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Abstract. The deep linear network (DLN) is a model for implicit regularization in gradient based optimization
of overparametrized learning architectures. Training the DLN corresponds to a Riemannian gradient
flow, where the Riemannian metric is defined by the architecture of the network and the loss function
is defined by the learning task. We extend this geometric framework, obtaining explicit expressions
for the volume form, including the case when the network has infinite depth. We investigate the
link between the Riemannian geometry and the training asymptotics for matrix completion with
rigorous analysis and numerics. We propose that under small initialization, implicit regularization
is a result of bias towards high state space volume.
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1. Introduction.

1.1. The deep linear network. Deep learning has proven its general applicability in sev-
eral fields of applied science in the past decade [15]. While neural networks are structurally
simple function approximators (e.g., [14]), several questions around them remain unanswered.
Two fundamental problems are to obtain first principles explanations for generalizability and
implicit regularization. Generalizability refers to a network’s performance on new, previously
unseen data. Implicit regularization is the feature of deep networks to avoid overfitting despite
overparametrization. In the context of classical regression problems, overfitting is mitigated
by explicit regularization. Deep learning architectures are observed not to overfit despite the
lack of explicit regularization. This is referred to as implicit regularization.

A simple model in which the effect of overparametrization in deep networks can be studied
is the deep linear network (DLN) [1, 2]. The DLN is simple enough to serve as a minimal
model for neural networks. It may also be applied directly to optimization problems, such as
matrix completion [7], autoencoders [3], and multitask training. The most common approach
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to the training process is gradient based minimization of a loss function, a process known as
empirical risk minimization.

Recent work has shown that the DLN is also of intrinsic mathematical interest. Training
the DLN corresponds to a gradient flow of a loss function with a Riemannian structure deter-
mined by the architecture of the network. The purpose of this paper is to further develop the
mathematical theory of DLN. The main new contributions are explicit formulas for volume
forms, including the infinite depth limit, that parallel corresponding expressions in random
matrix theory. A numerical investigation that interprets some aspects of these formulas is
also presented. We define the DLN below and then state these results more precisely.

1.2. The dynamical systems. Let M denote the space of real d x d matrices. The state
space of the DLN consists of N weight matrices, W; € My, 1 <¢ < N, which we denote by

(1.1) W =Wy, Wn_1,...,W1).

The number of weight matrices, N, is referred to as the depth of the network. We have
assumed that all matrices have the same size for simplicity. In fact, all that is required is
that the matrix sizes be such that the product W in (1.2) is well defined. Properties of the
DLN in such generality have been studied in [2, 3]. We build on these results in our work but
restrict ourselves to W; € Mly for ease of computation. Some aspects of our analysis extend to
a manifold of fixed-rank matrices as in [3] (see section 3.4.3).

The training process is an optimization problem for the weight matrices based on a lower-
dimensional observable. This observable, referred to as the end-to-end matriz, is the product
of the weight matrices

1
(1.2) W=m(W):= ][] W
i=N

Notice that the dimension of W is d? regardless of the network depth.
The gradient flow for a loss function E(W),

d
(1.3) ZWi= 0w, E(W), 1<j<N,
is used as our training model. Equation (1.3) is an idealization for the manner in which
training is implemented in practice. Since W is defined through (1.2), we also find that
(1.4) Wi=-W/l,. . . WiowEW)W{ .. W[, j=1,..N.

Here and below, the notation d4 f(A) for a differentiable function f: My — R denotes the
Euclidean gradient, that is, for every B € My, df (A)(B) =tr (0af(A)T B).

Our interest lies in the long-time behavior of the observable W (t). The limit lim;_, o, W (t)
is called the training outcome. Since the dynamics is governed by a gradient flow, this limit
exists when the loss function E(W) is bounded below and has compact sublevel sets. However,
natural loss functions, such as those for certain matrix completion problems, do mot have
compact sublevel sets. In fact, the minima of these loss functions are submanifolds of M.
Thus, the prediction of training outcomes is a subtle problem. The existence of limy_,, W (t)
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when each of the W; has full rank was established using Lojasiewicz’s theorem [3, Thm. 10].
In order to use this convergence theorem as a foundation for the analysis in this paper, we
restrict ourselves to W; € GL(d) for most of the analysis. The space GL(d) is the set of bijective
linear transformations of R? which is isomorphic to the set of d x d invertible matrices.
Despite this assumption, training outcomes for many matrix completion problems have low
rank. The repeated appearance of low-rank matrices as training outcomes has stimulated the
use of several heuristics for the prediction of training outcomes (see the discussion in [20]).
The goal of this paper is to shed light on this question using the Riemannian geometry of the
DLN and numerical simulations.

Let us now review the Riemannian geometry underlying the Euclidean gradient flow de-
fined in (1.3). An important concept (see [1, Def. 1]) is the notion of balancedness. We say
that the weight matrices W; and Wj; are G-balanced if

(1.5) G =W} Wi —W;w/]

For fixed Gj, 1 <j < N, (1.5) defines an algebraic variety Mév that is stratified by the rank.
When G = 0, for each value of the rank 7, the gradient flow (1.3) leaves the manifolds M,
of rank-r matrices solving (1.5) invariant [3, Cor. 6]. These are called the balanced manifolds.
It is immediate from (1.5) that the singular values of the weight matrices {WV; }é\le are equal
on the balanced manifolds.

