~% form
factor represents the d — it asymmetry for the light anti-
quark momentum fractions,

Ad-1(0) — A ' drx(@(x) — a(x)). (37)

Our calculated result can be compared with the trun-
cated moment obtained by the SeaQuest Collaboration
from pp and pd Drell-Yan data at Fermilab [121],
045 dx x(d(x) — i(x)) ~0.00318. The numerical value
for the form factor BY~%(0) is about three times larger
than the value of A%~%(0), and is also consistent with the
prediction in the large-N, limit [2].

V. SUMMARY

Within the framework of nonlocal chiral effective theory,
we have calculated the one-loop contributions to the spin-
averaged GPDs of the proton at nonzero skewness £ from
coupling to pseudoscalar meson loops with intermediate
octet and decuplet baryon states. We derived the generali-
zation of convolution formulas for nonzero skewness,
which, unlike the zero skewness case, now involve both
the DGLAP and ERBL regions. We verified that the
moments of the generalized convolution formulas for the
GPDs satisfy the correct polynominal properties.

To regularize the ultraviolet divergences in the loop
integrations for the GPDs, we introduced a relativistic
regulator derived self-consistently from the nonlocal
Lagrangian. Using constraints for this regulator obtained
from previous analyses of meson loop contributions to
PDFs and GPDs [90,91,95], in addition to phenomeno-
logical input for the pion GPD [106] and distribution
amplitude [103,113,114], we studied the detailed depend-
ence of the H, and E, GPDs for the u and d quarks on
the parton momentum fraction x, skewness &, and four-
momentum transfer squared 7. At the kinematics considered
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in this analysis, we generally find that the absolute values of
the Pauli GPD E, are significantly larger than those of the
Dirac GPD H ,, with both suppressed for increasing —1.
For the d — i flavor combination, we computed the
contribution from pion loops to the Dirac and Pauli
electromagnetic and the gravitational form factors as a

function of 7. At t = 0 the normalization of the F’ ‘1”‘ form
factor is equivalent to the x-integrated value of the d — 1

PDF asymmetry, and for the gravitational A%~%(0) form
factor the normalization corresponds to the x-weighted
moment of d — iz. Our results are consistent with phenom-
enological extractions of both asymmetries from exper-
imental data [117,119], and with previous zero skewness
meson loop GPD calculations [95].

An obvious extension of the present work is the
inclusion of contributions from the coupling to intermediate
state baryons, similar to the zero skewness GPD analysis in
Ref. [95]. This will allow comparison with quark as well as
antiquark GPDs, as would be needed for studies of strange
quark contributions to proton GPDs, for instance [92,93],
or gravitational form factors. Such a strategy would also

|

n—1

/ dxx""H,(x, &, 1) =
-1

i=0,even

allow the calculation of chiral loop contributions to spin-
dependent GPDs, and even generalized transverse momen-
tum distributions, which will provide further insights into
the three-dimensional structure of the proton.
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APPENDIX A: PROOF OF POLYNOMIALITY
OF GPDS

Polynomiality requires that the nth moments of GPDs
can be expanded as a series in &,

+ (28 Cy (A1)

( )|neven’

and similarly for the E,. In analogy with the proof for the form factor in Sec. III, the contributions from Egs. (18a), (18b),

and (18d) can be written as

1 1 1
/ dxx""'H,(x.&.1) :/ dyy" £ (v, €, t)/ dzz"
—1 £ -1

- /5 Ldyy (. t)(

Hq/ﬂ(i g/y’ [)

The nth moments of GPDs from Eq. (18c) can be expressed as

¢
/_gdxx”‘lHq(x,f,t) —/ dy &' f(y. &, f)ﬂ

= /_i dy&" ' f (.. 1) <

where we have used the property of GDAs,

S (20 26
V)4 ¢ : A2
ii%en <y> q/ﬂ( ) (y) q/n( )lneven) ( )
Im Jo dn(2n = 1)"" 1@y (n %WLTI .8
Fo s—t+ie
Ul Yy n—i—1 n(i) 6 )
Z 2! (E) A" a/n ( ) +2nz Cq/ﬂ( )|neven> ’ (A3)

i=0,even
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/ Ldn(2n = 1)1y (0 20s) = : 2 0lart (0" ) g(0) | (p)a(p")

