
SIAM J. APPLIED DYNAMICAL SYSTEMS © 2023 Society for Industrial and Applied Mathematics
Vol. 22, No. 4, pp. 3208--3232

Deep Linear Networks for Matrix Completion---an Infinite Depth Limit\ast 
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Abstract. The deep linear network (DLN) is a model for implicit regularization in gradient based optimization
of overparametrized learning architectures. Training the DLN corresponds to a Riemannian gradient
flow, where the Riemannian metric is defined by the architecture of the network and the loss function
is defined by the learning task. We extend this geometric framework, obtaining explicit expressions
for the volume form, including the case when the network has infinite depth. We investigate the
link between the Riemannian geometry and the training asymptotics for matrix completion with
rigorous analysis and numerics. We propose that under small initialization, implicit regularization
is a result of bias towards high state space volume.
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1. Introduction.

1.1. The deep linear network. Deep learning has proven its general applicability in sev-
eral fields of applied science in the past decade [15]. While neural networks are structurally
simple function approximators (e.g., [14]), several questions around them remain unanswered.
Two fundamental problems are to obtain first principles explanations for generalizability and
implicit regularization. Generalizability refers to a network's performance on new, previously
unseen data. Implicit regularization is the feature of deep networks to avoid overfitting despite
overparametrization. In the context of classical regression problems, overfitting is mitigated
by explicit regularization. Deep learning architectures are observed not to overfit despite the
lack of explicit regularization. This is referred to as implicit regularization.

A simple model in which the effect of overparametrization in deep networks can be studied
is the deep linear network (DLN) [1, 2]. The DLN is simple enough to serve as a minimal
model for neural networks. It may also be applied directly to optimization problems, such as
matrix completion [7], autoencoders [3], and multitask training. The most common approach
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DEEP LINEAR NETWORKS FOR MATRIX COMPLETION 3209

to the training process is gradient based minimization of a loss function, a process known as
empirical risk minimization.

Recent work has shown that the DLN is also of intrinsic mathematical interest. Training
the DLN corresponds to a gradient flow of a loss function with a Riemannian structure deter-
mined by the architecture of the network. The purpose of this paper is to further develop the
mathematical theory of DLN. The main new contributions are explicit formulas for volume
forms, including the infinite depth limit, that parallel corresponding expressions in random
matrix theory. A numerical investigation that interprets some aspects of these formulas is
also presented. We define the DLN below and then state these results more precisely.

1.2. The dynamical systems. Let \BbbM d denote the space of real d\times d matrices. The state
space of the DLN consists of N weight matrices, Wi \in \BbbM d, 1\leq i\leq N , which we denote by

\bfW = (WN ,WN - 1, . . . ,W1) .(1.1)

The number of weight matrices, N , is referred to as the depth of the network. We have
assumed that all matrices have the same size for simplicity. In fact, all that is required is
that the matrix sizes be such that the product W in (1.2) is well defined. Properties of the
DLN in such generality have been studied in [2, 3]. We build on these results in our work but
restrict ourselves to Wi \in \BbbM d for ease of computation. Some aspects of our analysis extend to
a manifold of fixed-rank matrices as in [3] (see section 3.4.3).

The training process is an optimization problem for the weight matrices based on a lower-
dimensional observable. This observable, referred to as the end-to-end matrix, is the product
of the weight matrices

W = \pi (\bfW ) :=

1\prod 

i=N

Wi.(1.2)

Notice that the dimension of W is d2 regardless of the network depth.
The gradient flow for a loss function E(W ),

d

dt
Wj = - \partial Wj

E (W ) , 1\leq j \leq N,(1.3)

is used as our training model. Equation (1.3) is an idealization for the manner in which
training is implemented in practice. Since W is defined through (1.2), we also find that

\.Wj = - W T
j+1 . . .W

T
N \partial WE(W )W T

1 . . .W T
j - 1, j = 1, . . . ,N.(1.4)

Here and below, the notation \partial Af(A) for a differentiable function f :\BbbM d \rightarrow \BbbR denotes the
Euclidean gradient, that is, for every B \in \BbbM d, df(A)(B) = tr

\bigl( 
\partial Af(A)

TB
\bigr) 
.

Our interest lies in the long-time behavior of the observable W (t). The limit limt\rightarrow \infty W (t)
is called the training outcome. Since the dynamics is governed by a gradient flow, this limit
exists when the loss function E(W ) is bounded below and has compact sublevel sets. However,
natural loss functions, such as those for certain matrix completion problems, do not have
compact sublevel sets. In fact, the minima of these loss functions are submanifolds of \BbbM d.
Thus, the prediction of training outcomes is a subtle problem. The existence of limt\rightarrow \infty W (t)
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3210 NADAV COHEN, GOVIND MENON, AND ZSOLT VERASZTO

when each of the Wi has full rank was established using Lojasiewicz's theorem [3, Thm. 10].
In order to use this convergence theorem as a foundation for the analysis in this paper, we
restrict ourselves toWi \in GL(d) for most of the analysis. The spaceGL(d) is the set of bijective
linear transformations of \BbbR 

d, which is isomorphic to the set of d \times d invertible matrices.
Despite this assumption, training outcomes for many matrix completion problems have low
rank. The repeated appearance of low-rank matrices as training outcomes has stimulated the
use of several heuristics for the prediction of training outcomes (see the discussion in [20]).
The goal of this paper is to shed light on this question using the Riemannian geometry of the
DLN and numerical simulations.

Let us now review the Riemannian geometry underlying the Euclidean gradient flow de-
fined in (1.3). An important concept (see [1, Def. 1]) is the notion of balancedness. We say
that the weight matrices Wj and Wj+1 are Gj-balanced if

Gj :=W T
j+1Wj+1  - WjW

T
j .(1.5)

For fixed Gj , 1\leq j \leq N , (1.5) defines an algebraic variety \BbbM 
N
d that is stratified by the rank.

When Gj = 0, for each value of the rank r, the gradient flow (1.3) leaves the manifolds \scrM r

of rank-r matrices solving (1.5) invariant [3, Cor. 6]. These are called the balanced manifolds.