In order to use existing convergence theory, we restrict our attention to full-rank matrices,
and we denote My by M in what follows. This balanced manifold allows us to separate
the dynamics into a flow “upstairs” in MY, described by (1.3), and a flow “downstairs” for
the end-to-end matrix W (t) in GL(d). The flow downstairs is a Riemannian gradient flow
with a metric computed in [3] that may be described as follows. We define the linear map
-AN,W : TwGL(d) ~ Md — Md:

Z(wTw)T

1 N
(1.6) Anw(2): Z

]:1
On the balanced manifold the end-to-end matrix satisfies the Riemannian gradient flow
(1.7) W = —grad,~ E(W),
under the metric
(1.8) gV (21,2) = tr (A (1) 22),

where 71, Z5 € TywGL(d). This structure allows us to extend the DLN geometry to the infinite
depth limit, with the linear operator

1
(1.9) Ao (2)= Jim Ay (Z) = /0 WwY 2 (WY

replacing Ay in (1.8) to define a limiting metric ¢°°. When N is finite, the dynamical system
(1.7) corresponds to a flow upstairs in M. In the limit of infinite depth, (1.7) continues to
hold, even though there is no longer a well-defined flow upstairs.
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The existence of the infinite depth metric, in particular its resemblance to the Bogoliubov
inner product in quantum statistical mechanics, was noted in [3, Remark 8]. We develop some
properties of this metric below, emphasizing explicit formulas in singular value decomposition
(SVD) coordinates in section 1.3.1. These formulas also show that the metric is at least C*
in the open subset of My of matrices with distinct singular values. These formulas are better
seen as first steps towards deeper exploration. We still lack an understanding of the curvature
and geodesics of these metric though some partial results have been obtained in [21]. The
appearance of such elegant Riemannian structures in the DLN is surprising at first sight.
However, it is helpful to note that fundamental interior point methods for conic programs also
have a surprising gradient structure (see [4, 5, 12]). In recent work [18], one of the authors and
Yu have studied these metrics, seeking precise comparisons between gradient flows underlying
conic programs and deep learning.

The above structure applies to an arbitrary loss function. In practice, the loss function is
determined by the learning task and the ease of computation. We focus on matrix completion
in this paper, choosing the loss function F (W) to be the quadratic distance from a fixed matrix
® termed the optimization objective [9]. Using o for the elementwise (Hadamard) product,
the family of loss functions we study takes the form

(1.10) Es(W) = 1 |Bo (@~ W) [},

Here B is a matrix whose entries are either zero or one. This notation allows us to include
several forms of matrix completion. An important example is the following: Let B = I select
the diagonal elements, and consider

(1.11) Er(W) = ¢ diag (& — W) 3

Here diag(:) returns a diagonal matrix constructed from the diagonal elements of its argu-
ments.

The nature of the loss function is determined by the matrix B. For example, the energy
defined by (1.11) has a submanifold of global minima. Indeed, given a diagonal matrix ®,
E(W) vanishes when W is chosen to be any matrix whose diagonal entries are ®. More-
over, since the matrix can be completed to any rank from 1 to d, some of these minima are
noninvertible matrices. We consider numerical examples with several such B.

1.3. Statement of results.

1.3.1. The metric and volume forms. The SVD of W is denoted W = UXVT, where
U,V € O(d) and ¥ denotes the diagonal matrix of singular values. We write ¥;; = o; and
order the singular values in decreasing order: o; > o; if ¢ < j. The metric g~ may be expressed
in a simple manner using the SVD. We find (see (2.17)) that

(1.12) N =VeUu)DVNE)(VeU)T.

Here V ® U is the Kronecker product of V and U and Dy € R¥*% is a diagonal operator
with nonzero entries

N

S (aF)N N (af)i/N

1<i,1<d.

(1.13) DY =
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Here the subscript il denotes a double index on the diagonal elements of DV. The expression
is unambiguous due to the symmetry of (1.13) in ¢ and I. The expression (1.12) holds in the
limit N = oo, with

2log(o;/o ) 1
(1.14) o= 2logloifon) Ly p o L

These expressions for the metric are used to compute the associated volume forms in
GL(d). Let van(A) denote the Vandermonde determinant of a diagonal matrix A, let d¥
denote Lebesgue measure on RY, and let dU and dV denote Haar measure on O(d).

Theorem 1.1. The volume form of ¢ is given by

(1.15) VdetgNdW = N5 det(22) 5% van (22/N ) dsdUdv.
In the limit N — oo, the volume form of g is

log 32
(1.16) Jdorgeanw = P108) oy

V/det (32)

The volume forms allow us to quantify the importance of regions of high volume that
correspond to empirical observations of training outcomes. Notice that the volume density
blows up when passing to the limit o; — 0, showing a clear relationship between low rank and
high volume.

The reader unfamiliar with Riemannian geometry should note that all our work reduces
to explicit calculations in SVD coordinates. The symmetries of the metric implicit in (1.14)
allow us to calculate several Jacobian determinants explicitly. The main subtlety in using SVD
coordinates is that naive calculations must be restricted to the open set of M; where W has dis-
tinct singular values, and the branches of the SVD must be resolved on the lower-dimensional
varieties corresponding to repeated eigenvalues. Formulas, such as those in Theorem 1.1, are
established under the assumption that the singular values are distinct, and then seen to hold
in the limit of repeated singular values using continuity.

Such calculations follow the spirit of random matrix theory [17]. For example, Theorem 1.1
suggests interesting asymptotics for the DLN in the limits N — oo and d — co. We do not
consider this question in this paper, but see [10] for a similar investigation.

1.3.2. Normal hyperbolicity. The spectral decomposition of ¢ given in (1.12) (with
N =00) and (1.14) has important consequences for the dynamics given by (1.7). For different
choices of B, let N denote the set of global minima of the energy function (1.10),

(1.17) Ng={W:W eMy, Bo(®—-W)=0}.
Recall that B is a matrix whose entries are either zero or one. Let K denote the number of
zeros in B,
d
(1.18) K=d"- ) B
ij=1
The set N is an open submanifold of GL(d) with dimension K.
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Theorem 1.2. Any K -dimensional compact submanifold of N5 is normally hyperbolic under
the dynamical system (1.7) for N = cc.