0 pr4+p)
2n—1
(PPt

2n—1 n— ) p+_p/+ n—1-i (i
m (Z (P+—P'+)(P++P/+)’<T) Ay (s)

:I+4
(P +p )n i=0.even

(=1 ar* (i) q(0) | (p))

—_

Lot +p/+>"c£;;1,<s>neven)

n—1 /+ —
_ i n(i) n
= 5 (G T + 2

n—1
= 2122 = 1) AL (5) +2"CV) (5)]even- (A4)
i=0,even

The parameter z here is defined as z = p’*/(p* + p’*) in the GDA. Combining the results in Egs. (A2) and (A3), the nth
moments of GPDs can be written

1 1 =l e\ )
[ e = [ dyy"—‘f@,ar)( > (2) a0+ (%) o )
- - i=0,even

= Z (2¢)'A /gdyy Tf0.E 1)+ (28) q/n()/_gdy ;

i=0,even
-3 <2f>fAi;5’;2<r>(”§j eV A1) + (281 Dy ) + EPCLOCO. (A9

i=0,even j=0,even

where A"0U), C(") C' are the moments of splitting function, which are defined as

n—1

/ (BYTIED = YD A+ (D) (A6a)
- j=0,even

1

/_ (.80 =€) (A6b)

Equation (AS) can be rewritten as

n—1 n—1 n—1
/ Qo= H, (x, &.1) = AL (1) A=) ( ( S A e @) + )@(r)) (A7)

i=0,even /:0 even 0,even

Now we obtain the correct polynomiality of GPD H . The polynomiality of the magnetic GPD E, can be obtained by
replacing splitting function f by g.

APPENDIX B: SPLITTING FUNCTION INTEGRALS

In this Appendix, we present the explicit expressions for the integrals of the splitting functions appearing in Sec. I1 C,

along with the meson-baryon couplings. For Fig. 1(a), the splitting functions fgg and g((;gw) can be written as
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Chy [ d% ~iFjp o Kt

(rbw) _ B¢ B -
157060 =72 [ Gy OF e s e -ge). mig

C2 d*k —iGU™ o Kt

(rbw) _ Chy ¢B _t
7080~ [ o mm Wk Aoy i) @

where the factors in the numerator of the integrand are given by
(rbw) Pty
FU™) — 4
P8 2(4MPEE — E1 4 1) 4
+2k-p'(2MMp + k*)(4M?E + &t + 1) — 2k - p[2MM g(4M>E> — 2821 + &t + 1)
+K2((E= 1)t — 4M?E%) + 8M*E> — AMP?E2 ¢ + 2MPEt + 2MPt + &2 + 12y]} (B2a)

k- p)[(&— 1)t —4M?E] — 4k - pk - p'[AM>E + (1 + &)]

Glbw) _ 2MPty
¢B (52—1)t—4M2§
+2ME(E+ Dk - p'(2MMp + k2) 4 2k - p[((§ + 1)Mp((§ — 1)t - 2M?¢))
+IEM(E=1)E=2M>(E+ 1)E = Mt(—=E + &4y + 1))
+ R [Mp(4MPE — 1+ 1) + AMPE + Mt(=& + &+ y + 1)] + 2M*tM (& + y)} (B2b)

s {AM(1 = &)é(k - p)? —4ME(E+ Dk - pk - p'

with Mgz = M + M. The coefficients CZB(/) in Egs. (B1) are given from the Lagrangian density in Eq. (10),

7
Cpﬂ() = Z s (B3a)
2
c,. =%, (B3b)
2
For the bubble diagram in Fig. 1(b), the splitting function f((j,bUb) (v, 1) is given by
R (bub) +
(bub) iCygp / d*k Fy . . k
JEr) = F(k+ A)F(k)6 -—, B4
with
(bub) _ YPT[4k - P(AMPE 4 1) 4 2Etk - A + (£ + )]
Fy ™ = R : (BS)
AMPE — Bt + ¢
where the coefficient for the pion loop is given by
C, -1 (B6)
.7/ 2 2 *
Similarly, for the additional bubble diagram in Fig. 1(c), the splitting function g:/EbUb) (y,&, 1) can be expressed as
g 4 G(bub) +
/(bub) iCyy / d*k " 5 5 k
JE ) = F(k+ A)F(k)6 -—, B7
with
o) _ 2MPYRK - P(E — D)t + 4k - AMPE +2M°1(¢ + )] (BS)