It is immediate from (1.5) that the singular values of the weight matrices \{ Wj\} 
N
j=1 are equal

on the balanced manifolds.
In order to use existing convergence theory, we restrict our attention to full-rank matrices,

and we denote \scrM d by \scrM in what follows. This balanced manifold allows us to separate
the dynamics into a flow ``upstairs"" in \BbbM 

N
d , described by (1.3), and a flow ``downstairs"" for

the end-to-end matrix W (t) in GL(d). The flow downstairs is a Riemannian gradient flow
with a metric computed in [3] that may be described as follows. We define the linear map
\scrA N,W : TWGL(d)\simeq \BbbM d \rightarrow \BbbM d:

\scrA N,W (Z) :=
1

N

N\sum 

j=1

\bigl( 
WW T

\bigr) N - j

N Z
\bigl( 
W TW

\bigr) j - 1

N .(1.6)

On the balanced manifold the end-to-end matrix satisfies the Riemannian gradient flow

\.W = - gradgNE(W ),(1.7)

under the metric

gN (Z1,Z2) = tr
\Bigl( 

\scrA  - 1
N,W (Z1)

T Z2

\Bigr) 

,(1.8)

where Z1,Z2 \in TWGL(d). This structure allows us to extend the DLN geometry to the infinite
depth limit, with the linear operator

\scrA \infty ,W (Z) = lim
N\rightarrow \infty 

\scrA N,W (Z) =

\int 1

0

\bigl( 
WW T

\bigr) (1 - \tau )
Z
\bigl( 
W TW

\bigr) \tau 
d\tau ,(1.9)

replacing \scrA N in (1.8) to define a limiting metric g\infty . When N is finite, the dynamical system
(1.7) corresponds to a flow upstairs in \BbbM 

N
d . In the limit of infinite depth, (1.7) continues to

hold, even though there is no longer a well-defined flow upstairs.
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DEEP LINEAR NETWORKS FOR MATRIX COMPLETION 3211

The existence of the infinite depth metric, in particular its resemblance to the Bogoliubov
inner product in quantum statistical mechanics, was noted in [3, Remark 8]. We develop some
properties of this metric below, emphasizing explicit formulas in singular value decomposition
(SVD) coordinates in section 1.3.1. These formulas also show that the metric is at least C1

in the open subset of \BbbM d of matrices with distinct singular values. These formulas are better
seen as first steps towards deeper exploration. We still lack an understanding of the curvature
and geodesics of these metric though some partial results have been obtained in [21]. The
appearance of such elegant Riemannian structures in the DLN is surprising at first sight.
However, it is helpful to note that fundamental interior point methods for conic programs also
have a surprising gradient structure (see [4, 5, 12]). In recent work [18], one of the authors and
Yu have studied these metrics, seeking precise comparisons between gradient flows underlying
conic programs and deep learning.

The above structure applies to an arbitrary loss function. In practice, the loss function is
determined by the learning task and the ease of computation. We focus on matrix completion
in this paper, choosing the loss function E(W ) to be the quadratic distance from a fixed matrix
\Phi termed the optimization objective [9]. Using \circ for the elementwise (Hadamard) product,
the family of loss functions we study takes the form

E\scrB (W ) =
1

2
\| \scrB \circ (\Phi  - W )\| 22.(1.10)

Here \scrB is a matrix whose entries are either zero or one. This notation allows us to include
several forms of matrix completion. An important example is the following: Let \scrB = I select
the diagonal elements, and consider

EI(W ) =
1

2
\| diag (\Phi  - W )\| 22.(1.11)

Here diag(\cdot ) returns a diagonal matrix constructed from the diagonal elements of its argu-
ments.

The nature of the loss function is determined by the matrix \scrB . For example, the energy
defined by (1.11) has a submanifold of global minima. Indeed, given a diagonal matrix \Phi ,
EI(W ) vanishes when W is chosen to be any matrix whose diagonal entries are \Phi . More-
over, since the matrix can be completed to any rank from 1 to d, some of these minima are
noninvertible matrices. We consider numerical examples with several such \scrB .

1.3. Statement of results.

1.3.1. The metric and volume forms. The SVD of W is denoted W = U\Sigma V T , where
U,V \in O(d) and \Sigma denotes the diagonal matrix of singular values. We write \Sigma ii = \sigma i and
order the singular values in decreasing order: \sigma i \geq \sigma j if i < j. The metric gN may be expressed
in a simple manner using the SVD. We find (see (2.17)) that

gN = (V \otimes U)DN (\Sigma )(V \otimes U)T .(1.12)

Here V \otimes U is the Kronecker product of V and U and DN \in \BbbR 
d2\times d2

is a diagonal operator
with nonzero entries

DN
il =

N
\sum N

j=1(\sigma 
2
i )

N - j/N (\sigma 2
l )

j/N
, 1\leq i, l\leq d.(1.13)
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3212 NADAV COHEN, GOVIND MENON, AND ZSOLT VERASZTO

Here the subscript il denotes a double index on the diagonal elements of DN . The expression
is unambiguous due to the symmetry of (1.13) in i and l. The expression (1.12) holds in the
limit N =\infty , with

D\infty 
il =

2 log(\sigma i/\sigma l)

\sigma 2
i  - \sigma 2

l

, i \not = l, Dii =
1

\sigma 2
i

.(1.14)

These expressions for the metric are used to compute the associated volume forms in
GL(d). Let van(\Lambda ) denote the Vandermonde determinant of a diagonal matrix \Lambda , let d\Sigma 
denote Lebesgue measure on \BbbR 

N , and let dU and dV denote Haar measure on O(d).

Theorem 1.1. The volume form of gN is given by
\sqrt{} 

detgNdW =N
d(d - 1)

2 det(\Sigma 2)
1 - N

2N van
\Bigl( 

\Sigma 2/N
\Bigr) 

d\Sigma dUdV.(1.15)

In the limit N \rightarrow \infty , the volume form of g\infty is

\sqrt{} 

detg\infty dW =
van

\bigl( 
log\Sigma 2

\bigr) 

\sqrt{} 

det (\Sigma 2)
d\Sigma dUdV.(1.16)

The volume forms allow us to quantify the importance of regions of high volume that
correspond to empirical observations of training outcomes. Notice that the volume density
blows up when passing to the limit \sigma i \rightarrow 0, showing a clear relationship between low rank and
high volume.