The statement is a consequence of Lemma 3.4. The proof is presented in section 3.2.

1.3.3. Are the training outcomes low-rank matrices? The origin of implicit regular-
ization was proposed to arise from (quasi-)norms in [19]. This idea is motivated by classical
regression, where overfitting effects are often mitigated by adding explicit regularization terms
to the optimization problem. Previous work in this direction tried to explicitly construct the
regularizers in the form of (quasi-)norms. This explanation was challenged in [20], where the
training outcomes were observed to be low-rank matrices, even though matrix norms blew up.
We develop this idea in section 3. On one hand, we view the bias towards low-rank matrices
as an entropic effect determined by the volume forms above (the volume forms diverge as the
singular values approach zero). On the other hand, we construct numerical examples where
using low rank as a criterion does not accurately predict the training outcome under small
initial conditions. The numerical examples show that within the set of low-rank minimizers,
the actually observed ones are also the ones with the largest concentration of volume around
them.

1.3.4. Numerical simulations for finite and infinite depth. Section 3 details numerical
simulations of system (1.7) for N < oo. As (1.6) is very costly computationally for large N
and (1.9) can only be explicitly evaluated in terms of SVD coordinates, (1.7) is inefficient to
simulate directly. To keep track of the evolution of SVD coordinates, we derive their dynamics
directly under the flow of (1.7).

In the first few examples, we make use of energy function (1.11). In section 3.3.1, we
demonstrate that for large N and diagonal matrix completion, bias towards low rank should
be viewed as bias towards minimal rank. This example also motivates the study of smaller
matrices, where the matrix size and the minimal rank of minimizers are comparable. The
example in section 3.3.2 is on 2 X 2 matrices; yet it illustrates the effect of depth, demonstrating
the validity of the infinite depth limit.

The examples in section 3.4.1 show simulation outcomes for different choices of energy
functions in the family (1.10). For these examples we chose B such that Ep has a finite
number of rank-deficient minimizers. We see that not all of the rank-deficient minimizers
are actually observed as training outcomes, contradicting the idea that low rank accurately
predicts simulation outcomes. Instead, we find that the observed minimizers are the minimum-
rank minimizers with maximal volume.

Section 3.4.3 details an example where the entire state space has minimal rank. In this
case, it is impossible to predict simulation outcomes in terms of bias towards low rank. We
demonstrate that high state space volume remains predictive, and the simulation outcomes
are clustered in the region of state space where the volume is maximal.

1.4. Organization of the paper. The rest of this paper is organized as follows. In
section 2, we review the Riemannian geometry of the DLN and establish equations (1.12)—
(1.13). We then extend this geometry to the infinite depth limit and prove Theorem 1.1.
In section 3 we use numerical experiments to show the correspondence between state space
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volume and implicit regularization. We also present several comparisons between finite depth
networks and the infinite depth limit. Our conclusions are summarized in section 4.

2. The Riemannian geometry of DLN. This section contains several results on the state
space geometry for the DLN. We first review the balanced manifold as well as the Riemannian
submersion that determines the Riemannian metric for the DLN, basing our discussion on
past work [2, 3]. This is followed by computations in SVD coordinates that provide matrix
representations of the metric, including the infinite depth limit N — oo (equations (1.12)-
(1.13)). Finally, we prove Theorem 1.1 on the volume forms.

2.1. Riemannian submersion of the balanced manifold. The geometry on GL(d) is de-
fined by a Riemannian submersion of the balanced manifold, introduced in [3] and illustrated
in Figure 1. This observation effectively reduces the dynamics of the DLN to a space of
dimension d?, independent of the depth N.

Recall that W = (W, Wx_1,...,W1) € M]dv (see (1.1)).

Definition 2.1 (balanced manifold). The balanced manifold of full-rank matrices is
(2.1) M :={W|W; e GL(d), and G; =0 for jel...N —1}.

For more on the interpretation of balancedness in machine learning, see [1]. The following
lemma is included for completeness; it has already been established in [3].

Lemma 2.2 (invariant manifold). The balanced manifold is invariant under the gradient
flow (1.3).

Proof. The invariance of G; (not just G; =0) along trajectories can be checked by direct
computation of the derivative along trajectories of (1.3):

(2.2) GJ' = Wﬁ-le—kl + W]'7;1Wj+1 - WjW]T — WjoT =0.

(M(Iiv, (- >F) (GL(d),gN)

>

Figure 1. The left side is the optimization space and shows the balanced manifold as an immersed mani-
fold. The right side represents the space of trained networks equipped with a Riemannian metric given by the
Riemannian submersion of the balanced manifold.
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We need to show that (2.1) implicitly defines a manifold. For that we need to check whether
its differential is surjective as a linear map from My x My to the space of d x d symmetric
matrices. In other words, we need to show that for W;, W1 € GL(d) and arbitrary symmetric
S the equation

(2.3) WjTJr1Wj+1 + WﬁleH - WjW]T - WJWJ'T =5

has a solution for Wj,Wj+1. It is easy to see that WjTJerjH + WjTJFIWjH and —WjoT —
WjW]T are arbitrary symmetric matrices. Thus the problem reduces to writing S as a sum of
two symmetric matrices. ]

The invariance of Gj in the above proof does not require that G; = 0, 1 < j < N.
In practice, M is particularly important because the DLN is initialized with small initial
conditions. Thus, all singular values are small, and the dynamical system begins close to M.

Lemma 2.3 (symmetries). For Q € O(d), let L;(Q) denote the linear map
(2.4) Li(Q)(W) = Wy, Wn_1,..., Wi1Q,Q"W;, ..., W1).

Then 7 (L; (Q) (W))=7(W) and L; (Q) (M) =M.