/ (& - 1)t —4M?E ’
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and the coefficients CfM) is given by

Cyyp = 2(b1o + b11). (B9)

(rbw)

For Fig 1(d), the splitting functions fg;w) (v,¢.1) and gy’ (v, €. 1) can be written as

2 a4k iFi) N N K+

(rbw) Ty 9T Kk
1470:60 =3 [ Gty amm e SR e pe). o

C3, [ d'k iy ) ) Kt

(rbw) _ T $T _
o060 = [ G —mpsr mmam e OROs(r ). o

where the factors in the numerator of the integrand are given by

Fyr

G(rbw) _

¢T

(rbw) __
12M%(4M?E — £t + 1)

Pty

{8(k - p)*k- p'(4M>& + (1= &)1)

+ 8(k - ')k - p(4M*E 4 (1 = &)t) — 4k - pk - p'RAMP M & + 16M*E> + AM> (£ + 1)t

+ 2MM (282 + 6E +3)t — 2(2E +y + 1)] + 4(k - p)*[AMP M & + 8M*E?

+2M? (=282 + 36+ 1)t + MM (=128 + 11E+ 1)t — (£ = 1))

—4M (k- p')?(2M — M7)(4M?E + &t + t) — 2k - p[2M?t(t(28% + 2& + 3y — 1) — 6M%E)

+ AP M(AMPE* + M (=28 + E+ 1)t = 3M (& — 1)&t) + 32MP M &2

+AMPM (=98> + 2& + 2)t + 32MOE + 8M* (3£ + &£+ 1)t

+ MMt(12M7(€ = 1)€ + 1(48 + 126 + 11y = 5)) = £(E+ y)

£ 32ME(E = 1)) + 2k - p'[B2MOM &2 + AMPM (& + 26 + 2)t + 32M°&

—AIPM(AMPE: — M(28% + & — 1)t = BME(E+ 1)) = 2MPt(6M3E + t(2E +y + 1))

+ 8MH (=& + E+ 1)t + MMpt(t(28 + y + 1) — 12M3E(E+ 1)) + 3M3(E + 1)7]

+ 4PM[I6M*M & + AMP>M (1 — 482)t + 16M3E + 4M3(1 — 3&%)t

+ MPQ2E +E+y—2)+3MPA(E +E+y—1)]

+ PMp(E+ y)(8M? = 2M(6M% + t) + 3M 1)}, (B11a)
D {SM(e- 1k pP- P SMEE+ k- plk- )

3M2(AMPE2 — &2t + 1)

— 4k - pk - p'[6M?*M 7 (4 2)E +4MP(E+ 1)E = Mt(2E+y + 1) + M4 (&2 = 1)1]

+4(k- pP[MPM (& + 11)E +2M7 (& +3)6 = M(E + & = 2)t = 3M (&> — 1)1]

—4(k - p' 2 MPE(E+1)(2M — My) — 2k - p[2M3(t(=3&% 4 2& 4 3y + 2) — 6M%E)

+ K2(12M>M & + 4MP(E+ 1)E = 2M(E* — 1)t = 3M (&2 — 1)1)

+ MM (t(=98% + 128 + 11y +4) — 12M2E) + 8M*M (& + 1)E + 8M° (& + 1)¢

—Mi(t((=& + &+ y+ 1) =3MF(E = 1)) + Mp(& = 1)t(3M7 + 1)]

+ 2k p'KP(12M*M & — AMP (& — 1)E+2M(E2 — 1)t + 3M (82 = 1)1)

= 2MP(6M3E + 1(E + 2)E + yi) + MPMy(1(E + 2)E + yt — 12M3%E)

+ 8MAM (& + 1)E + 8M3 (& + 1)E + 3MME(E + 1)t — 3M3(&2 — 1)1]

+ K2 [16M*M &> + AMP>Mt(—4E% + 3E + 3y + 1) + 16M° &2

HAMPH(=38 + &+ y + 1) +2M (8 = )2 +3M (& = 1)

+ MMy (€ + y)(8M3 — 2M(6M2% + 1) + 3M 1)}, (B11b)
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with M; = M + M the average of the nucleon and decuplet baryon masses. The decuplet baryon couplings for the pion

case are give by

2 —
CA+7L'O -

C2

CZ

Aozt

CZ

A+t

2

%, (B12a)
2

%, (B12b)
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