The reader unfamiliar with Riemannian geometry should note that all our work reduces
to explicit calculations in SVD coordinates. The symmetries of the metric implicit in (1.14)
allow us to calculate several Jacobian determinants explicitly. The main subtlety in using SVD
coordinates is that naive calculations must be restricted to the open set of\BbbM d whereW has dis-
tinct singular values, and the branches of the SVD must be resolved on the lower-dimensional
varieties corresponding to repeated eigenvalues. Formulas, such as those in Theorem 1.1, are
established under the assumption that the singular values are distinct, and then seen to hold
in the limit of repeated singular values using continuity.

Such calculations follow the spirit of random matrix theory [17]. For example, Theorem 1.1
suggests interesting asymptotics for the DLN in the limits N \rightarrow \infty and d \rightarrow \infty . We do not
consider this question in this paper, but see [10] for a similar investigation.

1.3.2. Normal hyperbolicity. The spectral decomposition of g\infty given in (1.12) (with
N =\infty ) and (1.14) has important consequences for the dynamics given by (1.7). For different
choices of \scrB , let \scrN \scrB denote the set of global minima of the energy function (1.10),

\scrN \scrB = \{ W :W \in \BbbM d, \scrB \circ (\Phi  - W ) = 0\} .(1.17)

Recall that \scrB is a matrix whose entries are either zero or one. Let K denote the number of
zeros in \scrB ,

K = d2  - 
d\sum 

i,j=1

\scrB ij .(1.18)

The set \scrN \scrB is an open submanifold of GL(d) with dimension K.
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DEEP LINEAR NETWORKS FOR MATRIX COMPLETION 3213

Theorem 1.2. Any K-dimensional compact submanifold of \scrN \scrB is normally hyperbolic under

the dynamical system (1.7) for N =\infty .

The statement is a consequence of Lemma 3.4. The proof is presented in section 3.2.

1.3.3. Are the training outcomes low-rank matrices? The origin of implicit regular-
ization was proposed to arise from (quasi-)norms in [19]. This idea is motivated by classical
regression, where overfitting effects are often mitigated by adding explicit regularization terms
to the optimization problem. Previous work in this direction tried to explicitly construct the
regularizers in the form of (quasi-)norms. This explanation was challenged in [20], where the
training outcomes were observed to be low-rank matrices, even though matrix norms blew up.
We develop this idea in section 3. On one hand, we view the bias towards low-rank matrices
as an entropic effect determined by the volume forms above (the volume forms diverge as the
singular values approach zero). On the other hand, we construct numerical examples where
using low rank as a criterion does not accurately predict the training outcome under small
initial conditions. The numerical examples show that within the set of low-rank minimizers,
the actually observed ones are also the ones with the largest concentration of volume around
them.

1.3.4. Numerical simulations for finite and infinite depth. Section 3 details numerical
simulations of system (1.7) for N \leq \infty . As (1.6) is very costly computationally for large N
and (1.9) can only be explicitly evaluated in terms of SVD coordinates, (1.7) is inefficient to
simulate directly. To keep track of the evolution of SVD coordinates, we derive their dynamics
directly under the flow of (1.7).

In the first few examples, we make use of energy function (1.11). In section 3.3.1, we
demonstrate that for large N and diagonal matrix completion, bias towards low rank should
be viewed as bias towards minimal rank. This example also motivates the study of smaller
matrices, where the matrix size and the minimal rank of minimizers are comparable. The
example in section 3.3.2 is on 2\times 2 matrices; yet it illustrates the effect of depth, demonstrating
the validity of the infinite depth limit.

The examples in section 3.4.1 show simulation outcomes for different choices of energy
functions in the family (1.10). For these examples we chose \scrB such that E\scrB has a finite
number of rank-deficient minimizers. We see that not all of the rank-deficient minimizers
are actually observed as training outcomes, contradicting the idea that low rank accurately
predicts simulation outcomes. Instead, we find that the observed minimizers are the minimum-
rank minimizers with maximal volume.

Section 3.4.3 details an example where the entire state space has minimal rank. In this
case, it is impossible to predict simulation outcomes in terms of bias towards low rank. We
demonstrate that high state space volume remains predictive, and the simulation outcomes
are clustered in the region of state space where the volume is maximal.

1.4. Organization of the paper. The rest of this paper is organized as follows. In
section 2, we review the Riemannian geometry of the DLN and establish equations (1.12)--
(1.13). We then extend this geometry to the infinite depth limit and prove Theorem 1.1.
In section 3 we use numerical experiments to show the correspondence between state space
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DEEP LINEAR NETWORKS FOR MATRIX COMPLETION 3215

We need to show that (2.1) implicitly defines a manifold. For that we need to check whether
its differential is surjective as a linear map from \BbbM d \times \BbbM d to the space of d \times d symmetric
matrices. In other words, we need to show that for Wj ,Wj+1 \in GL(d) and arbitrary symmetric
S the equation

\.W T
j+1Wj+1 +W T

j+1
\.Wj+1  - \.WjW

T
j  - Wj

\.W T
j = S(2.3)

has a solution for \.Wj , \.Wj+1. It is easy to see that \.W T
j+1Wj+1 +W T

j+1
\.Wj+1 and  - \.WjW

T
j  - 

Wj
\.W T
j are arbitrary symmetric matrices. Thus the problem reduces to writing S as a sum of

two symmetric matrices.

The invariance of Gj in the above proof does not require that Gj = 0, 1 \leq j \leq N .
In practice, \scrM is particularly important because the DLN is initialized with small initial
conditions. Thus, all singular values are small, and the dynamical system begins close to \scrM .

Lemma 2.3 (symmetries). For Q\in O(d), let Li(Q) denote the linear map

Li(Q)(\bfW ) =
\bigl( 
WN ,WN - 1, . . . ,Wi+1Q,QTWi, . . . ,W1

\bigr) 
.(2.4)

Then \pi (Li (Q) (\bfW )) = \pi (\bfW ) and Li (Q) (\scrM ) =\scrM .