Proof. Both statements are obtained through direct computations. In order to see that
m(L; (Q) (W)) =m (W), we compute

WNWN_1- - Win1QTQW; - Wy = WyWi_y - Wi Wi --- W,

since QQT =1.
Next assume W is balanced and observe that under the action of L;(Q)
(2.5) Wi1QQ Wiy = Wi Wi = W, Wips,
(2.6) QWi WinQ=Q"Wiwi @,
and
(2.7) WrQQ™WiQ =WIW; =W, Wk, m

2.2. The operator Ay w and the metric g”V. The metric gV was defined in [3] using the
linear operator Ay w : Ty GL(d) — My (see (1.6)—(1.8) and [3, Def. 3]). We find it convenient
to represent Ay and ¢V in SVD coordinates since this yields explicit formulas for the metric
and volume form. In all that follows we write the SVD of a matrix W as

(2.8) W=Uxvl, Y=diag(o,...,0q), 01>09>--->04.

The standard basis of My is denoted by E;;, 1 <14,5 <d.
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Lemma 2.4 (spectral decomposition of Ay ). For finite N, the d? number of eigenvalues
of Anw are

N ; . Nt 19
1 u (0’) p)
(2.9) N=_ K No= —, 4,lel,... d.
Al NEZ: N 1 ((le)ﬁ
g
In the limit N = o0, the eigenvalues are
2 _ 2
(2.10) Ae=-—"i L el d

2log (0 /1)’

The corresponding eigenvectors are independent of N and are given by

(2.11) Ty =UE;VT, 1<i,l<d.
Proof. Let
(2.12) Y = Ay (X),

and introduce new variables X = U7XV and Y = UTYV. By the definition of Ay
- 9 gy izt
(2.13) V== Z (22) (22)'%

Notice that we have obtained a diagonal form in coordinates:

1 —J i=1
(2.14) QilzfilNz;(U?) ¥ (of) ¥,
=

which proves (2.9).
The proof of (2.10) is similar. Fix ¢ #1 and take the limit N — oo in (2.14) to obtain

1~ gy 2t gy ist b oa(1-0) o} —of
(2.15) hm A = hm — o;) N (o7) N :/ o; Voptdt=—" .
il s Z;( ) ( l) 0 i l log(af/af)
Finally, when ¢ =1
AN 2\ N _ 2
(2.16) J\}gnoo)\il :]\}1_13100 (o) =0;. [ ]

As a direct consequence of Lemma 2.4, we obtain an explicit matrix representation for the
DLN metric (1.8). Let the vectorization of the matrix coordinate one-forms be denoted dw®,
a=1,...,d%. Then the metric ¢"¥ = gévﬁdwo‘ ®dw?, N < oo, at a point W =UXVT is given
by

(2.17) N=WVeoU)DN () (VeU)T
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where DY is the diagonal operator whose nonzero entries are

(2.18) —, 1<il<d.

The above calculations prove (1.12)—(1.13).
The following inequalities are used to establish normal hyperbolicity of an invariant man-
ifold in Theorem 1.2 below.

Lemma 2.5 (inequalities on the spectrum of A w). Let 1 <i < j <k <1< d; then
)\;?Qg)\<?9<)\9° and )\‘-x-’<)\°°.
Proof. AJ; = O'J <o? =\ since oj <o;.

Given a concave dlfferentlable function f and x <y,

fly) = f(x)

2.19 ") < < f(x).
(2.19) fl) < R8T < )
Thus

d 1 logo? —loga d 1
2.20 —1 =2 2 > ] ==
( ) d Og(x)|o'j UJQ- = Ujg _01'2 =z og(x )| 01'2’

where the middle term is

log O'JQ- —log 01-2 1

(2.21) =,
032- — 01-2 AP
The remaining inequality also follows from the concavity of log(z). |

2.3. Volume forms and the proof of Theorem 1.1. Vandermonde determinants appear
often in random matrix theory as the Jacobians for diagonalization (see, for example, [8, sect.
5.3], [17, sect. 2.2], and Lemma 2.7 below). Theorem 1.1 reflects an analogous feature of the
DLN geometry. The proof is an easy consequence of Lemma 2.4.

Proof of Theorem 1.1. We compute the determinants of the matrices ¢/¥ and ¢
product of the reciprocal of the eigenvalues of Ay given in Lemma 2.4. For ¢ we find

1 ~1
Vdet g=dW = 21‘[ il Og( )dW

O' . O'

7,75] J
(2.22) 1 log (0‘) lo g( ])
dw
\/det( g o? — JQ
an (lo gEZ)

dW

V/d ( )van (
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Similarly, for N < 0o, when 7 # 1 we use the eigenvalues of Ay to find

N ) . 2 A=l 2 L 9 N-1
1 N—j i—1 o N ~N ~
AQZNZ(U?)N (J?)N:(ZJ)V_(l—I—(ZlZ) ++<212> >
Jj=1 7 :

(2.23) -

In the case 7 =1 we obtain instead

(2.24) M = (02) 5

Z

The volume form is given by the product of the reciprocals of all the eigenvalues )\g ,
1<i4,0 <d. Thus,

d 1-N 1- oi %
Vdet gNdW = H H (Uf)N(ai,“)dW
7

(2.25) i) - H -2
det(EQ) 2
eV (2%) aw.

Finally, we use Lemma 2.7 below to express dW in SVD coordinates, completing the proof of
Theorem 1.1. |

Remark 2.6 (volume form in new coordinates). Notice that using the coordinates A =

log (¥), we have ?’ = i and thus

(2.26) v det g>*dW = 25 vanA dAdUdV.

This shows a strong formal similarity between the DLN and the Gaussian orthogonal
ensemble of random matrix theory, suggesting the study of probability distributions and large
d asymptotics.

2.4. The Jacobian of SVD. The following lemma is included for completeness since we
were unable to find a convenient reference.

Lemma 2.7. The Jacobian determinant of the SVD map: W+ (U, %, V) € O(d) xR%x O(d)
is given by the Vandermonde determinant van(X?).

Proof. Assume W is a matrix with distinct singular values. Consider a C! curve W (t),
€ [-1,1], with W(0) = W such that the SVD coordinates of W (), written Ut)x)ver,
are also C!. Let W(0) be denoted W and similarly for U, ¥, and V. We compute

(2.27) w=usvT yusvt +usvT.
Since U,V are orthogonal and ¥ is diagonal,

U=UAY, v=v4Y, =D,
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where AV and AV are skew-symmetric and D is diagonal. Thus, we may write
(2.28) W=UAYS+D+xA")VT.

This expression defines W as the image of a linear map from TO(d) x TO(d) x TR to TG L(d).
The Jacobian we are seeking is the determinant of this map. We compute this determinant by
first simplifying the expression above with the isometry W — UTWV and defining the linear
transformation

(2.29) L:TO(d) x TO(d) x TR - R4 (AY, AV D) AVS + D + x4V,

Finally, we compute det(L) as follows. First observe that the action of £ on diagonal matrices
has eigenvalue 1 with multiplicity d. The action of £ on TO(d) x TO(d) is given in coordinates
by

(2.30) > a0 + Sijoiay,.
J

Introducing the row-major half-vectorization for the skew-symmetric matrices (example
for d = 3: vec(AY) = [a}, al}al;]T), the action of £ is now represented by the block matrix
with diagonal blocks:

(2.31) [_%2 —%1] [Zgzgﬁgg] ’

where D1 is

(2.32) D, =diag(o1,...,01,02,...,02,...,04-1),
——— —— ——
d—1 d—2 1
and Dy is
(2.33) Dy =diag(og,...,04,03,...,04,---,04-1,0d, 04 )-
d—1 d—2 1
- - 2

The matrices D1 and Dy commute because they are diagonal. Thus, the absolute value of the
determinant of the block matrix above is
(2.34) |det(D3 — D?)| = | det diag(o} — 03, i > j)| = [ [ (67 — o) = van(Z?). m
i<j

3. Dynamics of matrix completion. This section is devoted to the gradient dynamics
of the DLN for matrix completion. We consider quadratic energy functions as in (1.10) and
(1.11). As B varies, the energy Ep may have a unique minimum or a submanifold of minima.
By (1.7) the dynamics of the DLN is determined by an interplay between the Riemannian
geometry and the nature of Eg(W).

This section primarily focuses on describing numerical experiments. However, in order to
generate efficient numerical simulations, it is necessary to first express the dynamics in SVD
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coordinates. These expressions are summarized in Theorem 3.2. We also prove Theorem 1.2
on normal hyperbolicity of submanifolds of equilibria to shed light on the attraction to the
balanced manifold.

The main themes in the numerical experiments are as follows. First, we consider the
variation with depth N, in order to demonstrate the utility of the infinite depth limit. Second,
we construct energies where low-rank heuristics are insufficient to explain the accumulation
of training outcomes. Instead, we demonstrate that state space volume (as measured by the
intrinsic Riemannian metric ¢g"V) is a better predictor of the training outcome.

3.1. Numerical integration of (1.7) using SVD. Numerically integrating (1.7) gets very
costly with increasing depth, due to the large number of matrix powers needed. Alternatively,
one can use the factorized formula (2.17) to compute the Riemannian gradient through the
dual metric:

(3.1) w=—g"V* (w)OE(w).

This formulation, however, requires the SVD of W at every time step. Instead, we compute
the SVD of the initial condition and directly evolve the singular coordinates using smooth
SVD. All numerical results in this paper are obtained using the fourth order, fixed time step
Runge-Kutta method. This formulation is stated in Theorem 3.2, building on the well-known
result Lemma 3.1, which we review for completeness.

Lemma 3.1 (smooth SVD). Given a smooth curve W (t) : (t1,t2) — GL(d), W (t) having dis-
tinct singular values for all t € (t1,t2), a smooth SVD W (t) =U(t)S(t)V (t)T exists satisfying
the following system of differential equations:

(3.2) éi = UZTWUI',
1 ) )
(3.3) U; = 5 5 ((WWT + WWT)ui, Uj>Uj,
i 71
1 . .
(3.4) v; = 2 _ o2 <<WTW + WTW)'Ui, 'Uj)'Uj.
gA ot

Proof. Under our assumptions these formulas can be verified by direct computation. For
a more careful treatment for dealing with repeated singular values, see [6]. u

Using Lemma 3.1 and (3.1), we can write down the evolution equations for the singular
coordinates U (t)X(t)VT (t) = W (t) directly. For N < oo, this result is equivalent to statements
in [2] (see Theorem 3 and Lemma 2). Let s (M) := M — M? a=1—-1/N, and let o denote
the Hadamard (elementwise) product. For N < oo introduce the matrix

AN ,
(3.5) L’]{, - for i #1,
0 otherwise.
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Theorem 3.2. Under the assumptions of Lemma 3.1, and differentiable loss function FE,
the SVD of the end-to-end matriz evolves according to the differential equations

(3.6) U=Us((Ly(2)X) o (UTOwEV)),
(3.7) ¥ = —2*diag (UTowEV),
(3.8) V=Vs((ELy (X))o (UTawEV)).

Proof. For N < oo, see Theorem 3 and Lemma 2 in [2]. Under infinite depth, direct
computation using (3.1) and Lemma 3.1 verifies the result. |

Recall that the state space of the Riemannian gradient flow is GL(d). Since this is a dense,
open subset of the space of all quadratic matrices of given size, any lower-rank matrix can
be approximated in this space. An appropriate way to quantify the rank of a matrix that is
stable under numerical approximations is the following.

Definition 3.3 (effective rank). Let W € GL(d) with singular values o; and let s; denote
the normalized singular values
J;

(39) S; = Zj Uj .