Proof. Both statements are obtained through direct computations. In order to see that
\pi (Li (Q) (\bfW )) = \pi (\bfW ), we compute

WNWN - 1 \cdot \cdot \cdot Wi+1Q
TQWi \cdot \cdot \cdot W1 =WNWN - 1 \cdot \cdot \cdot Wi+1Wi \cdot \cdot \cdot W1,

since QQT = I.
Next assume \bfW is balanced and observe that under the action of Li(Q)

Wi+1QQTW T
i+1 =Wi+1W

T
i+1 =W T

i+2Wi+2,(2.5)

QTW T
i+1Wi+1Q=QTWiW

T
i Q,(2.6)

and

W T
i QQTWiQ=W T

i Wi =Wi - 1W
T
i - 1.(2.7)

2.2. The operator \bfscrA \bfitN ,\bfitW and the metric \bfitg \bfitN . The metric gN was defined in [3] using the
linear operator \scrA N,W : TWGL(d)\rightarrow \BbbM d (see (1.6)--(1.8) and [3, Def. 3]). We find it convenient
to represent \scrA N and gN in SVD coordinates since this yields explicit formulas for the metric
and volume form. In all that follows we write the SVD of a matrix W as

W =U\Sigma V T , \Sigma = diag(\sigma 1, . . . , \sigma d), \sigma 1 \geq \sigma 2 \geq \cdot \cdot \cdot \geq \sigma d.(2.8)

The standard basis of \BbbM d is denoted by Eij , 1\leq i, j \leq d.
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3216 NADAV COHEN, GOVIND MENON, AND ZSOLT VERASZTO

Lemma 2.4 (spectral decomposition of \scrA N,W ). For finite N , the d2 number of eigenvalues

of \scrA N,W are

\lambda N
il =

1

N

N\sum 

j=1

\bigl( 
\sigma 2
i

\bigr) N - j

N
\bigl( 
\sigma 2
l

\bigr) j - 1

N =

\bigl( 
\sigma 2
i

\bigr) N - 1

N

N

1 - \sigma 2
l

\sigma 2
i

1 - 
\Bigl( 
\sigma 2
l

\sigma 2
i

\Bigr) 1

N

, i, l \in 1, . . . , d.(2.9)

In the limit N =\infty , the eigenvalues are

\lambda \infty 
il =

\sigma 2
i  - \sigma 2

l

2 log (\sigma i/\sigma l)
, i, l \in 1, . . . , d.(2.10)

The corresponding eigenvectors are independent of N and are given by

Til =UEilV
T , 1\leq i, l\leq d.(2.11)

Proof. Let

Y =\scrA N (X),(2.12)

and introduce new variables \~X =UTXV and \~Y =UTY V . By the definition of \scrA N

\~Y =
1

N

N\sum 

j=1

\bigl( 
\Sigma 2

\bigr) N - j

N \~X
\bigl( 
\Sigma 2

\bigr) j - 1

N .(2.13)

Notice that we have obtained a diagonal form in coordinates:

\~yil = \~xil
1

N

N\sum 

j=1

\bigl( 
\sigma 2
i

\bigr) N - j

N
\bigl( 
\sigma 2
l

\bigr) j - 1

N ,(2.14)

which proves (2.9).
The proof of (2.10) is similar. Fix i \not = l and take the limit N \rightarrow \infty in (2.14) to obtain

lim
N\rightarrow \infty 

\lambda N
il = lim

N\rightarrow \infty 

1

N

N\sum 

j=1

\bigl( 
\sigma 2
i

\bigr) N - j

N
\bigl( 
\sigma 2
l

\bigr) j - 1

N =

\int 1

0
\sigma 
2(1 - t)
i \sigma 2t

l dt=
\sigma 2
i  - \sigma 2

l

log
\bigl( 
\sigma 2
i /\sigma 

2
l

\bigr) .(2.15)

Finally, when i= l

lim
N\rightarrow \infty 

\lambda N
il = lim

N\rightarrow \infty 

\bigl( 
\sigma 2
i

\bigr) N - 1

N = \sigma 2
i .(2.16)

As a direct consequence of Lemma 2.4, we obtain an explicit matrix representation for the
DLN metric (1.8). Let the vectorization of the matrix coordinate one-forms be denoted dw\alpha ,
\alpha = 1, . . . , d2. Then the metric gN = gN\alpha \beta dw

\alpha \otimes dw\beta , N \leq \infty , at a point W = U\Sigma V T is given
by

gN = (V \otimes U)DN (\Sigma ) (V \otimes U)T ,(2.17)
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where DN is the diagonal operator whose nonzero entries are

1

\lambda N
il

, 1\leq i, l\leq d.(2.18)

The above calculations prove (1.12)--(1.13).
The following inequalities are used to establish normal hyperbolicity of an invariant man-

ifold in Theorem 1.2 below.

Lemma 2.5 (inequalities on the spectrum of \scrA \infty ,W ). Let 1 \leq i < j \leq k < l \leq d; then

\lambda \infty 
jj \leq \lambda \infty 

ij \leq \lambda \infty 
ii and \lambda \infty 

ij \leq \lambda \infty 
kl .

Proof. \lambda \infty 
jj = \sigma 2

j \leq \sigma 2
i = \lambda \infty 

ii since \sigma j \leq \sigma i.
Given a concave differentiable function f and x< y,

f \prime (y)\leq 
f(y) - f(x)

y - x
\leq f \prime (x).(2.19)

Thus

d

dx
log(x)| \sigma 2

j
=

1

\sigma 2
j

\geq 
log\sigma 2

j  - log\sigma 2
i

\sigma 2
j  - \sigma 2

i

\geq 
d

dx
log(x)| \sigma 2

i
=

1

\sigma 2
i

,(2.20)

where the middle term is

log\sigma 2
j  - log\sigma 2

i

\sigma 2
j  - \sigma 2

i

=
1

\lambda \infty 
ij

.(2.21)

The remaining inequality also follows from the concavity of log(x).

2.3. Volume forms and the proof of Theorem 1.1. Vandermonde determinants appear
often in random matrix theory as the Jacobians for diagonalization (see, for example, [8, sect.
5.3], [17, sect. 2.2], and Lemma 2.7 below). Theorem 1.1 reflects an analogous feature of the
DLN geometry. The proof is an easy consequence of Lemma 2.4.