Then the effective rank of W is

(3.10) re (W) =exp <— Z silog (sz)> .

i

3.2. Attraction rates and the proof of Theorem 1.2. We derive bounds on the normal
attraction rates for the submanifold of equilibria Ng. Given a choice of B, let Z denote the
vectorized index set of observed elements, that is,

1 ifieZ
(3.11) vec (B), = HeeL
0 otherwise.

In the following lemma, we compute the linearization of (1.7) in the normal direction of
Bar. We use coordinates W =Bo®+ X +Y, where Bo X =X and BoY =0. Lowercase z,y,
and w denote the vectorization of these coordinates. The dual metric tensor (the matrix of
which is represented by the inverse of gV) is denoted g"V*. Let Wy € N be a fixed point.

Lemma 3.4. At Wy, the linearization of (1.7) in the normal direction x is given by
(3.12) T=—Ax,

where A is a principle submatriz of g™*, consisting of rows and columns of indices observed
by B:

(3.13) A= [9N*|W0L,jez‘
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Proof. Using the general form of the Riemannian gradient flow (3.1) and taking a deriva-
tive

(3.14) %gN*(ex,y)aEI((ex,y)) = (ang*) OEr(wp) + gN*(wo)82E(wo)x,

we notice that the first term is zero since Oy E(Wy) = 0 by Wy being an equilibrium of the
gradient flow. Computing

1 ifi=jiel,
(3.15) 02 E;(Wo)yj = { J

0 otherwise,

we see that multiplication by this matrix results in the above principle submatrix of ¢g"V*. M

Proof of Theorem 1.2. We show a nonzero lower bound on the attraction rates. Let {;}{,
a; < o  if 7 < i denote the eigenvalues of A. Then by the Cauchy interlacing theorem and
Lemma 2.5,

(3.16) oci<ag<ag 1< <ay,

and note that this lower bound is nonzero on any compact subset on Np. |

Notice that Lemma 2.5 and the Cauchy interlacing theorem completely characterizes the
order of A7 and the characteristic exponents of the d =2 case:

0'2 —O'2
(3.17) o3 <ay< 2 <a;<oi.
log o

—log o3

3.3. Diagonal matrix completion. In this section we show numerical simulations for the
energy function Ej under variable N and d. For this choice of energy function, the rank of
possible completions ranges from 1 to d, and so it constitutes one of the important cases for
studying bias towards low rank in matrix completion problems.

3.3.1. Example: d = 20. We start with simulations of a larger, d = 20, example. Figures
2 and 3 show histograms of effective rank of optimization outcomes. Note that the rank and
thus the effective rank here can be as large as 20; the size of the matrices and therefore bias
towards low rank could mean convergence to a matrix of any effective rank smaller than 20.

Notice that even the shallowest case (N = 3) shows strong bias towards low-rank comple-
tions. In case of N =10 and N = oo, the obtained histograms are nearly identical, showing
strong bias towards minimal, rank-one outcomes. This suggests that building intuition around
the dynamics under sufficient depth is possible using small (d =2 or d = 3) examples, in which
case the rank-deficient cases (1.3) are easier to characterize.

Approximately 300 optimization outcomes are included for each N. Figure 3(b) shows
the distribution of effective rank upon initialization. The small random initial conditions
are drawn from a Wigner ensemble; specifically, they consist of matrices of independent
normal entries of mean zero and standard deviation 0.001, which distribution is denoted
Wigner(0,0.001).

The numerical convergence criterion used for these examples is E(W) < 1075.
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Figure 2. Empirical distributions of effective rank in 20 x 20 matriz completion simulations.
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Figure 3. (a) Effective rank distributions of shallow matriz completion simulations. (b) Sample distribution
of effective rank at initialization for all above examples.

3.3.2. Example: d = 2. In the following example for matrix completion, we illustrate how
an increase in depth influences training outcome and at what depth do the results start to
closely resemble our infinite depth limit. For easier visualization and building on the intuition
developed in the previous section, we keep the width at the minimum d = 2. The results
shown in Figure 4 are obtained by approximately 3000 runs for N = 5,10,20, and infinity
each. Each of these figures shows the outcome of these batch simulations.

For all of these batch runs, the optimization objective is a fixed invertible matrix of
diagonal elements [0.58724;1.447]. The small random initial conditions are drawn from
Wigner(0,0.001)." Note that initializing the end-to-end matrix directly does not lead to the
same distribution as initializing individual layers in a similar way and then taking a product.
However, for the purposes of this example, these two approaches lead to identical results.

!The Wigner ensemble Wigner(u, ) is a distribution of random matrices with independent normal elements
of mean p and standard deviation o.
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Figure 4. Outcomes of batch simulations under N = 5,10, 20, and oo, respectively. The black dots indicate
training outcomes, while the red and green hyperbola lobes visualize rank-one minimizers. Sample distributions
of effective rank are also included in the embedded graphs.

Notice that here any matrix with fixed diagonal elements

O w2
3.18
(3.18) [wm @2}

is a global minimizer. Batch simulations allow us to see whether there is a concentration of
training outcomes on the wio,wse; plane of possible global minimizers. Figure 4 shows the
results of these simulations, and Figure 5 shows the clear correspondence to high phase space
volume. The hyperbolas in the left panel correspond to the rank-one singularities on the
manifold defined by
Q1w
(3.19) o By
At these singularities phase space volume blows up for any depth, and the probability of
landing in this high volume region is expected to be high. The logarithmic volume can be
interpreted as an entropic quantity [16], suggesting the use of statistical mechanical tools in
our future analysis.
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Figure 5. Heatmap of the logarithmic volume on the plane of global minimizers for N =5 and N = oo,
respectively. Note that the volume itself does not depend on the loss function, only the plane where the section
was taken.

The numerical convergence criterion is (W) < 1075, which is achieved in no more than
T = 1200 simulation time in all included examples.

Based on the example in section 3.3.1 and the results in Figure 4, we conclude that the
infinite depth limit shows very similar behavior qualitatively to finite, sufficiently large depth
models. Thus it is worth studying and a predictive theory of implicit regularization must be
consistent with the infinite depth model.

Comparing Figures 4 and 6, we see that there is no clustering of simulation outcomes
in high effective rank regions. However, effective rank does not take the effect of depth into
consideration. As seen in Figure 5, state space volume shows higher concentration at higher
depth, just as simulation outcomes in higher depth show more concentration in these regions.
While we are not ready to make this relation quantitative, these results suggest that state
space volume is a good candidate to rely on for a quantitative theory of implicit regularization.

We also see that the accumulation of training outcomes is strong near the corners of
the hyperbola of rank-one completions. If high volume is a predictive quantity for training
outcomes, we expect a subtle decrease of volume along the hyperbola starting from the corners.
We characterize the blowup rates along the hyperbola by computing the normal perturbation
of singular values and volume density along the hyperbola.

To simplify calculations, we fix the diagonal elements to 1, getting the one-parameter
family of rank-one completions

= 1

(3.20) W= E 'q .

To simplify some of the formulas, we assume v > 0, restricting the analysis on the positive
lobe of the hyperbola. The SVD n W (vy) =U(7)2(7)VT () can be explicitly computed:

(3.21) U:#[V _1], zz{wﬂ_l 0], V:;[l ”].

Vita2 Lo 0 0 V1i+42 [y 1

Copyright (© by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/21/24 to 128.148.194.11 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

3226 NADAV COHEN, GOVIND MENON, AND ZSOLT VERASZTO

N

-2 -1 0 1
Wyg

Figure 6. Effective rank of global minimizers.

We will consider perturbations of size 7 in the normal direction of the hyperbola 1/~,

(3.22) 1/ [O 7(;1 .

Vi+y~t 1

Using Lemma 3.1, the perturbed singular values can be computed:

—1 2n
TVt Gy
0 VYIFT
77 72_’_1

And consequently, up to leading order, the determinant is

1
Vyr+1
Y L O>).
B
Plugging this back into the volume density function from (2.22),

von (log > ) 21 (log (v +17" + rrrive=r) —los (157

(3.23) X (vm) = +0(n?).

(3.24) det (X (v,m)) =n

a2s) et (/A 1+ 00P) (<’Y 7+ ﬁ)z - (n Jéiﬁlf)

:O<\10gn\)
1

as 1 — 0. We gained quantitative understanding of how the singular values perturb. Specif-
ically, we learn that the leading order coefficient of the smaller singular value, o9, is ‘{Y%—”Lll
This function has a minimum at v = 1, the corner of the hyperbola. This shows a quantita-
tive, but not qualitative, decrease of volume along the hyperbolas. The quickest blowup of

the volume density is at the corners of the hyperbola.

Copyright (© by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/21/24 to 128.148.194.11 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

DEEP LINEAR NETWORKS FOR MATRIX COMPLETION 3227

3.4. Other configurations.

3.4.1. Example: Single rank-deficient minimizer. In the previous examples, both global
minimizers and rank-deficient global minimizers were nonunique. Here we provide an example
where minimizers are nonunique, but there is only one rank-deficient (and high state space
volume) minimizer. The setup is the following: the energy function is E7 (W),

(3.26) T= [(1) ﬂ :

and N = co. In this case, the minimizers are of the form

D11 Pro
w1 P11

(3.27) [

for arbitrary we;, while imposing rank deficiency gives one solution, wa; = ®11Poa/P1o. All
simulation outcomes of 1000 random initial conditions drawn from Wigner(0,0.001) showed
convergence to this minimizer. As an illustration, five sample trajectories are shown in
Figure 7.

3.4.2. A 3 x 3 example. We continue with a more complicated N = oo, d = 3 example.
Computing the minimal rank to which a partially known matrix can be completed is in general
nontrivial. For a detailed discussion of the computational complexity of matrix completion,
see [11]. We covered cases before where either the small matrix size or the symmetry of
the configuration in the observed elements (diagonal matrix completion) makes this problem

trivial.
Py AN A
3, | ~ ~
¢11®22/¢12 B
o | [ [ [
0 W % )

0 500 1000 1500 2000
t

1

w;;

Figure 7. Five sample trajectories of the matrix elements under training are shown. All of them converge
to the rank-deficient minimizer.
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The equations for the missing elements can be written out by (symbolic) LU factorization
under the assumption of a given rank. If the equations have a solution for the unknown
elements, the matrix has a completion to the given rank. Solving the resulting system of
multivariate polynomials may not be possible.

We show this process for an easily solvable case. Take, for example, the first step of LU
factorization for the following configuration of ®;; # 0 and arbitrary w;; we are trying to solve
for:

D11 wip Pi3
M(ws1,wi2,w3) = | Pa1 Po  wos
w3y Pzz P33

3.28 -
( ) (O] 0 0 0
= | ®yy [1 &l))m $13]+ 0 (I)in‘bgihz w237¢$‘1>21
11 11
_ W31 Wi2 _ W31%i3
| w31 0 ®gp— =52 P33 — S5

We see that there is no solution for the rank-one completion and that the rank-two completions
are implicitly given by

W31W12 4)13@21
D13 (‘1332 Sl ou ) <w23 - )
3.29 0=>®33 — —ws1 — .
( ) 33 q)ll 31 @22 _ Do1win

11

In particular, an easily identifiable rank-two completion is given by the choice

B3oP13 | P3Py | P33Py
3.30 why = , Wag = , Wag = .
(3.30) 12 a3 23 Dy 31 D13

Let M denote the zero energy matrix with coordinates (3.30).
In order to run numerical simulations, we pick arbitrary matrix elements for the target
matrix:

—1.55795 . 1.58397
(3.31) ® = 10.212869 0.0337805
1.32488  1.92653

Figure 8 shows the outcome of strong clustering in a region near M. We interpret this
as a shortcoming of the rank based predictions, as the entire two-parameter family of min-
imizers defined by (3.29) has rank two. We attempt to explain the observation using phase
space volume. We approximate phase space volume within the zero energy plane spanned by
coordinates (wi2,ws1,ws3) upon simple Monte Carlo integration. We integrate the volume
form (1.16) in a small cube around some rank-two minimizers.