Proof of Theorem 1.1. We compute the determinants of the matrices gN and g\infty as a
product of the reciprocal of the eigenvalues of \scrA N,W given in Lemma 2.4. For g\infty we find

\sqrt{} 

detg\infty dW =

\sqrt{} 
 
 
 
 

1

\sigma 2
1 . . . \sigma 

2
d

\prod 

i \not =j

log
\bigl( 
\sigma 2
i

\bigr) 
 - log

\Bigl( 

\sigma 2
j

\Bigr) 

\sigma 2
i  - \sigma 2

j

dW

=
1

\sqrt{} 

det (\Sigma 2)

\prod 

i<j

log
\bigl( 
\sigma 2
i

\bigr) 
 - log

\Bigl( 

\sigma 2
j

\Bigr) 

\sigma 2
i  - \sigma 2

j

dW

=
van

\bigl( 
log\Sigma 2

\bigr) 

\sqrt{} 

det (\Sigma 2)van (\Sigma 2)
dW.

(2.22)
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Similarly, for N <\infty , when i \not = l we use the eigenvalues of \scrA N to find

\lambda N
il =

1

N

N\sum 

j=1

\bigl( 
\sigma 2
i

\bigr) N - j

N
\bigl( 
\sigma 2
l

\bigr) j - 1

N =

\bigl( 
\sigma 2
i

\bigr) N - 1

N

N

\Biggl( 

1 +

\biggl( 
\sigma 2
l

\sigma 2
i

\biggr) 1

N

+ \cdot \cdot \cdot +

\biggl( 
\sigma 2
l

\sigma 2
i

\biggr) N - 1

N

\Biggr) 

=

\bigl( 
\sigma 2
i

\bigr) N - 1

N

N

1 - \sigma 2
l

\sigma 2
i

1 - 
\Bigl( 
\sigma 2
l

\sigma 2
i

\Bigr) 1

N

.

(2.23)

In the case i= l we obtain instead

\lambda N
il =

\bigl( 
\sigma 2
i

\bigr) N - 1

N .(2.24)

The volume form is given by the product of the reciprocals of all the eigenvalues \lambda N
il ,

1\leq i, l\leq d. Thus,

\sqrt{} 

detgNdW =

\sqrt{} 
 
 
 
 

d\prod 

i=1

1
\bigl( 
\sigma 2
i

\bigr) N - 1

N

\prod 

i \not =l

N
\bigl( 
\sigma 2
i

\bigr) 1 - N

N

1 - 
\Bigl( 
\sigma 2
l

\sigma 2
i

\Bigr) 1

N

1 - \sigma 2
l

\sigma 2
i

dW

=
N

d(d - 1)

2 det(\Sigma 2)
1 - N

2N

V (\Sigma 2)
V

\Bigl( 

\Sigma 
2

N

\Bigr) 

dW.

(2.25)

Finally, we use Lemma 2.7 below to express dW in SVD coordinates, completing the proof of
Theorem 1.1.

Remark 2.6 (volume form in new coordinates). Notice that using the coordinates \Lambda =
log (\Sigma ), we have d\lambda i

d\sigma i
= 1

\sigma i
and thus

\sqrt{} 

detg\infty dW = 2
d(d - 1)

2 van\Lambda d\Lambda dUdV.(2.26)

This shows a strong formal similarity between the DLN and the Gaussian orthogonal
ensemble of random matrix theory, suggesting the study of probability distributions and large
d asymptotics.

2.4. The Jacobian of SVD. The following lemma is included for completeness since we
were unable to find a convenient reference.

Lemma 2.7. The Jacobian determinant of the SVD map: W \mapsto \rightarrow (U,\Sigma , V )\in O(d)\times \BbbR 
d\times O(d)

is given by the Vandermonde determinant van(\Sigma 2).

Proof. Assume W is a matrix with distinct singular values. Consider a C1 curve W (t),
t \in [ - 1,1], with W (0) = W such that the SVD coordinates of W (t), written U(t)\Sigma (t)V (t)T ,
are also C1. Let \.W (0) be denoted \.W and similarly for U , \Sigma , and V . We compute

\.W = \.U\Sigma V T +U \.\Sigma V T +U\Sigma \.V T .(2.27)

Since U,V are orthogonal and \Sigma is diagonal,

\.U =UAU , \.V = V AV , \.\Sigma =D,
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where AU and AV are skew-symmetric and D is diagonal. Thus, we may write

\.W =U(AU\Sigma +D+\Sigma AV )V T .(2.28)

This expression defines \.W as the image of a linear map from TO(d)\times TO(d)\times T\BbbR d to TGL(d).
The Jacobian we are seeking is the determinant of this map. We compute this determinant by
first simplifying the expression above with the isometry \.W \mapsto \rightarrow UT \.WV and defining the linear
transformation

\scrL : TO(d)\times TO(d)\times T\BbbR d \rightarrow \BbbR 
d\times d, (AU ,AV ,D) \mapsto \rightarrow AU\Sigma +D+\Sigma AV .(2.29)

Finally, we compute det(\scrL ) as follows. First observe that the action of \scrL on diagonal matrices
has eigenvalue 1 with multiplicity d. The action of \scrL on TO(d)\times TO(d) is given in coordinates
by

\sum 

j

aUij\delta jk\sigma j + \delta ij\sigma ia
V
jk.(2.30)

Introducing the row-major half-vectorization for the skew-symmetric matrices (example
for d = 3: vec(AU ) = [aU12 a

U
13 a

U
23]

T ), the action of \scrL is now represented by the block matrix
with diagonal blocks:

\biggl[ 
D1 D2

 - D2  - D1

\biggr] \biggl[ 
vec(AU )
vec(AV )

\biggr] 

,(2.31)

where D1 is

D1 =diag(\sigma 1, . . . , \sigma 1
\underbrace{}  \underbrace{}  

d - 1

, \sigma 2, . . . , \sigma 2
\underbrace{}  \underbrace{}  

d - 2

, . . . , \sigma d - 1
\underbrace{}  \underbrace{}  

1

),(2.32)

and D2 is

D2 =diag(\sigma 2, . . . , \sigma d
\underbrace{}  \underbrace{}  

d - 1

, \sigma 3, . . . , \sigma d
\underbrace{}  \underbrace{}  

d - 2

, . . . , \sigma d - 1, \sigma d
\underbrace{}  \underbrace{}  

2

, \sigma d
\underbrace{}  \underbrace{}  

1

).(2.33)