Since these points are singular, volume form (1.16) blows up. As a result of this, the volume
in a domain containing these points can be infinity. The volume, however, is locally finite,
so working with domains bounded away from singular points allows us to make quantitative
comparison between regions of the state space. Given a rank-two minimizer, we can study the
concentration of volume around it by simple Monte Carlo integration of the volume density
(2.22).
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Figure 8. Clustering of training outcomes obtained in the setup of (3.28). The majority of the 500 outputs
cluster near one particular rank-two minimizer indicated by the blue dot. Random initial conditions were drawn
from Wigner(0,0.02).

Define the set of 3 x 3 matrices with smallest singular value strictly larger than h,
(3.32) GLY={X € GL(3): 03(X) > h},
and the three-dimensional H-cube around a point X,
(3.33) Cy(X)={W e R ||lzg1 — ws1 |1 < H/2, ||z12 — wial|1 < H/2, ||x23 — wasl||1 < H/2}.

We can generate uniform random points in GL% N Cyx(X) by drawing from a uniform
distribution on Cy(X) and discarding the point when its smallest singular value is smaller
than h.

To carry out these integrations, random rank-two minimizers with undetermined elements
(w12, w31, waes) solving (3.29) are also required. We obtain these matrices by sampling w2 and
ws1 from a centered normal distribution of standard deviation 10. Parameters H = 0.001 and
h =0.00001 were chosen.

The outcome of simulations conducted on M and 24 other randomly selected rank-two
minimizers is shown in Figure 9. M is the point of the highest volume vicinity, the difference
from other equal-rank minimizers spanning several orders of magnitude. This is in alignment
with the clustering of training outcomes.

This example motivates the rigorous analysis of the asymptotics of the volume form around
singular matrices. While we observe large quantitative differences of volume in the cluster of
training outcomes, notice that M was a point arbitrarily selected in this cluster. Based on
these results, we cannot conclude that there are no points with even larger volume around
them, or even points with higher blowup rates. Our results nonetheless strongly suggest that
state space volume is the right tool to make predictions on training outcomes, when rank
based predictions are inconclusive.

3.4.3. Example: Minimal rank state space. Our last example is a pathological case
showing an explicit shortcoming of the rank-hypothesis of implicit regularization. Let R! =
{X € My :rank (X)=1}. It is shown in Chapter 1 in [3] that the DLN geometry for N < co
can be defined on the manifold of fixed-rank matrices using (1.8) for the metric.
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Figure 9. Monte Carlo integration of volume around rank-two minimizers.

It is easy to show that the volume form of this metric is

(334) Jormw) = -1,

g N

where ¢ denotes the single nonvanishing singular value of W € R!. This volume form does
not blow up at any point other than points near the origin.

For numerical simulations, take the setup of section 3.3.2, save for setting N =20 and the
change in the generation of random initial conditions. We generate samples uov? = W ~
Wigner(0,0.001), then use

g1 0 T
3.35 Wo=u v
as initial conditions. The set of minimizers (same as minimum-rank minimizers) consists of
matrices

(3.36) [ ) wm] B [0.58724 Wwio } |

L2y 08497 1 .447

w12 Wiz

Volume form (3.34) shows that highest volume is obtained at smallest o, but notice that in
this case the volume form does not blow up. Nonetheless, we can predict highest concentration
of training outcomes at the minimal singular value completions. Simple computation verifies
that these are the same as the symmetric completions,

(3.37) [ 0.58724 :|:0.921811] ’

+0.921811 1.447

which both admit o, = 2.03424. Thus, based on phase space volume, matrices with singular
value at oy, and slightly above are expected to have high representation among training
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Figure 10. Sample distribution of 1072 simulation outcomes of rank-one, diagonal matriz completion.

outcomes. Figure 10 shows the outcome of 1072 simulations using random initial conditions
verifying the predictions.

Notice furthermore that 7.(W) =1 for all W € R!; therefore it is impossible to make any
predictions based on effective rank.

4. Conclusion. We have used Riemannian geometry to improve the rank based under-
standing of implicit regularization in DLN. We derived new representations for the DLN
metric and formalized the infinite depth limit. The most salient feature of our analysis is the
derivation for the volume forms under depths of all positive integers, as well as infinity.

Using our results on the geometry of the DLN, we also improved upon the understanding of
training dynamics. We found formulas for linear attraction rates using the eigendecomposition
of the DLN metric. We then proved local normal hyperbolicity for the critical manifold of
training dynamics under a relatively general family of loss functions.

Looking forward, we would like to continue our study on the DLN geometry. The simplicity
of the formulas presented in this paper suggests that further intrinsic quantities could be
expressed using explicit formulas. The derivation of higher order geometric quantities could
give rise to new results on the dynamics. The precise formulation of stochastic training
dynamics requires the notion of Brownian motion on a Riemannian manifold. The stochastic
differential equation describing intrinsic Brownian motion relies on computations of the Levi—
Civita connection and curvatures [13, Chapter 3].

We engineered low-dimensional examples to verify our idea that implicit regularization is
explained by high state space volume. We showed that training in the case of N = oo shows
implicit regularization the same way as has been established for N < co. To summarize, the
DLN at N = oo provides a novel model of implicit regularization which is simpler than the
N < oo counterpart.
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