The matrices D1 and D2 commute because they are diagonal. Thus, the absolute value of the
determinant of the block matrix above is

| det(D2
2  - D2

1)| = | detdiag(\sigma 2
i  - \sigma 2

j , i > j)| =
\prod 

i<j

(\sigma 2
i  - \sigma 2

j ) = van(\Sigma 2).(2.34)

3. Dynamics of matrix completion. This section is devoted to the gradient dynamics
of the DLN for matrix completion. We consider quadratic energy functions as in (1.10) and
(1.11). As \scrB varies, the energy E\scrB may have a unique minimum or a submanifold of minima.
By (1.7) the dynamics of the DLN is determined by an interplay between the Riemannian
geometry and the nature of E\scrB (W ).

This section primarily focuses on describing numerical experiments. However, in order to
generate efficient numerical simulations, it is necessary to first express the dynamics in SVD
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coordinates. These expressions are summarized in Theorem 3.2. We also prove Theorem 1.2
on normal hyperbolicity of submanifolds of equilibria to shed light on the attraction to the
balanced manifold.

The main themes in the numerical experiments are as follows. First, we consider the
variation with depth N , in order to demonstrate the utility of the infinite depth limit. Second,
we construct energies where low-rank heuristics are insufficient to explain the accumulation
of training outcomes. Instead, we demonstrate that state space volume (as measured by the
intrinsic Riemannian metric gN ) is a better predictor of the training outcome.

3.1. Numerical integration of (1.7) using SVD. Numerically integrating (1.7) gets very
costly with increasing depth, due to the large number of matrix powers needed. Alternatively,
one can use the factorized formula (2.17) to compute the Riemannian gradient through the
dual metric:

\.w= - gN\ast (w)\partial E(w).(3.1)

This formulation, however, requires the SVD ofW at every time step. Instead, we compute
the SVD of the initial condition and directly evolve the singular coordinates using smooth
SVD. All numerical results in this paper are obtained using the fourth order, fixed time step
Runge--Kutta method. This formulation is stated in Theorem 3.2, building on the well-known
result Lemma 3.1, which we review for completeness.

Lemma 3.1 (smooth SVD). Given a smooth curve W (t) : (t1, t2)\rightarrow GL(d), W (t) having dis-
tinct singular values for all t\in (t1, t2), a smooth SVD W (t) =U(t)\Sigma (t)V (t)T exists satisfying

the following system of differential equations:

\.\sigma i = uTi
\.Wvi,(3.2)

\.ui =
\sum 

j \not =i

1

\sigma 2
i  - \sigma 2

j

\langle ( \.WW T +W \.W T )ui, uj\rangle uj ,(3.3)

\.vi =
\sum 

j \not =i

1

\sigma 2
i  - \sigma 2

j

\langle ( \.W TW +W T \.W )vi, vj\rangle vj .(3.4)

Proof. Under our assumptions these formulas can be verified by direct computation. For
a more careful treatment for dealing with repeated singular values, see [6].

Using Lemma 3.1 and (3.1), we can write down the evolution equations for the singular
coordinates U(t)\Sigma (t)V T (t) =W (t) directly. For N <\infty , this result is equivalent to statements
in [2] (see Theorem 3 and Lemma 2). Let \fraks (M) :=M  - MT , \alpha = 1 - 1/N , and let \circ denote
the Hadamard (elementwise) product. For N \leq \infty introduce the matrix

Lil
N =

\Biggl\{ 
\lambda N
il

\sigma 2
i - \sigma 2

l

for i \not = l,

0 otherwise.
(3.5)
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Theorem 3.2. Under the assumptions of Lemma 3.1, and differentiable loss function E,

the SVD of the end-to-end matrix evolves according to the differential equations

\.U =U\fraks 

\bigl( 
(LN (\Sigma )\Sigma ) \circ 

\bigl( 
UT\partial WEV

\bigr) \bigr) 
,(3.6)

\.\Sigma = - \Sigma 2\alpha diag
\bigl( 
UT\partial WEV

\bigr) 
,(3.7)

\.V = V \fraks 

\bigl( 
(\Sigma LN (\Sigma )) \circ 

\bigl( 
UT\partial WEV

\bigr) \bigr) 
.(3.8)

Proof. For N < \infty , see Theorem 3 and Lemma 2 in [2]. Under infinite depth, direct
computation using (3.1) and Lemma 3.1 verifies the result.

Recall that the state space of the Riemannian gradient flow is GL(d). Since this is a dense,
open subset of the space of all quadratic matrices of given size, any lower-rank matrix can
be approximated in this space. An appropriate way to quantify the rank of a matrix that is
stable under numerical approximations is the following.

Definition 3.3 (effective rank). Let W \in GL(d) with singular values \sigma i and let si denote

the normalized singular values

si =
\sigma i

\sum 

j \sigma j
.(3.9)

Then the effective rank of W is

re (W ) = exp

\Biggl( 

 - 
\sum 

i

si log (si)

\Biggr) 

.(3.10)

3.2. Attraction rates and the proof of Theorem 1.2. We derive bounds on the normal
attraction rates for the submanifold of equilibria \scrN \scrB . Given a choice of \scrB , let \scrI denote the
vectorized index set of observed elements, that is,

vec (\scrB )i =

\Biggl\{ 

1 if i\in \scrI ,

0 otherwise.
(3.11)

In the following lemma, we compute the linearization of (1.7) in the normal direction of
\scrB \scrN . We use coordinates W =\scrB \circ \Phi +X +Y , where \scrB \circ X =X and \scrB \circ Y = 0. Lowercase x, y,
and w denote the vectorization of these coordinates. The dual metric tensor (the matrix of
which is represented by the inverse of gN ) is denoted gN\ast . Let W0 \in \scrN \scrB be a fixed point.

Lemma 3.4. At W0, the linearization of (1.7) in the normal direction x is given by

\.x= - Ax,(3.12)

where A is a principle submatrix of gN\ast , consisting of rows and columns of indices observed

by \scrB :

A=
\Bigl[ 

gN\ast 
\bigm| 
\bigm| 
W0

\Bigr] 

i,j\in \scrI 
.(3.13)
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Proof. Using the general form of the Riemannian gradient flow (3.1) and taking a deriva-
tive

d

d\epsilon 
gN\ast (\epsilon x, y)\partial EI((\epsilon x, y)) =

\bigl( 
\partial xg

N\ast 
\bigr) 
\partial EI(w0) + gN\ast (w0)\partial 

2E(w0)x,(3.14)

we notice that the first term is zero since \partial WE(W0) = 0 by W0 being an equilibrium of the
gradient flow. Computing

\partial 2Ei(W0)ij =

\Biggl\{ 

1 if i= j, i\in \scrI ,

0 otherwise,
(3.15)

we see that multiplication by this matrix results in the above principle submatrix of gN\ast .

Proof of Theorem 1.2. We show a nonzero lower bound on the attraction rates. Let \{ \alpha i\} 
d
1,

\alpha i \leq \alpha j if j \leq i denote the eigenvalues of A. Then by the Cauchy interlacing theorem and
Lemma 2.5,

\sigma 2
d \leq \alpha d \leq \alpha d - 1 \leq \cdot \cdot \cdot \leq \alpha 1,(3.16)

and note that this lower bound is nonzero on any compact subset on \scrN \scrB .

Notice that Lemma 2.5 and the Cauchy interlacing theorem completely characterizes the
order of \lambda \infty 

ij and the characteristic exponents of the d= 2 case:

\sigma 2
2 \leq \alpha 2 \leq 

\sigma 2
1  - \sigma 2

2

log\sigma 2
1  - log\sigma 2

2

\leq \alpha 1 \leq \sigma 2
1.(3.17)

3.3. Diagonal matrix completion. In this section we show numerical simulations for the
energy function EI under variable N and d. For this choice of energy function, the rank of
possible completions ranges from 1 to d, and so it constitutes one of the important cases for
studying bias towards low rank in matrix completion problems.

3.3.1. Example: \bfitd = \bftwo \bfzero . We start with simulations of a larger, d= 20, example. Figures
2 and 3 show histograms of effective rank of optimization outcomes. Note that the rank and
thus the effective rank here can be as large as 20; the size of the matrices and therefore bias
towards low rank could mean convergence to a matrix of any effective rank smaller than 20.

Notice that even the shallowest case (N = 3) shows strong bias towards low-rank comple-
tions. In case of N = 10 and N = \infty , the obtained histograms are nearly identical, showing
strong bias towards minimal, rank-one outcomes. This suggests that building intuition around
the dynamics under sufficient depth is possible using small (d= 2 or d= 3) examples, in which
case the rank-deficient cases (1.3) are easier to characterize.

Approximately 300 optimization outcomes are included for each N . Figure 3(b) shows
the distribution of effective rank upon initialization. The small random initial conditions
are drawn from a Wigner ensemble; specifically, they consist of matrices of independent
normal entries of mean zero and standard deviation 0.001, which distribution is denoted
Wigner(0,0.001).

The numerical convergence criterion used for these examples is EI(W )< 10 - 6.
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The equations for the missing elements can be written out by (symbolic) LU factorization
under the assumption of a given rank. If the equations have a solution for the unknown
elements, the matrix has a completion to the given rank. Solving the resulting system of
multivariate polynomials may not be possible.

We show this process for an easily solvable case. Take, for example, the first step of LU
factorization for the following configuration of \Phi ij \not = 0 and arbitrary wij we are trying to solve
for:

M(w31,w12,w23) =

\left[ 

 

\Phi 11 w12 \Phi 13

\Phi 21 \Phi 22 w23

w31 \Phi 32 \Phi 33

\right] 

 

=

\left[ 

 

\Phi 11

\Phi 21

w31

\right] 

 
\bigl[ 
1 w12

\Phi 11

\Phi 13

\Phi 11

\bigr] 
+

\left[ 

 

0 0 0

0 \Phi 22  - 
\Phi 21w12

\Phi 11
w23  - 

\Phi 13\Phi 21

\Phi 11

0 \Phi 32  - 
w31w12

\Phi 11
\Phi 33  - 

w31\Phi 13

\Phi 11

\right] 

 .

(3.28)

We see that there is no solution for the rank-one completion and that the rank-two completions
are implicitly given by

0 =\Phi 33  - 
\Phi 13

\Phi 11
w31  - 

\Bigl( 

\Phi 32  - 
w31w12

\Phi 11

\Bigr) \Bigl( 

w23  - 
\Phi 13\Phi 21

\Phi 11

\Bigr) 

\Phi 22  - 
\Phi 21w12

\Phi 11

.(3.29)

In particular, an easily identifiable rank-two completion is given by the choice

w1
12 =

\Phi 32\Phi 13

\Phi 33
, w1

23 =
\Phi 13\Phi 21

\Phi 11
, w1

31 =
\Phi 33\Phi 11

\Phi 13
.(3.30)

Let M denote the zero energy matrix with coordinates (3.30).
In order to run numerical simulations, we pick arbitrary matrix elements for the target

matrix:

\Phi =

\left[ 

 

 - 1.55795 \cdot 1.58397
0.212869 0.0337805 \cdot 

\cdot 1.32488 1.92653

\right] 

 .(3.31)

Figure 8 shows the outcome of strong clustering in a region near M . We interpret this
as a shortcoming of the rank based predictions, as the entire two-parameter family of min-
imizers defined by (3.29) has rank two. We attempt to explain the observation using phase
space volume. We approximate phase space volume within the zero energy plane spanned by
coordinates (w12,w31,w23) upon simple Monte Carlo integration. We integrate the volume
form (1.16) in a small cube around some rank-two minimizers.

Since these points are singular, volume form (1.16) blows up. As a result of this, the volume
in a domain containing these points can be infinity. The volume, however, is locally finite,
so working with domains bounded away from singular points allows us to make quantitative
comparison between regions of the state space. Given a rank-two minimizer, we can study the
concentration of volume around it by simple Monte Carlo integration of the volume density
(2.22).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/2

1
/2

4
 t

o
 1

2
8
.1

4
8
.1

9
4
.1

1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y









3232 NADAV COHEN, GOVIND MENON, AND ZSOLT VERASZTO

REFERENCES

[1] S. Arora, N. Cohen, N. Golowich, and W. Hu, A convergence analysis of gradient descent for deep

linear neural networks, in 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, 2019, OpenReview.net, https://openreview.net/forum?id=SkMQg3C5K7.

[2] S. Arora, N. Cohen, W. Hu, and Y. Luo, Implicit regularization in deep matrix factorization, in
Advances in Neural Information Processing Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, Vancouver, 2019, pp. 7411--7422, https://proceedings.
neurips.cc/paper/2019/hash/c0c783b5fc0d7d808f1d14a6e9c8280d-Abstract.html.

[3] B. Bah, H. Rauhut, U. Terstiege, and M. Westdickenberg, Learning deep linear neural net-

works: Riemannian gradient flows and convergence to global minimizers, Inf. Inference, 11 (2022),
pp. 307--353, https://doi.org/10.1093/imaiai/iaaa039.

[4] D. A. Bayer and J. C. Lagarias, The nonlinear geometry of linear programming. I. Affine and projective

scaling trajectories, Trans. Amer. Math. Soc., 314 (1989), pp. 499--526.
[5] D. A. Bayer and J. C. Lagarias, The nonlinear geometry of linear programming. II. Legendre transform

coordinates and central trajectories, Trans. Amer. Math. Soc., 314 (1989), pp. 527--581.
[6] A. Bunse-Gerstner, R. Byers, V. Mehrmann, and N. K. Nichols, Numerical computation of an

analytic singular value decomposition of a matrix valued function, Numer. Math., 60 (1991), pp. 1--39,
https://doi.org/10.1007/BF01385712.

[7] E. J. Cand\`es and B. Recht, Exact matrix completion via convex optimization, Found. Comput. Math.,
9 (2009), pp. 717--772, https://doi.org/10.1007/s10208-009-9045-5.

[8] P. A. Deift, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, Courant
Lect. Notes Math. 3, New York University, Courant Institute of Mathematical Sciences, New York;
American Mathematical Society, Providence, RI, 1999.

[9] S. Gunasekar, B. E. Woodworth, S. Bhojanapalli, B. Neyshabur, and N. Srebro, Im-

plicit regularization in matrix factorization, in Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, 2017,
pp. 6151--6159, https://proceedings.neurips.cc/paper/2017/hash/58191d2a914c6dae66371c9dcdc91b
41-Abstract.html.

[10] B. Hanin and M. Nica, Products of many large random matrices and gradients in deep neural networks,
Comm. Math. Phys., 376 (2020), pp. 287--322, https://doi.org/10.1007/s00220-019-03624-z.

[11] M. Hardt, R. Meka, P. Raghavendra, and B. Weitz, Computational limits for matrix completion,
in Proceedings of the 27th Conference on Learning Theory (COLT), JMLR.org, 2014, pp. 703--725.

[12] R. Hildebrand, Canonical barriers on convex cones, Math. Oper. Res., 39 (2014), pp. 841--850,
https://doi.org/10.1287/moor.2013.0640.

[13] E. P. Hsu, Stochastic Analysis on Manifolds, Grad. Stud. Math. 38, American Mathematical Society,
Providence, RI, 2002, https://doi.org/10.1090/gsm/038.

[14] A. Lapedes and R. Farber, How neural nets work , in Evolution, Learning and Cognition, World
Scientific Publishing, Teaneck, NJ, 1988, pp. 331--346.

[15] Y. LeCun, Y. Bengio, and G. E. Hinton, Deep learning , Nature, 521 (2015), pp. 436--444,
https://doi.org/10.1038/nature14539.

[16] G. Menon, Gibbs Measures for Semidefinite Programming , manuscript, Brown University, 2020.
[17] G. Menon and T. Trogdon, Random Matrix Theory and Numerical Linear Algebra, manuscript, Brown

University, 2020.
[18] G. Menon and T. Yu, The Riemannian Langevin Equation and Conic Programs, preprint,

https://arxiv.org/abs/2302.11653, 2023.
[19] B. Neyshabur, R. Tomioka, and N. Srebro, In Search of the Real Inductive Bias: On the Role of

Implicit Regularization in Deep Learning , preprint, https://arxiv.org/abs/1412.6614, 2014.
[20] N. Razin and N. Cohen, Implicit regularization in deep learning may not be explainable by norms, in

NIPS'20: Proceedings of the 34th International Conference on Neural Information Processing Systems,
2020, pp. 21174--21187.

[21] Z. Veraszto, The Deep Linear Network -- Dynamics, Riemannian Geometry and Overparametrization,
Ph.D. thesis, Brown University, 2023.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
0
/2

1
/2

4
 t

o
 1

2
8
.1

4
8
.1

9
4
.1

1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y


	Introduction
	The deep linear network
	The dynamical systems
	Statement of results
	The metric and volume forms
	Normal hyperbolicity
	Are the training outcomes low-rank matrices?
	Numerical simulations for finite and infinite depth

	Organization of the paper

	The Riemannian geometry of DLN
	Riemannian submersion of the balanced manifold
	The operator <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	AN,W?></0:tex-math></0:inline-formula> and the metric <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	gN?></0:tex-math></0:inline-formula>
	Volume forms and the proof of Theorem&#x2009;&#x2009;<0:xref 0:ref-type="statement" 0:rid="the1-1" >1.1</0:xref>
	The Jacobian of SVD

	Dynamics of matrix completion
	Numerical integration of &#x2009;&#x2009;(<0:xref 0:ref-type="disp-formula" 0:rid="disp7" >1.7</0:xref>) using SVD
	Attraction rates and the proof of Theorem&#x2009;&#x2009;<0:xref 0:ref-type="statement" 0:rid="the1-2" >1.2</0:xref>
	Diagonal matrix completion
	Example: <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	d=20?></0:tex-math></0:inline-formula>
	Example: <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	d=2?></0:tex-math></0:inline-formula>

	Other configurations
	Example: Single rank-deficient minimizer
	A <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	3 3?></0:tex-math></0:inline-formula> example
	Example: Minimal rank state space


	Conclusion
	References

